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Abstract We show that one can use model categories to construct rational orthogonal
calculus. That is, given a continuous functor from vector spaces to based spaces one
can construct a tower of approximations to this functor depending only on the rational
homology type of the input functor, whose layers are given by rational spectra with
an action of O(n). By work of Greenlees and Shipley, we see that these layers are
classified by torsion H∗(B SO(n))[O(n)/SO(n)]-modules.

Keywords Orthogonal calculus · Spectra · Bousfield localisation · Calculus of
functors

1 Introduction

Orthogonal calculus constructs a Taylor tower for functors from vector spaces to
spaces. The nth layer of this tower is determined by a spectrum with O(n) action.
Orthogonal calculus has a strong geometric flavour, for example it was essential to
the results of [1] which shows how the rational homology of a manifold determines
the rational homology of its space of embeddings into a Euclidean space. Working
rationally is also central to work of Reis and Weiss [15]. Thus it is natural to ask if
one can construct a rationalised version of orthogonal calculus where the tower of a
functor F depends only on the (objectwise) rational homology type of F .
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1010 D. Barnes

In this paper we apply the work of [3] to construct suitable model categories that
capture the notion of rational orthogonal calculus. In particular, we show that the
layers of the rational tower are classified by rational spectra with an action of O(n).
By the work of Greenlees and Shipley [9], we see that these layers are classified
by torsion H∗(B SO(n); Q)[O(n)/SO(n)]-modules. Thus we have a strong technical
foundation for rational orthogonal calculus and a simpler, algebraic characterisation
of the layers which should reduce the amount of effort required in future calculations.
This paper also gives a nice demonstration of how Pontryagin classes are at the heart of
orthogonal calculus, as the graded ring H∗(B SO(n)) is polynomial on the Pontryagin
(and Euler) classes.

The main difficulty in the work is setting up the model structures by careful use
of Bousfield localisations. There are some subtleties involved as we are mixing left
and right Bousfield localisations. The source of the difficulty is that in general left
localisations require left properness of the model structure, but do not preserve right
properness,whilst the reverse situation generally holds for right localisation. For exam-
ple, the model category of HQ-local spaces in the sense of Bousfield [4] is created via
a left localisation of the standard model structure on spaces and is not right proper.

Organisation We recap the basic notions of orthogonal calculus in Sect. 2: polynomial
and homogeneous functors, the classification theorem and the tower, and the derivative
of a functor. Section 3 has the main result: the rational version of the classification of
n-homogeneous functors, Theorem 3.3.

The rest of the paper is where we give the details of the proof of the main theorem.
In Sect. 4 we give a brief recap of the notion of Bousfield localisation and review the
construction of the model categories used in orthogonal calculus.

InSects. 5 and6weestablishmodel structures for rationaln-polynomial and rational
n-homogeneous functors. We extend the classification results of Weiss in Sect. 7 to
the rational setting and finish our description of rational n-homogeneous functors.

2 Orthogonal calculus

We give a brief overview of orthogonal calculus, introducing the relevant categories
and definitions. The primary reference is [17].

2.1 Continuous functors

Let L be the category of finite dimensional real inner product spaces and isometries.
To ensure this category is skeletally small, we assume that these vector spaces are all
subspaces of some universe,R∞. Note that forU ⊆ V ,L(U, V ) = O(V )/O(V −U ),
where V −U denotes the orthogonal complement ofU in V . We define a new category
J0: it has the same objects as L but its morphism spaces are given by J0(U, V ) =
L(U, V )+.

Orthogonal calculus studies continuous functors fromL to (based or unbased) topo-
logical spaces. We restrict ourselves to the based version and consider Top-enriched
functors F : J0 → Top where Top denotes the category of based topological spaces.
Thus F is a functor with the property that the induced map of spaces
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Rational orthogonal calculus 1011

FU,V : J0(U, V ) −→ Top(F(U ), F(V ))

is continuous (and is associative, unital and compatible with composition of maps of
vector spaces). We denote the category of such functors J0 Top. Whenever we talk of
functors from vector spaces to spaces we mean an object of J0 Top.

2.2 Polynomial and homogeneous functors

Definition 2.1 An object F ∈ J0 Top is said to be n-polynomial if for each V ∈ J0
the inclusion map

F(V ) −→ holim
0 �=U⊆Rn+1

F(U ⊕ V )

is a weak homotopy equivalence.

This definition captures the idea of the value of F at V being recoverable from the
value of F at vector spaces of higher dimension (and the maps between these values).

By [17, Proposition 4.2] we can give an equivalent definition of n-polynomial using
a sequence of vector bundles γn over L. Let

γn(U, V ) = {( f, x) | f ∈ L(U, V ), x ∈ Rn ⊗ (V − f (U ))}.

and define Sγn(U, V ) be the unit sphere in γn(U, V ).

Lemma 2.2 Define τn : J0 Top → J0 Top as

(τn F)(V ) = Nat(Sγn+1(V,−)+, F).

A functor F is n-polynomial if and only if ηF : F → τn F is an objectwise weak homo-
topy equivalence, where η is induced by the projections Sγn(V,W )+ → J0(V,W ).

Using τn we can construct the n-polynomial approximation to an element of J0 Top.

Definition 2.3 For F ∈ J0 Top let TnF be the functor

TnF = hocolim
(
F

ηF−→ τ 2n F
ητn F−→ τ 3n F −→ · · ·

)
.

The map F → TnF induced by ηF is the n-polynomial approximation to F .

This map has the desired property that if f : F → G is a map in J0 Top with G an
n-polynomial functor, then f factors over F → TnF (up to homotopy) in a unique
way (up to homotopy).

Since this is not clear from the definitions, we give [17, Proposition 5.1].

Proposition 2.4 If F is (n − 1)-polynomial then F is n-polynomial.

Hence we have a map (unique up to homotopy) from TnE → Tn−1E for any
E ∈ J0 Top.
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1012 D. Barnes

Definition 2.5 Afunctor F ∈ Jo Top is said to ben-homogeneous if F isn-polynomial
and Tn−1F is objectwise weakly equivalent to a point. For E ∈ J0 Top we let
DnE denote the homotopy fibre of the map TnE → Tn−1E . We call DnE the n-
homogeneous approximation to E .

