
   
 

 
 

 
    

 
  

 
 

  
 

  
   

     
 

 
  

 
  

  
  

 
 

    
 

   

 

  
  

  
 

 
 

 
   

  
  

  
 

    
 

    

Uncertainty in hydrologic modelling for estimating hydrologic response due to 
climate change (Santiam River, Oregon) 

Christopher G. Surfleet and Desirée Tullos 

Abstract: 
This paper explores the predicted hydrologic responses associated with the compounded error 
of cascading global circulation model (GCM) uncertainty through hydrologic model 
uncertainty due to climate change. A coupled groundwater and surface water flow model 
(GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) 
uncertainty approach and combined with eight GCMs to investigate uncertainties in 
hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River 
basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases 
in runoff in the fall and winter months and decreases in runoff for the spring and summer 
months. One-year peak flows were predicted to increase whereas 100-year peak flows were 
predicted to slightly decrease. The predicted 10-year 7-day low flow decreased in two 
subbasins with little groundwater influences but increased in another subbasin with 
substantial groundwater influences. Uncertainty in GCMs represented the majority of 
uncertainty in the analysis, accounting for an average deviation from the median of 66%. The 
uncertainty associated with use of GSFLOW produced only an 8% increase in the overall 
uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates 
the value and limitations of cascading uncertainty from GCM use through uncertainty in the 
hydrologic model, offers insight into the interpretation and use of uncertainty estimates in 
water resources analysis, and illustrates the need for a fully nonstationary approach with 
respect to calibrating hydrologic models and transferring parameters across basins and time 
for climate change analyses. 

INTRODUCTION 
Water resources planning and policy must incorporate changes in hydrology associated with 
the changing climate (Hamlet et al., 2010). Models indicate that the extent, frequency, and 
duration of hydrologic extremes, particularly drought or flooding, will be greater in the future 
than it currently is [Intergovernmental Panel on Climate Change (IPCC), 2007], which can 
have important consequences for managing water resources. Studies on hydrologic response 
to climate change in the Pacific north-west (PNW) of the United States indicate that increases 
in atmospheric air temperature will result in a decreased winter snowpack and increased 
winter rainfall resulting in earlier flood runoff, lower spring runoff, and lower summer 
baseflow runoff (e.g. Mote et al., 2003; Tague et al., 2008; Chang and Jung, 2010; Hamlet et 
al., 2010). These hydrological changes have important implications for water resources 
management, including maintaining flood risk reduction, meeting irrigation and municipal 
demands, and supporting the recovery of threatened and endangered species (Mote et al., 
2003). 

The changing hydrology and failure of stationarity as a fundamental assumption (Milly et 
al., 2008; Pielke, 2009) provoke questions regarding the validity of current engineering 
design approaches that are based on probabilities. For example, consider determination of the 
100-year peak flow, which is based on historical frequency distributions (e.g. Bedient and 
Huber, 1992). If the frequency and magnitude of peak flows change in a warming climate, a 
frequency distribution based on historic conditions would be invalid (Milly et al., 2008). 
Instead, the use of models for detection of changes in hydrologic conditions may be as 
important as use of historic conditions. Nonstationary variables that effect hydrologic 
response (e.g. precipitation, temperature, land use) need to be modelled stochastically to 



   
 

   
  

 
  

  

 
  

  
 

  

    
  

  

  

  
  

  
    

 
  

  
 

 
   

  
    

     

   
 

   
   

  

 
    

 
 
 

describe the temporal evolution of their distributions (Milly et al., 2008). Estimating 
uncertainty of, and presenting a range of, hydrologic predictions is critical to managing 
resources under a nonstationary hydrologic regime (Cameron et al., 2000; Maurer, 2007; 
Milly et al., 2008). 

Uncertainties in climate change predictions come from a variety of sources. First, use of 
global circulation models (GCMs) represents several levels of uncertainty, from lack of 
knowledge regarding future emissions of greenhouse gases, to differing responses of GCMs 
to greenhouse gases, to uncertainty added by the downscaling used to translate landscape-
level GCMs to local scales 
(Maurer, 2007). Further, land use change is typically not included in GCM simulations 
representing additional uncertainty (e.g. Mote et al., 2003; Feddema et al., 2005). In addition, 
the simulation of hydrology presents uncertainties associated with rainfall–runoff models due 
to both model structure and parameter uncertainties (e.g. Beven and Binley, 1992; Beven, 
1993; Brazier et al., 2000). 

Typically, uncertainty in GCM use has been investigated by using multiple GCMs with 
different greenhouse gas scenarios as input to a hydrologic model (e.g. Mote et al., 2003; 
Maurer and Duffy, 2005; Chang and Jung, 2010). The range of output from the hydrologic 
model using different GCMs is presented as a demonstration of uncertainty of the future 
predictions. With few exceptions (e.g. Cameron et al., 2000; Pappenberger et al., 2005), 
modelling of hydrologic responses due to climate change has generally not attempted to 
address the propagation of the uncertainties in future climate estimates through uncertainty in 
the hydrologic model use. Often the mean value from hydrologic predictions is presented 
without error or confidence limits depicting the uncertainty of the results (e.g. Tague et al., 
2008; Hamlet et al., 2010). 

Various methodologies have been developed to better address uncertainty in hydrologic 
modelling. These approaches include state-space filtering, model averaging, and formal and 
informal Bayesian approaches. Each differs in the underlying assumptions, mathematical 
rigor, and the way various sources of error are treated (e.g. Beven and Binley, 1992; Beven, 
2001; Montanari, 2007; Vrugt et al., 2009a). More formal Bayesian approaches have been 
developed that attempt to use a true maximum likelihood estimate and consider model errors 
in their procedure. An example of this approach is the differential evolution adaptive 
metropolis (DREAM) approach (Vrugt et al., 2009b). 

