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TheThe cultivatioocultivatioo ofof narrow·narrow·leafedleafed lupinslupins (Lupinus(Lupinus angustifoliusangustifolius L)L) increasesincreases ratesrates ofof subsoilsubsoil acidification,acidification, andand thisthis isis 
thoughtthought toto bebe partlypartly relatedrelated toto theirtheir patternpattern ofof nutrientnutrient uptakeuptake andand H+H+ jOH-jOH- excretion.excretion. TheThe mainmain hypothesishypothesis ofof thisthis 
studystudy waswas thatthat H+H+ andand OH-OH- excretionexcretion isis notnot distributeddistributed evenlyevenly overover thethe entireentire lengthlength ofof thethe rootroot systemsystem butbut isis limitedlimited 
toto zoneszones wherewhere excessexcess cationcation oror anionanion uptakeuptake occur.occur. SeedlingsSeedlings ofof nodulatednodulated lupinslupins werewere growngrown inin solutionsolution cultureculture 
usingusing verticallyvertically splitsplit potspots thatthat allowedallowed thethe upperupper andand lowerlower zoneszones ofof thethe rootroot systemsystem toto bebe suppliedsupplied withwith varyingvarying 
concentrationsconcentrations ofof K+K+ andand NO;.NO;. NetNet H+H+/OH-/OH- excretionexcretion waswas equatedequated toto thethe additionaddition ofof NaOHjHCINaOHjHCI requiredrequired toto 
maintainmaintain aa constantconstant pHpH inin thethe nutrientnutrient solutionsolution duringduring aa 4·d4·d treatmenttreatment periodperiod andand nutrientnutrient uptakeuptake waswas measuredmeasured byby 
depletiondepletion fromfrom solutionsolution inin eacheach zonezone ofof thethe splitsplit pots.pots. 

TheThe excessexcess ofof cationcation overover anionanion uptakeuptake waswas positivelypositively correlatedcorrelated withwith H+H+ excretionexcretion inin eacheach rootingrooting zone.zone. InIn zoneszones 
wherewhere K+K+ waswas suppliedsupplied atat 12001200 jtM,jtM, cationcation uptakeuptake waswas dominateddominated byby K+K+ andand upup toto twicetwice asas muchmuch H+H+ waswas excretedexcreted 
thanthan inin zoneszones wherewhere K+K+ waswas absent.absent. InIn zoneszones wherewhere NO;NO; waswas suppliedsupplied atat 750750 I'M,I'M, thethe anion/cationanion/cation uptakeuptake waswas 
balanced,balanced, howeverhowever H+H+ excretionexcretion continuedcontinued toto occuroccur inin thethe zone.zone. WhenWhen NO;NO; waswas suppliedsupplied atat 50005000 pM,pM, anionanion uptakeuptake 
exceededexceeded cationcation uptakeuptake butbut therethere waswas nono OH-OH- excretion.excretion. OrganicOrganic acidacid anionsanions maymay bebe excretedexcreted byby lupinslupins toto maintainmaintain 
theirtheir internalinternal electroneutralityelectroneutrality whenwhen anionanion uptakeuptake exceedsexceeds cationcation uptake.uptake. RhizosphereRhizosphere pHpH wouldwould notnot increaseincrease unlessunless 
thethe pKpKaa ofof thethe excretedexcreted organteorgante anionsanions waswas greatergreater thanthan thethe externalexternal pH.pH. 