The functor DnE is n-homogeneous as Tn and Tn−1 commute with homotopy fibres
(and finite homotopy limits in general). In particular Tn−1TnE = Tn−1E .

2.3 The tower and the classification

Now we are in a place to be more definite about orthogonal calculus. Given a functor
F ∈ J0 Top, orthogonal calculus constructs the n-polynomial approximations TnF
and the n-homogenous approximations DnF . These can be arranged in a tower of
fibrations (analogous to the Postnikov tower).

For each n � 0 there is a fibration sequence DnF → TnF → Tn−1F , which can
be arranged as below.

...

T3F D3F

T2F D2F

T1F D1F

F T0F.

Of course, we need to know much more for this tower to be useful. For this we have
Weiss’s classification of the n-homogeneous functors [17, Theorem 7.3].

Theorem 2.6 The full subcategory of n-homogeneous functors in the homotopy cat-
egory of J0 Top is equivalent to the homotopy category of spectra with an action of
O(n). Moreover, given a spectrum � with an action of O(n) the following formula
defines an n-homogeneous functor in J0 Top.

V 
→ �∞
((

� ∧ SR
n⊗V

)
hO(n)

)

In the above, SR
n⊗V is the one-point compactification of Rn ⊗ V . This has O(n)-

action induced from the regular representation of O(n) on Rn . The smash product is
equipped with the diagonal action of O(n), and hO(n) denotes homotopy orbits.
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Rational orthogonal calculus 1013

3 The rational classification theorem

3.1 Motivation

Calculations in the orthogonal calculus can often be difficult. By considering only the
rational information of a functor, these calculations can often be simplified, such as
in [15] or [1]. One implementation of this idea is to alter the constructions so that if
f : F → G in J0 Top induces a levelwise isomorphism on rational homology, then the
tower of F and G should agree (up to weak homotopy equivalence).

It follows that we need to construct a rational n-polynomial replacement functor
TQ

n . This should have the property that given any functor F ∈ J0 Top, T
Q

n F is the
closest functor that is both rational and n-polynomial. We construct such a functor in
Sect. 5. Hence we have a rational n-homogeneous functor DQ

n F (the homotopy fibre
of TQ

n F → TQ

n−1F). We study rational n-homogeneous functors in detail in Sect. 6.
A strong piece of evidence that this implementation is the correct one is that our

rational n-homogeneous functors are classified in terms of rational spectra with an
action of O(n). To that end, we introduce the algebraic model for rational spectra with
an action of O(n) from [9] so that we can state the rationalised version of Weiss’s
classification theorem.

3.2 The algebraic model

The algebraic category is based on the group cohomology of SO(n). The following
calculation is well-known. The elements pi have degree 4i and represent the Pontrya-
gin classes, the element e has degree k and represents the Euler class.

H∗(B SO(2k + 1); Q) = Q[p1, . . . , pk]
H∗(B SO(2k); Q) = Q[p1, . . . , pk−1, e]

From now on we shall omit the Q from our notation for cohomology. We will also use
the notation W = WO(2)SO(2) = O(2)/SO(2).

We construct a rational differential graded algebra H∗(B SO(n))[W ]. It has basis
given by symbols wi · r , where r ∈ H∗(B SO(n)) and i is either 0 or 1. The multi-
plication is given by the formulae below, where r, s ∈ H∗(B SO(n)) and w(r) is the
image of r under the ring isomorphism w, where w(pi ) = pi and w(e) = −e. The
unit is w0 · 1 and all differentials are zero.

(w0r)(w0s) = w0 · rs
(w0r)(w1s) = w1 · w(r)s

(w1r)(w0s) = w1 · rs
(w1r)(w1s) = w0 · w(r)s

Definition 3.1 Let Ch(Q[W ]) denote the category of rational chain complexes with
an action of W . The morphisms are those maps compatible with the W -action.

Let H∗(B SO(n))[W ]-mod denote the category of H∗(B SO(n))[W ]-modules.
Every such module determines an object of Ch(Q[W ]) by forgetting the action of
the characteristic classes.
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1014 D. Barnes

We can also describe H∗(B SO(n))[W ]-mod as the category of H∗(B SO(n))-
modules in Ch(Q[W ]), where the W -action on H∗(B SO(n)) is induced by the
conjugation action of W = O(n)/SO(n) on SO(n).

We need to add one final condition to get the correct (model) category, see [9] for
details.

Definition 3.2 An object M of H∗(B SO(n))[W ]-mod is said to be torsion if for
each polynomial generator x of H∗(B SO(n)) and each m ∈ M , there is an n such
that xnm = 0. The full subcategory of H∗(B SO(n))[W ]-mod consisting of torsion
modules is denoted tors- H∗(B SO(n))[W ]-mod.

This category has a model structure where the weak equivalences are the homology
isomorphisms of underlying chain complexes and the cofibrations are the monomor-
phisms.

3.3 The main theorem

Theorem 3.3 A rational n-homogeneous functor from vector spaces to based topolog-
ical spaces is uniquely determined (up to homotopy) by a torsion H∗(B SO(n))[W ]-
module. That is, the following two model categories are Quillen equivalent.

n-homog-J0 TopQ � tors-H∗(B SO(n))[W ] -mod

Proof The model category n-homog-J0 TopQ is defined in Theorem 6.2. By Proposi-
tions 7.8 and 7.9 the model category of rational n-homogeneous functors is Quillen
equivalent to the model category of rational spectra with an O(n)-action. By [9, The-
orem 1.1] the model categories of rational spectra with an O(n)-action and torsion
H∗(B SO(n))[W ]-modules are Quillen equivalent. �

This is a substantial simplification of the classification in terms of spectra with
an O(n)-action. For example, the first derivative of an object of J0 Top is uniquely
classified (up to homotopy) by a chain complex N , with an action ofW . Furthermore,
the second derivative of an object of J0 Top is uniquely classified (up to homotopy)
by an chain complex M , which has an action of Q[e] (e has degree 2) and an action
of W , where w ∗ (e · m) = −e · (w ∗ m).