In this study, the DREAM approach was used to cascade uncertainties associated with 
GCMs through the uncertainty with hydrologic model use. The goal of the work was to 
investigate uncertainties associated with future hydrologic response to a changing climate. 
This study’s modelling builds on the previous work by Chang and Jung (2010) and Laenen 
and Risley (1997), who used the precipitation– runoff modelling system [PRMS; a 
component of the coupled groundwater and surface water flow model (GSFLOW) used in 
this study] for determining hydrologic response for the Williamette River basin, Oregon, in 
current and future climate conditions. This work adds the use of a modular groundwater flow 
model (MODFLOW-2005) for portions of the basin, conducts a formal Bayesian uncertainty 
assessment of model parameters, and cascades GCM uncertainty through hydrologic model 
uncertainty. The objectives for this research are to (1) demonstrate the cascading of parameter 
and forcing data uncertainty from different climate change scenarios through a coupled 
surface–groundwater model (GSFLOW), (2) evaluate sensitivity of three hydrogeologically 
distinct regions for hydrologic change and characterize uncertainty of GCM use and 
hydrologic modelling for the entire Santiam River basin (SRB), and (3) demonstrate the 
interpretation and benefit of accounting for uncertainty in a climate change assessment. 



 
 

 
    

 
 

 
     

   
   

   
   

  
  

 
 

 
  

   
  
 

 

  
  

  
  

   
 

 
  
  

  
 

  
 

  
   

  
  

  

 

  

METHODS 
Study Area 

The 4700-km2 SRB is a tributary to the Williamette River and is located on the western 
slopes of the Cascade Range in Oregon, USA (Figure 1). The SRB is divided by the North 
Fork Santiam River (NF), with a drainage area of 2000 km2, and the South Fork Santiam 
River (SF), with a drainage area of 2700 km2. The SRB has an elevation range of 50 to 3199 
m. The majority of the basin (80%) is forested mountain terrain, with the remaining 20% in 
lower relief foothills, alluvial areas of the Williamette Valley, and some high elevation alpine 
areas above the tree line. The precipitation averages from 1000 mm/year to over 2500 
mm/year from the outlet to the highest elevations of the basin (Oregon Climate Service, 
2010). The precipitation varies from rain in the Williamette Valley to primarily snow at high 
elevations, with a mix of rain and snow between. The majority of precipitation occurs from 
November to May, with little precipitation (on average <50 mm) during summer. Average 
daily discharge at the outlet of the basin from 1907 to 2010 has been 220 m3/s, ranging from 
an average of 40 m3/s in summer to 450 m3/s in the winter. Runoff from the SRB is regulated 
by four dams, the Detroit and Big Cliff dams within NF and the Foster and Green Peter dams 
in SF. 

The Cascade Range and SRB are composed primarily of volcanic rocks, consisting of the 
following: (1) Tertiary basaltic and andesitic rocks together with volcanic debris, primarily in 
the Western Cascades geology, and (2) Quaternary basaltic and andesitic lava flows, 
primarily in the High Cascade geology (Baldwin, 1981; Laenen and Risley, 1997) (Figure 1). 
The Western Cascade geology has moderate to low hydraulic conductivities coupled with 
shallow soils and abundant clays, forming aquitards and resulting in rapid subsurface flows 
and little opportunity for groundwater storage (Tague et al., 2008). The High Cascade 
geology reflects recent constructional volcanism rather than erosional forms. Surface and 
subsurface hydraulic conductivities in High Cascades are exceptionally high due to highly 
porous and permeable volcanic layers (Tague and Grant, 2004). The lowlands of the 
Willamette River valley, at the outlet of the Santiam River, are covered mostly by alluvial 
coarse-grained deposits that overlay fine-grained deposits (silt to fine sand). Groundwater 
storage and recharge in these alluvial deposits have a substantial effect on river flows in the 
Williamette Valley (Lee and Risley, 2002). 

GSFLOW Inputs and Set-up 
GSFLOW is a coupled groundwater and surface-water flow model based on the integration 

of the US Geological Survey (USGS) PRMS (Leavesley et al., 1983) and the USGS 
MODFLOW (Harbaugh, 2005). GSFLOW allows for 
three simulation modes: (1) PRMS-only, (2) MODFLOWonly, and (3) integrated GSFLOW 
(PRMS and MODFLOW combined). For further details on GSFLOW, see Markstrom et al. 
(2008). 

For areas of the Western Cascade geology, PRMS-only simulations were used in the 
present study due to the lack of a significant groundwater resource. The areas of High 
Cascade geology and the alluvial deposits of the Santiam River both have substantial 
groundwater and surface-water interactions, and thus, an integrated GSFLOW modelling 
approach was used to simulate these areas. The hydrologic response unit (HRU) designations 
for the subbasins modelled with PRMS-only were based on HRUs previously developed 
based on similar elevation, soil type, geology, slope and aspect, and land use (Laenen and 
Risley, 1997; Chang and Jung, 2010). In the areas where an integrated GSFLOW approach 
was used, the HRUs were developed for spatial continuity such that water movement would 
route through successive HRUs as it interacted with subsurface groundwater calculations. 