thethe plantplant isis correctedcorrected byby thethe synthesissynthesis ofof organicorganic acidacid
INTRODUCTIONINTRODUCTION 

anions,anions, andand whenwhen thethe plantplant materialmaterial isis notnot returnedreturned toto thethe 
AcidificationAcidification isis aa slowslow naturalnatural processprocess inin mostmost soils.soils. InIn soil,soil, thethe pHpH changeschanges inin thethe soilsoil persist.persist. ForFor non-legumesnon-legumes 
south-easternsouth-eastern AustraliaAustralia thethe useuse ofof pasturespastures basedbased onon NO;NO; and/orand/or NH:NH: areare thethe nutrientsnutrients absorbedabsorbed inin thethe greatestgreatest 
subterraneansubterranean cloverclover (Trifolium(Trifolium subterraneumsubterraneum L)L) hashas in­in­ quantities,quantities, andand thethe relativerelative uptakeuptake ofofeacheach largelylargely determinesdetermines 
creasedcreased thethe raterate ofof soilsoil acidificationacidification leadingleading toto lowlow pHpH levelslevels thethe cation-anioncation-anion balancebalance andand pHpH changeschanges inin thethe rhizosphere.rhizosphere. 
thatthat seriouslyseriously decreasedecrease cropcrop andand pasturepasture productionproduction ForFor legumeslegumes reliantreliant onon N,N, fixation,fixation, thethe uptakeuptake ofof cationscations isis 
(Williams,(Williams, 1980).1980). Recently,Recently, itit hashas beenbeen suggestedsuggested thatthat thethe usuallyusually greatergreater thanthan thethe uptakeuptake ofof anionsanions andand acidificationacidification 
growthgrowth ofof narrow-leafednarrow-leafed lupinslupins (Lupinus(Lupinus angustifoliusangustifolius L.)L.) ofof thethe soilsoil generallygenerally occursoccurs (Israel(Israel andand Jackson,Jackson, 1978;1978; LuiLui etet 
maymay alsoalso increaseincrease thethe raterate ofof soilsoil acidification,acidification, particularlyparticularly al.,al., 1989).1989). 
atat depthdepth (Coventry(Coventry andand Slattery,Slattery, 1991;1991; Loss,Loss, RitchieRitchie andand TheThe amountamount ofof H'H' excretedexcreted byby legumeslegumes reliantreliant solelysolely onon 
Robson,Robson, 1993).1993). UnlikeUnlike acidityacidity inin thethe surfacesurface soil,soil, subsoilsubsoil NN 22 fixationfixation cancan bebe calculatedcalculated fromfrom thethe chemicalchemical compositioncomposition 
acidityacidity cannotcannot bebe amelioratedameliorated economicallyeconomically withwith limelime ofof thethe legumelegume (Jarvis(Jarvis andand Robson,Robson, 1983),1983), oror thethe ashash 
becausebecause ofof itsits slowslow downwarddownward movementmovement inin soilssoils (Conyers(Conyers alkalinityalkalinity ofof thethe plantplant (Nyatsanga(Nyatsanga andand Pierre,Pierre, 1973)1973) oror byby 
andand Scott,Scott, 1989).1989). measuringmeasuring thethe amountamount ofof OH-OH- requiredrequired toto maintainmaintain aa 

TheThe growthgrowth ofofmanymany N,.fixingN,.fixing legumeslegumes hashas beenbeen associatedassociated constantconstant pHpH inin thethe growinggrowing mediummedium (Jarvis(Jarvis andand Hatch,Hatch, 
withwith increasedincreased soilsoil acidificationacidification (Jarvis(Jarvis andand Hatch,Hatch, 1983;1983; 1983;1983; LuiLui etet 01.,01., 1989).1989). WhileWhile itit isis relativelyrelatively simplesimple toto 
Lui,Lui, LundLund andand Page,Page, 1989).1989). InIn aa grazed,grazed, grass-legumegrass-legume measuremeasure thethe amountamount ofof acidityacidity addedadded toto thethe soilsoil byby thethe 
pasturepasture growinggrowing inin aa mediterraneanmediterranean climate,climate, HelyarHelyar andand growthgrowth andand removalremoval ofof legumelegume material,material, itit isis moremore difficultdifficult 

determinedetermine howhow thisthis acidityacidity isis distributeddistributed inin thethe soilsoil 

