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1. Introduction

One of the main ideas behind the Conley index theory is to apply the tools
from algebraic topology in studying dynamical systems, especially the struc-
ture of invariant sets (see [5, 6, 10, 14]). This approach, motivated by Morse
theory, focuses on decomposing isolated invariant sets into invariant subsets
(Morse sets) and connecting orbits between them. This structure is called a
Morse decomposition of an isolated invariant set. A filtration of index pairs
associated with a Morse decomposition can be used to find connections be-
tween different Morse sets. The principal tools for this purpose are connec-
tion matrices (see [3, 4, 9, 13]), connection graphs (see [2, 8]) and spectral
sequences (see [1, 4, 7]).

The main goal of this paper is to explain and clarify the basic relations
between connection matrices (generalized here to spectral splittings), connec-
tion graphs (called here spectral graphs) and spectral sequences. Although
the comparison is done mainly on algebraic level, we hope that it sheds some
new light on important aspects of the Conley index theory. This paper is
mainly intended as a brief survey summarizing results from [1, 2, 3, 4].

The organization of the paper is as follows. Section 2 contains some
preliminaries. In Section 3 we introduce spectral splittings and study their
basic properties. In Section 4 we briefly explain the relation between spectral
splittings and connection matrices. Section 5 contains a brief description of
spectral graphs. Finally, in Section 6 we use spectral splittings and graphs
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to study the structure of the Morse decomposition of a flow on a compact
metric space.

2. Preliminaries

Recall that a filtered vector space is a vector space A equipped with a finite
increasing filtration, that is, a sequence {Ap}n0 of subspaces of A such that

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A.

We will use the following convenient notation:

Ap = A for p ≥ n,

Ap = 0 for p ≤ 0.

Definition 2.1. A filtered differential vector space (f-d space for short) is a
filtered vector space A together with an endomorphism d such that d2 = 0
and d preserves the filtration, i.e., dAp ⊂ Ap.

Remark 2.2. The main advantage of using filtered differential vector spaces
instead od filtered differential modules is that we can apply standard methods
of linear algebra, but this approach has also the disadvantage that we obtain
homology with coefficients in a field, which is blind to torsion.

Observe that we have two natural finite filtrations associated with the
f-d space. Namely,

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A, (2.1)

0 = dA0 ⊂ dA1 ⊂ · · · ⊂ dA ⊂ d−10 ⊂ d−1A1 ⊂ · · · ⊂ d−1An = A. (2.2)

Let us briefly recall the definition of the spectral sequences of the f-d
space (see [15] for more details). We introduce the following notation. Let

Zr
p := Ap ∩ d−1Ap−r,

Br
p := Ap ∩ dAp+r

for any r ∈ Z+ and p ∈ Z. Since, as is easy to see, Zr−1
p−1 ⊂ Zr

p and Br−1
p ⊂ Zr

p ,
the quotient vector space

Er
p :=

Zr
p

Zr−1
p−1 +Br−1

p

is well defined. Moreover, since the differential d induces homomorphisms

Zr
p → Zr

p−r, Zr−1
p−1 +Br−1

p → Zr−1
p−r−1 +Br−1

p−r ,

it also induces the homomorphism of quotient vector spaces, which we will
denote by drp:

drp : E
r
p → Er

p−r.

Observe that drp([z]) = [dz], where [ · ] denotes the respective equivalence
class. From this we obtain drp−rd

r
p[z] = [ddz] = 0 and so drp−rd

r
p = 0. For a
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fixed r homomorphisms drp induce the homomorphism

dr :
⊕
p

Er
p →

⊕
p

Er
p .

Hence dr is a differential of a vector space Er =
⊕

p E
r
p .

Definition 2.3. A sequence of vector spaces and differentials {Er, dr}∞r=1 is
called the spectral sequence of the f-d space A.

Remark 2.4. It is easily seen that if the filtration of the f-d space A has
length n, then the spectral sequence stabilizes at the nth term; i.e., Er �
Er+1 for r ≥ n.

In the next section we will make use of the following two easy-to-check
facts from linear algebra.

Lemma 2.5. Assume that

• L : V → V is linear,
• V = U ⊕A with kerL ⊂ U ,
• LV = LU ⊕B and LA ⊂ B,

then L : A → B is an isomorphism.

Lemma 2.6. If L : V → V is linear, U is a linear subspace of V and LV =
LU ⊕ B, then there is a linear subspace A of V such that V = U ⊕ A and
LA ⊂ B.

3. Spectral splittings of filtered differential vector spaces

We introduce unified notation for elements of the filtration (2.2). Namely, let

Dm =

{
dAm for m ≤ n,

d−1Am−n−1 for m > n.