The Quillen equivalence of Greenlees and Shipley is a composite of a number of
adjunctions, sowe leave the details to the reference.However, if E is anO(n)-spectrum
and M ∈ tors- H∗(B SO(n))[W ]-mod is the corresponding object (under the series of
Quillen equivalences), then the homology of M is determined by the relation

H∗(M) ∼= π SO(n)∗ (ESO(n)+ ∧ E) = HSO(n)∗ (SAn ∧ E).

In the above, HSO(n)∗ (X) denotes homology of the Borel construction applied to the
spectrum X (that is, the homology of the SO(n)-homotopy orbits of X ) and An is the
adjoint representation of SO(n) at the identity. Thus An is the n(n−1)/2-dimensional
vector space of skew symmetric matrices with SO(n) acting by conjugation. The cap
product induces the action of H∗(B SO(n)). The spectrum E had an O(n)-action and
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Rational orthogonal calculus 1015

we have taken SO(n)-orbits (or fixed points), hence W = O(n)/SO(n) acts on the
homology and homotopy groups above.

The Quillen equivalence is also equipped with an Adams spectral sequence [9,
Theorem 9.1] allowing one to perform calculations easily. In the following, r is the
rank of the maximal torus of O(n), so this is n/2 for even n and (n − 1)/2 when n is
odd.

Theorem 3.4 Let X and Y be free rational O(n)-spectra. There is a natural Adams
spectral sequence

Ext∗,∗
H∗(B SO(n))[W ]

(
π SO(n)∗ (X), π SO(n)∗ (Y )

)
�⇒ [X,Y ]O(n)∗ .

It is a finite spectral sequence concentrated in rows 0 to r and is strongly convergent
for all X and Y .

We give some examples to illustrate Theorem 3.3. Many more calculations in ratio-
nal orthogonal calculus can be found in Reis and Weiss [15].

Example 3.5 Consider the functor which sends a vector space V to SnV = SR
n⊗V .

This functor can also be described as Jn(0, V ), see Sect. 7. We want to find the
rational nth-derivative of this functor. To do so, we use the Quillen equivalences of
Propositions 7.8 and 7.9. Letting L indicate derived functors, we have the following
diagram of objects.

O(n)+ ∧ J1(0,−) O(n)+ ∧ Jn(0,−)
L(−)∧JnJ1 LResn0 /O(n)

Jn(0,−)

That is, the functor Jn(0,−) is the image of the O(n)-spectrum O(n)+ ∧ J1(0,−) in
the homotopy category of n-homogeneous functors. The O(n)-spectrum O(n)+ ∧
J1(0,−) is more commonly known as O(n)+ ∧ S, where S denotes the (non-
equivariant) sphere spectrum

Thus the nth-derivative of V 
→ SnV is O(n)+ ∧ S. If we then work rationally, the
nth-derivative is O(n)+ ∧HQ. Furthermore, we can identify the algebraic model for
this spectrum in tors- H∗(B SO(n))[W ]-mod. Taking homotopy groups we obtain

π SO(n)∗ (O(n)+ ∧ S) = HSO(n)∗ (SAn ∧ SO(n)+)[W ] ∼= �n(n−1)/2Q[W ]

with the Pontryagin (and Euler) classes acting as zero for degree reasons. If X is a
chain complex having this homology, then X � �n(n−1)/2Q[W ] by a simple formality
argument. Hence the rational nth-derivative of V 
→ SnV is given by�n(n−1)/2Q[W ].
Example 3.6 The previous example is the case U = 0 of the representable functor
V 
→ Jn(U, V ) as defined in Sect. 7. This functor from vector spaces to spaces
is like a shift desuspension of V 
→ Jn(0, V ) = SnV . Indeed, the corresponding
object to Jn(U,−) in the homotopy category of n-homogeneous functors is the functor
V 
→ O(n)+ ∧ Jn(U, V ), which is the shift desuspension of Jn(0,−). As the n-
homogeneous model structure is stable, we want to find the algebraic model for the
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1016 D. Barnes

desuspension of V 
→ Jn(0, V ) = SnV by the sphere SnU , where O(n) acts on the
Rn in SnU = SR

N⊗U .
The O(n)-spectrum SnR corresponds to the object Q̃[n] in the algebraic model: the

sign representation of O(n) in degree n with zero differential. Similarly SnU for U a
vector space of dimension u corresponds to Q̃⊗u[nu]. So for even u, this is just Q in
degree nu and for odd u it is Q̃ in degree nu.

It follows that the algebraic model for Jn(U,−) is the desuspension of �n(n−1)/2Q

[W ] given by tensoring (over Q) with Q̃⊗u[−nu]. As Q⊗Q[W ] = Q[W ] = Q[W ]⊗
Q̃, we see that Jn(U,−) corresponds to �n(n−1)/2−nuQ[W ].

Example 3.7 A related example is the functor which sends V to SnV /hO(n), where
O(n) acts on Rn ⊗ V by the standard action.

The nth-derivative of this in O(n)�(Jn Top) is Jn(0,−), which in turn corresponds
to the sphere spectrum (with trivial action) in O(n)Sp. So rationally the derivative
is HQ. The algebraic model for this spectrum has homology given by HSO(n)∗ (SAn ),
where An is the adjoint representation of SO(n) at the identity. If we ignore the action
of W , this is essentially a suspension of H∗(B SO(n)) with the Pontryagin classes
acting by the cap product. Hence the rational nth-derivative of V 
→ SnV /hO(n) is
(a twisted suspension) of H∗(B SO(n)).

Example 3.8 The functor V 
→ BO(V ) is often considered as the orthogonal calculus
equivalent of the identity functor. It has first derivative the sphere spectrum and second
derivative the desuspension of the by sphere spectrum (each with trivial action) by [17,
Example 2.7]. The remaining are rationally trivial by [2, Theorem 4]. It follows that
the algebraic model for derivatives of BO are Q in degree 0, Q in degree −1 and 0
for higher derivatives.