ChangesChanges inin soilsoil pHpH withwith depthdepth thatthat areare causedcaused byby plantplant 
chargescharges ofof thethe cationscations andand anionsanions absorbedabsorbed areare notnot balanced,balanced,	 growthgrowth willwill dependdepend uponupon thethe distributiondistribution ofof rootsroots andand 

nutrientsnutrients inin thethe soil,soil, thethe patternspatterns ofof nutrientnutrient uptakeuptake andand H+H+ 
excretionexcretion alongalong roots,roots, andand thethe amountamount andand distributiondistribution ofof 
organicorganic mattermatter returnedreturned toto thethe soil.soil. InIn thethe modelmodel ofof Helyar,Helyar, 
HochmanHochman andand BrennanBrennan (1989),(1989), H'H'/OH-/OH- excretionexcretion isis equatedequated 
fromfrom thethe excessexcess ofof cationcation oror anionanion uptakeuptake inin variousvarious depthdepth 

Porter (1989) estimated that 10--15 % of soil acidification is
caused by the excretion of H' by roots and the subsequent
removal of organic anions in plant products. When the
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plants maintain their electroneutrality by excreting H+ or
OH- into their rhizosphere. Any charge imbalance within
plants maintain their electroneutrality by excreting H+ or 
OH- into their rhizosphere. Any charge imbalance within 
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intervals. Their assumption that the uptake of K, Ca, and 
Mg is proportional to the distribution of roots down the soil 
profile, could lead to considerable errors in their model 
predicitons. 

Several glasshouse studies have demonstrated that the 
pattern ofH+ excretion is uniform along the roots of young, 
rapidly growing plants with a constant and unlimited supply 
of nutrients (Romheld, Muller and Marschner, 1984; White 
and Robson, 1989), however this was not the case in split 
root experiments with rape (Brassica napus L.) (Moorby, 
Nye and White, 1985), and maize (Zea mays L.) (Romheld, 
1986). Nye (1987) concluded from these results that H+ and 
OH- are excreted at the site of cation or anion uptake-and 
that differences in nutrient concentrations between the 
surface soil and the subsoil will lead to different rates of 
acidification. This conclusion however, is based on results 
with non-legumes in split root experiments that divide root 
systems horizontally, whereas gradients of nutrient concen­
trations tend to occur vertically (i.e. with depth) in 
undisturbed soils. 

The overall aim of our study was to determine whether 
lupins excrete H+ or OH- uniformly over the entire length of 
their root system or only in zones of high cation or anion 
uptake. This was achieved by designing a nutrient solution 
pot that splits root systems vertically, that is, into an upper 
and lower zone, and by varying the supply of K+and NO; 
to the roots in each zone. Apart from NH;, plants take up 
K+ in much larger quantities than other cations and the 
uptake of anions is dominated by NO;, hence the balance of 
cation and anion uptake can be changed by varying the 
supply of these two nutrients. 

MATERIALS AND METHODS 

Experimental procedure 

Seeds of L. angustifolius cv. Yandee were germinated on a 
stainless steel screen suspended on the surface of an aerated 
solution of 10-' M CaSO, and 10-' M H3BO,. After 7 d, 
seedlings were transferred to an aerated, complete nutrient 
solution at a density of eight seedlings per 5·0 1 pot. The 
complete nutrient solution contained the following nutrients 
(I'M): CaSO" 625; K,SO" 600; NaNO" 250; MgSO" 200; 
NaH,PO" 20; H,BO" 5; FeNaEDTA, 3; MnSO" 1·0; 
ZnSO" 0·75; CuSO" 0·2; CoSO" 0·2; Na,MoO" 0·03. 
These concentrations were chosen to provide an adequate 
but not excessive nutrient supply to the young seedlings. 
The pH of the nutrient solution was maintained between 5·0 
and 6·5 daily with additions of 0·1 M KOH and the solutions 
were changed every second day. 

