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Abstract. This paper examines the driving and opposing forces that are governing the current paradigm shift from a data-
processing information technology environment without software intelligence to an information-centric environment in which 
data changes are automatically interpreted within the context of the application domain. The driving forces are related to the 
large quantity of data and the complexity of networked systems that both call for software intelligence. The opposing forces are 
non-technical and due to the natural human resistance to change. 
Based on this background the paper describes current information-centric technology, proposes a vision of intelligent software 
system capabilities, and identifies four areas of necessary research. Most urgent among these are the ability to dynamically extend 
and merge ontologies and semantic search capabilities that can be initiated either by human users or software agents. Longer term 
research interests that pose a more severe challenge are related to the translation of emerging theoretical hierarchical temporal 
memory (HTM) concepts into usable software capabilities and the automated interpretation of graphical images such as those 
recorded by surveillance video cameras. 
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1. Periods of accelerated change tainly in recent times, the precipitating factors have 
been technological and/or political in nature. Some-

Over the past hundred years there have been many times these factors have gained momentum over time 
fundamental changes in our human values and the way in a cumulative manner such as the French Revolution 
we perceive our environment (Fig. 1). The Industrial in the 18th Century, and at other times they have de-
Age placed great value on physical products and de scended on society more abruptly. The terrorist attacks 
vised ingenious ways to maximize the manual contri on the United States (US) that occurred on September 
butions of its human work force in a subservient role 11, 2001 (9/11) are an example of the latter. In ei
to a highly automated mass production process. In the 

ther case such periods of change have typically been Information Age the focus has moved from the physical 
accompanied by a great deal of human tension. capabilities of the human work force to the intellectu-

It is the dual purpose of this paper to explore some of al capabilities and potential of its individual members. 
the underlying reasons for the tensions that accompany The attendant symptoms of this profound shift are the 
periods of rapid change and to discuss the technologireplacement of mass production with computer con
cal advances in computer software that are emerging as trolled mass customization, virtual products as opposed 
a natural byproduct. These advances tend to fall into to physical products, and the creation and exploitation 

of knowledge. However, the rate of change is by no two categories, namely: the implementation of theories 
means constant. and methodologies that have been under development 

Throughout history there have been periods of rapid for some time but were not exploited because there did 
and profound change. More often than not, and cer- not appear to be a compelling need for their immediate 
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Fig. 1. Many fundamental changes. 

application; and, requirements for additional advances 
that become apparent as this existing knowledge tran
sitions from focused research projects to broader and 
larger scale utilization. Typically, the first category 
manifests itself as a paradigm shift that is accompanied 
by an order of magnitude increase in capabilities and 
inevitably demands fundamental changes in the perfor
mance and management of existing tasks. The sec
ond category becomes apparent as human expectations 
for higher levels of exploitation of the new capabilities 
identify the need for additional capabilities. 

The origin of a paradigm shift is normally associated 
with compelling needs that are often of a threatening na
ture (Fig. 2). To counter such threats society is forced to 
be critical of existing methodologies and processes, to 
be innovative, and to seek new capabilities that will im
prove its chances of survival. Therefore, the paradigm 
shift itself is borne out of fear as the primary source 
of tension. In the post-9/11 world the US Government 
found it necessary to initiate a degree of mobilization 
and reorganization that was unprecedented since World 
War II. In particular, the urgent requirement to protect 

the public from terrorist threats focused attention on in
formation systems for identification, surveillance, and 
intelligence gathering purposes. It was soon realized 
that due to the enormous quantity of data involved the 
computer-based information systems would need to be 
able to assist the human users in the interpretation of 
the data that they are processing. This requirement has 
initiated a paradigm shift from computer-based data-
processing to intelligent information management. 

A secondary source of tension soon arises as fur
ther technical challenges and opportunities for the in
creased exploitation of the new capabilities emerge. 
This source of tension is not as severe as the primary 
forces that precipitated the paradigm shift because it 
is more narrowly focused on the research community 
and its funding organizations. The additional capabil
ities that become available tend to be incremental in 
nature and are therefore perceived to be less disrup
tive. Even though these complementing innovations 
may be even more profound in their enabling capabil
ities, since society is already engaged in a paradigm 
shift they become part of the mainstream of change and 
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Fig. 2. Periods of accelerated change. 

are therefore more readily accepted. In the post-9/11 
world these emerging research challenges are related 
to the development of software methodologies that will 
improve the versatility and reliability of the automated 
transformation of data into actionable information and 
the intelligent management of this information. 

2. Humans are situated in their environment 

To explore the source of the resistance to change 
and attendant tensions that inevitably accompany a 
paradigm shift it is necessary to understand that we 
human beings are very much influenced by our sur
roundings. We are situated in our environment not on
ly in terms of our physical existence but also in terms 
of our psychological needs and understanding of our
selves [1]. We depend on our surroundings for both 
our mental and physical wellbeing and stability. Con
sequently, we view with a great deal of anxiety and 
discomfort anything that threatens to separate us from 
our environment, or comes between us and our familiar 
surroundings. 