4 Model categories for orthogonal calculus

To prove the rational classification theorem we use the language of model categories
andQuillen functors. In this section we recall the construction of the n-polynomial and
n-homogeneous model structures from [3]. We start with some basic model category
notions.

4.1 Cellular, topological and proper model categories

Just as one has a simplicial model category, there is the notion of a topological model
category. See [13, Definition 5.12] for more details.

Definition 4.1 Let M be a model category that is enriched, tensored and cotensored
in (based) topological spaces, with HomM(−,−) denoting the enrichment. For maps
i : A → X and p : E → B inM, there is a map of spaces

HomM(i∗, p∗) : HomM(X, E) → HomM(A, E) ×HomM(A,B) HomM(X, B)
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Rational orthogonal calculus 1017

induced by HomM(i, id) and HomM(i, p). We say that M is a topological model
category if M(i∗, p∗) is a Serre fibration of spaces whenever i is a cofibration and p
is a fibration and further thatM(i∗, p∗) is a weak equivalence if (in addition) either i
or p is a weak equivalence.

Definition 4.2 Let M be a model category and let the following be a commutative
square inM:

A
f

i

B

j

C g D

.

M is called left proper if, whenever f is a weak equivalence, i a cofibration and the
square is a pushout, then g is also a weak equivalence. M is called right proper if,
whenever g is a weak equivalence, j a fibration, and the square is a pullback, then f
is also a weak equivalence. M is called proper if it is both left and right proper.

The definition of a cellular model category [10, Definition 12.1.1] is a complicated
extension of the notion of cofibrantly generatedmodel category, sowe define the easier
notion [10, Definition 13.2.1] and leave the extra details to the reference.

Definition 4.3 A cofibrantly generated model category is a model category M with
sets of maps I and J such that I and J support the small object argument (see [14,
Definitions 15.1.1 and 15.1.7.]) and

(i) a map is a trivial fibration if and only if it has the right lifting property with respect
to every element of I , and

(ii) a map is a fibration if and only if it has the right lifting property with respect to
every element of J .

A cellular model category is a cofibrantly generated model category where further
technical restrictions (about factoring through subcomplexes and cofibrations being
effectivemonomorphisms) are placed on the sets of generating cofibrations and acyclic
cofibrations.

Relevant examples of cellular model categories include: simplicial sets, topological
spaces, sequential spectra, symmetric spectra and orthogonal spectra (with a group
acting). These are all proper and (with the exception of simplicial sets) topological.

4.2 Bousfield localisations

With the exception of Sect. 3 we will be using topological model categories. These
categories have the advantage that we can use the enrichment in topological spaces
to define the weak equivalences of left or right localisations. This avoids the more
complicated terminology of homotopy function complexes, see [10, Section 17]. The
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1018 D. Barnes

essential point is that for cofibrant X and fibrant Y in a topological model categoryM
we have

πn HomM(X,Y ) = [Sn ⊗ X,Y ]M.

Where HomM(−,−) denotes the enrichment, ⊗ is the tensoring, and [−,−]M is
maps in the homotopy category ofM. For general X and Y inM we define

RHomM(X,Y ) = HomM(̂cX, f̂ Y )

where ĉ denotes cofibrant replacement and f̂ denotes fibrant replacement inM.
We now summarise Hirschhorn’s results on left and right Bousfield localisations,

see [10, Sections 4 and 5]. The techniques of Bousfield localisation ofmodel categories
allow one to construct a newmodel structure from a givenmodel category with a larger
class of weak equivalences. This was used in [3] to construct the n-polynomial and
n-homogeneous model structures on J0 Top from the objectwise model structure. We
begin with the necessary terminology.

Definition 4.4 Let S be a set of maps in a topological model category M. An object
Z is said to be S-local if for any map s : A → B in S, there is a weak homotopy
equivalence of spaces

s∗ : RHomM(B, Z)−→RHomM(A, Z).

A map f : X → Y is said to be an S-equivalence if for any S-fibrant object Z there is
a weak homotopy equivalence of spaces

f ∗ : RHomM(Y, Z)−→RHomM(X, Z).

We say that Z is S-fibrant if it is S-local and fibrant inM.

We have an almost dual set of definitions for right localisations. The K -equivalences
we define below are sometimes called K -coequivalences or K -colocal equivalences.

Definition 4.5 Let K be a set of cofibrant objects in a topological model categoryM.
A map f : X → Y is said to be a K -equivalence if for any k ∈ K there is a weak
homotopy equivalence of spaces

f∗ : RHomM(k, X)−→RHomM(k,Y ).

An object C is said to be K -colocal if for any K -equivalence f : X → Y in S, there
is a weak homotopy equivalence of spaces

f∗ : RHomM(C, X)−→RHomM(C,Y ).

We say that C is K -cofibrant if it is K -colocal and cofibrant inM.
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Rational orthogonal calculus 1019

Notice that every weak equivalence of M is both a K -equivalence and an S-
equivalence for any set of objects K and any set of maps S.

Theorem 4.6 Let M be a cellular and left proper topological model category and
S be a set of cofibrations. There is a cellular and left proper topological model cat-
egory LSM, with the same cofibrations as M, whose weak equivalences are the
S-equivalences. The class of fibrant objects is the class of S-fibrant objects.

Theorem 4.7 LetM be a cellular and right proper topological model category and K
be a set of cofibrant objects. There is a right proper topological model category RKM,

with the same fibrations asM, whose weak equivalences are the K -equivalences. The
class of cofibrant objects is the class of K -cofibrant objects.

It is immediate that the identity functor is a left Quillen functor from M → LSM

and a left Quillen functor from RKM → M.

4.3 Application to orthogonal calculus

The model structures used in [3] are defined using Bousfield localisations of (more
standard) model structures. We give the relevant results and indicate where we have
Quillen equivalences.

We begin with the objectwise or projective model structure on continuous functors
from J0 to Top. We let skL denote a skeleton of the category of finite dimensional
vector spaces and isometries (it is also a skeleton of J0).