Definition 3.1. A spectral splitting of the f-d space A is a sequence

{Ap,q} 1≤p≤n
0≤q≤n+1

of linear subspaces of A such that

Ap =
⊕

1≤i≤p
0≤q≤n+1

Ai,q for all p, (3.1)

Dm =
⊕

p+q≤m

Ap,q for all m, (3.2)

dAp,q ⊂ Ap+q−n−1,n−q+1 for p+ q > n+ 1. (3.3)

Remark 3.2. If p+ q ≤ n+1, then Ap,q ⊂ Dn+1 = ker d and, in consequence,
dAp,q = 0.
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Let us introduce the following notation:

Vp,q :=Ap ∩Dp+q,

Up,q :=Ap−1 ∩Dp+q +Ap ∩Dp+q−1.

Remark 3.3. By Definition 3.1,

Vp,q = Up,q ⊕Ap,q. (3.4)

Of course, an arbitrary complement to Up,q in Vp,q may not satisfy condi-
tion (3.3) of Definition 3.1.

Remark 3.4. From Definition 3.1 and Lemma 2.5 applied to V = Vp,q, U =
Up,q, A = Ap,q and B = Ap+q−n−1,n−q+1, we obtain that the map d : Ap,q →
Ap+q−n−1,n−q+1 is an isomorphism for p+ q > n+ 1.

The following two observations are essential for applications in the Con-
ley index theory.

Proposition 3.5. The total homology of the f-d space A is given by

H(A) = ker d/ Im d = Dn+1/Dn ≈
⊕

p+q=n+1

Ap,q.

Proposition 3.6. Using the notation Cp =
⊕n

q=1 Ap,q, we have

H
(
Ap/Ap−1

)
≈ Cp.

Proof. By Definition 3.1 and Remark 3.4, we have

• Ap = Ap−1 ⊕ Cp ⊕Ap,0 ⊕Ap,n+1,
• d : Ap,n+1 → Ap,0 is an isomorphism,
• dCp ⊂ Ap−1.

Let d̃ denote the differential on quotients d̃ : Ap/Ap−1 → Ap/Ap−1. We com-
pute

H
(
Ap/Ap−1

)
= ker d̃/ Im d̃ =

Ap−1 ⊕ Cp ⊕Ap,0

Ap−1 ⊕Ap,0
≈ Cp,

which completes the proof. �

Remark 3.7. Similar reasoning shows even more general result. Namely, if
p > q, then

H(Ap/Aq) =

p⊕
i=q+1

Ci.

Let us introduce the notation for some “blocks” in the spectral splitting.
Set

min = min{r, n+ 1− p},
max = max{n+ 1− p, n+ 1− r} = n+ 1−min{p, r}

for every p, r = 1, . . . , n. Here and subsequently, we will use the symbol Ar
p

to denote the direct sum
max⊕

q=min

Ap,q. (3.5)
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Proposition 3.8. The collection {Ar
p; d : A

r
p → Ar

p−r}np,r=1 is isomorphic to
the spectral sequence of the f-d space A; i.e.,

(1) all the maps Φr
p : A

r
p → Er

p given by

Φr
p(v) := v +

(
Zr−1
p−1 +Br−1

p

)

are isomorphisms,
(2) the following diagram commutes

Ar
p

d ��

Φr
p

��

Ar
p−r

Φr
p−r

��
Er

p

dr
p �� Er

p−r

(3.6)

for every p, r = 1, . . . , n.

Proof. Since

Er
p =

Zr
p

Zr−1
p−1 +Br−1

p

=
Ap ∩Dn+1+p−r

Ap−1 ∩Dn+p−r +Ap ∩Dp+r−1
≈ Ar

p,

it is easy to see that Φr
p are isomorphisms and the diagram (3.6) commutes

for every p, r = 1, . . . , n. �

Theorem 3.9. There is a spectral splitting for any f-d space.

Proof. The construction of a spectral splitting proceeds as follows. If p+ q ≤
n + 1, we choose Ap,q to be any complement to Up,q in Vp,q. On the other
hand, if p + q > n + 1, we apply Lemma 2.6 to V = Vp,q, U = Up,q and
B = Ap+q−n−1,n−q+1 to get such complement Ap,q to Up,q in Vp,q that

dAp,q ⊂ Ap+q−n−1,n−q+1. �

4. Spectral splittings and connection matrices

There is an easy way to obtain connection matrices from spectral splittings
as a part of it. Let Cp =

⊕p
i=1 Ci, where Ci =

⊕n
q=1 Ai,q as before. Then

the f-d space C = {Cp}np=0 has the following properties:

(1) C is an f-d subspace of A, i.e., Cp ⊂ Ap for all p,
(2) dCp ⊂ Cp−1 for all p,
(3) the map on homology i : H(C) → H(A) induced by the inclusion C ⊂ A

is an isomorphism.

