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Abstract This paper is concerned with stability analysis problem for uncertain stochastic neural networks
with interval time-varying delays. The parameter uncertainties are assumed to be norm bounded and the delay
is assumed to be time varying and belong to a given interval, which means that the lower and upper bounds
of interval time-varying delays are available. Both the cases of the time-varying delays which may be dif-
ferentiable and may not be differentiable are considered in this paper. Based on the Lyapunov–Krasovskii
functional and stochastic stability theory, delay/interval-dependent stability criteria are obtained in terms of
linear matrix inequalities. Some stability criteria are formulated by means of the feasibility of a linear matrix
inequality (LMI), by introducing some free-weighting matrices. Finally, three numerical examples are provided
to demonstrate the less conservatism and effectiveness of the proposed LMI conditions.
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1 Introduction

In the past two decades, neural networks have received increasing interest owing to their applications in a
variety of areas, such as signal processing, pattern recognition, static image processing, associative memory,
and combinatorial optimization [9]. In implementation of artificial neural networks, time delays often arise
in the processing of information storage and transmission. Since the time delays may lead to instability and
oscillation of the neural network model, the issue on the stability analysis of neural networks with time delays
has received more and more attention. As well known, in practice time-delays are often encountered in various
engineering, biological, and economic systems. Up to now, the stability analysis problem of neural networks
with time delay has attracted a large amount of research interest and many sufficient conditions have been
proposed to guarantee the asymptotic or exponential stability for the neural networks with various types of
time delays such as constant, time-varying, or distributed, see for example, [1,2,10,12–15,17,21,24,25,28]
and the references therein.

It is worth noting that the synaptic transmission is a noisy process brought on by random fluctuations
from the release of neurotransmitters and other probabilistic causes in real nerve systems. Therefore, it is of
practical importance to study the stochastic effects on the stability property of delayed neural networks, see
for example [3–6,11,16,18,19,23,27,29]. Also, there are systems which are with some nonzero delays, but
they are unstable without delay [7,8,30]. Therefore, it is important to perform the stability analysis systems
with nonzero delays [22] and the non-zero delay can be placed into a given interval. Recently, some results
on stability of stochastic neural networks with finite distributed delays have been reported in [16,18,19]. To
the best of authors knowledge, so far, very few results on the delay/interval-dependent robust exponential
stability analysis for uncertain stochastic neural networks with interval time-varying delays are available in
the literature.

In this paper a class of uncertain stochastic neural networks with interval time-varying delays is considered.
The parameter uncertainties are assumed to be norm bounded. By using the Lyapunov–Krasovskii functional
technique, global robust stability conditions for the considered uncertain stochastic neural networks are given
in terms of LMIs, which can be easily calculated by MATLAB LMI control toolbox and introducing some
free-weighting matrices. Numerical examples are given to illustrate the effectiveness and less conservativeness
of the proposed method.

Notations: Throughout this paper, Rn and R
n×n denote, respectively, the n-dimensional Euclidean space

and the set of all n × n real matrices. The superscript T denotes the transposition and the notation X ≥ Y
(respectively, X > Y ), where X and Y are symmetric matrices, means that X − Y is positive semi-definite
(respectively, positive definite). I denotes the identity matrix of appropriate dimension. | · | is the Euclidean
norm in R

n . Moreover, let (�,F, {Ft }t≥0,P) be a complete probability space with a filtration {Ft }t≥0 satis-
fying the usual conditions (i.e. the filtration contains all P-null sets and is right continuous). The notation ∗
always denotes the symmetric block in one symmetric matrix. Sometimes, the arguments of a function or a
matrix will be omitted in the analysis when no confusion can arise.

2 Problem description and preliminaries

Consider the following stochastic neural networks with time-varying delays and parameter uncertainties:

dx(t) = [−A(t)x(t) + B(t) f (x(t)) + C(t) f (x(t − τ(t))] dt + σ(t, x(t), x(t − τ(t)))dw(t)

x(t) = φ(t), ∀t ∈ [−h2, 0], (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state; w(t) = [w1(t), w2(t), . . . , wn(t)]n is a Brownian

motion defined on (�,F, {Ft }t≥0,P); φ(t) is a real-valued initial function on [−h2, 0]; τ(t) > 0 represents
the transmission delays; f (x(·)) = [ f1(x1(·)), f2(x2(·)), . . . , fn(xn(·))]T with fi (xi (·)) being the activation
functions; A(t), B(t) and C(t) take the following form:

[A(t) B(t) C(t)] = [A B C] + M F(t)[N1 N2 N3], (2)

where A = diag(a1, a2, . . . , an) > 0 is the self-feedback term; B = (bi j )n×n is the connection weight matrix;
C = (ci j )n×n is the delayed connection weight matrix; M, N1, N2 and N3 are known real constant matrices;
F(·) : R+ → R

k×l is an unknown time-varying matrix function satisfying FT (t)F(t) ≤ I for all t > 0. In
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addition, we assume that σ : R+ × R
n × R

n → R
+ in (1) is locally Lipschitz continuous and satisfies the

linear growth condition. In the sequel, we use σ(t) to denote σ(t, x(t), x(t − τ(t))).
In this paper, we consider the following two classes of time-varying delays:
(A1) Case (I): τ(t) is a differentiable function satisfying

0 ≤ h1 ≤ τ(t) ≤ h2, τ̇ (t) ≤ μ,

where h1, h2 and μ are constants.
Case (II): τ(t) is a continuous function that may not be differentiable but satisfies 0 ≤ h1 ≤ τ(t) ≤ h2.
We make the following assumptions:
(A2) There exist constant real matrices G1 and G2 such that σ(t)T σ(t) ≤ |G1x(t)|2 + |G2x(t − τ(t))|2.
(A3) There exist real scalars ci and c̄i , i = 1, 2, . . . , n, such that ci ≤ fi (ξ1)− fi (ξ2)

ξ1−ξ2
≤ c̄i , i = 1, 2, . . . , n

hold for any ξ1, ξ2 ∈ R and ξ1 �= ξ2. Throughout this paper, we denote C̄ = diag(c̄1, c̄2, . . . , c̄n) and
C = diag(c1, c2, . . . , cn).