This extreme form of situatedness is a direct out
come of the evolutionary core of our existence. The 
notion of evolution presupposes an incremental devel
opment process within an environment that represents 
both the stimulation for evolution and the context with
in which that evolution takes place. It follows, first, 
that the stimulation must always precede the incremen

tal evolution that invariably follows. In this respect we 
human beings are naturally reactive, rather than proac
tive. Second, while we voluntarily and involuntarily 
continuously adapt to our environment, through this 
evolutionary adaptation process we also influence and 
therefore change our environment. Third, our evolu
tion is a rather slow process. We would certainly expect 
this to be the case in a biological sense. The agents of 
evolution such as mutation, imitation, exploration, and 
credit assignment, must work through countless steps 
of trial and error and depend on a multitude of events 
to achieve even the smallest biological change [9,10, 
13,20]. 

In comparison to biological evolution our brain and 
cognitive system appears to be capable of adapting to 
change at a somewhat faster rate. Whereas biological 
evolution proceeds over time periods measured in mil
lenniums, the evolution of our perception and under
standing of the environment in which we exist tends to 
extend over generational time periods. However, while 
our cognitive evolution is of orders faster than our bi
ological evolution it is still quite slow in comparison 
with the actual rate of change that can occur in our 
environment. 

3. Human resistance to change 

Clearly, at least in the short term, the experience-
based nature of our cognitive system creates a general 
resistance to change (Fig. 3). The latter is exacerbated 
by a very strong survival instinct that manifests itself 
in a desire for certainty as a source of absolute security. 
Driven by the desire to survive at all costs we hang onto 
our past experience as insurance. In this respect much 
of the confidence that we have in being able to meet 
the challenges of the future rests on our performance 
in having met the challenges of the past (i.e., our suc
cess in solving past problems). We therefore tend to 
cling to the false belief that the methods we have used 
successfully in the past will be successful in the future, 
even though the conditions may have changed. As a 
corollary, from an emotional viewpoint we are inclined 
to perceive (at least subconsciously) any venture into 
new and unknown territory as a potential devaluation 
of our existing (i.e., past) experience. 

This absolute faith in and adherence to our experi
ence manifests itself in several human behavioral char
acteristics that could be termed limitations. First among 
these limitations is a strong aversion to change. Typi
cally, we change only subject to evidence that failure to 
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Fig. 3. Human resistance to change. 

change will threaten our current existence in a signifi
cant way. The current paradigm shift from data-centric 
to information-centric computer software serves as an 
example. Although the digital computer was originally 
conceived as a very fast computational machine capa
ble of reducing the time required for the solution of 
large numbers of mathematical equations from days to 
seconds, it soon emerged as a data storage and process
ing facility. This was mainly due to the need for record 
keeping accelerated by the growth of commerce and 
industry driven by major improvements in the ability to 
travel and communicate over long distances. As a re
sult new opportunities for interaction, leading to coop
eration, and eventually collaboration, presented them
selves. As the intensity of these activities and the tem
po of daily life increased so also did the competition 
among the human players. However, it did not occur to 
these players for at least two decades that the functions 
of the computer could extend beyond the rote storage 
and processing of data to the representation of infor
mation as a basis for automatic reasoning capabilities. 

Prior to the events of 9/11 the gradual realization that 
human-computer interaction could be raised to the lev
el of meaningful collaboration came not as a result of 
creative discovery, but because the requirement of in
terpreting the vast amount of computer-stored data sim
ply outstripped the availability of human resources. In 
other words, it was not the opportunity for using com
puters in this far more useful role, but the necessity of 

Fig. 4. Dealing with new situations. 

dealing with an overwhelming volume of data that was 
gradually persuading computer users to elevate data-
processing to information representation in support of 
automatic reasoning capabilities. Subsequent to 9/11 
the absolute necessity of automating at least the lower 
levels of intelligence gathering and analysis has begun 
to accelerate the transition from persuasion to convic
tion. Driven by the realization that the US can no longer 
afford to depend on the mostly manual processing of 
intelligence data, key government officials responsible 
for implementing a vastly improved infostructure have 
begun to seriously pursue an information-centric soft
ware architecture [2]. 

A second limitation is our apparent inability to resist 
the temptation of applying old and tried methods to 
new situations, even though the characteristics of the 
new situation are actually quite unlike the situations in 
which the existing methods were found to be useful 
(Fig. 4). This typically casts us into an involuntary 
experimental role, in which we learn from our initial 
failures. Examples abound, ranging from the develop
ment of new materials (e.g., the flawed introduction of 
plastics as a structural building material in the 1950s) 
to the reluctance of the military to change their intelli
gence gathering and war fighting strategies long after 
the conclusion of the Cold War era in the 1990s [21]. 