   
 

 

  
 

  
  

   
 

 
 

 
 

 

   
 

 
 

 
 

  
 

   
 

 
 

   
 

 
 

   

  
  

 
  

 
  

  
 

  
 

The GSFLOW modelling was parameterized for 16 distinct subbasins within the SRB 
(Figure 1). Spatial parameters for GSFLOW for all subbasins were created using a 30-m 
digital elevation model (USGS, 2009), including HRU elevation, HRU area, basin area, HRU 
aspect, HRU latitude, and HRU longitude. Land cover type, soil types, and geology 
parameters originated from USGS land cover (2009), NRCS soils (1986), and McFarland’s 
(1983) geology data. There were 13 additional parameter distributions defined from the 
parameter uncertainty analysis discussed below. Three study subbasins were designated for 
intensive study for parameter uncertainty analysis with GSFLOW. The three intensive study 
subbasins were South Fork Santiam River above Cascadia (SFS), Thomas Creek (TCS), and 
North Fork Santiam River above Boulder Creek (NFS) (Figure 1). Posterior distributions 
from 13 parameters from the three study subbasins were extrapolated to the remaining 
subbasins of the SRB based on similarity to historic precipitation type (snow, snow/rain mix, 
rain), elevation, topography, and groundwater connectivity. The unique characteristics of 
each of the study subbasins and the subbasins to which study subbasin parameter 
distributions were transferred are shown (Table I). Default values were used for the 
remainder of the nonspatial PRMS parameters. Where groundwater modelling was 
performed, a simple representation of the groundwater interactions was developed using 16
km2 grids. The 16-km2 finite difference grid was separated into three subsurface layers in 
subbasins with High Cascade geology and two layers in subbasins with alluvium (Table II). 

Historic Climate and Hydrology Data 
GSFLOW was forced by input of daily precipitation, maximum air temperature, and 

minimum air temperature. The time period used for GSFLOW parameter development and 
uncertainty analysis for simulation of Santiam River runoff was 1973–2010. The historic 
daily precipitation and air temperature measurements used for input to GSFLOW came from 
weather stations in the National Oceanic and Atmospheric Administration’s National 
Weather Service Cooperative Observer Program (NOAA COOP, 2010) and Natural Resource 
Conservation Service Snow Telemetry sites (NRCS SNOTEL, 2010) (Figure 1). Daily 
historic streamflow information came from long-term USGS river gauging sites in the basin 
(USGS NWIS, 2010) (Figure 1). Outflow was available from the Detroit and Foster 
reservoirs for 1990–2010 (Tom Lowry, Sandia National Lab, unpublished data). The 
reservoir outflow combined with downstream discharge measurements provided data for the 
evaluation of fit of modelled runoff below the reservoirs. 

Future Climate Information 
To address uncertainty in GCM use, eight GCM simulations with two emission scenarios 

(B1 and A1B), prepared for the IPCC Fourth Assessment Report (IPCC, 2007) and provided 
by the Climate Impacts Group (CIG), University of Washington (Table III), were used. GCM 
simulations were statistically downscaled using the bias correction and spatial downscaling 
method (Wood et al., 2002; Hamlet et al., 2010) provided by the CIG, University of 
Washington. The GCM simulations were prepared for the IPCC Fourth Assessment Report 
(IPCC, 2007). These emission scenarios were most frequently chosen by global modelling 
groups for future climate change simulations and impact assessment and for mitigation and 
adaptation options (Chang and Jung, 2010). A statistical downscaling procedure was chosen 
by the CIG over a dynamic downscaling procedure because of the computational 
requirements of the models in the dynamic approach (Hamlet et al., 2010). However, 
dynamic downscaling is an emerging procedure that shows utility for future applications. 

The downscaled GCM simulations provided meteorological data, for input to the hydrologic 
model, on a daily time step at 1/16 degree resolution grid points (Hamlet et al., 2010). For 
inputs to GSFLOW, which needs to be forced by meteorological data from discreet spatial 



  
  

  

  
    

   
 

  
 

 
 

  
  

 

  
  

 
  

   
 

  
    

    
 

 
   

 
   

 

 
 

   
 

  
 

   
 

 

   
  

   

 
 

 
 

locations, a unit area average of the 1/16 degree meteorological data was developed for each 
of the 16 subbasins used for the hydrologic modelling in the SRB (Figure 1). The historical 
time period was modelled using GCM forcing data for the water years 1960–2010, whereas 
future evaluation periods of 2040 and 2080 were defined by the water years 2030–2059 and 
2070–2099, respectively. The change in precipitation and mean daily air temperature from 
the downscaled GCM data, used as input to the GSFLOW modelling, is presented for the 
SRB across summer and winter time periods and emission scenario (Figure 2). The range of 
GCM predicted future precipitation and air temperature generally show greater increases in 
air temperature during the summer time period and slightly higher precipitation for the winter 
time period (Figure 2), with the degree of changes higher for the A1B emission scenario. 

DREAM Background 
A formal Bayesian approach, DREAM (Vrugt et al., 2009a), was used for determining 

parameter uncertainty and addressing equifinality in the GSFLOW simulations. The DREAM 
approach uses a Markov Chain Monte Carlo Sampling algorithm to estimate the posterior 
probability density function of parameters in complex, high-dimension sampling problems. 
DREAM runs multiple chains simultaneously for global exploration and automatically tunes 
the scale and orientation of the a priori distribution during the evolutions to the posterior 
distribution. The separation of behavioural solutions from nonbehavioural solutions uses a 
cut-off threshold that is based on the sampled probability mass and, thus, underlying 
probability distribution (Vrugt et al., 2009b). 

The assessment of uncertainty focused on 13 parameters within the PRMS portion of the 
GSFLOW models. The 13 parameters were parameters of soil and geology hydraulic 
properties and forcing data corrections (monthly precipitation multipliers and air temperature 
lapse rates). Ten of the parameters investigated are used in the calculation of soil water 
transport and exchange of soil water between groundwater and surface runoff. The rain, 
snow, and air temperature lapse adjustments represented not only parameters in GSFLOW 
but also corrections to forcing data (downscaled precipitation and air temperatures from 
GCMs) for the model. The a priori distribution of each parameter was determined from 
parameter sets developed for the Williamette River basin in previous modelling efforts 
(Laenen and Risley, 1997; Chang and Jung, 2010) (Table IV). 