Immediately after the transfer of seedlings to the complete 
nutrient solution, 5·0 ml of a suspension of commercial peat 
(10 g I-I) containing Bradyrhizobium sp. (Lupinus) WU425 
was added to each pot and again after the first solution 
change (a total inoculation time of 4 d). At 4 weeks of age, 
the cotyledons of the lupin plants turned yellow and 
dropped off, and nodules with pink interiors were clearly 
visible on a 6 em portion of tap root, 8 em from the 
hypocotyl. Sodium nitrate was excluded from the nutrient 
solution for the final week of seedling preparation to ensure 
the seedlings were relying solely on N, fixation. 

After 5 weeks of pretreatment, two zones of nutrient 
supply were imposed to the root systems of the lupin 
seedlings by using vertical split-root pots described in detail 
by Tang, Robson and Dilworth (1991). This system splits 
the root system into an upper and a lower zone of nutrient 
supply. Nodules were only present in the upper zone. 

During the 4 d treatment period (details below), pH was 
monitored and corrected to 6·0 with a known volume of 
0·0 I M NaOH or HCI solution four times a day in each zone. 
Water lost through transpiration and evaporation was 
replaced daily by adding de-ionized water so that the 
volume of nutrient solution was maintained constant, 
otherwise the solutions were left unchanged during the 
treatment periods. In each experiment, pots without plants 
were included as controls for comparisons of nutrient 
uptake and H+ excretion. 

Experimental designs 

Experiment 1. The hypothesis for expt I was that 
nodulated lupin roots absorb a greater excess of cations and 
excrete more H+ in zones supplied with high K+ concentra­
tions than those where K+ was absent. We investigated the 
effects of two K+ concentrations (0 and 1200 I'M) in two root 
zones (upper and lower) on nutrient uptake, cation-anion 
balance and H+ excretion of nodulated lupin seedlings 
grown in nutrient solutions. The experiment was a factorial 
design with four replicates for each of the four treatments 
(Table 1), and was conducted in an air conditioned 
glasshouse in root cooling tanks maintained at 18-20°C 
during October 1989. 

Sixteen lupin seedlings were transferred to the vertical 
split pots and the treatment nutrient solutions were identical 
to the complete nutrient solution used in the pretreatment 
except for their NO; and K+ contents. NaN03 was absent in 
all treatments, hence the plants were reliant solely on N 2 

fixation and K,SO, was also replaced with Na,SO, for the 
treatment where K+ was absent, so that 50:- concentrations 
between treatments were constant. The treatments are 
abbreviated as AA (K+ absent in upper and lower zones), 
AP (K+ present in lower zone only at 2500 I'M), PA (K+ 
present in upper zone only at 2500 I'M) and PP (K+ present 
in upper and lower zones at 2500 I'M). 

Experiment 2. In expt 2 we tested the hypothesis that 
lupin roots absorb a greater excess of anions and excrete 
more OH- in zones supplied with high concentrations of 
NO; than in zones supplied with low NO; concentrations, 
and that Ca'+ is absorbed more slowly than K+, hence 
supplying Ca(N03), causes greater OH- excretion than 
supplying KN03 . In the lower zone of the split pots, we 
studied the effects of two NO; concentrations supplied as 
Ca(NO,), or KN03 and NaN03 , on the nutrient uptake of 
H+ or OH- excretion from the roots of nodulated lupin 
seedlings. The experiment included six replicates per 
treatment and was conducted during April 1990, under 
conditions similar to expt I. 