A third limitation is our tendency to view new in
cremental solutions as final comprehensive solutions. 
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Fig. 5. Why do we need context? 

A well known example of such a problem situation 
was the insistence of astronomers from the 2nd to the 
15th Century, despite mounting evidence to the con
trary, that the heavenly bodies revolve in perfect circular 
paths around the Earth [19]. This forced astronomers to 
progressively modify an increasingly complex geomet
ric model of concentric circles revolving at different 
speeds and on different axes to reproduce the apparent
ly erratic movement of the planets when viewed from 
Earth. Neither the current scientific paradigm nor the 
religious dogma of the church allowed the increasing
ly flawed conceptual solution of Ptolemaic epicycles 
to be discarded. Despite the obviously extreme nature 
of this historical example, it is worthy of mention be
cause it clearly demonstrates how vulnerable the ratio
nal side of the human cognitive system is to emotional 
influences [14]. 

4. The current paradigm shift 

There are essentially two compelling reasons why 
computer software must increasingly incorporate more 
and more intelligent capabilities. The first reason re
lates to the current data-processing bottleneck. Ad
vances in computer hardware technology over the past 
several decades have made it possible to store vast 
amounts of data in electronic form. Based on past man

ual information handling practices and implicit accep
tance of the principle that the interpretation of data in
to information and knowledge is the responsibility of 
the human operators of the computer-based data stor
age devices, emphasis was placed on storage efficiency 
rather than processing effectiveness. Typically, data file 
and database management methodologies focused on 
the storage, retrieval and manipulation of data transac
tions, rather than the context within which the collected 
data would later become useful in planning, monitor
ing, assessment, and decision-making tasks. For ubiq
uitous computing (Fig. 5 (lowest block)) to fully meet 
our expectations it will need to be supported by soft
ware that either incorporates or provides access to con
text. This includes a wide range of information such as 
geographical location, time constraints, priorities, the 
current circumstances, the background and motives of 
the parties involved, and so on. 

The second reason is somewhat different in nature. 
It relates to the complexity of networked computer 
and communication systems, and the increased reliance 
of organizations on the reliability of such information 
technology environments as the key enabler of their 
effectiveness, profitability and continued existence. 

Increasingly software is being recognized as the ve
hicle for computers to take over tasks that cannot be 
completely predefined at the time the software is de
veloped. The impetus for this desire to elevate com
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Fig. 6. Where should we apply context? 

puters beyond data-processing, visualization and pre
defined problem-solving capabilities, is the need for or
ganizations and individuals to be able to respond more 
quickly to changes in their environment. Computer 
software that has no understanding of the data that it 
is processing must be designed to execute predefined 
actions in a predetermined manner. Such software per
forms very well in all cases where it is applied under 
its specified design conditions and performs increas
ingly poorly, if at all, when the real world conditions 
vary from those design specifications. Instead, what 
is needed is software that incorporates tools that can 
autonomously adapt to changes in the application en
vironment (Fig. 6). 

Adaptable software presupposes the ability to per
form some degree of automated reasoning. Howev
er, the critical prerequisite for reasoning is the situa
tional context within which the reasoning activity is 
framed. It is therefore not surprising that the evolution 
of computer software in recent years has been largely 
preoccupied with the relationship between the compu
tational capabilities and the representation of the da
ta that feed these capabilities. Several decades be
fore the sobering events of 9/11 the theoretical founda
tions were laid for the transition from data-processing 

to information-centric computer software. One could 
argue that the historical path from unconnected atomic 
data elements, to data structures, relational databases, 
data objects, object-oriented databases, object models, 
and ontologies, has been driven by the desire to provide 
information context in support of automated reasoning 
capabilities. 

5. Computer software research challenges 

An information-centric computer-based environ
ment extends beyond the ability to automatically inter
pret data into areas that are related to interoperabili
ty, flexibility, intelligent analysis and evaluation capa
bilities, discovery, and security. Combined with the 
principles of a service-oriented architecture (SOA) in a 
distributed implementation, the vision that emerges is 
profoundly different from the vast majority of existing 
software systems. 

What is suggested is a software environment in which 
functional capabilities are seamlessly available without 
the user being aware whether a particular capability is 
provided by one or more services that are internal to the 
enabling environment or by an external legacy appli
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Fig. 7. Service-Oriented Architecture (SOA). 

cation that is being accessed through an interoperabil
ity bridge. Any data that are being exchanged among 
internal or external services are shared within the con
text from which the data derive meaning. The services 
themselves are not necessarily preconfigured but may 
be discovered during execution on an as-needed basis. 
This implies that services are able to automatically con
figure themselves in conformance with the operational 
environment and the governing interface protocols. 