Proposition 4.8 There is an objectwise model structure on J0 Top where a fibration
is an objectwise Serre fibration of based spaces and a weak equivalence is an object-
wise weak homotopy equivalence. This model category is cellular and proper with
generating cofibrations and acyclic cofibrations given by

Il = {J0(V,−) ∧ i | V ∈ skL, i ∈ ITop}
Jl = {J0(V,−) ∧ j | V ∈ skL, j ∈ JTop}.

Proof See [13, Theorem 6.5]. �
We now alter the objectwise model structure on J0 Top to obtain a model category

whose homotopy category is the category of n-polynomial objects up to homotopy. For
details see [3, Section 6]. In particular that reference shows that the model structure
is right proper, despite it being a left Bousfield localisation.

Proposition 4.9 The n-polynomial model structure on J0 Top is the left Bousfield
localisation of the objectwise model structure at the set of maps

Sn = {sVn : Sγn+1(V,−)+ −→ J0(V,−) | V ∈ skL}.

The fibrant objects are the n-polynomial functors, the cofibrations are as for the
objectwise model structure and the weak equivalences are those maps f such that
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1020 D. Barnes

Tn f is an objectwise weak equivalence. The natural transformation Id → Tn gives
a fibrant replacement functor. We denote this model structure by n-poly-J0 Top. It is
proper and cellular.

We construct the n-homogeneous model structure from the n-polynomial model
structure using a right Bousfield localisation.

Definition 4.10 We define n-homog-J0 Top, the n-homogeneous model structure on
J0 Top to be the right Bousfield localisation of n-poly-J0 Top at the set of objects

Kn = {Jn(V,−) | V ∈ skL}.

The following result summarises [3, Proposition 6.9]. The weak equivalences of
the n-homogeneous model structure may also be described as those maps f such that
DnF is an objectwise weak equivalence.

Proposition 4.11 The cofibrant-fibrant objects of the n-homogeneousmodel structure
n-homog-J0 Top are the n-homogeneous objects of J0 Top which are cofibrant in the
objectwise model structure. The fibrations are the same as in the n-polynomial model
structure. The weak equivalences are those maps f such that Resn0 Ind

n
0 Tn f is an

objectwise weak homotopy equivalence. This model structure is right proper.

To summarise, we have a diagram of model structures and Quillen adjunctions

n -homog- J0 Top
Id

n -poly- J0 Top
Id

Id
(n − 1) -poly- J0 Top

Id

whose homotopy categories and derived functors are

n-homogeneous
functors

inc
n-polynomial

functorsDn

Tn−1

(n − 1)-polynomial
functors.inc

5 Rational polynomial functors

In this section we construct a category of rational n-polynomial functors, that is, a
model category whose fibrant objects are both (objectwise) rational and n-polynomial.
We begin by recapping the construction of a model category of rational spaces.

5.1 Rational spaces

Proposition 5.1 There is a rationalmodel structureonbased topological spaceswhere
the weak equivalences are those maps which induce isomorphisms on (reduced) ratio-
nal homology. The fibrant objects are the HQ-local spaces. The cofibrations are as
for the Serre model structure. This model structure is cellular and left proper, with
generating acyclic cofibrations denoted by JQTop. We denote this model structure
LHQ Top.
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Rational orthogonal calculus 1021

Proof Such a model structure exists by [4]. To see that it is cellular, we use [10,
Theorem 4.1.1] and [7, Example E.4], which identifies a map f such that being f -
local is equivalent to being HQ-local. �
Remark 5.2 A simply connected space that is HQ-local is usually called a rational
space. In this paper we do not make any assumption on the connectivity of our spaces.

Workingwith HQ-local spaces (as opposed to rational spaces) has twomain advan-
tages. Firstly we can consider non-nilpotent (and non-simply connected) spaces such
as BO(n) without having to use the category of spaces over some classifying space
BK as in [15]. Secondly, the existence of well-behaved model structures allows us
to phrase the classification of rational n-homogeneous functors in terms of Quillen
equivalences and make use of the existing work on model categories for orthogonal
calculus. We note Walter [16] takes the other approach and studies homotopy functor
calculus of rational spaces in the setting of Goodwillie calculus.

We extend this model structure on spaces to J0 Top in the expected manner.

Proposition 5.3 There is an objectwise rational model structure on J0 Top, denoted
J0 TopQ. The fibrations are the thosemapswhich are objectwise fibrations of LHQ Top.
The fibrant objects are the objectwise HQ-local spaces and the weak equivalences
are those maps which induce objectwise weak equivalences on rational homology. The
cofibrations are as for the objectwise model structure on J0 Top. This model structure
is a left Bousfield localisation of the objectwise model structure.

Proof We let the generating cofibrations be the set Il from the objectwise model struc-
ture of Proposition 4.8 and the generating acyclic cofibrations be the set of morphisms

J0 ∧ JQTop = {J0(V,−) ∧ j | j ∈ JQTop V ∈ skL}.

These sets define a cellular and left proper model structure by the same argument as
for the objectwise model structure. The statements about the fibrant objects and weak
equivalences are immediate.

It is clear that this model structure is the localisation of the objectwise model
structure at the set of morphisms J0 ∧ JQTop. �

5.2 Double localisations

We will construct a model category of rational n-polynomial functors as a double
localisation of the objectwise model structure on J0 Top. One localisation is at the set
Sn , which makes the fibrant objects n-polynomial. The other is localisation at the set
J0 ∧ JQTop, which makes the fibrant objects HQ-local.

Wegive a couple of lemmas examining the structure of double localisations.Thefirst
is essentially the language of Bousfield lattices adapted to more general localisations.
In the followingwe let f̂ denote fibrant replacement inC, f̂S denote fibrant replacement
in LSC and f̂T denote fibrant replacement in LTC.
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Lemma 5.4 Let C be a left proper and cellular topological model category and S and
T be sets of maps in C. Then we have equalities of model structures

LS(LTC) = LS∪TC = LT (LSC).

In each case the class of fibrant objects is the class of fibrant objects of C which are
both S-local and T -local. The weak equivalences are the S ∪ T -equivalences and
include both the S-equivalences and the T -equivalences.