The DREAM assessment was performed separately for summer and winter time periods for 
each of three intensive study subbasins (SFS, NFS, and TCS) due to differing hydrologic 
responses associated with the high and low precipitation periods of the year. The rain and 
snow adjustment parameters and the maximum and minimum air temperature lapse rates 
were not evaluated in the summer time periods due to low levels of precipitation and snow 
melt; values calibrated for the Willamette River basin (Chang and Jung, 2010) were used for 
summer. 

The posterior parameter distributions determined from the DREAM assessment were used 
to model the runoff for the Santiam River with each downscaled GCM for B1 and A1B 
scenarios. Following the approach from Pappenberger et al. (2005), forcing data cascaded 
from eight GCMs with two greenhouse gas emission scenarios was cascaded through 500 
behavioural parameter sets produced from the DREAM assessment for summer and winter 
GSFLOW models. This resulted in 16 000 GSFLOW model runs for each subbasin—a total 
of 224 000 model runs across the SRB. The range of output was segregated for each subbasin 
as the 2.5, 50 (median), and 97.5 percentile values, respectively, calculated from daily 
streamflow values. 



 
  

  
  

  
 

   
  

   
  

 
 

  

  
  

 
 

  
    

    
 

 
 
    

  
   

 
 

  
 

  

  
  

   
  

  
    

 
   

  
 

     
 

  

Application to Ungauged Watersheds 
A common approach, with limitations in nonstationary systems (see Discussion), for 

modelling ungauged basins is to transfer parameter distributions determined from 
representative gauged subbasins (e.g. Chang and Jung, 2010; Hamlet et al., 2010) to 
ungauged basins. To evaluate uncertainty associated with this approach, the parameter sets 
from SFS and NFS were applied to the Middle Fork Santiam and the Breitenbush River 
subbasins, respectively, the validation subbasins. These are tributaries in the Santiam River 
with measured streamflow and are not regulated by reservoirs. The GSFLOW fit for the 
Middle Santiam and Breitenbush rivers gave an example of the uncertainties in transferring 
parameter sets from study subbasins to ungauged subbasins. 

Hydrologic Response 
Hydrologic response was projected within a framework of uncertainty assessment from the 

eight GCM projections for the 2040 and 2080 time periods using annual and monthly runoff, 
1-year and 100-year peak daily flows, the 10-year 7-day low flow, and the snow water 
equivalent (SWE) on April 1. The 1-year and 100-year peak daily flows and 10-year 7-day 
low flow were determined by fitting the annual series of peak daily flows and 7-day lowest 
flow for each time period to a Log Pearson Type III distribution, respectively. The 1- and 
100-year peak daily flows were chosen to contrast future change in high river flow events 
that were frequent and extreme, respectively. The 10-year 7-day low flow was selected 
because it has been used by other researchers in this region (e.g. Hamlet et al., 2010), 
allowing comparisons. The uncertainties associated with the use of GCM make the use of 
daily observations questionable (UK Climate Projections, 2012). Although some of the 
hydrologic response metrics are derived from daily observations, the information is only used 
in probabilistic distributions to determine changes in trends. 

The ensemble mean of the 2.5, median, and 97.5 percentiles of GSFLOW output by 
scenario, B1 or A1B, was used for interpreting uncertainties in the results. For results of 
percent change in hydrologic response metrics, the change for the 2.5, median, and 97.5 
percentiles was calculated by time period from its historic value. For the peak flow, low flow, 
and SWE metrics, the high and low values from the range of results are given. 

RESULTS 
GSFLOW Fit to Historic Streamflow 

The posterior distributions of parameter sets from the DREAM uncertainty assessment of 
GSFLOW are given (Table IV). The results of model output fit to the measured streamflow 
for the three study subbasins of the SRB (Figure 3) show good fit with historic streamflow. 
The GSFLOW model predicted daily streamflow with Nash Sutcliffe Efficiencies (NSE) and 
correlation coefficients (r) greater than 0.7. For monthly streamflow predictions, the NSE and 
r values are greater than 0.8 and 0.9, respectively. 

The transfer of model parameter sets to the validation basins (Middle Fork Santiam and the 
Breitenbush River) produced mixed results. The model parameter sets from the SFS 
transferred well to the Middle Santiam River, with a strong statistical fit for Middle Santiam 
River to daily streamflow (r = 0.77, NSE = 0.75, RMSE = 0.12 m3/s). Statistical fit was not as 
strong for daily streamflow using the NFS parameters for the Breitenbush River (r=0.77, NSE 
= 0.35, RMSE = 0.79 m3/s). Although similar in some regards (e.g. elevation, vegetation, 
geology), the extent of High Cascade geology for the Breitenbush River (49% of catchment 
area), which affects groundwater storage and discharge, was lower than the NFS (90% of 
catchment area), resulting in greater uncertainty in the transfer of parameter sets from NFS to 
the Breitenbush River. This uncertainty is reflected in the range of GSFLOW output around 
the Breitenbush River streamflow (Figure 3D). The range of 



 
   

 
  

 
 

 

 
  

 
  

  
   

   
 

  
 

   
  

  
  

 
  

  
  

  
 

  
 

   
   

 
 

 
 

   
  

  
  

 
  

 
  

  
 

  

uncertainty for the GSFLOW predictions of the Breitenbush River is wider than the range 
shown for the NFS study basins (Figure 3D compared to Figure 3C). Nevertheless, the 
majority of the Breitenbush River’s measured streamflow is within the GSFLOW output 
confidence intervals (Figure 3D). 