All of these capabilities are essentially technically 
feasible today and form part of the notion of a SOA. 
This notion is by no means new in the software indus
try, however, it was not until web services came along 
that SOA principles could be readily implemented [3]. 
Initial attempts to provide the required communication 
infrastructure, such as the Distributed Computing Envi
ronment (DCE) and the Common Object Request Bro
ker Architecture (CORBA) did not gain the necessary 
general acceptance [11,18]. Web services and SOA are 
similar in that they both support the notion of discov
ery [5]. Web services employ the Universal Descrip
tion Discovery and Integration (UDDI) mechanism for 
providing access to a directory of web services, while 
SOA services are published in the form of an Extensible 
Markup Language (XML) interface. 

In the broadest sense SOA is a software framework 
for computational resources to provide services to cus
tomers, such as other services or users. The Organi
zation for the Advancement of Structured Information 
(OASIS) is an international organization that produces 
standards. It was formed in 1993 under the name of 
SGML Open and changed its name to OASIS in 1998 in 
response to the changing focus from SGML (Standard 
Generalized Markup Language) to XML (Extensible 
Markup Language) related standards. OASIS defines 
SOA as a  “. . .  paradigm for organizing and utilizing 
distributed capabilities that may be under the control 
of different ownership domains” and “. . .  provides a 
uniform means to offer, discover, interact with and use 
capabilities to produce desired effects with measurable 
preconditions and expectations”. This definition un
derscores the fundamental intent that is embodied in 
the SOA paradigm, namely flexibility. To be as flexible 
as possible a SOA environment is highly modular, plat
form independent, compliant with standards, and incor
porates mechanisms for identifying, categorizing, pro
visioning, delivering, and monitoring services (Fig. 7). 

In such a software environment any individual ser
vice can be designed to meet the following technical 
specifications: 
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a.	 Self-sufficiency, interoperability, discovery capa
bilities, and tools with intelligence. 

b.	 Platform independence with self-installing, self-
configuring, and self-scaling capabilities. 

c.	 For the more domain-centric services the abil
ity to expose functionality through objecti
fied, domain-centric client interfaces and interact 
asynchronous with clients. 

d. Adherence to industry-standard patterns (e.g., 
JavaBeans, Property Change Management, etc.). 

e.	 The ability to operate in terms of application-
specific notions and concerns. 

f. Information-centric representation of context to 
support meaningful human-to-agent and agent
to-agent collaboration. 

However, as impressive as these interoperability and 
functional capabilities may be in comparison with ex
isting legacy systems they represent only the beginning 
of what is implied by an information-centric system 
environment. The vision is that of a semantic web 
environment in which autonomous software services 
with the ability to interpret data imported from other 
services are able to combine their abilities to accom
plish some useful intent. This intent may range from 
simply finding a particular item of information to the 
more sophisticated tasks of discovering patterns of data 
changes, identifying and utilizing previously unknown 
resources, and providing intelligent decision-assistance 
in complex and time-critical problem situations. 

An example of such an environment is the TEGRID 
proof-of-concept system, demonstrated by the Col
laborative Agent Design Research Center (CADRC) 
during an Office of Naval Research Conference in 
2002 [6]. TEGRID featured several kinds of web ser
vice providers, each implementing a set of operations 
in support of the exchange of the information that was 
critical to the functioning of the system. These opera
tions included subscription, information transfer, warn
ing and alert generation, discovery, and assignment. 
Other operations, less critical to the proper functioning 
of the system, could have been added for real world 
implementations. 

TEGRID utilized a number of standard Internet pro
tocols and elements. These elements were combined 
into executing software entities capable of seeking and 
discovering existing web services, extending their own 
information models through the information model of 
any discovered web service, and automatically reason
ing about the state of their internal information mod
els. Each of these software entities consisted of three 
principal components: a web server; a semantic web 

service; and, an information-centric application. The 
web server utilized standard Hypertext Transfer Pro
tocol (HTTP), serving as the gateway for gaining ac
cess to other existing web services. (Web servers pri
marily provide access to Hypertext Markup Language 
(HTML) data sources and perform only simple opera
tions that enable access to externally programmedfunc
tionality. However, these simple operations currently 
form the building blocks of the World Wide Web.) The 
semantic web service (i.e., a web service with an inter
nal information model) was accessed through the web 
server utilizing standard protocols (e.g., UDDI, SOAP, 
WSDL, SML). Its purpose was to provide programmed 
functionality. Clients to a standard web service are usu
ally restricted to those services that implement specific 
predefined interfaces. However, the implementation of 
web services in the Internet environment allows orga
nizations to provide access to applications that accept 
and return complex objects. Web service standards al
so include a limited form of registration and discovery, 
which provide the ability to advertise a set of services 
in such a way that prospective client programs can find 
services that meet their needs. The addition of an in
ternal information model in a semantic web service al
lows the storage of semantic level descriptions (i.e., in
formation) and the performance of limited operations, 
such as reasoning, on these semantic descriptions. The 
information-centric applications were designed to take 
advantage of the resources provided by a number of 
semantic web services, enabling them to reason about 
the usefulness of each service and support more sophis
ticated discovery strategies. In particular, the appli
cation component was able to construct relationships 
among the information models of different services, 
with the ability to integrate services without requiring 
agreement on a common information model. 