Eighteen seedlings were transferred to the vertical split 
pots for expt 2. The nutrients in the upper root zones of all 
treatments were similar to the solution used in the 



TABLE L The mean nutrient uptake. mean cation-anion balance (C-A) and the mean OH- added to each zone over the 4 d 
treatments in expt 1 

Treatment 
Nutrient uptake Lumol (m roOt)-I] 

Root K added 
Code zone (pM) K' Na' Ca2+ 

AA Upper a 0·0 24·8 46·7 
Lower a 0·0 10·9 43·1 

AP Upper a 0·0 26·3 25·6 
Lower 1200 83·2 0·0 47·1 

PA Upper 1200 56'6 0·0 31·8 
Lower a 0'0 37·2 41·3 

PP Upper 1200 66·0 0·0 32·1 
Lower 1200 96·8 0·0 59·5 

'" Standard error, n = 4. 

pretreatment except that NaN03, CaSO, and K,SO, were 
replaced by a low concentration of Ca(NO,), and KN03 
(each 250 lIM). Sulphate was only supplied as MgSO, 
(200 lIM). In the lower root zones, the supply of KN03 and 
Ca(NO,), was varied as follows: (a) as in the upper zone, i.e. 
250 ItM Ca(N03), and 250 I'M KNO" (coded in Table 2 as 
treatment CaLKL ); (b) 2500 lIM Ca(N03)' and KNO, absent, 
(treatment CaHKJ; and (e) 2500 I'M KN03, 2500 I'M 
NaN03 and no Ca(N03)" (treatment CaAKH). 

Analyses and calculations 

Plants were harvested after a 4 d treatment period in both 
experiments and root length in each zone was measured 
using a root length scanner (Comair®, Commonwealth 
Aircraft Corporation, Melbourne, Australia). A sample of 
the nutrient solution was taken from each zone and stored 
at 2 °C until analysis. Nutrient solutions were analysed for 
K, Na, Ca, and Mg using atomic absorption spectro­
photometry and Sand P concentrations using inductively 
coupled analysis. Nitrate concentrations were detennined in 
expt 2 with an ion-selective electrode (Orion®, nitrate ion 
electrode 92-07). 

When the seedlings were transferred to the vertical split 
pots an attempt was made to distribute the lengths of root 
evenly between the two zones but because of the lateral root 
development at the base of the tap root, this was not always 
possible. To account for any differences in root length 
between zones, all data were calculated per metre of root. 

Nutrient uptake was measured in each zone from the 
difference in the concentration of nutrients between the 
control and the treatment pots. Cation-anion balance was 
determined by summing of the charges of the cations 
absorbed and subtracting the sum of the charges of the 
anions absorbed. The amount of H+/OH- added was used 
to estimate the amount of OH-/H+ excreted by the roots in 
each zone. 

RESULTS 

The growth of the seedlings during the treatment phases of 
both experiments was satisfactory, with no visible symptoms 
of nutrient deficiency or pathogens. There was no effect of 

C-A OW 
Mg2+ SO~- H2POi [/leq (m root)-I] [peq (m root)-l] 

21·3 39·2 4·3 78'O±9'1* 76·2±8·7 
28·1 36·6 5·6 74'6±9'2 72·7±7·5 
17·1 29·4 2·6 50'3± 5·6 55'1±7'7 
27'0 63'6 4·3 99'7± 11·0 88·6±9·5 
12·8 31'7 2·4 80·0±5·6 72-4±3'3 
26·5 54·1 3'8 61'0± 13-7 61·4±5·5 
15·1 37·2 3·2 82'6±8'5 87-4±5·0 
38'1 87'9 6·6 109-6± 12·0 108·8±11·9 

the treatments on shoot or root growth (P < 0'05). In 
vertical split pots without plants, there was no change in the 
concentrations of nutrients nor the pH. 

Experiment 1 

Nutrient uptake. As was expected, K+ was absorbed in 
larger quantities [66--97 IImol (m roott'] than other cations 
when it was supplied over the 4-d experimental period 
(Table 1). In zones supplied with K+, Na+ was not absorbed 
despite pH correction with NaOH (up to 250 lIM by the end 
of the treatment period), whereas in the zones where K+ 
was absent, up to 37 Itmol (m roott' of Na+ was absorbed. 
Where K+ was supplied, its rate of uptake was between 390 
and 750 IImol (g roott' d-" similar to rates reported by 
Asher (1964). In all treatments SO:- was the anion absorbed 
in the largest quantities [29-88 IImol (m roott']. Less than 
7 IImol (m root)-' of H 2PO; was absorbed. The concen­
tration of H,PO; was depleted by 85 % over the 4-d 
treatment, while the depletion of the other nutrients was not 
greater than 70 %. 