Projected changes in runoff and streamflow 
Annual Runoff Changes. The percent change in annual runoff varied by scenario and 

subbasin (Figure 4); only the NFS and SF are predicted to change, with increases in NFS, a 
groundwater-dominated basin, and decreases in SF, a mixed surface-water and groundwater 
basin. The range of annual runoff change for the NF, SFS, and TCS is clustered near zero, 
with little change predicted for the future (Figure 4). Uncertainty of predicted annual runoff 
varied by scenario and subbasin; change in the 2.5 and 97.5 percentiles from the range of 
annual runoff, estimated from the GCM uncertainty cascaded through the hydrologic model 
uncertainty, spanned a 2–8% difference from the median percent change. 

Monthly Runoff Changes. Generally, future monthly runoff is predicted to increase in the 
fall and winter months and decrease in the spring and summer months (Figure 5). The future 
trend becomes more pronounced for the A1B scenario, with higher predicted greenhouse gas 
emissions, and for the 2080 time period. Given the lack of predicted change in the mean 
annual runoff for most of the study basins, the increase in runoff volume in fall and winter 
must be approximately the same as the decrease in spring and summer runoff. The percent 
change from historical conditions is greater in the late spring and summer months due to 
relatively larger changes in historic runoff than in fall and winter; however, the volume of 
runoff is lower in summer and spring. 

A range of up to 40% change was predicted in the TCS subbasin for the summer months for 
both the B1 and A1B scenarios and in spring and summer months for the A1B scenario 
(Figure 5C). Generally, the changes in monthly runoff for the 97.5 percentile values reflect a 
much lower decrease in the summer runoff and a higher increase in winter runoff than the 2.5 
and 50 percentile values. The changes in the 2.5, 50, and 97.5 percentile runoff for SFS and 
NFS were similar throughout the year, with only small deviations for individual months 
during the winter and spring months. The lower section of TCS is influenced by groundwater 
from the Williamette Valley, particularly during spring and summer months, which was 
attempted to be incorporated in the GSFLOW model. However, attempting to represent large 
aquifer influences within a portion of the TCS subbasin resulted in greater uncertainty during 
the spring and summer months. 

High and low streamflows. Peak daily flows generally are predicted to increase for 1-year 
events (Figure 6A) and decrease for 100-year events (Figure 6B). However, the highest and 
lowest predicted 1-year and 100- year values did not always follow the general trend of 
increased 1-year and decreased 100-year peak flow (Figure 6), illustrating that GCMs 
predicted a large range for storm events compared to the ensemble mean values. The NFS, 
with predominantly High Cascade geology and substantial groundwater storage, has the 
highest variability for both the ensemble mean values and the high and low event predictions. 

Predictions of the trend in future 10-year 7-day low flow values for the three study 
subbasins varied (Figure 7). For both the B1 and A1B scenarios, the median value of the 10
year 7-day low flow decreases for 2040 and 2080 in TCS and SFS, basins characterized 
primarily by surface-water runoff and limited groundwater interactions. Less predicted 
change and greater uncertainty are predicted for TCS. A slight increase in the 10-year 7-day 
low flow for 2040 and 2080 is predicted for the NFS, a subbasin with streamflow known to 
be influenced by groundwater interactions, when compared to historic flows. There is no 



 
  

  
    

  

  

  

   
   

  
   

 
 

 
 

   
  

   

  
   

 
  

   
 

 
  

 
 

  
   

  
  

 
  

 
 

 
 

   
 

  
 

 
 

  

change in the 10-year 7-day low flow for the 2080 time period compared to 2040 for both 
SFS and NFS. Ensemble mean values of the 2.5, median, and 97.5 percentile values show a 
slight decrease, although the range of values predicted do not support a conclusive trend. 

Snow Water Equivalent (SWE). The mean SWE on April 1 is predicted to decrease from 
historic values for 2040 and 2080 time periods for the B1 and A1B scenarios (Figure 8). The 
high elevation subbasin, NFS, is predicted to have 300 to 350 mm lower SWE on April 1 by 
2080. The TCS subbasin is predicted to experience between 2 and 10 mm decrease in SWE 
on April 1 by 2080, depending on the greenhouse gas emission scenario, B1 or A1B, 
respectively. Similarly, predictions for the SFS in the High Cascades indicate potential for a 
substantial decrease, as much as a 19-mm decrease from historic values of 20–22mm, in 
SWE on April 1 by 2080, with the largest decrease for the A1B scenario. In the A1B 
scenario, both the TCS and SFS lowest predicted and median SWE values decrease to near 
zero by the 2080 time period. However, the highest SWE value do show positive values for 
SWE in 2080 for TCS and SFS, demonstrating that at least one GCM predicts snow in those 
basins on April 1 in 2080. 

Relative uncertainty in downscaled GCMs and hydrologic model parameter uncertainty 
The contributions of GCMs and hydrologic model parameters to prediction uncertainty are 

investigated from an ensemble of monthly runoff time series. The relative uncertainty to 
variability in hydrologic time series is demonstrated with 10 years of monthly runoff 
predictions for the SFS subbasin. The majority of the runoff prediction range can be 
attributed to GCM uncertainty, as represented by the median values from the eight GCMs. An 
average deviation of 66% from the median of the ensemble of median time series is predicted 
as the GCM uncertainty. For the GCM uncertainty cascaded through the model parameter 
uncertainty, an average deviation from the median of 74% is predicted—an 8% increase over 
the GCM uncertainty. This can also be visualized (Figure 9) as the range of monthly runoff 
from the GCMs and hydrologic model parameter uncertainty against the GCM uncertainty 
alone. These results confirm the work of others (Maurer and Duffy, 2005; Wilby and Harris, 
2006; Buytaert et al., 2009; Ghosh and Mujumdar, 2009; Kay et al., 2009) that have 
documented greater uncertainty in GCM structure and parameterization than uncertainties 
associated with hydrologic models. 

