
Uncertainty assessment of forest road modeling 
with the Distributed Hydrology Soil Vegetation 
Model (DHSVM) 

Christopher G. Surfleet, Arne E. Skaugset III, and Jeffrey J. McDonnell 

Abstract: We used a generalized likelihood uncertainty estimation procedure with the Distributed Hydrology Soil Vegeta­
tion Model (DHSVM) for two streamflow and 11 road ditchflow locations. We observed considerable uncertainty in 
DHSVM simulations of forest road and stream runoff. The accuracy of simulations decreased as the size of the area mod­
eled decreased. For streamflow, 44% of attempted model structures exceeded a 0.5 Nash–Sutcliffe efficiency threshold for 
a 630 ha catchment; 12% of attempted model structures exceeded a 0.5 Nash–Sutcliffe efficiency threshold for a 55 ha 
catchment. DHSVM simulations produced behavioral model structures for only six of the 11 road ditchflow sites (<10 ha). 
Cumulative distribution functions of parameter values did not indicate specific parameter ranges of parameter values across 
all locations, indicating that parameter values in DHSVM are influenced by their interaction with other parameters. The 
sensitivity of parameters and the range of that sensitivity varied across simulations of road ditchflow and streamflow. 
DHSVM simulations for two streamflow locations varied outside the uncertainty bounds for 10%–22% of storm volumes 
and 12%–22% of peak flows, respectively. Twenty-eight percent to 52% of storm volumes and 28%–48% of peak flows 
were outside the uncertainty bounds for the six road ditchflow locations. 

Résumé : Nous avons utilisé une méthode d’estimation des incertitudes « Generalized Likelihood Uncertainty Estimation » 
avec le modèle distribué DHSVM (« Distributed Hydrology Soil Vegetation Model ») pour deux sites d’écoulement fluvial 
et 11 sites d’écoulement en fossés de drainage en bordure de route. Nous avons observé une incertitude considérable dans 
les simulations du DHSVM de l’écoulement fluvial et de l’écoulement associé à un chemin forestier. La précision des si­
mulations diminuait à mesure que la taille de la zone modélisée diminuait. Dans le cas de l’écoulement fluvial, 44 % des 
structures de modèle testées excédaient un critère d’efficacité de Nash–Sutcliffe de 0,5 pour un bassin de 630 ha; 12 % 
des structures de modèle testées excédaient un critère d’efficacité de Nash–Sutcliffe de 0,5 pour un bassin de 55 ha. Les 
simulations du DHSVM ont produit des structures de modèle comportemental pour seulement six des 11 sites d’écou­
lement en fossés (<10 ha). Les fonctions de distribution cumulative de la valeur des paramètres n’ont pas fourni d’étendues 
spécifiques des paramètres pour l’ensemble des sites, indiquant que la valeur des paramètres dans le DHSVM est influen­
cée par leur interaction avec d’autres paramètres. La sensibilité des paramètres et l’étendue de cette sensibilité variaient 
parmi les simulations d’écoulement en fossés et d’écoulement fluvial. Dans le cas de deux sites d’écoulement fluvial, les 
simulations du DHSVM variaient au-delà des limites d’incertitude pour 10 % à 22 % des débits d’orage et 12 % à 22 % 
des débits de pointe. Dans le cas de six sites d’écoulement en fossés, 28 % à 52 % des débits d’orage et 28 % à 48 % des 
débits de pointe étaient à l’extérieur des limites d’incertitude. 

[Traduit par la Rédaction] 

Introduction extend stream channel networks through gullies (Mont­
gomery 1994; Wemple et al. 1996), and alter peak flows at 

The effect of forest roads on watershed hydrology are a stream crossings (Toman 2004). 
focus of regulatory and scientific concern. This requires that The Distributed Hydrology Soil Vegetation Model 
land managers and owners become more sophisticated in the (DHSVM) is a tool that can be used to assess the influence 
assessment of the impacts of their forest roads. Forest roads of forest roads on watershed hydrology (Wigmosta et al. 
generate overland flow from compacted surfaces (Harr et al. 1994; Wigmosta and Perkins 2001). DHSVM contains a 
1975; King and Tennyson 1984), intercept subsurface flow road interception component that models the interception of 
at road cuts (Burroughs et al. 1972; Megahan 1972; Wemple hillslope water at road cutslopes and runoff from the road 
1998), and alter hillslope hydrologic processes. Forest roads surface (Storck et al. 1998; Wigmosta and Perkins 2001). 
also can redistribute water on hillslopes and change the tim- Wigmosta and Perkins (2001) demonstrated the utility of 
ing of streamflow, subsurface flow, and the distribution of the road network component of DHSVM to show changes 
soil moisture (Megahan 1972; Wigmosta and Perkins 2001), in peak flows and in the routing of water along road net­
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works for Carnation Creek. Bowling and Lettenmaier (2001) 
evaluated DHSVM for 12 culverts within Hard Creek and 
Ware Creek and concluded that the model simulated outlet 
peaks well and culvert peaks approximately. Bowling and 
Lettenmaier (2001) predicted peak flow changes within the 
watershed from the road network. In addition, La Marche 
and Lettenmaier (2001) used DHSVM to simulate road in­
fluence on changes related to road runoff, peak flows, water 
table, and forest harvest within the Deschutes River water­
shed. Despite these studies, there are few explicit tests of 
the road component of DHSVM or evaluations of model un­
certainty, and an equifinality assessment has not been per­
formed. 