Incorporating the three components described above, 
these TEGRID software entities were minimally 
equipped to operate in an Internet environment as au
tonomous software entities, capable of: discovering 
needed services; accepting services from external of
ferers; providing services to external requesters; gain
ing context through an internal information model; au
tomatically reasoning about available information; ex
tending their information model during execution; ex
tending their service capabilities during execution; and, 
learning from their collaborations (Fig. 8). Specifical
ly, they were able to operate as autonomous entities 
and discover the capabilities of other entities. Each 
entity had a sense of intent to accomplish one or more 
objectives, ranging from the desire to achieve a goal 
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Fig. 8. TEGRID capabilities. 

(e.g., maintain situation awareness, coordinate the re
sponse to a time critical situation, or undertake a pre
determined course of action following the occurrence 
of a particular event) to the willingness to provide one 
or more services to other entities. 

6. Near term and longer term research challenges 

While TEGRID did demonstrate the potential fea
sibility of a fully functional information-centric soft
ware environment it also identified capability gaps that 
call for further research. Attempts to work around 
these technical shortcomings led to some rather prim
itive solutions that flawed the overall achievement of 
the TEGRID demonstration. These included the ability 
to share portions of the internal knowledge model of a 
discovered service with the discovering service and the 
ability of a service to undertake semantic searches. 

Extensible Ontologies: Currently the ontologies of 
information-centric systems are essentially static in na
ture. In other words, changes and extensions to the 
information representation structure cannot be imple
mented dynamically during the execution of an appli
cation. Yet, for several reasons it is highly desirable for 
ontologies to progressively evolve during the operation 
of information systems. First, this would allow an in
formation system to automatically extend the granular
ity of a high level core ontology, representing general 

concepts and notions, into a biased and much more de
tailed application-specific domain (Fig. 9). Second, the 
ability to dynamically extend an ontology would allow 
an information system to capture the representation of 
new objects and relationships and automatically build 
them into the existing representation structure, there
by dynamically extending the context of the decision-
making environment within the computer. Third, the 
dynamic generation of components of an existing in
formation representation structure appears to be a pre
requisite for the automatic extraction of information 
from unstructured data (e.g., free-format text). Fourth, 
a promising approach for achieving interoperability 
among multiple applications, at the information level, 
is based on the concept of a core overarching ontol
ogy that is linked to multiple application-specific on
tologies, often referred to as facades [17]. The latter 
are viewed as perspective filters of the core ontology, 
biased to reflect the native characteristics of a specific 
application domain. Finally, the ability of a semantic 
web service to merge part of the ontology of a discov
ered service with its own internal ontology would be 
paramount to a low level learning capability (Fig. 10). 

Closely associated to the need for dynamically gen
erated ontologies are two related research problems. 
The first problem deals with the inflexibility of pre
defined software agents. Typically, the capabilities of 
software agents are defined at the development stage of 
an information system. Changes to these capabilities 
cannot be easily implemented by the user, but normally 
require the intervention of the software developer. It 
would be highly desirable for the user or a semantic 
service to be able to define the capabilities of an agent 
and have the system automatically create and imple
ment this new agent during normal execution. While 
some technical capabilities for the dynamic creation 
of software agents currently exists, these methods are 
largely limited to predefined functional specifications. 

The second problem relates to the capture of infor
mation by the system. Ideally, all input should be cap
tured by the system at the point of entry, as information 
(i.e., within the context of an ontology). In practice, 
however, much of the input from external sources is in 
the form of data (e.g., voice recognition, data-centric 
applications, free text messages, signals, and so on). 
While several available technologies such case-based 
classification, similarity assessment methods, and text-
based similarity methods have been applied and tested 
in diverse application domains their combination in a 
hybrid data interpretation and information fusion sys
tem environment requires further research. Classifi
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Fig. 9. Extensible ontologies. 

cation techniques inherently concern determining the 
similarity between objects that share, to varying de
grees, a common set of features. Case-based classifica
tion works as follows: for a new object or a case to be 
labeled, a case-based classifier retrieves the most close
ly matching previously labeled cases from a database 
of cases, called a case base, and assigns the label from 
the retrieved cases as the label for the new object. Clas
sifying elements in a complex and multifaceted domain 
tends to require the amalgamation of multiple classi
fication methods that each excel in different aspects 
of similarity assessment. The relative performance of 
each individual method is domain-specific and often 
difficult to predict without real-world usage. By wrap
ping the classification methods as distinct similarity as
sessment methods, each calculating its own similarity 
score, domain-specific selection and relative weighting 
of those methods can be achieved. 