A plot of 1-year peak daily flows predicted by each of the eight GCMs for the historical 
time period demonstrates the variations in individual GCM predictions (Figure 10). Several 
of the 2.5, 50, and 97.5 percentile predictions of 1-year peak daily flows forced by individual 
GCMs vary from the ensemble mean values. Further, the 1-year daily peak flow varies 
widely depending on GCM used. This variation in simulated historic flows likely reflects 
different assumptions made by the different GCMs in predicting climate. However, other 
factors such as storm inter-arrival times, pre-existing soil moisture conditions, extent of snow 
pack, and correlations between temperature and precipitation (i.e. warm or cold storms) can 
cause the flow statistics to diverge from historic. 

DISCUSSION 
Hydrologic Response of the SRB to Climate Change with Uncertainty 

Annual and Monthly Changes. The predicted hydrologic responses for SRB of increased fall 
and winter runoff and decreased spring and summer runoff are consistent with other climate 
change assessments of hydrology in the PNW (e.g. Mote et al., 2003; Chang and Jung, 2010; 
Hamlet et al., 2010) and northern climates around the world (e.g. Gellens and Roulin, 1998; 
Yang et al., 2002; Eckhardt and Ulbrich, 2003). The shift in seasonal runoff has been 
attributed to warmer air temperatures forcing greater rain precipitation compared to snow 



 
  
  

  
  

   
 

 
   

 
 

 
   

    
  

     
  

 
  

   
 

  
   

  
   
   

 
 

   
  

  
       

 
  

        
   

  
   

  
    

 
    

  
   

    
 

precipitation. Subsequently less winter snow precipitation results in decreased snow melt 
runoff in the spring and subsequently lower baseflow in summer (Mote et al., 2003). 

The effect of elevation and geology in the mountainous SRB is apparent in the hydrologic 
predictions. The SFS and TCS mid-elevation study subbasins are projected to experience 
smaller percent increases in fall and winter precipitation than the high-elevation NFS but 
much larger percent changes in spring and summer runoff (Figure 5). The NFS is 
characterized by predominately High Cascade geology and year-round groundwater 
discharge. The greatest change in April 1 SWE relative to historic conditions (percentage) is 
predicted for the mid-elevation SFS and TCS study subbasins, particularly in the A1B 
scenario (Figure 8). Whereas the greatest loss in April 1 SWE is projected for the NFS, the 
middle elevation subbasins are projected to undergo greater relative change in April 1 SWE. 
The 2.5 percentile and lowest range values for TCS and SFS are near zero in 2080 for the 
A1B scenario. The predictions of decreased April 1 SWE suggest an increase in elevation of 
the transitional rain and snow elevations in the future, as has been documented by other 
studies (e.g. Elsasser and Bürki, 2002; Scott et al., 2003; Battin et al., 2007). The deep 
groundwater in the High Cascade geology of the NFS resulted in predictions of future 
summer low flows at or near historic levels. The mediation of summer low flow changes due 
to climate change in High Cascade geology are attributed to longer residence times of water 
stored in deep groundwater aquifers (Tague et al., 2008), creating a lagged yet consistent 
surface discharge. The SFS and TCS, with predominantly Western Cascade geology, are 
projected to experience much greater decreases in summer low flow relative to historic 
conditions, likely due to the rapid response in surface discharge from precipitation inputs in 
these basins. However, TCS also has alluvial deposits at its lowest elevations that can be 
associated with groundwater discharge and has the greatest level of uncertainty associated 
with summer runoff changes (Figure 5C). The presence of a lower percent change in the 
distribution of summer monthly runoff in TCS could indicate that the groundwater resource 
mediates some summer low flow changes in subbasins of this type, although the higher 
uncertainty makes it difficult to draw definitive conclusions on this point. 

Peak Flows and Low Flows. Increases in large (>50- to 100-year events) and small peak 
flows (1-year events) and associated flooding have been predicted in climate change studies 
for the PNW (e.g. Eckhardt and Ulbrich, 2003; Mote et al., 2003; Hamlet et al., 2010). This 
study predicted that the 1-year peak daily flow will increase in the future but that the 100
year event will decrease in the future, with high uncertainty. The 2.5, 50, and 97.5 percentile 
100-year event predictions trend downward, although the range of predictions has substantial 
variability. The warmer and wetter winters predicted for the future with more rain than snow 
will lead to increases in peak flows (Mote et al., 2003) and explain the predicted increase in 
the 1-year peak daily flow. In contrast, the largest peak flows on record for the SRB have 
been rain on snow events (for example, the event of record January 1996), where warm air 
temperatures combined with high amounts of rain precipitation create rapid snow melt and 
runoff (Marks et al., 1998). In the future, less snow is predicted for the SRB (Figure 8). 
Decreased winter snow lowers the potential for large rain on snow events, possibly 
explaining the decrease in the 100-year event. However, the wide range of predicted 100-year 
events (Figure 6B) reflects considerable variability for future extreme events. 