Now we introduce the following definition:

Definition 2.1 For every ξ ∈ L2
F0

([−τ, 0];Rn), the equilibrium point of the uncertain delayed Hopfield type
neural networks (1) is said to be robustly exponentially stable in the mean square if there exists a scalar γ > 0
such that

lim sup
t→∞

1

t
log

(
E|x(t; ξ)|2) ≤ −γ

holds for every solution x(t; ξ) of (1) and all admissible uncertainties.

Lemma 2.2 [20] Let X and Y > 0 be real constant matrices of appropriate dimensions and F(t) be a real
matrix function satisfying FT (t)F(t) ≤ I . Then we have

(1) For scalar ε > 0 and vectors x and y of appropriate dimensions, the following inequality holds:

2xT X T F(t)Y y ≤ ε−1xT X T X x + εyT Y T Y y.

(2) For vectors x, y, and matrix P > 0 of appropriate dimensions, the following inequality holds:

2xT y ≤ xT P−1x + yT Py.

The objective of this paper is to derive LMI-based conditions guaranteeing that the uncertain delayed sto-
chastic delayed Hopfield neural networks (1) is robustly exponentially stable in the mean square for interval
time-varying delay.

Remark 2.3 In this paper interval time-varying delay satisfying assumption (A1) is considered for establish-
ing the stability results different from the previous works. This work will merge the established work of [26]
when μ = 0 that is h1 = h2 in which case τ(t) denotes a constant delay. Further for h1 = 0 it implies that
0 ≤ τ(t) ≤ h2 which was investigated in [11].

Lemma 2.4 (Schur Complement) Given constant matrices �1, �2, and �3 with appropriate dimensions,
where �T

1 = �1 and �T
2 = �2 > 0, then

�1 + �T
3 �−1

2 �3 < 0

if and only if
[

�1 �T
3∗ −�2

]
< 0, or,

[−�2 �3
∗ �1

]
< 0.

Lemma 2.5 [7] For any constant matrix M > 0, any scalars a and b with a < b, and a vector function
x(t) : [a, b] → R

n such that the integrals concerned as well defined, then the following holds:

⎡

⎣
b∫

a

x(s)ds

⎤

⎦

T

M

⎡

⎣
b∫

a

x(s)ds

⎤

⎦ ≤ (b − a)

b∫

a

xT (s)Mx(s)ds.
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3 Main results

Theorem 3.1 For given scalars h2 > h1 ≥ 0 and μ, the equilibrium solution of uncertain delayed stochas-
tic neural networks (1) is exponentially stable in the mean square for any interval time-varying delay τ(t)
in Case (I) if there exist matrices Si > 0, i = 1, 2, . . . , 8, Q11, Q12, Q22, R11, R12, R22, S11, S12, S22,
{Pi j }1≤i≤ j≤7, {Xi }1≤i≤18, {Yi }1≤i≤18,

′ {Zi }1≤i≤18, {Wi }1≤i≤18 diagonal matrices D > 0, H1 > 0, H2 >
0, H3 > 0, H4 > 0, and scalars ε1 > 0, ε2 > 0 such that the linear matrix inequalities (LMIs) hold:

P11 + D(C̄ − C) + h2S7 + (h2 − h1)S8 − ε1 I < 0, (3)

Q =
[

Q11 Q12
∗ Q22

]
> 0, (4)

R =
[

R11 R12
∗ R22

]
> 0, (5)

S =
[

S11 S12
∗ S22

]
> 0, (6)

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

P11 P12 P13 P14 P15 P16 P17
∗ P22 P23 P24 P25 P26 P27
∗ ∗ P33 P34 P35 P36 P37
∗ ∗ ∗ P44 P45 P46 P47
∗ ∗ ∗ ∗ P55 P56 P57
∗ ∗ ∗ ∗ ∗ P66 P67
∗ ∗ ∗ ∗ ∗ ∗ P77

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

> 0, (7)

⎡

⎢⎢⎢
⎣

	 Z M W X Y
∗ −ε2 I 0 0 0
∗ ∗ −S7 0 0
∗ ∗ ∗ −(S7 + S8) 0
∗ ∗ ∗ ∗ −S8

⎤

⎥⎥⎥
⎦

< 0, (8)

with

W =
[
W T

1 W T
2 · · · W T

18

]T
, X =

[
X T

1 X T
2 · · · X T

18

]T
, Y =

[
Y T

1 Y T
2 · · · Y T

18

]T
,

Z =
[

Z T
1 Z T

2 · · · Z T
18

]T
and 	 = (ϕi, j )18×18.

where

ϕ1,1 = P12 + PT
12 + Q11 + R11 + S11 + ε1GT

1 G1 + h2S1 + (h2 − h1)S2 + W1 + W T
1 + Z1 A + AT Z T

1

+ε2 N T
1 N1 − C HC̄, ϕ1,2 = PT

22 + W T
2 + AT Z T

2 , ϕ1,3 = P23 + W T
3 + AT Z T

3 ,

ϕ1,4 = P24 + W T
4 + AT Z T

4 , ϕ1,5 = P25 − C D + W T
5 + AT Z T

5 , ϕ1,6 = P26 + W T
6 + AT Z T

6 ,

ϕ1,7 = P27 + W T
7 + AT Z T

7 , ϕ1,8 = P15 + Q12 + R12 + S12 + W T
8 − Z1 B + AT Z T

8 − ε2 N T
1 N2

+1

2
H1(C + C̄), ϕ1,9 =−(1 − μ)P15+(1 − μ)P16−(1 − μ)P17+W T

9 −Z1C+ AT Z T
9 −ε2 N T

1 N3,

ϕ1,10 = −(1 − μ)P12 + (1 − μ)P13 − (1 − μ)P14 − W1 + W T
10 + X1 − Y1 + AT Z T

10,

ϕ1,11 = P14 + W T
11 + Y1 + AT Z T

11, ϕ1,12 = P13 + W T
12 − X1 + AT Z T

12, ϕ1,13 = P17 + W T
13 + AT Z T

13,

ϕ1,14 = −P16 + W T
14 + AT Z T

14, ϕ1,15 = P11 + W T
15 + Z1 + AT Z T

15, ϕ1,16 = −W1 + W T
16 + AT Z T

16,
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ϕ1,17 = W T
17 − X1 + AT Z T