Recall that any f-d space satisfying the above three conditions is called
a connection matrix. As we can see a connection matrix is simply a filtration
of some “subblocks” of the spectral splitting. Moreover, if we delete from the
spectral splitting all direct summands Ap,0 and Ap,n+1 for p = 1, . . . , n, we
obtain a detailed connection matrix, which is a more refined version of a usual
connection matrix (see [4] for definition).
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Remark 4.1. Now assume that all relative homology H(Ap/Ap−1) ≈ Cp are
finitely generated. Then all direct summands in detailed connection matrices
(as opposed to spectral splittings) are finite-dimensional vector spaces. That
easy observation is relevant for applications in the Conley index theory, be-
cause it allows us to compare relative homology H(Ap/Ap−1) and the total
homology H(A) simply by counting bases of the respective vector spaces (see
Section 6 for more details).

5. Spectral graphs

Definition 5.1. A directed graph G = (V,E) is called a spectral graph for the
f-d space A if

(1) V is a set of linearly independent vectors in A,
(2) span{Ap ∩Dm ∩ V } = Ap ∩Dm for all p and m,
(3) each vertex has 0 or 1 edge,
(4) (v, ṽ ) ∈ E if and only if dv = ṽ,
(5) if F = span{the set of vertices with 0 edges}, then ker d = dA ⊕ F

(hence H(A) ≈ F ).

Remark 5.2. The spectral graph exhibits the following duality:

• edges of the graph give full description of the differential in the f-d space,
• the set of vertices without edges determines the homology of the f-d
space A.

In other words, the vertices from Cp ≈ H(Ap/Ap−1) which do not contribute
to the global homology H(A) are “cancelled” by joining pairs of them with
edges.

The following result is a natural consequence of the previous results.

Theorem 5.3. There is a spectral graph for any f-d space.

Proof. First, by Theorem 3.9, we get a spectral splitting. Then we choose any
bases in the spaces Ap,q for p+q ≥ n+1. Finally bases in Ap,q for p+q < n+1
are determined by the isomorphisms d : Ap+q,n−q+1 → Ap,q. �

Remark 5.4. The proof of Theorem 5.3 shows how to obtain a spectral graph
from a spectral splitting. However, the reverse reconstruction is also possible.
Namely, condition (2) of Definition 5.1 guarantees that using the formula

Ap,q = span{(Vp,q ∩ V ) \ (Up,q ∩ V )},
we can recover a spectral splitting from a spectral graph.

The vertices of a spectral graph may be labeled as follows. Each vertex v
is labeled by an integer l(v) = p := max{i | v ∈ Ai}. We use vp to denote
a vertex labeled by p. Of course, two different vertices may have the same
label. Moreover, let W = {v ∈ V | dv ∈ V and l(v) = l(dv)}. A full subgraph
of a spectral graph spanned by the vertices V \ (W ∪ dW ) will be called a
connection graph.
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6. Morse decompositions

Spectral splittings and graphs may be used for studying the structure of
Morse decompositions.

Let X be a compact metric space. Assume we have a flow on X. Recall
that a collection {Mi}n1 of mutually disjoint compact invariant subsets of X
is called a Morse decomposition if for every x ∈ X \

⋃n
i=1 Mi there are indices

i < j such that ω+(x) ⊂ Mi and ω−(x) ⊂ Mj . The sets Mi are called Morse
sets. Moreover, generalized Morse sets for i ≤ j are defined as

Mji :=

{
x ∈ X | ω+(x) ∪ ω−(x) ⊂

j⋃
k=i

Mk

}
.

Spectral splittings and graphs may be naturally related to a filtration
of index pairs associated with the Morse decomposition. Recall that an in-
creasing filtration of compact sets {N i}n0 is called an index filtration if

(1) N0 = ∅ and Nn = X,
(2) (N j , N i−1) is an index pair for Mji.

Such filtrations, even regular, exist (see [11, 14] for more details). Recall
that if the index filtration is regular, then the Conley index of each Morse
set Mji is isomorphic to the singular homology of the pair (N j , N i−1).