Input requirements are demanding for physically based 
distributed models such as DHSVM. Inputs to the model 
and calculations within the model used to simulate the re­
sponse can generate considerable uncertainty. Uncertainty 
and output error can come from a variety of sources: (i) pre­
cipitation inputs greatly influence the simulations of a rain­
fall runoff model such as DHSVM, (ii) the measurement of 
precipitation has considerable spatial variability (Larson and 
Peck 1974; Morrissey et al. 1995) and errors are associated 
with its measurement (Chou 1968; Robinson and Rodda 
1969; Green and Helliwell 1972; Peck 1972; Habib et al. 
2001), (iii) parameter values of DHSVM (e.g., hydraulic 
conductivity) are represented by a single value, depending 
on the soil texture, although measurements of these values 
can vary as much as 150% (Warrick and Nielsen 1980), (iv) 
model structure errors account for a significant proportion of 
uncertainty in predictions; this uncertainty generally in­
creases with model complexity and reflects the limitations 
of our understanding of the processes at work (Brazier et al. 
2000), and (v) errors in observations of road ditchflow and 
streamflow used for comparison and evaluation of model 
output add uncertainty to comparisons of model estimates. 

In this study, we performed an uncertainty analysis of 
DHSVM with respect to simulations of streamflow and road 
ditchflow. We used the generalized likelihood uncertainty 
estimation (GLUE) procedure (Beven and Binley 1992; 
Beven 2001) to evaluate the uncertainty of DHSVM simula­
tions, parameter sensitivity, and the influence of parameter 
interactions. 

Methods 

Study area 
This study was conducted in the Oak Creek watershed 

(630 ha) (Fig. 1) within the McDonald/Dunn Research For­
est managed by the College of Forestry, Oregon State Uni­
versity. Elevations within the watershed range from 140 to 
more than 600 m. The average annual precipitation for the 
Oak Creek watershed for the 2003–2006 water years was 
970 mm/year with a range of 830–1110 mm/year. Precipita­
tion in the watershed is predominantly rain. The annual 
snowfall depth is approximately 110 mm (Oregon Climate 
Service 2005). 

The underlying bedrock, the Siletz River Volcanics, is a 
basalt formation (Knezevich 1975). Soils in the watershed 
are predominately mesic Typic Hyploxerepts with areas of 
mesic Pachic Argixerolls and mesic Typic Palchumults. The 
most common soil texture is silty clay loam, although some 

areas with silty loam texture are present. The forest trees are 
predominantly Douglas-fir (Pseudotsuga menziesii (Mirb.) 
Franco) with minor components of other conifers, hardwood 
species, and grassy meadows. 

There is a meteorological station near the outlet of the 
study watershed where continuous observations of air tem­
perature, relative humidity, solar radiation, wind speed, and 
precipitation have been made since 2003. In addition, there 
are three rain gauges located at varying elevations and as­
pects throughout the watershed (Fig. 1). Hydrologic observa­
tions were recorded continuously at road ditchflow discharge 
locations in Oak Creek using Tru-Track capacitance rods. 
Discharge was calculated from stage observations based on 
a rating curve developed for the Oak Creek culverts (Toman 
2004). 

DHSVM 
DHSVM is a physically based distributed hydrologic 

model that explicitly solves water and energy balances for 
each model grid cell (Bowling and Lettenmaier 2001). 
DHSVM was originally developed for use in forested, 
mountainous terrain (Wigmosta et al. 1994) and then ex­
tended for use in maritime climates (Storck et al. 1995). 
The model and the road interception component of the 
model are described in detail elsewhere (Wigmosta et al. 
1994; Storck et al. 1995, 1997, 1998; Wigmosta and Perkins 
2001); thus, only a brief description is provided here. 

DHSVM calculates the spatial distribution of soil mois­
ture, snow, evapotranspiration, and runoff in hourly or lon­
ger time increments for individual grid cells, or pixels, 
based on the digital elevation model of the watershed. Mete­
orological inputs required for each time increment of the 
model are precipitation, relative humidity, air temperature, 
wind speed, shortwave radiation, and longwave radiation. A 
one-dimensional water balance is calculated for each grid 
point based on effects from vegetation, climate, soil hy­
draulic properties, and topography. The model uses a two-
layer canopy representation to calculate interception and 
evapotranspiration of vegetation, a two-layer energy balance 
model for snow accumulation and snowmelt, a multilayer 
unsaturated soil model based on Darcy’s Law, and a satu­
rated subsurface flow model. 

Once the water balance calculations are complete, each 
grid cell exchanges water with adjacent grid cells, which re­
sults in a three-dimensional redistribution of surface and 
subsurface water across the watershed. DHSVM calculates 
the amount of overland flow from the road surface based on 
the precipitation intensity and infiltration rate of the road 
surface. Overland flow is routed in the road ditch to a drain­
age location. DHSVM also routes intercepted water at the 
cutslope in the road ditch to a drainage location. 

Site selection for study 
For the GLUE evaluation of DHSVM, we selected two 

streamflow locations and 11 road drainage culverts within 
the Oak Creek watershed for the 2003–2006 water years 
(Fig. 1). The two streamflow locations were the largest 
watershed areas with streamflow measurements: Oak Creek, 
at the outlet of the research watershed (630 ha), and a 
smaller tributary, Claire Creek (55 ha). To select the 11 
road drainage sites, we used the generalized random tessel­



Fig. 1. Upper Oak Creek watershed and study sites, Corvallis, Oregon, USA. 

lation stratified design (Stevens and Olsen 2004), a spatially 
balanced sampling approach. The sampling frame comprised 
road sites with at least two winters of hydrologic data be­
tween the 2003 and 2006 water years. 