Proof The model structures exist and are left proper and cellular by [10, Theo-
rem 4.1.1]. The fibrant objects in LS(LTC) are precisely the fibrant objects of LTC

that are S-local in LTC. That is, C is fibrant in LS(LTC) if and only if it is fibrant in
C, T -local and for any map s : A → B in S, the induced map

s∗ : RHomLTC(B,C)−→RHomLTC(A,C) (1)

is a weak homotopy equivalence of spaces. For any X and Y , we have

RHomLTC(X,Y ) := HomC(̂cX, f̂T Y ) = RHomC(X, f̂T Y ).

Since C is T -local, C � f̂T C , hence the condition (1) is exactly the statement that C
is S-local in C.

By symmetry, the fibrant objects of LS(LTC) are exactly the fibrant objects of
LS∪TC. It follows that these two model categories have the same weak equivalences
(and the same cofibrations as C), so they are equal.

The weak equivalences are the S∪ T -local equivalences by definition. Any S-local
equivalence is a weak equivalence in LT (LSC) as this is a Bousfield localisation.
Similarly every T -local equivalence is a weak equivalence in LT (LSC). �

It is important to note that we do not claim that the fibrant replacement functors f̂ S
and f̂T commute. In general, this will be false (consider localising spectra at HQ and
MZ/p). We will add an assumption about the interaction of the fibrant replacement
functors. This assumption will hold in the case of rational n-polynomial functors.

Lemma 5.5 Let C be a left proper and cellular model category and S and T be sets
of cofibrations in C. Assume that f̂T preserves S-local objects of C. Then fibrant
replacement in LS∪TC can be taken to be the composite natural transformation

Id
νS

f̂S
νT f̂S

f̂T ◦ f̂S .

The weak equivalences are characterised as T -equivalences between S-localisations.
Moreover, f is an S∪T -local equivalence if and only if f̂S f is a T -local equivalence.

Proof The description of fibrant replacements is routine, so we turn to the statement
about weak equivalences. Let f :C → C ′ be an S ∪ T -local equivalence. Then we
have a commutative diagram of maps in C as below.
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C
f

�S∪T
�S

C ′

�S

f̂SC
f̂S f

�T

f̂SC ′

�T

f̂T f̂SC
f̂T f̂S f

f̂T f̂SC ′

The lower horizontal map is a S ∪ T -local equivalence between S ∪ T -local objects
and hence is a weak equivalence in C. It follows that f̂ S f is a T -local equivalence.
The converse is immediate. �

5.3 Rational polynomial functors

Theorem 5.6 There is a rational n-polynomial model structure on J0 Top, denoted
n-poly-J0 TopQ. The fibrant objects are the n-polynomial objects which areHQ-local.
The cofibrations are as for the objectwise model structure on J0 Top. This model
structure is cellular and left proper, fibrant replacement is given by TQ

n = Tn ◦ f̂HQ

and the weak equivalences are those maps which induce Tn-equivalences of HQ-
localisations.

Proof Recall JQTop, the set of generating acyclic cofibrations for the rational model
structure on based spaces. We extended these to J0 Top as the set

J0 ∧ JQTop = {J0(V,−) ∧ j | j ∈ JQTop V ∈ sk L}.

We define the rational n-polynomial model structure as

n-poly-J0 TopQ = LSn LJ0∧JQTopJ0 Top = LSnJ0 TopQ .

To complete the proof, we apply Lemmas 5.4 and 5.5. Thus we must show that if F
is objectwise HQ-local then so is TnF . Let F be objectwise HQ-local. We claim that
for any V ∈ J0, the space

τn F(V ) = Nat(Sγn(V,−)+, F)

is HQ-local, so that τn F is objectwise HQ-local. That is, we want to show that

Nat(Sγn(V,−)+,−) : J0 TopQ −→ LHQ Top

is a right Quillen functor. This functor has a left adjoint Sγn(V,−)+ ∧ (−), which is
a special case of the objectwise smash product

(−) ∧ (−) : J0 TopQ ×LHQ Top −→ J0 TopQ .
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It is easily checked that this smash product is a Quillen bifunctor with respect to the
HQ-local model structures on J0 Top and Top. Hence the claim follows.

The functor TnF is the homotopy colimit over k of τ kn F and this homotopy colimit
is constructed objectwise. Since homotopy colimits preserve HQ-local spaces, we see
that TnF is HQ-local. �

For more details on the interactions between localisations and Quillen bifunctors,
see [8].

Corollary 5.7 Let F ∈ J0 Top. Then the homotopy fibre of

Tn( f̂HQF) −→ Tn−1( f̂HQF)

is an n-homogeneous functor that is objectwise HQ-local. We denote this DQ

n F.

We want to show that such functors are classified by rational spectra with an action
of O(n). We do so by proving that there is a Quillen equivalence between a model
structure for rational n-homogeneous functors and a model structure for rational spec-
tra with an action of O(n).

Remark 5.8 A formal consequence of the definitions is that for F ∈ J0 Top, T
Q

n F =
TnLHQF is the closest functor to F that is both n-polynomial and objectwise HQ-
local. But it should be noted that for F ∈ J0 Top, the functor f̂HQTnF is weakly
equivalent to F in n-poly-J0 TopQ, but it is not necessarily n-polynomial.

6 Rational homogeneous functors

In this section we will left Bousfield localise the n-homogeneous model structure on
J0 Top to ensure that the fibrant objects are also objectwise LHQ-local. This requires
some care to ensure both that the n-homogeneous model structure admits a left Bous-
field localisation and that a localisation with the correct properties exists.

In order that we can perform left Bousfield localisations on a model structure we
need to know that it is left proper and cellular. The following lemma builds upon
Proposition 4.11 and shows that these properties hold for n-homog-J0 Top. The key
fact is that this model structure is stable: the (objectwise) suspension is an equivalence
on the homotopy category. This follows from the fact that any homogeneous functor
has a de-looping, see also [3, Corollary 10.2].

Lemma 6.1 The pushout of an n-homogeneous weak equivalence along a cofibra-
tion (of the objectwise model structure) is an n-homogeneous weak equivalence. In
particular, the n-homogeneous model structure on J0 Top is left proper (and hence is
proper). Moreover this model structure is cellular.