Semantic Search Capabilities: The scope of database 
query facilities desirable for the kind of semantic ser
vices envisioned in a TEGRID environment far ex
ceed traditional database management system (DBMS) 
functions. They presuppose a level of embedded intel
ligence that has not been available in the past. Some 
of these desirable features include: conceptual search
es instead of factual searches; automatically generat
ed search strategies instead of predetermined search 

commands; multiple database access instead of sin
gle database access; analyzed search results instead of 
direct (i.e., raw) search results; and, automatic query 
generation instead of requested searches only (Fig. 11). 

A traditional DBMS typically supports only factual 
searches. In other words, users and applications must 
be able to define precisely and without ambiguity what 
data they require. In complex problem situations users 
rarely know exactly what information they require. Of
ten they can define in only conceptual terms the kind 
of information that they are seeking. Also, they would 
like to be able to rely on the DBMS to automatically 
broaden the search with a view to discovering informa
tion. 

This suggests, in the first instance, that an intelligent 
DBMS should be able to formulate search strategies 
based on incomplete definitions. It should be able to in
fer, from rather vague information requests and its own 
knowledge of the requester and the problem context, a 
set of executable query procedures. To facilitate this 
process the DBMS should maintain a history of past 
information requests, the directed search protocols that 
it generated in response to these requests, and at least 
some measure of the relative success of the previous 
search operation. 

A traditional DBMS normally provides access to on
ly a single database. A knowledge-based decision
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Fig. 10. Merging information in TEGRID. 

support environment is likely to involve many infor
mation sources, housed in a heterogeneous mixture of 
distributed databases. Therefore, through the internal-
level database representations discussed earlier, the 
DBMS must be able to access multiple databases. Us
ing the mapping functions that link these internal rep
resentations an intelligent DBMS should be capable 
of formulating the mechanisms required to retrieve the 
desired data from each source, even though the internal 
data structures of the sources may differ widely. Par
ticularly when search results are derived from multiple 
sources and the query requests themselves are vague 
and conceptual in nature, there is a need for the re
trieved information to be reviewed and evaluated be
fore it is presented to the requester. This type of search 
response formulation facility has not been necessary in 
a traditional DBMS, where users are required to adhere 
to predetermined query protocols that are restricted to 
a single database. 

Finally, all of these capabilities (i.e., conceptual 
searches, dynamic query generation, multiple database 

access, and search response formulation) must be able 
to be initiated not only by the user but also by any of the 
computer-based agents that are currently participating 
in the decision-making environment. These agents may 
be involved in any number of tasks that require the im
port of additional information from external databases 
into their individual knowledge domains. 

A conceptual model of an intelligent DBMS interface 
with the capabilities described above should be able to 
support the following typical information search sce
nario that might occur in an integrated and distributed, 
collaborative, multi-agent, decision-support environ
ment (Fig. 12). Queries that are formulated either by the 
user or generated automatically by a computer-based 
agent are channeled to a Search Strategy Generator. 
The latter will query a Search Scenario Database to de
termine whether an appropriate search strategy already 
exists from a previous search. If not, a new search strat
egy is generated, and also stored in the Search Scenarios 
Database for future use. The search strategy is sent to 
the Database Structure Interpreter, which automatical
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Fig. 11. Comparison of directed and semantic search capabilities. 

ly formulates access protocols to all databases that will 
be involved in the proposed search. The required ac
cess and protocol information, together with the search 
strategy, are sent to the Directed Search Implementer, 
which conducts the required database searches. The 
results of the search are sent to a Research Response 
Formulator, where the raw search results are analyzed, 
evaluated and combined into an intelligent response to 
be returned to the originator of the query. 

The proposition that the DBMS interface should be 
able to deal with incomplete search requests warrants 
further discussion. When searching for information, 
partial matching is often better than no response. In tra
ditional query systems, a database record either match
es a query or it does not. A flexible query system, such 
as the human brain, can handle inexact queries and pro
vide best guesses and a degree of confidence for how 
well the available information matches the query [15, 
16]. For example, let us assume that a military com
mander is searching for a means of trapping a given 
enemy force in a particular sector of the battlefield and 
formulates a something like a choke point query. In a 
flexible query system a something like operator would 
provide the opportunity to match in a partial sense, such 

as: terrain conditions that slow down the movement 
of troops; unexpected physical obstacles that require 
the enemy to abruptly change direction; subterfuge that 
causes enemy confusion; and so on. These conditions 
can all, to varying extent, represent something like a 
choke point that would be validated by a degree of 
match qualification. 