DHSVM inputs 
For input, DHSVM requires (i) spatial information about 

the watershed in the form of binary grids created from Ar­
cInfo coverages of elevation, soil type, soil depth, and vege­
tation type and (ii) connecting arcs (spatially aligned lines) 
for the stream network and road network. A 30 m digital el­
evation model for Oak Creek was projected from LIDAR 
data with a resolution of 6 m. A pixel size of 30 m was 
chosen because it would be large enough to encompass the 

stream channel and road widths found in Oak Creek (a con­
straint of DHSVM). 

The parameters of DHSVM that were varied for uncer­
tainty analysis comprised physical values associated with 
water movement in the soil. To facilitate the Monte Carlo 
analysis associated with the GLUE procedure, only one soil 
type, a silty clay loam, was designated for Oak Creek. A 
vegetation layer specifying one vegetation type (coastal for­
est type) was used to correspond to the Douglas-fir forest of 
Oak Creek. 

Soil depths were estimated with a soil depth model (West­
rick 1999) fit to 65 field measurements of soil depth meas­
ured in Claire Creek, a tributary of Oak Creek. The soil 
depth model fit to field measurements provided the most ac­



curate output for DHSVM simulations of small-area hydro­
logic processes, such as road runoff, compared with an aver­
age or regionally estimated soil depth (Surfleet 2008). The 
stream network for Oak Creek was generated by the ‘‘crea­
testreamnetwork’’ Arcinfo script provided with DHSVM. 
The road network was mapped with GPS to within 1 m ac­
curacy. Road dimensions of cutslope depth, road width, 
ditch width, road type (crowned, outsloped, and insloped), 
and road ditch depth were measured in the field. The mete­
orological inputs for DHSVM were taken primarily from the 
weather station within Oak Creek. Meteorological data from 
the US Bureau of Reclamation Agrimet climate station in 
Corvallis, Oregon, were used to develop relationships with 
Oak Creek meteorological data to fill missing time periods. 

GLUE analysis 
The initial step in the GLUE procedure was to conduct a 

Monte Carlo simulation with randomly selected parameter 
values sampled over a uniform or previously known distri­
bution. For this study, we performed 10 000 model simula­
tions based on (i) randomly selected soil values of lateral 
hydraulic conductivity, (ii) exponent of decay of the de­
crease in hydraulic conductivity by depth (an exponent of 
the natural logarithm describing the decrease in hydraulic 
conductivity by depth of soil), (iii) porosity of the soil ma­
trix, and (iv) vertical hydraulic conductivity. These four pa­
rameters and the range of values for each parameter selected 
were based on preliminary model trials that demonstrated 
competence at achieving model fit to observed data. Table 1 
shows the ranges of values randomly sampled. Because unit 
values for three of the parameters ranged from tenths to 
hundred thousandths, we used a lognormal distribution for 
random sampling. This method provided equal probability 
of sampling for both low (hundred thousandth of a unit) 
and high (1 or 10 units) values. Sampling from a uniform 
distribution would have been weighted too heavily toward 
high values. 

Likelihood function (goodness of fit) 
We used the Nash–Sutcliffe efficiency (NSE) function 

(Nash and Sutcliffe 1970) as the likelihood function for the 
GLUE procedure of DHSVM. The term ‘‘likelihood’’ has a 
broader definition for the GLUE analysis than it does in 
classical statistical techniques (Binley and Beven 1991). We 
chose the NSE, first, because it provides a reasonable test of 
the magnitude and timing between observed and simulated 
time series points and, second, because it has been success­
fully implemented in other GLUE analyses (e.g., McMichael 
et al. 2006) and used as a goodness of fit measure in other 
DHSVM applications (e.g., Whitaker et al. 2003). 

For the GLUE procedure for Oak Creek and Claire Creek 
streamflow, we used DHSVM simulated time series that 
equaled or exceeded an NSE value of 0.5. For road ditch-
flow, we used simulations that equaled or exceeded an NSE 
of 0.3 because the fit of the time series of road ditchflow to 
observed ditchflow was not as good as that for streamflow. 
Road runoff is highly variable and can be highly influenced 
by the intensity of local precipitation, which makes it diffi­
cult to match simulated and observed data by time periods. 
We used an NSE of 0.3 to compensate for this discrepancy 
and to obtain a conservative threshold value for evaluation 

of uncertainty in model results. Higher values of NSE with 
application of hydrologic modeling with DHSVM have 
been reported in the literature (Whitaker et al. 2003; McMi­
chael et al. 2006). However, we used the more conservative 
0.5 NSE for streamflow and 0.3 NSE for road ditchflow to 
ensure that behavioral model structures were not excluded 
because of drawbacks in the application of NSE. 

Sensitivity plots 
Parameter sensitivity can be interpreted from plots of the 

cumulative distributions of parameter values grouped ac­
cording to rank by their likelihood measure. We plotted cu­
mulative distribution functions (CDF) for lateral hydraulic 
conductivity, exponent of decay of hydraulic conductivity 
by depth, vertical hydraulic conductivity, and porosity by 
five different likelihood levels for each streamflow and 
ditchflow site with behavioral model structures simulated 
by DHSVM. The five levels of likelihood values represented 
even divisions of the range of parameter values from the 
lowest to the highest likelihood. The model was sensitive to 
a parameter if there were dissimilarities in the CDF for 
varying likelihood values. In contrast, similar CDFs of the 
varying likelihood values for a parameter indicate that the 
model was insensitive to that parameter. 

Calculation of uncertainty bounds 
The GLUE procedure allows uncertainty assessment for 

simulated time series. In this case, a 95% uncertainty bound 
was derived from the Monte Carlo simulation. The uncer­
tainty bounds depict prediction errors from model structure, 
effective parameterization, and hydrologic processes as cal­
culated by DHSVM. The uncertainty bounds apply for the 
entire time series and for individual time steps. These pre­
dictive uncertainty bounds define the upper and lower pre­
diction limits associated with the behavioral model 
structures; they do not represent probabilistic confidence in­
tervals. 