17, ϕ1,18 = W T
18 − Y1 + AT Z T

18, ϕ2,2 = − 1

h2
S1, ϕ2,3 = 0, ϕ2,4 = 0,

ϕ2,5 = 0, ϕ2,6 = 0, ϕ2,7 = 0, ϕ2,8 = P25 − Z2 B, ϕ2,9 = −(1 − μ)P25 + (1 − μ)P26

−(1 − μ)P27 − Z2C, ϕ2,10 = −(1 − μ)P22 + (1 − μ)P23 − (1 − μ)P24 − W2 + X2 − Y2,

ϕ2,11 = P24 + Y2, ϕ2,12 = −P23 − X2, ϕ2,13 = P27, ϕ2,14 = −P26, ϕ2,15 = PT
12 + Z2,

ϕ2,16 = −W2, ϕ2,17 = −X2, ϕ2,18 = −Y2, ϕ3,3 = − 1

h2 − h1
S1 − 1

h2 − h1
S2, ϕ3,4 = 0,

ϕ3,5 = 0, ϕ3,6 = 0, ϕ3,7 = 0, ϕ3,8 = P35 − Z3 B, ϕ3,9 = −(1 − μ)P35 + (1 − μ)P36

−(1 − μ)P37 − Z3C, ϕ3,10 = −(1 − μ)PT
23 + (1 − μ)P33 − (1 − μ)P34 − W3 + X3 − Y3,

ϕ3,11 = P34 + Y3 ϕ3,12 = −P33 − X3, ϕ3,13 = P37, ϕ3,14 = P36, ϕ3,15 = PT
13 + Z3,

ϕ3,16 = −W3, ϕ3,17 = −X3, ϕ3,18 = −Y3, ϕ4,4 = − 1

h2 − h1
S2, ϕ4,5 = 0, ϕ4,6 = 0, ϕ4,7 = 0,

ϕ4,8 = P45 − Z4 B, ϕ4,9 = −(1 − μ)P45 + (1 − μ)P46 − (1 − μ)P47 − Z4C, ϕ4,10 = −(1 − μ)PT
24

+(1 − μ)P34 − (1 − μ)P44 − W4 + X4 − Y4, ϕ4,11 = P44 + Y4, ϕ4,12 = −PT
34 − X4,

ϕ4,13 = P47, ϕ4,14 = −P46, ϕ4,15 = PT
14 + Z4, ϕ4,16 = −W4, ϕ4,17 = −X4, ϕ4,18 = −Y4

ϕ5,5 = − 1

h2
S3, ϕ5,6 = 0, ϕ5,7 = 0, ϕ5,8 = P55 − Z5 B, ϕ5,9 = −(1 − μ)P55 + (1 − μ)P56

−(1 − μ)P57 − Z5C, ϕ5,10 = −(1 − μ)PT
25 + (1 − μ)PT

35 − (1 − μ)PT
45 − W5 + X5 − Y5,

ϕ5,11 = PT
45 + Y5, ϕ5,12 = −PT

35 − X5, ϕ5,13 = P57, ϕ5,14 = −P56, ϕ5,15 = PT
15 + Z5,

ϕ5,16 = −W5, ϕ5,17 = −X5, ϕ5,18 = −Y5, ϕ66 = − 1

h2 − h1
S3 − 1

h2 − h1
S4, ϕ6,7 = 0,

ϕ6,8 = PT
56 − Z6 B, ϕ6,9 = −(1 − μ)PT

56 + (1 − μ)P66 − (1 − μ)P67 − Z6C, ϕ6,10 = −(1 − μ)PT
26

+(1 − μ)PT
36 − (1 − μ)PT

46 − W6 + X6 − Y6, ϕ6,11 = PT
46 + Y6, ϕ6,12 = −PT

36 − X6,

ϕ6,13 = P67, ϕ6,14 = −P66, ϕ6,15 = PT
16 + Z6, ϕ6,16 = −W6, ϕ6,17 = −X6,

ϕ6,18 = −Y6, ϕ7,7 = − 1

h2 − h1
S4, ϕ7,8 = PT

57 − Z7 B, ϕ7,9 = −(1 − μ)PT
57 + (1 − μ)PT

67

−(1 − μ)P77 − Z7C, ϕ7,10 = −(1 − μ)PT
27 + (1 − μ)PT

37 − (1 − μ)PT
47 − W7 + X7 − Y7,

ϕ7,11 = PT
47 + Y7, ϕ7,12 = −PT

37 − X7, ϕ7,13 = P77, ϕ7,14 = −PT
67, ϕ7,15 = PT

17 + Z7,

ϕ7,16 = −W7, ϕ7,17 = −X7, ϕ7,18 = −Y7, ϕ8,8 = Q22 + R22 + S22 + h2S3 + (h2 − h1)S4