The uptake of all nutrients per unit root length was 
greater in the lower than in the upper zone for all treatments 
(Table I) with the exceptions of SO:- and Ca" in the AA 
treatment (K' absent in both zones). The uptake of all 
nutrients (except K+) from the upper zone was greater in the 
AA treatment than in the PP treatment, and the reverse was 
the case in the lower zone. 

In general, the uptake of nutrients other than K+ was 
greater in the lower zone when K was present than when it 
was absent, regardless of whether K+ was present in the 
upper zone. In contrast, the uptake of nutrients other than 
K+was decreased from the upper zone by the presence of K+ 
in either or both zones. The largest decrease was observed in 
the AP treatment except for Na+ which increased slightly. 

Cation-anion balance. There was a trend for a more 
positive cation-anion balance (indicating that more cations 
than anions had been absorbed) where K+ was present than 
where K+ was absent, even when these treatments were 
imposed on different rooting zones of the same plant (Table 
I). The greatest difference between Ihe calion-anion balance 
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FIG. I. The correlation between the cation-anion balance and the 
amount of OH- added to each rooting zone. (r2 = 0,76). 

in rooting zones ofthe one plant was about SO }<eq (m roott' 
in the AP treatment. For the PA treatment, the mean 
cation-anion balance was about 20 ,ueq (m roott' greater 
in the lower zone than in the upper zone (P < 0·1). For the 
PP treatment, the mean cation-anion balance was greater in 
the lower zone than in the upper zone (P < 0·1). 

NaOH addition. The total amount of OH- required to 
maintain a constant pH of the solutions was linearly 
correlated with the cation-anion balance in both zones for 
individual replicates of each treatment (r' = 0·76; Fig. I). 
The linear regression did not differ (P < O·OS) from a line 
with a slope of 1, and when curvilinear relationships were 
fitted to these data the variation accounted for did not 
increase. 

Experiment 2 

Nutrient Ca2+ were 

particularly for CaH and NO, in the zone supplied with 
CaHKA and for K+ and NO;: in the zones supplied with 
CaAKH (Table 2). Calcium uptake was least in the lower 
zone of the CaLK l , treatment, about ten times less than in 
expt 1. The uptake of Ca 2+ from the CaHKA treatment was 
more than 20 times the uptake in the lower zone of the 
control CaLKL treatment, and between two and fOUf times 
the CaH uptake in expt 1. The uptake of K' in the CaAKH 

treatment was more than seven times the uptake in the 
CaLKL treatment, and up to three times the K+ uptake in 
expt 1. The roots absorbed more equivalents of Ca2+ than 
K' over the 4-d experimental period except for the CaLKL 
treatment. The uptake of SO~- was up to nine times greater 
in expt 1 than in the expt 2, and it was very low in the CaHK

L 

treatment. Magnesium and H 2PO; uptake were similar in 
both experiments. 

Cation-anion balance. The cation-anion balance was not 
significantly different from zero (P < O·OS) in the upper 
zones of treatment CaLKL • In the lower zones there was an 
excess of anion uptake of between 29 ,ueq (m roott' in the 
CaLKL treatment and lSI ,ueq (m roott' in the CaAKH 

treatment. The uptake of CaH in the lower zone of the 
CaHKA treatment was greater than the uptake of K+ in the 
lower zone of the CaAKH treatment, however because of the 
divalent charge of Ca2+, there was a greater anion charge 
excess in the lower zone of the CaAKH treatment. 