Results 

GLUE assessment of DHSVM parameters 
For the parameter ranges evaluated by the GLUE proce­

dure, the proportion of behavioral model structures for 
DHSVM varied by location modeled (Table 2). For Oak 
Creek (630 ha), 44% of the 10 000 model structures ex­
ceeded a threshold of 0.5 NSE and 100% exceeded 0.3 
NSE. For Claire Creek (55 ha), 12% of attempted model 
structures exceeded a threshold of 0.5 NSE, while 45% ex­
ceeded 0.3 NSE. DHSVM simulations exceeded the NSE 
criteria of 0.3 for only six of the 11 road ditchflow sites. 
For the six road ditchflow sites (<10 ha) that exceeded the 
minimum NSE criteria, proportions of behavioral structures 
that exceeded 0.3 NSE ranged from 19% to 90%; 1%–12% 
exceeded 0.5 NSE. For five road ditchflow locations, 
DHSVM did not produce behavioral model structures for 
the 10 000 simulations attempted. 

Parameter sensitivity and the range of that sensitivity var­
ied by site simulated (Fig. 2). The CDF plots indicated that 
porosity was a sensitive parameter for all sites, except cul­
vert 54. The spread of the CDF for varying likelihood levels 
for exponent of decay of the hydraulic conductivity by depth 



Table 1. Range of parameter values randomly sampled for GLUE. 

Parameter Range of values 
Lateral hydraulic conductivity (m/s) 0.00001–1.0 
Exponent of hydraulic conductivity decrease by depth 0.01–10.0 
Vertical hydraulic conductivity (m/s) 0.00001–1.0 
Porosity (%) 40–55 

Table 2. Percentage of DHSVM simulations producing behavioral model struc­
tures. 

Location NSE > 0.5 (%) NSE > 0.3 (%) Type 
Oak Creek 44 100 Streamflow 
Claire Creek 12 45 Streamflow 
Culvert 27 1 63 Intermittent ditchflow 
Culvert 30 2 42 Intermittent ditchflow 
Culvert 54 12 90 Intermittent ditchflow 
Culvert 79 0 0 Ephemeral ditchflow 
Culvert 88 6 19 Intermittent ditchflow 
Culvert 35 0 0 Intermittent ditchflow 
Culvert 47 0 0 Intermittent ditchflow 
Culvert 49 1 54 Intermittent ditchflow 
Culvert 76 1 9 Intermittent ditchflow 
Culvert 53 0 0 Intermittent ditchflow 
Culvert 56 0 0 Ephemeral ditchflow 

was not as great as it was for porosity, and while it was not 
sensitive for all ditchflow locations, it demonstrated changes 
in likelihood as values of the parameter changed. The sensi­
tivity of lateral hydraulic conductivity varied by site simu­
lated. Lateral hydraulic conductivity was not a sensitive 
parameter for Claire Creek and it exhibited sensitivity for 
only two of the six sites at which road ditchflow was as­
sessed with GLUE. The vertical hydraulic conductivity pa­
rameter was insensitive for all sites based on the tight 
grouping of CDF curves for varying likelihood levels. Verti­
cal hydraulic conductivity did not show an association with 
a particular range of values based on the relatively uniform 
slopes of the CDFs (Fig. 2). 

In general, sites that demonstrated sensitivity for one pa­
rameter showed sensitivity for the other parameters, except 
for vertical hydraulic conductivity, which was insensitive at 
all sites. At culvert 54, none of the four parameters eval­
uated showed sensitivity. Among the ditchflow sites, culvert 
54 also had the greatest number of behavioral model struc­
tures. 

The CDFs provided some indication of the range of pa­
rameter values that might be used for future simulations in 
Oak Creek. One interpretation was the location that showed 
the steepest slope on the high likelihood CDF curve (plot 5) 
(Fig. 2). The length of the curve with the steepest slope in­
dicates a range of the individual parameter values with the 
greatest sensitivity for DHSVM simulations. 

The range of the parameter values with steep sections of 
the CDF varied by site. CDF curves for lateral hydraulic 
conductivity had very steep slopes at the low end of the 
range of parameter values (Fig. 2); all but two sites show a 
high proportion of values of hydraulic conductivity less than 
0.001 m/s for behavioral model structures. The exponent of 
decay of hydraulic conductivity by depth did not show a 
trend of increased likelihood for particular values, although 

two of the sites showed the highest likelihood values for ex­
ponent of decay of hydraulic conductivity by depth between 
1 and 10. Porosity did not show a distinct range of values 
that improved likelihood values. For a few of the sites, there 
was a slight indication that porosity greater than 0.5 might 
provide higher likelihood values, but this was not true for 
all sites, nor was the evidence conclusive. 

Uncertainty bounds for DHSVM simulations 
Figures 3 and 4 show the 95% uncertainty bounds for the 

two streamflow and two representative road ditchflow sites 
that produced behavioral model structures from DHSVM 
simulations in Oak Creek. DHSVM simulations for the out­
let of Oak Creek had less uncertainty than the other sites 
evaluated. Storm volumes and peak flows were generally 
within the uncertainty bounds derived from the GLUE pro­
cedure (Fig. 3). Only 10% of storm volumes and 12% of 
peak flows observed were outside the uncertainty bounds 
(Table 3). The accuracy of DHSVM simulations decreased 
as the size of the area modeled decreased. Oak Creek was 
the largest area modeled (630 ha), and DHSVM output had 
less uncertainty, based on percentages of storm volumes and 
peak flows outside the uncertainty bounds. DHSVM simula­
tions for Claire Creek (55 ha) showed greater uncertainty; 
22% of storm volumes and 22% of peak flows were outside 
the uncertainty bounds (Fig. 3; Table 3). For the six road 
ditchflow locations analyzed with GLUE, 28%–52% of 
storm volumes and 28%–48% of peak flows were outside 
the uncertainty bounds (Table 3; Fig. 4). 