Flexible query processing systems are fairly com
mon. For example, most automated library systems 
have some level of subject searching by partial key
word or words allowing users to browse through a vari
ety of related topics. Even word-processing programs 
include spelling checkers, which by their very nature 
search for similar or related spellings. However, even 
a flexible query system cannot automatically form hy
potheses, since the system does not know what to ask 
for. 

The ability to search for something like is only a 
starting point. How can the system be prompted to 
search for vaguely or conceptually related information? 
For example, how can the system discover the intuitive 
connection between a physical choke point, such as a 
narrow cross-corridor in a mountainous battlefield, and 
a precision fire maneuver aimed at concentrating en
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Fig. 12. A conceptual semantic search environment. 

emy forces in an exposed area. In other words, how 
can the system show the commander that the preci
sion fire maneuver option can satisfy the same intent 
as the cross-corridor option? In addition, the system 
must not overwhelm the commander with an unman
ageable number of such intuitive speculations. To dis
cover knowledge it is necessary to: form a hypothe
sis; generate some queries; view and analyze the re
sults; perhaps modify the hypothesis and generate new 
queries; and, repeat this cycle until a pattern emerges. 
This pattern may then provide insight and advice for 
intuitive searches. The goal is to automate this pro
cess with a discovery facility that repeatedly queries the 
prototype knowledge bases and monitors the reactions 
and information utilized by the decision-maker, until 
the required knowledge is discovered. 

In addition to these two research challenges that 
are of immediate near term importance as key en
abling capabilities during the current transition to an 
information-centric software environment, there are 

several other desirable capabilities that are longer term 
undertakings because they require major research ef
forts. These include the ability to extract and store the 
invariant core component of a solution (e.g., plan, de
sign, strategy) in a way that will allow the complete so
lution to be automatically regenerated in the future [8]. 
Any breakthrough in this area, commonly referred to 
as hierarchical temporal memory is likely to have sig
nificant impact on the design and capabilities of future 
decision-support systems. A second area is the au
tomated interpretation of images. With the increased 
implementation of surveillance technology (e.g., video 
cameras) there is an urgent need for software systems 
that are able to continuously monitor and automatically 
interpret any significant changes in the images that are 
being recorded. 

Hierarchical Temporal Memory (HTM): There is a 
tendency for us human beings to succumb to the temp
tation of believing that the goal we have finally reached 
is the ultimate solution to the problem that we may have 
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been working on for some time. In fact, what appear 
to be solutions to major problems typically turn out to 
be mere stepping stones in an endless evolutionary se
quence of problem solving and increased understand
ing. 

For example, the computer was initially conceived 
as a high speed numerical calculator. However, this 
turned out to be really only the beginning of digital 
computer technology. It was soon realized that the 
ability to store and process data (i.e., both numeric 
and textual) is even more important. This led to new 
hardware and software solutions in the form of great
ly increased storage density devices (e.g., disk drives) 
and formal data management languages (e.g., relational 
database management systems and the Standard Query 
Language (SQL)). As the data storage capacities of the 
new hardware devices have increased from kilobytes 
to megabytes to gigabytes it has become increasingly 
clear that we are essentially storing and analyzing data 
without context. The context is provided by the users 
who interpret the results of the data analysis within 
the context of their experience-based knowledge and 
understandings. As explained at the beginning of this 
paper, the complete reliance on the human interpreta
tion of the rapidly increasing quantity of data creat
ed a bottleneck. To overcome this human bottleneck, 
methodologies were devised for constructing context 
models of real world problem situations in software. 
These context models are in the form of ontologies that 
provide an information structure that is rich in relation
ships and allows data to be automatically interpreted 
within the context provided by the ontology. 

Again, ontologies are not an ultimate solution but 
only a stepping stone in the quest for more intelligent 
computer software tools and services. It could be sug
gested that the issue is not only related to the represen
tation of context. Software tools, whether intelligent 
or not, are largely based on the notion of generating 
solutions based on the interpretation of data in context. 
Would it not be more productive to find a way of rep
resenting and storing solutions (i.e., designs) that can 
be rapidly retrieved, instead of computing each design 
from first principles? Such designs could be opera
tional sequences representing entire solutions or, em
ulating the functions of the human brain’s neocortex, 
only the essential components that can be later quickly 
assembled into an entire solution [8]. 