NaOH addition. The pH of the nutrient solutions did not 
rise in any zone during the 4-d of treatments and hence, no 
addition of H+ was required to maintain the pH of the 
solutions at 6·0. Significant quantities ofOH- were required 
in all upper zones, while the amounts added to the lower 
zones were not different from zero (P < O·OS). Unlike expt 
I, the amounts of OH- added to the zones were not related 
to cation-anion balance. 

DISCUSSION 

Proton excretion by lupin roots was not distributed evenly 
over the entire length of the root system but occurred in the 
zone of nutrient uptake. Hence, differences in nutrient 

uptake. In general, K+, and NO; uptake by lupin roots between the surface soil and the 
absorbed in the greatest quantities. This was shown subsoil will lead to different rates of acidification. Lupins 

TABLE 2. The mean nutrient uptake, mean cation-anion balance (C-A) and the mean OH- added to each zone over the 4 d 
treatments in expt 2. High and low concentrations of Ca and K are indicated by Hand L respectively, and A indicates absent. 

(See expt 2 treatments for actual concentrations) 

Treatment 
Nutrient uptake Lttmo1 (m roOt)-l] 

Root CalK C-A OW 
zone added K' Na' Ca2+ Mg2+ 50:- H2PO~ NO; [peq (m rootr1J [peq (m rootr1J 

Upper CaLKL 16·1 2·2 n6 ns 11·1 3·0 43-0 1'3±2'7* 16·9± t·3 
Lower CaLKL 20·4 /YO 4·0 16·1 20·0 6·8 35-9 -28·7±3·5 J-6±2·3 
Upper CaLKL 17-6 I·g IS·2 16·0 IS·3 3-4 4S·2 -0·9±3-4 Ig·7±0·6 
Lower CanKA 0·0 0·0 101·5 14·0 1·2 4·7 260·2 -4H±6·7 I·O±O·S 
Upper CaI,KL 11·2 5·1 12·9 IN IH 2·9 42-9 -2·1± 1·7 16·7± 1·2 
Lower CaAKH IS2·1 2-7 0·0 11·4 19·5 S·I 279·S -ISI·O± IS·2 0·3±0·2 

>I< Standard error, n = 6. 



__

did not excrete OH- when they absorbed an excess of 
amons. 

When nodulated lupins were supplied with an adequate 
concentration of nutrients in expt 1, they absorbed greater 
quantities of K + than other cations and up to twice as much 
H+ excretion occurred in the zones where K+ was supplied 
than in zones where K+ was absent. This has implications 
for the patterns of soil acidification under lupin: wheat 
rotations. Rowland, Mason and Hamblin (1986) and Loss 
ef af. (1993) presented data that suggest that the deep 
rooting patterns of lupins enable them to absorb K+ from 
the subsoil and increase K+ concentrations of the surface 
soil through organic matter cycling. In such situations, one 
would expect greater rates of acidification at depth than in 
the surface soil. Loss ef al. (1993) measured greater rates of 
soil acidification under wheat: lupin than wheat: sub-clover 
based pasture rotations in the field, particularly below 
20 em. 

The data from expt 1 were in agreement with the results 
of others that demonstrated a strong linear relationship 
between excess cation uptake and H+ excretion by roots 
(Van Egmond and Aktas, 1977; Jarvis and Hatch, 1983; Lui 
el al., 1989). However, the lack of correlation between 
excess anion uptake and OH- excretion by lupins in expt 2 l 

contrasts with previous observations with peas, Pisum 
sativum L. (Van Beusichem, 1981), sub-clover, Trifolium 
sublerraneum L. (Jarvis and Robson, 1983) and castor oil 
plants, Ricinus communis L. (Van Beusichem, Kirkby and 
Baas, 1988). Proton excretion has been reported in plants 
supplied with NO;, but only when cation uptake exceeded 
anion uptake; e.g. soybeans, Glycine max L. (Israel and 
Jackson, 1982), sunflower, Helianllius annuus L., (Bekele ef 
al., 1983) and buckwheat, Fagopyrum esculenlum L. 
(Mitreva, 1989). Proton excretion has also been measured in 
chickpeas (Cicer arielinum L.) supplied with NO; in response 
to Fe and P deficiency (Alloush and Sanders, 1990). The 
lupins in our experiments were supplied with adequate Fe 
and P, and did not show symptoms of deficiency. 