Five road ditchflow locations did not meet the criteria for 
model fit, demonstrating high uncertainty of model results 
related to road ditchflow location. Figure 5 shows one 
DHSVM model structure calibrated to Oak Creek and Claire 
Creek streamflow for two of these road ditchflow locations 
to demonstrate the problems in DHSVM simulations. During 



Fig. 2. Sensitivity for four soil hydraulic parameters of DHSVM expressed as cumulative distributions in five levels of likelihood values for 
behavioral model simulations from lowest likelihood values (plot 1) to highest likelihood values (plot 5). 

the time period modeled for Oak Creek (2003–2006), four 
storms had a recurrence interval greater than 1 year: the 
largest four storms during the 2006 water year. These four 
storms are shown at the right side of each of the time series 
graphs (Figs. 3, 4, and 5). Estimations of storm volume for 
these events varied considerably (Table 3). Storm volumes 
observed for the largest areas modeled, Oak Creek and 
Claire Creek, were within the uncertainty bounds for these 
four largest storms. At road ditchflow sites, storms with re­
currence intervals greater than 1 year varied between zero 
and three storms within uncertainty bounds. At Oak Creek, 
one of the 1-year recurrence peak flows was outside the un­
certainty bounds; at Claire Creek, however, three of the 1­
year recurrence peak flows were outside the uncertainty 
bounds. At the road ditchflow sites, peak flows varied from 
0 to 4 within the uncertainty bounds. This result demon­
strates wide variability in the fit of DHSVM results within 
uncertainty bounds for large events. The trend observed for 
simulations at the largest area modeled (Oak Creek) showed 
better fit to storms with recurrence intervals greater than 1 
year than did the small-area simulations (road ditches). 

Figure 6 shows storm volumes for streamflow and their 

subsequent uncertainty bounds for Oak Creek and Claire 
Creek. Figure 7 provides the same information for the two 
road ditchflow locations with DHSVM behavioral model 
structures. The trend shows small storm volumes at the 
lower end of the uncertainty bounds and large storms at the 
middle to upper ends of the uncertainty bounds, often out­
side the uncertainty bounds. These results suggest that 
DHSVM tended to overpredict the volume of small storms. 
In contrast, DHSVM often underpredicted the large storm 
volumes and peak flows (events with recurrence intervals 
greater than a 1 year) for the ditchflow locations. Similar re­
sults for Claire Creek showed that DHSVM underpredicted 
peak flows with recurrence intervals greater than 1 year 
(Table 3). 

Discussion 

DHSVM is a tool to assess the influence of forest roads 
influences on watershed hydrology. To date, only manual 
calibration techniques, the systematic altering of the most 
sensitive or influential parameters of the model through a 
sequence of model runs, have been used with DHSVM. The 



Fig. 3. Uncertainty bounds for DHSVM results for Oak Creek (630 ha) and Claire Creek (55 ha) compared with observed winter stream-
flow, 2003–2006. The x-axis time steps represent 3 h intervals; the y-axis streamflow represents cubic metres per 3 h. The time series in the 
plots do not correspond to each other due to varying lengths of records; no comparison of timing among plots can be made. 

Fig. 4. Uncertainty bounds for DHSVM results for two road locations with behavioral model structures compared with observed winter 
streamflow, 2003–2006. The x-axis time steps represent 3 h intervals; the y-axis streamflow represents cubic metres per 3 h. The time series 
in the plots do not correspond to each other due to varying lengths of records; no comparison of timing among plots can be made. 



Table 3. Percentage of observed storm events outside the DHSVM 95% uncertainty bounds. 

% storm volume % storm peak flows % storm volumes >1-year % storm peak flows >1-year 
outside uncertainty outside uncertainty event outside uncertainty event outside uncertainty 
bounds bounds bounds bounds 

Oak Creek 10 12 0 25 
Claire Creek 25 22 0 75 
Culvert 27 30 30 75 0 
Culvert 30 33 28 50 50 
Culvert 49 50 48 75 100 
Culvert 54 14 38 0 75 
Culvert 76 36 46 0 75 
Culvert 88 30 33 0 0 
Mean 29 32 25 50 

Fig. 5. DHSVM simulation for two road locations with no behavioral model structures compared with observed winter streamflow, 2003– 
2006. The x-axis time steps represent 3 h intervals; the y-axis streamflow represents cubic metres per 3 h. The time series in the plots do not 
correspond to each other due to varying lengths of records; no comparison of timing among plots can be made. 

problem with this approach is that it does not address the 
concept of equifinality in the model’s use, which means 
that many different model structures or groups of parameters 
can provide acceptable answers. It would be preferable to 
present model results in a range of acceptable answers to de­
monstrate the uncertainty in the model output. To date, the 
use of DHSVM to model road hydrologic effects has relied 
on one set of calibrated model parameters for its predictions 
(Bowling and Lettenmaier 2001; La Marche and Lettenma­
ier 2001; Wigmosta and Perkins 2001; Cuo et al. 2003). All 
published accounts of DHSVM hydrologic simulations have 
relied on calibration of the model to one model structure 
(e.g., Leung and Wigmosta 1999; Whitaker et al. 2003; 
Beckers and Alila 2004; Schnorbus and Alila 2004). Our re­
sults demonstrated considerable uncertainty in the use of 
DHSVM to represent forest road runoff; this suggests pro­
blems with a one-model structure approach. 