Predictions of the 10-year 7-day low flow indicate that a reduction in low flows will occur 
in the mid-elevation subbasins with predominately Western Cascades geology that have little 
deep groundwater inputs. For example, a general decrease is detected in the median 10-year 
7-day low flow in the SFS (Figure 7A) and TCS (Figure 7C) study subbasins in the future. 
The NFS study subbasin, with High Cascade geology and deep groundwater aquifer, is 



 
 

 
 

  
  

 
  

  
 

   
  

  
 

 
 

  
  

 
   

 
 

 
 

 
  

  
  

  
 

  
  

  
 

   
   
  

  
 

 
 

  
     

   
      

  

projected to undergo a slight increase in the 10-year 7-day low-flow in the future (Figure 7B), 
though with variability around the results. 

Interpretation and Benefits to Uncertainty Assessment 
Modelling Ungauged Basins. Modelling large regional areas requires efficiencies in the 

development of model parameters where small-scale parameterization is not possible. One 
approach, used in this study, is to fit the hydrologic model to representative areas then use 
parameters developed for the representative areas across the larger spatial extent. When 
evaluating the use of representative GSFLOW parameter sets for modelling 
ungauged basins, it was found that the strategy worked well in one subbasin but not in 
another. The median streamflow output of the Breitenbush River did not provide a strong 
statistical fit (NSE = 0.35) to measured streamflow; the range of streamflow output from the 
uncertainty assessment is greater (Figure 3D) than the NFS subbasin where the parameters 
were developed (Figure 3C), although the larger range of uncertainty generally encompassed 
the measured streamflow values for the Breitenbush River. 

The increased uncertainty in the transfer of the parameters from NFS to the Breitenbush 
River is partially explained by the differing geologies that generate different runoff responses 
between the basins. Both subbasins had High Cascade geology requiring that a groundwater 
component be included in the hydrologic modelling. Uncertainty due to the groundwater 
model parameters was not evaluated due to computing constraints. The importance of the 
Breitenbush River example is that spatial transfer of parameter sets to similar subbasins will 
not always generate output with fit similar to the sub basin where the parameters are 
developed. With the uncertainty quantified, a wider range of runoff predictions was produced 
for the Breitenbush River, the ungauged subbasin, providing a measure of the level of 
confidence in the projections that is valuable for planning and decision making. 

Interpreting Uncertain Results of Hydrologic Responses. The most common approach to 
evaluating hydrologic responses to climate change is to ensemble mean values of runoff by 
future time periods (e.g. Maurer and Duffy, 2005; Maurer, 2007; Hamlet et al., 2010). As an 
alternative, this study’s analysis offers insight into the consistency in predicted change over 
the entire range of hydrologic responses by estimating ensemble means of the 2.5, 50, and 
97.5 percentile values from the cascaded uncertainty. Ensemble means of 2.5, 50, and 97.5 
percentiles were used to express different moments around the underlying distribution of 
output by time period and GCM. Thus, if simulated change is consistent for all percentiles, 
greater confidence can be placed on conclusions regarding shifts in modelled hydrologic 
responses. If any of the percentile values provide a result inconsistent with the other 
percentile values, it notifies the investigator to look for an explanation of the uncertain 
response. 

For example, the ensemble means of monthly runoff for different percentile values by time 
period reflect relatively consistent trends for the SFS (Figure 5A) and NFS (Figure 5B) 
subbasins. By predicting similar trends for all percentiles from each of the measures, the 
conclusions were more robust than simply evaluating one mean value. When the trend for the 
2.5, 50, and 97.5 percentile values differ, such as in the TCS subbasin (Figure 5C), a different 
conclusion can be drawn. The underlying distribution for the TCS subbasin’s mean monthly 
runoff shifted such that the median and smaller percentile values are projected to undergo a 
substantially lower decrease than values greater than the median during spring and summer 
runoff (Figure 5C). The higher level of uncertainty could have a physical explanation; TCS 
has alluvial deposits with groundwater at its lowest elevation that may mediate climate 
change effects to summer low flows (Tague et al., 2008). Nevertheless the majority of the 
subbasins did not have a significant groundwater resource. The large range of uncertainty in 



 
 

 
   

 
 

  
 

 

  
  

   
 

 

 

  
  

   
 

    
  

    
 

  
  

 
  

 
   

  

  
 

  
  

  
  

   
  

 
 

  
   

   
 

  
     

TCS spring and summer streamflow changes, approximately 40% difference between the 2.5 
and 97.5 percentiles, could represent the competing responses of the groundwater resource in 
the subbasin. 

A water resource manager may interpret the TCS results (Figure 5C) as ‘within the limits 
of the uncertainty assessment, a 59% decrease was most frequently predicted for the July 
runoff for the 2080 time period. However, the decrease was shown to be as low as 19% for a 
substantial number of GCM and model innovations.’ Such an interpretation suggests that the 
frequency of ensemble mean responses carries the highest weight in likelihood of occurrence 
but that the full range of observations should be considered to indicate a possibility of a 
different outcome than the most frequent response. Alternately, a manager may choose to 
emphasize another element of the distribution that is most relevant to their application, such 
as the maximum change in low flow for the worst-case scenario. Regardless of the element 
emphasized, it is critical that both the range of responses and their likelihoods be presented to 
communicate the level of confidence in those responses. 

Study Limitations and the Need for a Nonstationary Analytical Framework. In this study, 
uncertainty is observed in future hydrologic response for two situations. The first is the 
transfer of parameter sets between two subbasins with deep groundwater influence; NFS’s 
parameters did not provide a good fit when used on the adjacent Breitenbush River. The 
second situation is the future spring and summer runoff change predicted for the TCS 
subbasin. In both cases, a groundwater resource is involved in the uncertainty. However, the 
groundwater itself is not necessarily the reason for uncertainty. Both situations involved 
subbasins that did not have homogenous hydrologic processes across the entire area. The 
consideration of the complexity of the hydrologic response of a subbasin will be an important 
factor in the relative uncertainty of model results. 