Let {N i}n0 be an index filtration for the Morse decomposition {Mi}n1 .
Let C(Nk) be the vector space of singular chains in Nk and let i : C(Nk) →
C(N) be a homomorphism induced by the inclusion Nk ⊂ N . It is evident
that a filtration {

i
(
C(Nk)

)}n

0
,

equipped with the boundary map on singular chains, is an f-d space. A spectral
splitting (graph) for the Morse decomposition {Mi}n1 is simply a spectral
splitting (graph) for the above f-d space.

Repeating the reasoning from the proof of [1, Theorem 7.2] we can easily
show the following result.

Proposition 6.1. Any two spectral splittings (spectral graphs) for a given
Morse decomposition are isomorphic; i.e., they are independent (up to iso-
morphism) of the choice of an index filtration.

In our next theorem we will make use of the following definition.

Definition 6.2. We say that two Morse sets Mp and Mq are linked if there are
a sequence of Morse sets Mi1 , . . . ,Mik and a sequence of orbits γ1, . . . , γk−1

such that

• Mi1 = Mp and Mik = Mq,
• Mim ∩ cl γm �= ∅ and Mim+1

∩ cl γm �= ∅ for m = 1, . . . , k − 1.

Our last result shows how to use spectral graphs in analyzing the struc-
ture of the Morse decomposition. It is worth pointing out that even an easy
comparison of local Conley indices of Morse sets with the total homology of
the whole space by means of the spectral graph may provide information on
how different Morse sets are linked.
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Theorem 6.3. Let G = (V,E) be a spectral graph for the Morse decomposition
{Mj}n1 . If n ≥ p > s ≥ 1 and (vp, vs) ∈ E, then the Morse sets Mp and Ms

are linked.

Proof. Let n ≥ p > s ≥ 1 and (vp, vs) ∈ E. Using the notation from Re-
mark 5.4 we see that

vp ∈ Ap,n+s−p+1. (6.1)

Suppose now that the Morse sets Mp and Ms are not linked. Hence there
exists an index filtration {N j}n0 for the Morse decomposition {Mj}n1 such
that for some k (p > k ≥ s) both sets Np \ Nk and Nk are closed in X.
Denoting

Aj := i
(
C(N j)

)
and B := i

(
C(Np \Nk)

)
,

we obtain Ap = Ak⊕B. Hence vp = v′+v′′, where v′ ∈ Ak and v′′ ∈ B. This
gives vs = dvp = dv′ + dv′′ and consequently

Ak � vs − dv′ = dv′′ ∈ B,

because the differential on singular chains operates component by component.
We thus get v′′ ∈ ker d = Dn+1 and so

vp = v′ + v′′ ∈ Ak ∩Dn+s+1 +Ap ∩Dn+1 ⊂ Up,n+s−p+1,

contrary to (6.1). �

We end this section with two simple examples illustrating the compu-
tation of connection graphs. The second example is adapted from [12].

Example (A gradient flow on a deformed 2-sphere). Consider the gradient
flow of the height function on a manifold M diffeomorphic to S2 with phase
portrait as in Figure 1. Observe that two minima (1 and 2), two maxima
(4 and 5) and a “circle” consisting of two saddle points and two connect-
ing orbits between them (3) form a Morse decomposition of M . Moreover,
the respective sublevel sets on M form a natural index filtration. It will be
convenient to represent a connection graph for the Morse decomposition in a
tabular form. The columns are labeled by Morse sets and the rows correspond

1

2

3

4

5

Figure 1. A gradient flow on a deformed 2-sphere.
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to the gradation on homology. Of course, dots (arrows) represent vertices
(edges).

1 2 3 4 5

2 •
��

•

1 ••
��

0 • •

As we have mentioned before, the connection graph shows the relationship
between the Conley indices of Morse sets (columns) and the homology groups
of the manifold M (vertices without edges). Besides, the edges describe the
action of the differential of the respective f-d space.

Example (A flow on the 2-sphere). Consider the local flow in R2 with phase
portrait as in Figure 2 (see [12] for more details). If we consider the flow as a
flow on the 2-sphere, then the point at infinity becomes an attractor. Observe
that three repelling rest points (2, 6, 7), two saddle rest points (4, 5), one
attracting rest point (3) and one attracting periodic orbit (1) form a Morse
decomposition of S2. We can easily construct an index filtration for this Morse

1

4

5

6 72

Figure 2. A flow on the 2-sphere.

decomposition, which uniquely determines a connection graph (see below).

1 2 3 4 5 6 7

2 •
��

•
��

•

1 • •
��

•

0 • •

It may be worth pointing out that the phenomenon of nonuniqueness of con-
nection matrices (graphs) cannot be observed here (see Proposition 6.1).
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