Uncertainty and area 
The area simulated by DHSVM influenced the uncertainty 

of model results. The largest area where streamflow was si­
mulated was the outlet of Oak Creek (630 ha). Oak Creek 
produced the highest proportion of behavioral model struc­
tures from the GLUE analysis. Oak Creek simulations also 
provided the greatest proportion of modeled storm runoff 
volumes and peak flows within uncertainty bounds. Claire 
Creek produced the second highest amount of behavioral 
model structures, the second largest proportion of peak 
flows, and the third largest proportion of storm volumes 
within uncertainty bounds. The smallest watershed areas 
modeled, the road ditchflow locations, produced low propor­
tions of behavioral model structures and low proportions of 
storm volumes and peak flows within uncertainty bounds. 
For several of the road ditchflow locations, no behavioral 
model structures were identified. 



Fig. 6. Observed storm volumes and DHSVM uncertainty bounds Fig. 7. Observed storm volumes and DHSVM uncertainty bounds 
for Oak Creek and Claire Creek. Storm volumes are plotted in in- for two road locations with behavioral model structures. Storm vo­
creasing volume. The storm numbers are not the same storms for lumes are plotted in increasing volume. The storm numbers are not 
each plot due to the varied length of records. the same storms for each plot due to the varied length of records. 

The ability of DHSVM to simulate hydrologic responses 
diminished for smaller catchment areas where the soil ma­
trix and associated hydrologic processes can be highly var­
ied. A limited number of model parameter combinations 
were able to simulate the runoff within this variability. This 
could be explained by a lack of site-specific data with which 
the parameters of the model could be adjusted, although it is 
more likely that the conceptualization of the hydrologic 
processes in DHSVM are better suited for capturing larger 
catchment area responses. Many of the associations between 
DHSVM parameters are nonlinear; this would have a greater 
effect on modeling smaller areas where parameter accuracy 
would be most important. Small-scale soil, vegetation, and 
climate differences have greater influence on modeling run­
off in small catchment areas than in large ones. In large 
catchments, greater generalization of the soil and hydrologic 
processes is more likely to meet modeling objectives. 

The number of behavioral model structures decreased 
with a decrease in area modeled (Table 3). This relationship 
demonstrates that a greater number of model structures can 
produce reasonable outcomes as the area of the watershed 
modeled increases. Because our results show that the outlet 
of a watershed accepts a larger number of model structures, 
it is likely that model structures that are behavioral for 
smaller areas will produce behavioral model structures for 

larger areas. Thus, model structures chosen for DHSVM 
might be improved with internal watershed data at smaller 
scales than the outlet of the watershed to be researched. Us­
ing internal watershed information for model calibration is 
counter to what many modelers actually do; models are cali­
brated by fit to the streamflow at the watershed outlet, with 
some validation to internal watershed data. Most streamflow 
observations available to evaluate models are at larger 
watershed areas. The results here suggest that greater con­
sideration should be placed on collecting and adjusting mod­
els from smaller area observations. Certainly this is the point 
of using distributed hydrologic models: to have greater con­
trol of the model calculations for small-scale processes. 

Parameter values of DHSVM and uncertainty 
A limitation of the GLUE assessment is its dependence on 

Monte Carlo simulation (Beven 1998). For complex models 
that require much computer time for a single run, such as 
DHSVM, it is not possible to fully explore all parameter in­
teractions. Our analysis was limited by the computer resour­
ces available, which resulted in only 10 000 simulations that 
varied only four model parameters. However, it has been 
suggested that the upper limit of model performance is often 
well defined by a limited number of model realizations (e.g., 
thousands) and that prediction intervals are reasonable in 



comparison with larger numbers of realizations (e.g., mil­
lions) (Beven 1998). 

Generally, parameter values that produced higher likeli­
hood values also produced model structures with low likeli­
hood values. This indicates that the parameter values 
manipulated in the GLUE procedure are influenced by their 
interactions with each other. The GLUE procedure showed 
that no optimum model structure could accurately estimate 
the runoff for all road and streamflow sites across Oak 
Creek. Different parameter value ranges and interaction of 
parameters suggest that equifinality, the ability or likelihood 
of many model structures to estimate the observed data, 
would be an appropriate approach for DHSVM evaluations. 

Lateral hydraulic conductivity and porosity and the expo­
nent of decay of hydraulic conductivity by depth were sensi­
tive model parameters for producing behavioral model 
structures for DHSVM. But lateral hydraulic conductivity 
was not sensitive for all sites. This was surprising, as this 
parameter is considered influential in calculating subsurface 
hydrologic response. Technical support for DHSVM sug­
gests the use of this parameter, among others, to assist in 
calibrating the model (Land Surface Hydrology Research 
Group 2008). However, the results from the GLUE assess­
ment showed that, although setting the lateral hydraulic con­
ductivity at a value reasonable for the various soil types is 
important, making many adjustments to this parameter to 
improve model fit might not be successful. The interaction 
among parameter values appears to be more important for 
model fit. 

Soil porosity directly influences the volume of subsurface 
water calculated for each grid cell of DHSVM; increased 
porosity indicates a higher volume of soil available for 
water storage when all other soil attributes are constant. 
The same relationship is true with increases in soil depth; 
thus, porosity could be viewed as a surrogate for soil depth 
in model calculations, provided other model parameters af­
fected by soil are similar. The varying ranges of porosity ob­
served from the GLUE analysis therefore might be attributed 
to inaccurate soil depth values upslope from road culvert lo­
cations. Within the Monte Carlo simulations, the porosity 
value is held constant across the watershed for each simula­
tion, yet observed hydrologic data suggest that results varied 
spatially. In previous research, we found soil depth to be in­
fluential in improving DHSVM results (Surfleet 2008). Soil 
depth varies spatially, yet was not well estimated by topog­
raphy or physical terrain attributes. The sensitivity of soil 
porosity suggests that spatial manipulation of porosity could 
improve DHSVM results for small-scale modeling. 