−Z8 B − BT Z T
8 + ε2 N T

2 N2 − H1, ϕ8,9 = −Z8C − BT Z T
9 + ε2 N T

2 N3,

ϕ8,10 = −W8 + X8 − Y8 − BT Z T
10, ϕ8,11 = Y8 − BT Z T

11, ϕ8,12 = −X8 − BT Z T
12,

ϕ8,13 = −BT Z T
13, ϕ8,14 = −BT Z T

14, ϕ8,15 = D + Z8 − BT Z T
15, ϕ8,16 = −W8 − BT Z T

16,

ϕ8,17 = −X8 − BT Z T
17, ϕ8,18 = −Y8 − BT Z T

18, ϕ9,9 = −(1 − μ)Q22 − Z9C − CT Z T
9

+ε2 N T
3 N3 − H2, ϕ9,10 = −(1 − μ)QT

12 − W9 + X9 − Y9 − CT Z T
10 + 1

2
(C + C̄)T H T

2 ,

ϕ9,11 = Y9 − CT Z T
11, ϕ9,12 = −X9 − CT Z T

12, ϕ9,13 = −CT Z T
13, ϕ9,14 = −CT Z T

14,

ϕ9,15 = Z9 − CT Z T
15, ϕ9,16 = −W9 − CT Z T

16, ϕ9,17 = −X9 − CT Z T
17, ϕ9,18 = −Y9 − CT Z T

18,

ϕ10,10 = −(1 − μ)Q11 + ε1GT
2 G2 − W10 − W T

10 + X10 + X T
10 − Y10 − Y T

10 − C H2C̄,

ϕ10,11 = −W T
11 + X T

11 + Y10 − Y T
11, ϕ10,12 = −W T

12 − X10 + X T
12 − Y T

12,

ϕ10,13 = −W T
13 + X T

13 − Y T
13, ϕ10,14 = −W T

14 + X T
14 − Y T

14, ϕ10,15 = −W T
15 + X T

15 − Y T
15 + Z10,

ϕ10,16 = −W10 − W T
16 + X T

16 − Y T
16, ϕ10,17 = −W T

17 − X10 + X T
17 − Y T

17, ϕ10,18 = −W T
18 + X T

18

−Y10 − Y T
18, ϕ11,11 = −R11 + Y11 + Y T

11 − C H3C̄, ϕ11,12 = −X11 + Y T
12,
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ϕ11,13 = −R12 + Y T
13 + 1

2
H3(C + C̄), ϕ11,14 = Y T

14, ϕ11,15 = Y T
15 + Z11, ϕ11,16 = −W11 + Y T

16,

ϕ11,17 = −X11 + Y T
17, ϕ11,18 = −Y11 + Y T

18, ϕ12,12 = −S11 − X12 − X T
12 − C H4C̄,

ϕ12,13 = −X T
13, ϕ12,14 = −S12 − X T

14 + 1

2
H4(C + C̄), ϕ12,15 = −X T

15 + Z12, ϕ12,16 = −W12 − X T
16,

ϕ12,17 = −X12 − X T
17, ϕ12,18 = −X T

18 − Y12, ϕ13,13 = −R22 − H3, ϕ13,14 = 0, ϕ13,15 = Z13,

ϕ13,16 = −W13, ϕ13,17 = −X13, ϕ13,18 = −Y13, ϕ14,14 = −S22 − H4, ϕ14,15 = Z14,

ϕ14,16 = −W14, ϕ14,17 = −X14, ϕ14,18 = −Y14, ϕ15,15 = h2S5 + (h2 − h1)S6 + Z T
15 + Z15,

ϕ15,16 = −W15 + Z T
16, ϕ15,17 = −X15 + Z T

17, ϕ15,18 = −Y15 + Z T
18, ϕ16,16 = − 1

h2
S5 − W16 − W T

16,

ϕ16,17 = −W T
17 − X16, ϕ16,18 = −W T

18 − Y16, ϕ17,17 = − 1

h2 − h1
S5 − 1

h2 − h1
S6 − X17 − X T

17,

ϕ17,18 = −X T
18 − Y17, ϕ18,18 = − 1

h2 − h1
S6 − Y18 − Y T

18.

Proof Define a new state variable for the stochastic neural networks (1),

y(t) = −A(t)x(t) + B(t) f (x(t)) + C(t) f (x(t − τ(t))),

ξ(t) =
⎡

⎢
⎣xT (t)

⎛

⎜
⎝

t∫

t−τ(t)

x(s)ds

⎞

⎟
⎠

T ⎛

⎜
⎝

t−τ(t)∫

t−h2

x(s)ds

⎞

⎟
⎠

T ⎛

⎜
⎝

t−h1∫

t−τ(t)

x(s)ds

⎞

⎟
⎠

T ⎛

⎜
⎝

t∫

t−τ(t)

f (x(s))ds

⎞

⎟
⎠

T

×
⎛

⎜
⎝

t−τ(t)∫

t−h2

f (x(s))ds

⎞

⎟
⎠

T
t−h1∫

t−τ(t)

f (x(s))ds

⎞

⎟
⎠

T ⎤

⎥
⎦

T

.

Consider the Lyapunov–Krasovskii functional as follows:

V (xt ) = V1(xt ) + V2(xt ) (9)

with

V1(xt ) = ξ T (t)Pξ(t) + 2
n∑

i=1

di

xi∫

0

( fi (s) − ci s)ds +
t∫

t−τ(t)

ηT (s)Qη(s)ds +
t∫

t−h1

ηT (s)Rη(s)ds

+
t∫

t−h2

ηT (s)Sη(s)ds,

V2(xt ) =
0∫

−h2

t∫

t+β

xT (α)S1x(α)dαdβ +
−h1∫

−h2

t∫

t+β

xT (α)S2x(α)dαdβ

+
0∫

−h2

t∫

t+β

f T (x(α))S3 f (x(α))dαdβ +
−h1∫

−h2

t∫

t+β

f T (x(α))S4 f (x(α))dαdβ

+
0∫

−h2

t∫

t+β

yT (α)S5 y(α)dαdβ +
−h1∫

−h2

t∫

t+β

yT (α)S6 y(α)dαdβ

+
0∫

−h2

t∫

t+β

trace
(
σ T (α)S7σ(α)

)
dαdβ +

−h1∫

−h2

t∫

t+β

trace
(
σ T (α)S8σ(α)

)
dαdβ.
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Then, it can be obtained by Ito’s formula that