Relevant to this spatial heterogeneity in the transferring parameters across basins in studies 
of future climates is recent work that indicates how variation in runoff processes are more 
strongly driven by climate than by vegetation and soils (Liang and Guo, 2003; Demaria et al., 
2007; van Werkhoven et al., 2008; Merz et al., 2011), the factors most commonly used to 
transfer parameters across basins. Further, Rosero et al. (2010) found that (1) interactions can 
be more important than the parameters themselves, (2) the interactions between parameters 
vary across sites, and (3) the parameters that drive model variability, as well as their optimal 
distributions and their interactions, vary across structurally distinct models (i.e. comparing a 
model that explicitly includes groundwater against one that represents plant phenology). 
Given that this study demonstrates climate changes within and across the basins, the strong 
influence of climate in the transfer of model parameters highlights the fundamental modelling 
challenges of performing climate change studies in systems characterized by nonstationarity 
both over time and across the landscape. 

Further, it has been found (Wilby, 2005; Vaze et al., 2010) that substantial uncertainties and 
biases can result from calibration of hydrologic models to historical records, and those biases 
appear to grow with time since the calibration period (Merz et al., 2011). These results call 
into question the appropriateness of calibrating hydrologic models by historical streamflow 
when the relationships between the landscape characteristics and climate are known to 
change with a changing climate. By assuming that parameters, and their interactions, do not 
change over time, models, including this study’s model, fail to account for possible 
hydrologic changes (e.g. increases in evapotranspiration, drier soils) that can occur during a 
warmer climate, potentially resulting in substantial errors for runoff estimations (Merz et al., 
2011). Analyses suggest that the bias of calibrating to historical flows may be high for both 
low flows (Singh et al., 2011) and high flows (Merz et al., 2011). Existing research suggests 
that the snow-dominated (Singh et al., 2011) and transitional zones (Koster et al., 2004) of 



 
  

  

 
  

 
 

 
 

  
  

  
  

 
 

 
   

  
  

  
  

 

    
    

  
   

  

 
   

  
   

  
 

 
 

 
 

  
  

  
 

   
 
 

the SRB may be particularly sensitive to biases associated with calibration to historical 
observations, as are dry basins (Liang and Guo, 2003; Rosero et al., 2010; Merz et al., 2011; 
Singh et al., 2011) outside of the study area and areas where future climate deviates strongly 
from historical temperature and precipitation (Vaze et al., 2010; Singh et al., 2011). 

However, the best approach for accounting for temporal instability in model parameters and 
parameter interactions is not yet apparent (Merz et al., 2011). New approaches for calibrating 
models for climate change analysis have been proposed, which include, among other 
recommendations, (i) developing relationships between climate signatures (e.g. runoff ratio) 
and landscape to substitute space for time (Singh et al., 2011), similar to approaches used in 
prediction for ungauged basins to managed biases associated with temporal instability, and 
(ii) calibrating models based on additional hydrologic data (e.g. soil moisture and snow 
depths) to develop better understanding of temporal variability in parameter interactions and 
their representation of runoff processes (Merz et al., 2011). Thus, future work is needed to 
develop truly nonstationary analytical frameworks that include formal assessment of 
uncertainty evaluation, as presented here, as well as the dynamics in landscape–atmospheric 
feedback. 

CONCLUSIONS 
Evaluation of prediction uncertainty is an essential element of water resources planning that 
includes climate change. This paper demonstrates how cascading GCM uncertainty 
through hydrologic model uncertainty can lead to more robust conclusions regarding the 
types and probabilities of future hydrologic responses. For example, it was found that when 
transferring hydrologic model parameter sets to ungauged basins, the use of a range of 
parameter sets, including distinct parameter sets for wet and dry seasons, from the uncertainty 
assessment assisted in quantifying the uncertainty associated with the transfer. Having this 
knowledge increases the likelihood of making appropriate interpretations of the predicted 
response from ungauged basins. Further, the interpretation of uncertainty facilitates the 
identification of mechanisms for predicted hydrological changes. In this study, a key source 
of uncertainty appears to be related to differences and variability in hydrogeology, which 
moderates the influence of groundwater on streamflow, particularly in low flow evaluations. 
However, a more comprehensive nonstationary framework that addresses the dynamic 
interactions between a changing climate and the landscape is needed. These interactions have 
generated concerns both about calibration to historical observations and about the transfer of 
parameters sets across basins. They lead to the conclusion that a critical area of research in 
the field of hydrology is the development of a comprehensive analytical framework that 
includes formal assessment of uncertainty, as demonstrated here, as well as directly 
addressing the nonstationarity in landscape–climate feedback over space and time. 
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Figure 7. 10-year7-day low flow predicted for three study subbasins: (A) SFS, (B) NFS, and (C) TCS for the historic, 2040, and 2080 time periods and 
greenhouse gas scenari05 B 1 and A 1 B. Ensemble means of median (box), 2.5 percentile (lower emx bar), and 97.5 peroentile (upper error bar); triangles 

represent the highest and lowest 10-year 7-day low flow peak flows predicted for each time period and greenhouse gas scenario 
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Figure 8. Snow water equivalent (SWE) (nun) on April I fur the three study subbasins for the historic, 2040, and 2080 time periods and greenhouse gas 
scenarios B I and AI B: (A) SFS, (B) NFS, and (C) TCS. Box rep~esents ensemble mean of median SWE for each time period. Ensemble means of 
median (box), 2.5 percentile (lower error bar), and 97.5 percentile (upper error bar); triangles represent the highest and lowest SWE predicted for each 

time period and greenhouse gas scenario 



 
 
 

 

 