Inaccuracy of DHSVM simulated road responses at Oak 
Creek 

The hydrologic response of roads at Oak Creek was 
highly variable, as observed from data for the roads for 
which DHSVM did not produce behavioral model structures 
(Fig. 5). For roads in the Oak Creek watershed, ditchflow 
varied from intermittent (flows all winter, culvert 47) 
(Fig. 5) to ephemeral (flows only when raining, culverts 53) 
(Fig. 5). Other roads exhibited a mix of intermittent and 
ephemeral road responses that depend on winter precipita­
tion conditions. Still other roads exhibited little to no ditch-
flow, even with a connected road cutslope and tread. The 

varied hydrologic responses from roads in Oak Creek sug­
gest that there is considerable uncertainty associated with 
the conceptual model of road interception and surface run­
off, used in DHSVM, for predicting road hydrologic effects. 

Attempts to use physical measurements of topography, 
soils, and road prisms to predict a road’s hydrologic re­
sponse have met with mixed success. Wemple and Jones 
(2003) reported that hillslope length, soil depth, and cutslope 
height explained much of the variability in the amount of 
subsurface flow intercepted by cutslopes at the H.J. Andrews 
Experimental Forest in the western Cascades. La Marche 
and Lettenmaier (2001) found no relationship between peak 
runoff and cutslope height of adjoining road segments in the 
Deschutes River watershed in Washington. Gilbert (2002) 
found no relationship between spatial variability of subsur­
face water interception from roads and topographic indica­
tors in the Oregon Coast Range. Ellingson (2002) found 
that road length and elevation (surrogate for orographic pre­
cipitation effects) weakly correlated with the peak discharge 
from roads for one storm analyzed in the Oak Creek water­
shed in the Oregon Coast Range. However, no relationship 
was found for topographic or physical properties and total 
storm runoff volume from roads. In a study of the Deschutes 
River in Washington, La Marche and Lettenmaier (2001) 
found that neither road gradient nor road drainage area was 
statistically significant in determining the occurrence of gul­
lies from road drainage. This result might indicate that the 
presence of macropore or pipe flow was more important 
than hillslope steepness in determining the amount of sub­
surface flow intercepted by a road segment and hence the 
propensity for gullies to form below the culverts 
(La Marche and Lettenmaier 2001). 

In the conceptual model within DHSVM for road hydro­
logic effect, interception of hillslope water occurs when a 
seasonally high water table flowing over an impermeable 
base (e.g., bedrock) becomes deep enough to intersect the 
road ditch. The fraction of the permeable soil occupied by 
the road cut becomes a controlling factor in the amount of 
interception of subsurface flow. The published record on 
the interception of hillslope water by roads demonstrates the 
complexity of the subject and suggests substantial variability 
(Luce 2002). Various researchers have observed that cut-
slope contributions can be much smaller than, equal to, or 
much greater than road surface contributions; the dependen­
cies are not clear (Luce 2002). In several studies on forest 
roads in Idaho and Oregon, researchers found that a substan­
tial part of the road runoff came from subsurface flow inter­
cepted by the cutslope (Burroughs et al. 1972; Megahan 
1972; Wemple 1998; Marbet 2003). Marbet (2003) and 
Toman (2004) found that in watersheds in the Oregon Coast 
Range, the dominant mechanism for road runoff was varia­
ble throughout the watersheds. For some road segments, the 
dominant mechanism was road interception of hillslope 
water, whereas for others, it was overland flow from the 
road tread. 

Despite a reasonable effort to measure soil depth in the 
field and a variety of different attempts at spatial extrapola­
tion, we did not achieve an accurate spatial representation of 
the soil depths in Oak Creek (Surfleet 2008). Variable 
weathering and fractures within the basalt geology in Oak 
Creek have created topography at the bedrock surface that 



is highly erratic and does not reflect the shape of the surface 
topography. The soil depths were poorly predicted by the 
physical characteristics used in the soil depth model (West­
rick 1999) provided with DHSVM (Surfleet 2008). Because 
DHSVM is a fully distributed model, it might be possible to 
find parameter sets that provide a better fit to individual 
road cuts and hillslopes, but their use would increase the 
complexity of the modeling exercise, perhaps beyond the 
scope of most decision-based analysis. 

La Marche and Lettenmaier (2001) observed similar un­
certainty in road hydrologic response by DHSVM in an ap­
plication in the Deschutes River, Washington. They 
hypothesized that this uncertainty could result from ditch in­
filtration, which is observed in the field but not modeled in 
DHSVM. They also noted that road surface runoff is only 
crudely represented in DHSVM. For roads, most hydrologic 
effects modeled by DHSVM represent interception of hill-
slope water at the cutslope. In case studies of groundwater 
effects from roads in Alaska, Kahklen and Moll (1999) ob­
served that groundwater intercepted by road cuts was 
quickly infiltrated into the porous road ditch. They sug­
gested that some road prisms might act like conduits draw­
ing hillslope water under the road. DHSVM assumes that the 
bedrock below the soil is impervious. Although not meas­
ured, certainly some water leakage occurs into the fractured 
volcanic rocks in this watershed. Interception of hillslope 
water was not consistent for some of the roads in Oak 
Creek, which created an overprediction of road runoff. 