LV1(xt ) ≤ 2ξ T (t)P Eψ(t) + 2 f T (x(t))Dy(t) − 2xT (t)C Dy(t) + xT (t)(Q11 + R11 + S11)x(t)

+xT (t)(Q12 + R12 + S12) f (x(t)) + f T (x(t))(Q22 + R22 + S22) f (x(t))

−(1 − μ)xT (t − τ(t))Q11x(t − τ(t)) − (1 − μ)xT (t − τ(t))Q12 f (x(t − τ(t)))

−(1 − μ) f T (x(t − τ(t)))Q22 f (x(t − τ(t))) − xT (t − h1)R11x(t − h1)

−xT (t − h1)R12 f (x(t − h1)) − f T (x(t − h1))R22 f (x(t − h1)) − xT (t − h2)S11x(t − h2)

−xT (t − h2)S12 f (x(t − h2)) − f T (x(t − h2))S22 f (x(t − h2)) + ε1xT (t)GT
1 G1x(t)

+ε1xT (t − τ(t))GT
2 G2x(t − τ(t)) − trace

(
σ T (t)(h2S7 + (h2 − h1)S8)σ (t)

)
,

where

ψ(t) = [ξ T (t) f T (x(t)) f T (x(t − τ(t))) xT (t − τ(t)) xT (t − h1) xT (t − h2) f T (x(t − h1))

× f T (x(t − h2)) yT (t)]T ,

E =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
I 0 0 0 0 0 0 −(1 − μ)I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −(1 − μ)I −I 0 0 0 0 0 0
0 0 0 0 0 0 0 −(1 − μ)I 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 I −(1 − μ)I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −(1 − μ)I −I 0 0
0 0 0 0 0 0 0 0 0 0 0 −(1 − μ)I 0 I 0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

Similarly, we obtain

LV2(xt ) ≤ h2xT (t)S1x(t) + (h2 − h1)xT (t)S2x(t) + h2 f T (x(t))S3 f (x(t))

+(h2 − h1) f T (x(t))S4 f (x(t)) + h2 yT (t)S5 y(t) + (h2 − h1)yT (t)S6 y(t)

+trace
(
σ T (t)(h2S7 + (h2 − h1)S8)σ (t)

)
− 1

h2 − h1

⎛

⎜
⎝

t−τ(t)∫

t−h2

x(s)ds

⎞

⎟
⎠

T

S1

⎛

⎜
⎝

t−τ(t)∫

t−h2

x(s)ds

⎞

⎟
⎠

− 1

h2

⎛

⎜
⎝

t∫

t−τ(t)

x(s)ds

⎞

⎟
⎠

T

S1

⎛

⎜
⎝

t∫

t−τ(t)

x(s)ds

⎞

⎟
⎠ − 1

h2 − h1

⎛

⎜
⎝

t−τ(t)∫

t−h2

x(s)ds

⎞

⎟
⎠

T

S2

⎛

⎜
⎝

t−τ(t)∫

t−h2

x(s)ds

⎞

⎟
⎠

− 1

h2 − h1

⎛

⎜
⎝

t−h1∫

t−τ(t)

x(s)ds

⎞

⎟
⎠

T

S2

⎛

⎜
⎝

t−h1∫

t−τ(t)

x(s)ds

⎞

⎟
⎠ − 1

h2 − h1

⎛

⎜
⎝

t−τ(t)∫

t−h2

f (x(s))ds

⎞

⎟
⎠

T

S3

×
⎛

⎜
⎝

t−τ(t)∫

t−h2

f (x(s))ds

⎞

⎟
⎠ − 1

h2

⎛

⎜
⎝

t∫

t−τ(t)

f (x(s))ds

⎞

⎟
⎠

T

S3

⎛

⎜
⎝

t∫

t−τ(t)

f (x(s))ds

⎞

⎟
⎠

− 1

h2 − h1

⎛

⎜
⎝

t−τ(t)∫

t−h2

f (x(s))ds

⎞

⎟
⎠

T

S4

⎛

⎜
⎝

t−τ(t)∫

t−h2

f (x(s))ds

⎞

⎟
⎠ − 1

h2 − h1

⎛

⎜
⎝

t−h1∫

t−τ(t)

f (x(s))ds

⎞

⎟
⎠

T

S4

×
⎛

⎜
⎝

t−h1∫

t−τ(t)

f (x(s))ds

⎞

⎟
⎠ − 1

h2 − h1

⎛

⎜
⎝

t−τ(t)∫

t−h2

y(s)ds

⎞

⎟
⎠

T

S5

⎛

⎜
⎝

t−τ(t)∫

t−h2

y(s)ds

⎞

⎟
⎠
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− 1

h2

⎛

⎜
⎝

t∫

t−τ(t)

y(s)ds

⎞

⎟
⎠

T

S5

⎛

⎜
⎝

t∫

t−τ(t)

y(s)ds

⎞

⎟
⎠ − 1

h2 − h1

⎛

⎜
⎝

t−τ(t)∫

t−h2

y(s)ds

⎞

⎟
⎠

T

S6

⎛

⎜
⎝

t−τ(t)∫

t−h2

y(s)ds

⎞

⎟
⎠

− 1

h2 − h1

⎛

⎜
⎝

t−h1∫

t−τ(t)

y(s)ds

⎞

⎟
⎠

T

S6

⎛

⎜
⎝

t−h1∫

t−τ(t)

y(s)ds

⎞

⎟
⎠ −

t∫

t−τ(t)

trace
(
σ T (s)(S7)σ (s)

)
ds

−
t−τ(t)∫

t−h2

trace
(
σ T (s)(S7 + S8)σ (s)

)
ds −

t−h1∫

t−τ(t)

trace
(
σ T (s)(S8)σ (s)

)
ds. (10)

On the other hand, let

θ(t) =
⎡

⎢
⎣ψT (t)

⎛

⎜
⎝

t∫

t−τ(t)

y(s)ds

⎞

⎟
⎠

T ⎛

⎜
⎝

t−τ(t)∫

t−h2

y(s)ds

⎞

⎟
⎠

T ⎛

⎜
⎝

t−h1∫

t−τ(t)

y(s)ds

⎞

⎟
⎠

T ⎤

⎥
⎦

T

.