Proof These statements follow from the proofs of [6, Proposition 5.8 and Theo-
rem 5.9]. In each case we do not need the original category (n-poly-J0 Top) to be
stable, only that its right localisation (n-homog-J0 Top) is stable. �
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Now we need to specify a set of maps at which to localise n-homog-J0 Top. A rea-
sonable first guess would be J0∧ JQTop as we used this set to make the model structure
of rational n-polynomial functors. But this set would cause us some technical prob-
lems as the functor J0(U,−) is (most likely) not cofibrant in n-homog-J0 Top. Instead
the cofibrant objects are built (in a well-defined sense) from the objects Jn(U,−)

see [10, Definition 5.1.4 and Theorem 5.1.5]. Thus we will left Bousfield localise
n-homog-J0 Top at the set

Jn ∧ JQTop = {Jn(V,−) ∧ j | j ∈ JQTop V ∈ sk L}.

If we had chosen the set J0 ∧ JQTop then we would need to cofibrantly replace the
codomain and domain in the definition of the localised weak equivalences. This would
make it much harder to understand the fibrant objects. As it is, we will not see until
Proposition 7.9 that this model structure has all the properties we desire.

Theorem 6.2 There is a rational n-homogenous model structure on J0 Top, denoted
n-homog-J0 TopQ . This model structure is cellular and proper. The fibrant objects
are the n-homogeneous functors F such that Indn0 F is objectwise HQ-local.

Proof We define the model category n-homog-J0 TopQ to be the left Bousfield local-
isation of n-homog-J0 Top at the set of maps

Jn ∧ JQTop = {Jn(V,−) ∧ j | j ∈ JQTop V ∈ sk L}.

This model structure exists as we are in a cellular and proper model category.
Furthermore the resulting model structure is cellular and proper by [6, Proposi-
tion 5.8 and Theorem 5.9].

The set Jn ∧ JQTop consists of cofibrations in n-homog-J0 Top, since Jn(U,−) is
cofibrant and JQTop is a set of cofibrations in Top. By [6, Theorem 4.11] it follows
that the generating acyclic cofibrations of n-homog-J0 TopQ are given by taking the
generating acyclic cofibrations of n-homog-J0 Top and adding the set of horns (see [10,
Definition 4.2.1]) on Jn ∧ JQTop. In a topological model category, a horn is a type of
pushout, so it suffices to use simply Jn ∧ JQTop. Thus a fibration in n-homog-J0 TopQ
is precisely a map which is a fibration in n-poly-J0 Top with the right lifting property
with respect to Jn ∧ JQTop. A map E → F has the right lifting property with respect
to Jn ∧ JQTop if and only if Indn0 E(U ) → Indn0 F(U ) is a rational fibration of based
spaces.

So we have shown that the fibrations of n-homog-J0 TopQ are precisely the fibra-
tions of n-homog-J0 Top such that Indn0 f is an objectwise rational fibration. It follows
that the fibrant objects are the n-polynomial functors F such that Indn0 F is objectwise
HQ-local. �
Lemma 6.3 The identity functor is a left Quillen functor from n-homog-J0 TopQ to
n-poly-J0 TopQ.

Proof We have localised the first category with respect to Jn ∧ JQTop. Recall that
Jn(U,−) is cofibrant in n-poly-J0 TopQ by [3, Lemma 6.2] (in the notation of that
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paper Jn(U, V ) = morn(U, V )). As mentioned in the proof of Theorem 5.6 the
objectwise smash product gives a Quillen bifunctor from n-poly-J0 TopQ ×TopQ to
n-poly-J0 TopQ. Hence the maps in Jn ∧ JQTop are acyclic cofibrations in the rational
n-polynomial model structure and we have a left Quillen functor as claimed. �

Corollary 6.4 Let F ∈ J0 Top. The cofibrant replacement of D
Q

n F in the levelwise
model structure on J0 Top is a fibrant-cofibrant object of n-homog-J0 TopQ.

To summarise, we have a diagram of model structures and Quillen adjunctions

n -homog- J0 TopQ
Id

n -poly- J0 TopQ
Id

Id
(n − 1) -poly- J0 TopQ

Id

whose homotopy categories and derived functors are

rational
n-homogeneous

functors

inc rational
n-poynomial
functorsDQ

n

TQ

n−1 rational
(n − 1)-poynomial

functors.inc

7 The stable categories

Weiss’ classification of n-homogeneous functors in terms of spectra with an O(n)-
action was lifted to the level of Quillen equivalences of model categories in [3,
Section 10]. In this section we extend this result to the rationalised case. We start
by introducing O(n) � (Jn Top), an intermediate category between spectra with an
action of O(n) and n-homogeneous functors.

7.1 The intermediate categories

Recall the vector bundles γn over L:

γn(U, V ) = {( f, x) | f ∈ L(U, V ), x ∈ Rn ⊗ (V − f (U ))}.

Define Jn(U, V ) to be the Thom space of γn(U, V ). There is a composition map

γn(U, V ) × γn(V,W ) → γn(U,W )

(( f, x), (g, y)) 
→ (g ◦ f, g(x) + y)

which induces a composition on the corresponding Thom spaces. Thus Jn has the
structure of a category enriched over based topological spaces. Furthermore, the stan-
dard action of the group O(n) onRn induces an action on the vector bundles γn(U, V )

that is compatible with the composition maps above. Hence Jn is a category enriched
over based topological spaces with an action of O(n).
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Since we have encountered spaces with O(n)-action, we briefly recap that notion.
We say that a map f : X → Y of O(n)-spaces is O(n)-equivariant if σ f σ−1 = f for
all σ ∈ O(n). We let O(n)Top denote the category of based topological spaces with
an O(n)-action and O(n)-equivariant maps. Recall that the base point is required to
be O(n)-fixed. The category O(n)Top is closed symmetric monoidal. The monoidal
product is given by the smash product of spaces, with O(n) acting diagonally. The
internal function object is given by the space of (non-equivariant) mapswith σ ∈ O(n)

acting by conjugation: f 
→ σ f σ−1. See [12, Section II.1] for details.
Now we can consider functors from Jn to O(n)Top that preserve both the topolog-

ical structure and the O(n)-action.