Implications for management and change detection 
Considerable uncertainty was identified in road hydro­

logic modeling by DHSVM for Oak Creek. The results sug­
gest that using DHSVM as a change detection tool in a 
watershed such as Oak Creek, with highly variable hillslope 
water flow and road interception, must be approached care­
fully. For watersheds such as Oak Creek, it would be diffi­
cult to conclusively determine hydrologic change using the 
approach of one model structure calibrated to the watershed, 
the approach used in other studies (Bowling and Lettenmaier 
2001; La Marche and Lettenmaier 2001). 

The fact that many road runoff locations analyzed in Oak 
Creek produced behavioral model structures suggests that 
individual road locations could be assessed for hydrologic 
change within an equifinality approach. Behavioral model 
structures identified for the individual road runoff locations 
could be simulated in DHSVM with the road removed. The 
difference in simulated road runoff with and without the 
roads for all of the behavioral model structures would pro­
vide a range of road hydrologic changes that could be inter­
preted from DHSVM. Likewise, this same approach could 
be done at larger watershed areas where behavioral model 
structures identified at streamflow locations could be mod­
eled in DHSVM with the roads removed, which would pro­
vide a range of hydrologic change from the roads. The 
assumption that must be accepted is that the behavioral 
model structure identified with roads in the watershed would 
still be behavioral when the roads are removed. 

Several of the road runoff locations for Oak Creek had no 
behavioral model structures with DHSVM. For these sites, 
DHSVM cannot be used as a change detection tool. There­
fore, the modeler is limited in change detection assessment 

to sites for which behavioral model structures can be pro­
duced. The question becomes what would this mean to the 
assessment of change detection of road hydrologic effects at 
the watershed scale? If not all road runoff locations provide 
behavioral model structures in a watershed, can a watershed-
scale assessment of change detection of roads be trusted? 
We suggest that the answer depends on how well DHSVM 
does overall in the watershed; however, in their analyses of 
change detection, modelers should provide the shortcomings 
and uncertainties of their modeling efforts so that any con­
clusions can be interpreted accordingly. 

The uncertainty in simulations was highest for individual 
road ditchflow locations in Oak Creek and in the smaller 
streamflow location at Claire Creek. Uncertainty decreased 
for the simulations of streamflow at the outlet of Oak Creek. 
It appears reasonable to approach a change detection assess­
ment for road effects modeled by DHSVM at the watershed 
scale of Oak Creek but not at smaller tributaries in the 
watershed, such as Claire Creek. However, an equifinality 
approach produced a wide range of answers. Thus, only a 
substantial hydrologic change could be conclusively inter­
preted. 

Because behavioral model structures were not observed 
for several of the road sites simulated, a modeling approach 
based strictly on physical characteristics of topography, soil, 
vegetation, and road dimensions for watershed scale change 
detection with DHSVM is difficult. This might be addressed 
through a more probabilistic approach to determining pa­
rameter values. The GLUE analysis provided distributions 
of parameter values that produced behavioral model struc­
tures with higher likelihood values for specific spatial loca­
tions. If enough simulations were conducted, and the 
observations were balanced across a watershed, the resulting 
trends observed could adjust parameter values across space 
as required. This strategy would entail using geostatistical 
techniques for spatial interpolation of parameter values. It 
would eliminate the ability to assess individual road seg­
ments, but it might reduce uncertainty for regions of the 
watershed, such as individual tributaries. 

Conclusions 
The GLUE procedure provided useful information toward 

equifinality of DHSVM results. The creation of uncertainty 
bounds based on several influential parameter sets demon­
strated the wide range of acceptable results for road hydro­
logic modeling achievable with DHSVM. Results showed 
the influence of interacting parameter values, and some a 
priori parameter ranges can be interpreted for future 
DHSVM applications. Likewise, knowledge of the sensitiv­
ity of parameters such as porosity and, to a lesser extent, 
the exponent of decay of hydraulic conductivity by depth 
and lateral hydraulic conductivity can assist future use of 
DHSVM. The fact that so many repetitions of DHSVM 
were used is in itself an argument for using the GLUE pro­
cedure with DHSVM. 

We observed considerable uncertainty in DHSVM esti­
mates of road hydrologic response at Oak Creek. The varia­
ble responses of subsurface water, complex soil 
development, and complex soil–water interactions within 
Oak Creek appear to be the reasons for so much uncertainty 
in DHSVM results. As the area increased, the uncertainty in 



DHSVM results decreased. Streamflow observations at the 
outlet of Oak Creek showed less uncertainty and provided 
the most diverse range of behavioral model structures. Be­
cause our results showed that the outlet of a watershed ac­
cepts a larger variety of model structures, model structures 
that accurately estimate hydrologic responses at small scales 
are more likely to produce behavioral model structures at 
large scales. This suggests that the use of internal watershed 
data, at scales smaller than the outlet of the watershed to be 
researched, to determine model structures would improve 
the use of DHSVM or other hydrologic models. 

Our research incorporating diverse model structures into 
DHSVM made the GLUE procedure useful for interpreting 
DHSVM results. DHSVM did not produce behavioral model 
structures for all roads evaluated, important when the use of 
DHSVM as a change detection tool is considered. It sug­
gests that change detection will be limited to sites or sizes 
of watershed for which behavioral model structures can be 
identified. An alternative approach could be to identify pa­
rameter values that were most effective to produce behavio­
ral model structures for varied spatial locations. These 
parameter ranges could then be varied across the watershed. 
This approach might reduce uncertainty in watershed scale 
change detection analysis but would eliminate the ability to 
evaluate individual roads in a watershed. 
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