Then we have

2θT (t)W

⎡

⎢
⎣x(t) − x(t − τ(t)) −

t∫

t−τ(t)

y(s)ds −
t∫

t−τ(t)

σ (s)dW (s)

⎤

⎥
⎦ = 0, (11)

2θT (t)X

⎡

⎢
⎣x(t − τ(t)) − x(t − h2) −

t−τ(t)∫

t−h2

y(s)ds −
t−τ(t)∫

t−h2

σ(s)dW (s)

⎤

⎥
⎦ = 0, (12)

2θT (t)Y

⎡

⎢
⎣x(t − h1) − x(t − τ(t)) −

t−h1∫

t−τ(t)

y(s)ds −
t−h1∫

t−τ(t)

σ (s)dW (s)

⎤

⎥
⎦ = 0. (13)

By Lemma 2.4 we have

− 2θT (t)W

⎛

⎜
⎝

t∫

t−τ(t)

σ (s)dW (s)

⎞

⎟
⎠ ≤

⎛

⎜
⎝

t∫

t−τ(t)

σ (s)dW (s)

⎞

⎟
⎠

T

S7

⎛

⎜
⎝

t∫

t−τ(t)

σ (s)dW (s)

⎞

⎟
⎠

+θT (t)W S−1
7 Wθ(t), (14)

−2θT (t)X

⎛

⎜
⎝

t−τ(t)∫

t−h2

σ(s)dW (s)

⎞

⎟
⎠ ≤

⎛

⎜
⎝

t−τ(t)∫

t−h2

σ(s)dW (s)

⎞

⎟
⎠

T

(S7 + S8)

⎛

⎜
⎝

t−τ(t)∫

t−h2

σ(s)dW (s)

⎞

⎟
⎠

+θT (t)X (S7 + S8)
−1 Xθ(t), (15)

−2θT (t)Y

⎛

⎜
⎝

t−h1∫

t−τ(t)

σ (s)dW (s)

⎞

⎟
⎠ ≤

⎛

⎜
⎝

t−h1∫

t−τ(t)

σ (s)dW (s)

⎞

⎟
⎠

T

S8

⎛

⎜
⎝

t−h1∫

t−τ(t)

σ (s)dW (s)

⎞

⎟
⎠

+θT (t)Y S−1
8 Y θ(t). (16)

In addition, it is not difficult to see that

2θT (t)Z [y(t) + Ax(t) − B f (x(t)) − C f (x(t − τ(t)))] = 0,
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which implies

0 ≤ 2θT (t)Z [y(t) + Ax(t) − B f (x(t)) − C f (x(t − τ(t)))] + ε−1
2 θT (t)Z M MT Z T θ(t)

+ε2 [N1x(t) − N2 f (x(t)) − N3 f (x(t − τ(t)))]T [N1x(t) − N2 f (x(t)) − N3 f (x(t − τ(t)))] .

(17)

Moreover, we have the following inequalities [28]:

0 ≤ − f T (x(t))H1 f (x(t)) + xT (t)H1(C + C̄) f (x(t)) − xT (t)C H1C̄x(t), (18)

0 ≤ f T (x(t − τ(t)))H2 f (x(t − τ(t))) + xT (t − τ(t))H2(C + C̄) f (x(t − τ(t)))

−xT (t − τ(t))C H2C̄x(t − τ(t)), (19)

0 ≤ − f T (x(t − h1))H3 f (x(t − h1)) + xT (t − h1)H3(C + C̄) f (x(t − h1))

−xT (t − h1)C H3C̄x(t − h1), (20)

0 ≤ − f T (x(t − h2))H4 f (x(t − h2)) + xT (t − h2)H4(C + C̄) f (x(t − h2))

−xT (t − h2)C H4C̄x(t − h2). (21)

Then combining (10)–(21) and using the technique in [3], we obtain

E{LV (xt )} ≤ θT (t)
[
	 + ε−1

2 Z M MT Z T + W ST
7 W T + X (S7 + S8)

−1 X T + Y S−1
8 Y T

]
θ(t).

Applying Schur complement equivalence to (8) gives

	 + ε−1
2 Z M MT Z T + W S−1

7 W T + X (S7 + S8)
−1 X T + Y S−1

8 Y T < 0.

Consequently, by the proof of Lyapunov stability theory and Definition 2.1, we know that the equilibrium
solution of the stochastic neural networks (1) is robustly exponentially stochastically stable in the mean square
for any τ(t) satisfying 0 ≤ h1 ≤ τ(t) ≤ h2 and τ̇ (t) ≤ μ. The proof is completed. ��
Remark 3.2 When the derivative of τ(t) is unknown, and the delay τ(t) satisfies 0 ≤ h1 ≤ τ(t) ≤ h2, by
setting Q11 = Q12 = Q22 = 0 in (9), we can know that the system (1) is delay/interval-dependent and
rate-independent robustly exponentially stable in the mean square for delays 0 ≤ h1 ≤ τ(t) ≤ h2.

Theorem 3.3 For given scalars h2 > h1 ≥ 0, the equilibrium solution of uncertain delayed sto-
chastic neural networks (1) is exponentially stable in the mean square for any interval time-varying
delay τ(t) in Case (II) if there exist matrices Si > 0, i = 1, 2, · · · , 8, R11, R12, R22, S11, S12, S22,
{Pi j }1≤i≤ j≤7, {Xi }1≤i≤18, {Yi }1≤i≤18, {Zi }1≤i≤18, {Wi }1≤i≤18 diagonal matrices D > 0, H1 > 0, H2 >
0, H3 > 0, H4 > 0, and scalars ε1 > 0, ε2 > 0 such that LMIs (3), (5)–(8) hold.