It is possible that lupin roots excrete organic acid anions 
when anion uptake exceeds cation uptake (Fig. 2). The 
source of organic anions is a •pH stat' mechanism that 
maintains a constant cellular pH when OH- is produced 
from the excretion ofH+- and the oxidation of NO;; and SO:­
(Raven and Smith, 1973; Davies, 1973). Any rise in pH is 
prevented by the synthesis of organic acids from neutral 
carbon precursors. Malate and citrate are the most abundant 
organic anions in lupins and they have low pKa values (pKa1 
values of 5·1 and 5-4 respectively), hence they would not 
affect the pH of the growing media at pH 6'0 to any great 
extent. The results of recent experiments concerning organic 
anion excretion by lupins will be published shortly in a 
following paper. 

In a grass-legume pasture growing in a mediterranean 
climate, Helyar and Porter (1989) estimated that 40% of 
soil acidification is caused by the oxidation of organic N to 
NO; which produces H+. This reaction is enhanced by the 
build up of soil N via N, fixation and the leaching of NO;. 
More efficient use of soil NO; is being explored as a method 
of decreasing the rate of soil acidification, because as much 
as 10 mM NO; has been measured in the soil solution below 

Soil solution Root cytoplasm
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¥--~A-

N03" ----===-~ Amino acids 

FIG. 2. The proposed uptake of anions in exchange for organic anions 
(RCOO-) synthesised from a 'pH stat' mechanism. 

15 em in sandy soils (Carr, pers. comm.). Our work has 
shown that lupins do not excrete OH- when they absorb an 
excess of anions. Even though lupins are deep rooted and 
therefore have a large potential to absorb leached NO; and 
decrease soil acidification, any excess anion absorption 
would not increase the soil pH at depth unless the pH of the 
soil was below the pKa of the excreted organic anions 
(Ritchie and Dolling, 1985). However, the organic anions 
may be broken down by micro-organisms in the rhizosphere, 
producing OH- and CO,. 

Our results indicate that the age ofroots may be important 
in nutrient uptake and H+ excretion. Differences in the 
proportion of lateral to main roots between the zones may 
also be important. The cation-anion balance and the 
amounts of NaOH required to maintain pH in the zones 
indicate that when K was supplied to both zones, more 
cations were absorbed and more H+ was excreted from the 
lower than the upper zones of the vertical split. This was not 
because of the greater volume of nutrient solution in lower 
than in upper zones and hence there was a greater depletion 
of nutrients from the upper zone. Nutrients were depleted 
by similar amounts in both zones over the 4-d experimental 
periods and final concentrations were greater than 30 % of 
their original concentrations. The lupin seedling may have a 
priority on the growth of the apical meristem of tap root 
causing the greater cation uptake and H+ excretion in the 
lower zone. 

The vertical split pot designed for use in this experiment 
had advantages over some horizontal split designs which 
have been used to examine a number of physiological 
hypotheses in tap rooted plants. Our method did not 
involve cutting the tap root to induce lateral root formation 
as performed by Singleton (1983) which may cause 
morphological changes affecting root physiology. Also the 
vertical split was more representative of nutrient gradients 
in the soil which occur vertically rather than horizontally. 
Errors in expt 1 were quite large because there was only one 
plant per pot and only four replicates, but errors were 
decreased in expt 2 with the use of six replicate pots. A 



method of using more than one plant per pot may also 
reduce the variation in results. 
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