The research challenge is twofold, to find a way of 
extracting the core components of a design and being 
able to later automatically reassemble the complete de
sign from the core components. Hawkins [7] and his 

colleagues at Numenta have developed the Hierarchical 
Temporal Memory (HTM) theory and a set of tools to 
emulate some of what they believe to be the functional 
capabilities of the neocortex of the human brain. (Nu
menta is a California company headquartered in Menlo 
Park, founded in 2005 by Jeff Hawkings, Donna Du
binsky and Dileep George.) In particular, they see the 
neocortex to be a hierarchical structure like the roots 
and trunk of a tree. Sensory stimuli enter at the roots 
level and are hierarchically assembled into progressive
ly more complex and complete configurations (i.e., pat
terns or designs) at the trunk level. As shown in Fig. 13, 
Hawkins [7] explains this concept in terms of the hier
archical assembly of an object (i.e., a dog). At the low
est level the key components are spread among many 
nodes in a fragmented manner. However, at progres
sively higher levels these components are assembled 
into the image of a dog. 

Specific software research questions that need to 
be addressed include: What should be the granularity 
of the partial solution components?; How should the 
components be assembled?; How can the appropriate 
components be identified and rapidly retrieved?; How 
should the solution components be stored?; Will there 
still be a need for an ontology-like framework to sup
port the rapid identification and retrieval of the com
ponents?; and, Should there be a learning component 
that automatically generates solution components and 
stores them for future use? A learning capability would 
certainly be very useful since it would allow the pro
gressive accumulation of a vast knowledge base of par
tial solution components that can be rapidly adapted 
and assembled into complete solution. 

A reliable HTM capability would have a profound 
impact on the design of intelligent software tools. In
stead of requiring solutions (e.g., a plan) to be devel
oped from the bottom up each time they are required, 
it would be possible to identify and reassemble an 
archived past solution. If the solution does not entirely 
fit the current problem situation it could be modified, 
much the same way as the human brain modifies pro
totype solutions and rarely creates a new solution from 
first principles [4,14]. 

Automated Image Interpretation: With the increased 
emphasis on surveillance and personnel identification 
there is a need for software tools that are capable of au
tomatically identifying the content of video and graph
ical images (Fig. 14). While much headway has been 
made in recent years in the development of software that 
is capable of comparing video clips with archived video 
images and the application of biometric algorithms for 
personnel identification, this is not sufficient. 
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Fig. 13. Hierarchical Temporal Memory (HTM). 

The continuous monitoring of video cameras by hu
man observers is cost prohibitive and singularly inef
fective. Not only do the capabilities of the human cog
nitive system degrade over time when required to un
dertake monotonous tasks, but the reliability of human 
observers under these conditions is questionable. The 
research challenge is to develop an ontology-like repre
sentation that will support the automatic detection and 
interpretation of changes in video images. The repre
sentation should be of sufficient granularity to detect 
and interpret changes in a scene, beyond the entry or 
exit of a person or other object. 

The capabilities that have been developed to date 
are largely focused on video recognition technology in 
which typically an image is converted into a set of at
tributes, referred to as an image signature. This pro
vides insufficient context for software agents to reason 
about smaller changes in a scene that could have signif
icant impact on a particular situation such as a hostage 
or security surveillance setting. It should be possible 
to reason about image changes at the same level of 

granularity as is currently possible with textual data in 
ontology-based software systems. 

7. Conclusions 

We are living in one of the most exciting times in 
human history for very unfortunate reasons. Informa
tion technology is advancing at an accelerated rate and 
has become the enabler of the individual. Global con
nectivity combined with inexpensive personal comput
ing devices and powerful software tools are allowing a 
single person to achieve what was a few decades ago 
the province of an organization comprising many per
sons. However, the driving forces of these technologi
cal advances are of a sinister nature [12]. We are facing 
unpredictable enemies that are forcing governments to 
impose security measures that are beginning to seri
ously impact our everyday activities, particularly in the 
realm of travel. 

Apart from these political forces the technical ad
vances themselves are driving the need for further in
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Fig. 14. Image interpretation. 

novation. For example, global connectivity has greatly 
increased competition in the commercial arena. To
day even the most local market place is within easy 
reach of the most distant potential competitor. There
fore, simply to survive, there is an increasing need for 
greater efficiency, continuous vigilance, and tools for 
planning and re-planning in a dynamically changing 
environment. These tools must be responsive and adap
tive. They must be available to the user when needed, 
be able to exchange data with external sources, and be 
capable of seamlessly interoperating with other tools 
and services. Such capabilities require a level of ma
chine intelligence that cannot be achieved with rote 
data-processing software. 

In this paper the author has attempted to define ar
eas in which research challenges exist and the underly
ing characteristics of human nature that tend to oppose 
the necessary motivation for pursuing these challenges. 
While the tensions created in a paradigm shift that is 
caused by revolutionary changes in technology can be 
quite severe and slow down the rate of change, histo
ry has shown that it will never succeed in preventing 

the eventual acceptance and exploitation of the new 
capabilities. 
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