In the following, we will discuss the robust exponential stability for the following uncertain stochastic
neural networks with time-varying delays:

dx(t) = [−A(t)x(t) + B(t) f (x(t)) + C(t) f (x(t − τ(t)))] dt

+ [D0(t)x(t) + D1(t)x(t − τ(t))] dw(t), (22)

where the time-delay τ(t) satisfies 0 ≤ h1 ≤ τ(t) ≤ h2, τ̇ (t) ≤ μ. Then, we have the following results:

Theorem 3.4 For given scalars h2 > h1 ≥ 0 and μ, the equilibrium solution of uncertain delayed sto-
chastic neural networks (22) is exponentially stable in the mean square for any interval time-varying delay
τ(t) in Case (I) if there exist matrices Si > 0, i = 1, 2, . . . , 8, Q11, Q12, Q22, R11, R12, R22, S11, S12,
S22, {Pi j }1≤i≤ j≤7, {Xi }1≤i≤18, {Yi }1≤i≤18, {Zi }1≤i≤18, {Wi }1≤i≤18 diagonal matrices D > 0, H1 > 0, H2 >
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0, H3 > 0, H4 > 0, and scalars ε1 > 0, ε2 > 0 such that the LMIs (5)–(8) as well as the following one are
satisfied:

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

	̃ Z M W X Y ε1 Ñ T B̃T P̃ 0
∗ −ε2 I 0 0 0 0 0 0
∗ ∗ −S7 0 0 0 0 0
∗ ∗ ∗ −(S7 + S8) 0 0 0 0
∗ ∗ ∗ ∗ −S8 0 0 0
∗ ∗ ∗ ∗ ∗ −ε1 I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P̃ P̃ M
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1 I

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< 0, (23)

where 	̃ is taken from 	 defined in Theorem 3.1 by setting G1 = G2 = 0, while

P̃ = P11 + D(C̄ − C) + h2S7 + (h2 − h1)S8,

B̃ = [D0 0 0 0 0 0 0 0 0 D1 0 0 0 0 0 0 0 0] ,

Ñ = [N4 0 0 0 0 0 0 0 0 N5 0 0 0 0 0 0 0 0] .

Theorem 3.5 For given scalars h2 > h1 ≥ 0, the equilibrium solution of uncertain delayed stochastic
neural networks (9) is exponentially stable in the mean square for any interval time-varying delay
τ(t) in Case (II) if there exist matrices Si > 0, i = 1, 2, . . . , 8, R11, R12, R22, S11, S12, S22,
{Pi j }1≤i≤ j≤7, {Xi }1≤i≤18, {Yi }1≤i≤18, {Zi }1≤i≤18, {Wi }1≤i≤18 diagonal matrices D > 0, H1 > 0, H2 > 0,
H3 > 0, H4 > 0, and scalars ε1 > 0, ε2 > 0 such that the LMIs (4)–(8) and (23) hold.

In the following, we will discuss the robust exponential stability for the following uncertain stochastic
neural networks with time-varying delays:

dx(t) = [−A(t)x(t) + B(t) f (x(t)) + C(t) f (x(t − τ(t)))] dt + [D0(t)x(t) + D1(t)x(t − τ(t))

+D2(t) f (x(t)) + D3(t) f (x(t − τ(t)))]dw(t), (24)

where the time-delay τ(t) satisfies 0 ≤ h1 ≤ τ(t) ≤ h2, τ̇ (t) ≤ μ. Then, we have the following results:

Theorem 3.6 For given scalars h2 > h1 ≥ 0 and μ, the equilibrium solution of uncertain delayed sto-
chastic neural networks (24) is exponentially stable in the mean square for any interval time-varying delay
τ(t) in Case (I), if there exist matrices Si > 0, i = 1, 2, . . . , 8, Q11, Q12, Q22, R11, R12, R22, S11, S12, S22,
{Pi j }1≤i≤ j≤7, {Xi }1≤i≤18, {Yi }1≤i≤18, {Zi }1≤i≤18, {Wi }1≤i≤18 diagonal matrices D > 0, H1 > 0, H2 > 0,
H3 > 0, H4 > 0, and scalars ε1 > 0, ε2 > 0 such that the LMIs (4)–(8) and (23) hold with

B̃ = [D0 0 0 0 0 0 0 D2 D3 D1 0 0 0 0 0 0 0 0] ,

Ñ = [N4 0 0 0 0 0 0 N6 N7 N5 0 0 0 0 0 0 0 0] .

Theorem 3.7 For given scalars h2 > h1 ≥ 0 and μ, the equilibrium solution of uncertain delayed sto-
chastic neural networks (24) is exponentially stable in the mean square for any interval time-varying
delay τ(t) in Case (I), if there exist matrices Si > 0, i = 1, 2, . . . , 8, R11, R12, R22, S11, S12, S22,
{Pi j }1≤i≤ j≤7, {Xi }1≤i≤18, {Yi }1≤i≤18, {Zi }1≤i≤18, {Wi }1≤i≤18 diagonal matrices D > 0, H1 > 0, H2 > 0,
H3 > 0, H4 > 0, and scalars ε1 > 0, ε2 > 0 such that the LMIs (4)–(8) and (23) hold with

B̃ = [D0 0 0 0 0 0 0 D2 D3 D1 0 0 0 0 0 0 0 0] ,

Ñ = [N4 0 0 0 0 0 0 N6 N7 N5 0 0 0 0 0 0 0 0] .

4 Numerical examples

In this section, we will give three examples showing the effectiveness of the conditions given here.
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Example 4.1 Consider the uncertain stochastic neural networks (1) with parameters given by

A =
⎡

⎣
1.5 0 0
0 0.5 0
0 0 2.3

⎤

⎦ , B =
⎡

⎣
0.3 −0.19 0.3

−0.15 0.2 0.36
−0.17 0.29 −0.3

⎤

⎦ , C =
⎡

⎣
0.19 −0.13 0.2
0.16 0.09 0.1
0.02 −0.15 0.07

⎤

⎦ ,

M = 0.1I3, N1 = N2 = N3 = I3, G1 = G2 = 0.1I3.

First we assume that the activation functions satisfy Assumption (A2) with c1 = c2 = c3 = −0.5 and
c̄1 = c̄2 = c̄3 = 1. Now we let μ = 0.5; it was reported in [29] the above system is robustly exponentially
stable in the mean square when 0 < τ(t) ≤ 2.2471. However, by our Theorem 3.1 and using Matlab LMI
Toolbox, for μ = 0.5, h1 = 0 it is found that the equilibrium solution of uncertain stochastic neural networks
(1) is robustly exponentially stable in mean square for any τ(t) satisfying 0 < τ(t) ≤ h2 = 4.4690. This
shows that the established results in this paper is finer than the previous results since the stability region is
valid upto the upper bound 4.4690 instead of 2.2471 in [29].

In order to compare the results in this paper with those in [3,29], we assume that the activation functions
satisfy (A2) with c1 = c2 = c3 = 0 and c̄1 = 1.2, c̄2 = 0.5, c̄3 = 1.3. When the time-varying delay is differ-
entiable and μ = 0.85, by using Theorem 3.1 in this paper, Theorem 1 in [29] and Theorem 1 in [3], we obtain
the maximum allowable upper bound of τ(t) as h2 = 9.7377, h = 9.6876, and h = 7.7377, respectively.
When the time-varying delay may not be differentiable, that is, μ is unknown, by using Theorem 2 in [29]
and Theorem 2 in [3], the maximum allowable upper bounds are h = 2.2379 and h = 2.3514, respectively.
However, by our Theorem 3.3 and using Matlab LMI Toolbox, for h1 = 0 it is found that the equilibrium
solution of uncertain stochastic neural networks (1) is robustly exponentially stable in mean square for any
arbitrarily large h2 (as long as numerical computation reliable). Therefore, for this example, the results given
in this paper are less conservative than those in [29] and [3].

Example 4.2 Consider the uncertain stochastic neural networks (1) with parameters given by

A =
[

4 0
0 5

]
, B =

[
0.4 −0.7
0.1 0

]
, C =

[−0.2 0.6
0.5 −0.1

]
, D0 =

[
0.5 0
0 0.5

]
,

D1 =
[

0 −0.5
−0.5 0

]
, M =

[
0.1

−0.1

]
, N1 = [

0.2 0.3
]
, N2 = [

0.2 −0.3
]
,

N3 = [−0.2 −0.3
]
, N4 = N5 = [

0 0
]
,

The activation function satisfy Assumption (A3) with c1 = c2 = c3 = −0.5 and c̄1 = c̄2 = c̄3 = 0.5. We
note that, when μ ≤ 0.9, the LMIs in Theorem 3 in [29] and Theorem 3.3 in this paper are feasible for any
arbitrarily large h2 (as long as numerical computation reliable). When μ = 0.95, by Theorem 3 in [29], it is
found that the equilibrium solution of stochastic neural network (22) is robustly exponentially stable in mean
square for any delay τ(t) satisfying h = 0.6633. However, by Theorem 3 in this paper we can conclude that
if h2 = 0.6691. When the time-varying delay may not be differentiable, by Theorem 4 in [29], the maximum
allowable upper bound is h = 0.6520. By applying Theorem 3.5 in this paper the LMIs are feasible for any
arbitrarily large h2; system (22) is robustly exponentially stable in the mean square and finer than the previous
works based on the upper bound.

Example 4.3 Consider the uncertain stochastic neural networks

dx(t) = [−A(t)x(t) + B0(t) f (x(t)) + B1(t) f (x(t − τ(t)))] dt

+ [C(t)x(t) + D0(t)x(t − τ(t)) + D1(t) f (x(t)) + D2(t) f (x(t − τ(t)))] dw(t)

where

A =
[

4 0
0 5

]
, B =

[
0.4 −0.7
0.1 0

]
, C =

[−0.2 0.6
0.5 −0.1

]
, D2 =

[
0.1 0
0 0.1

]
,

D3 =
[

0.1 0
0 0.1

]
, D0 =

[
0.5 0
0 0.5

]
, D1 =

[
0 −0.5

−0.5 0

]
, M =

[
0.1
−0.1

]
,
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L = 0.5I, N1 = [
0.2 0.3

]
, N2 = [

0.2 −0.3
]
, N3 = [−0.2 −0.3

]
and

N4 = N5 = N6 = N7 = [
0.1 0.1

]
.

For μ ≥ 1, Q will no longer be helpful to improve the stability condition since −(1 − μ)Q is nonnegative
definite. Therefore, by setting Q = 0, an easy delay/interval-dependent rate-independent criterion is derived
for unknown μ. For the above system, applying Theorem 2 in [3], it is found that the equilibrium solution of
stochastic neural network (24) is robustly exponentially stable in mean square for any delay τ(t) satisfying
0 < τ(t) ≤ 0.5730. However, by Theorem 3.7 in this paper we can conclude that if 0 < τ(t) ≤ 0.6413,
system (24) is robustly exponentially stable in mean square sense and finer than the previous works based on
the upper bound.

5 Conclusion

This paper investigated the stability problem for stochastic uncertain neural networks with interval time-vary-
ing delays. Some less conservative stability criteria have been obtained by considering the relationship between
the time-varying delay and its lower and upper bounds when calculating the upper bound of the derivative
of Lyapunov–Krasovskii functional. By applying the free-weighting matrices technique together with a new
Lyapunov–Krasovskii functional, some delay/interval-dependent stability conditions have been obtained in
terms of LMIs and it has been shown whether the time-varying delays are differentiable or not. Numerical
examples have been given to demonstrate the effectiveness of the presented criteria and their improvement
over existing results.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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