Definition 7.1 For n � 0, define O(n) � (Jn Top) to be the category of functors
enriched over O(n)Top from Jn to O(n)Top. Thus if F ∈ O(n) � (Jn Top) we have
a map

FU,V : Jn(U, V ) −→ Top(F(U ), F(V ))

for any U, V ∈ Jn which is continuous and is equivariant with respect to the O(n)

action on the domain and codomain.

The category O(n) � (Jn Top) was denoted O(n)En in [3]. There is an adjunction
between this category and spectra with an action of O(n), see [3, Section 8] for details.

Definition 7.2 There is a morphism of enriched categories αn : Jn → J1 which sends
V to Rn ⊗ V and acts on mapping spaces by

Jn(U, V ) → J1(R
n ⊗U, Rn ⊗ V )

( f, x) 
→ (Rn ⊗ f, x)

This induces a functor α∗
n : O(n)� (Jn Top) → O(n)Sp. It is defined as (α∗

n E)(V ) =
E(Rn ⊗ V ), but the action on the O(n)-space E(Rn ⊗ V ) is altered to use both the
pre-existing action and also the action induced by O(n) acting on Rn ⊗ V . This has
a left adjoint called Jn ∧J1 (−).

We also want to compare O(n) � (Jn Top) and J0 Top. The inclusion {0} = R0 →
Rn induces a map of vector bundles γ0 → γn and a map of enriched categories
in : J0 → Jn . This creates an adjoint pair between O(n) � (Jn Top) and J0 Top.

Definition 7.3 Let E ∈ O(n)�(Jn Top), thenwecandefine anobjectResn0 /O(n)E of
J0 Top by V 
→ E(V )/O(n). This defines a functor Resn0 /O(n) from O(n)�(Jn Top)
to J0 Top. There is a right adjoint to this functor, written Indn0:

(Indn0 F)(V ) = NatJ0 Top(Res
n
0 Jn(V,−), F).

The O(n)-action on the space (Indn0 F)(V ) is induced by the O(n) action on Jn(V,−).
We call Indn0 F the nth-derivative of F.
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We thus have adjunctions as below, with left adjoints on top.

O(n)Sp
α∗
n

O(n) � (Jn Top)
(−)∧JnJ1 Resn0 /O(n)

J0 Top
Indn0 ε∗

7.2 The stable model structures

We need to equip the middle and left hand categories with model structures so that
these adjunctions become Quillen equivalences when J0 Top has the n-homogeneous
model structure. Our starting place is to put a model structure on O(n)Top as below.
One can check this model structure exists by lifting the model structure on based
spaces over the functor O(n)+ ∧ −, see [10, Theorem 11.3.2].

Lemma 7.4 The category O(n)Top of based spaces with O(n)-action has a cellular
and proper model structure, with generating sets given by

IO(n)Top = {O(n)+ ∧ Sk−1+ −→ O(n)+ ∧ Dk+ | k � 0}
JO(n)Top = {O(n) ∧ Dk+ −→ O(n)+ ∧ (Dk × [0, 1])+ | k � 0}

The cofibrant objects have no fixed points (except the base point), the weak equiva-
lences are the underlying weak homotopy equivalences.

Using this model structure on O(n)-spaces, we can equip O(n) � (Jn Top) and
O(n)Sp with levelwise model structures similar to that for J0 Top. These model struc-
tures are proper and cellular. We want to make them into stable model categories. For
that, we need a new class of weak equivalences. The idea is to generalise the notion
of π∗-isomorphisms of spectra. For full details, see [3, Section 7].

For V a vector space, Rn ⊗ V has the O(n)-action induced by the standard repre-
sentation of O(n) on Rn . Let SnV be the one-point compactification of Rn ⊗ V , then
for E ∈ O(n) � (Jn Top) there are O(n)-equivariant maps

E(U ) ∧ SnV → E(U ⊕ V ).

Just as with the definition of the stable homotopy groups of a spectrum, we can use
these maps (and n-fold suspension) to construct the nπ∗-homotopy groups of E .

Proposition 7.5 The categories O(n)Sp and O(n) � (Jn Top) have stable model
structureswhere theweak equivalences are theπ∗ and nπ∗-isomorphisms respectively.
The cofibrant objects are objectwise O(n)-free. The fibrant objects are those whose
adjoints of the suspension maps are weak homotopy equivalences, so for E ∈ O(n)�

(Jn Top), the map

E(U ) −→ �nV E(U ⊕ V )

is a weak homotopy equivalence. These model structures are stable, cellular and
proper.
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Proof These model structures can be constructed as left Bousfield localisations. We
localise the levelwise model structures at the following sets of maps, the first is for
O(n) � (Jn Top) and the second is for O(n)Sp.

{Jn(V ⊕ R,−) ∧ Sn −→ Jn(V,−) | V ∈ sk L}
{J1(V ⊕ R,−) ∧ S1 −→ J1(V,−) | V ∈ sk L}

See [3, Section 7] for a fuller discussion. �
Note that when n = 1, O(n) � (Jn Top) and O(n)Sp are NOT the same category.

Let E ∈ O(1) � (J1 Top) and F ∈ O(1)Sp. Then for U and V in J1 we have a map
of O(1)-equivariant spaces

EU,V : J1(U, V ) −→ Top(E(U ), E(V ))

and a map of spaces (where the O(1) action on J1(U, V ) is forgotten)

FU,V : J1(U, V ) −→ Top(F(U ), F(V ))O(1).

We now need to rationalise O(n) � (Jn Top) and O(n)Sp. Each is left proper and
cellular, so we may use [10] to perform a left Bousfield localisation of each of the
categories.Recall the set JQTop of generating acyclic cofibrations for the rationalmodel
structure on based spaces. We use this set to rationalise spectra with an O(n)-action.

Lemma 7.6 We define O(n)SpQ to be the left Bousfield localisation of the stable
model structure on O(n)Sp at the set

Qn = {O(n)+ ∧ J1(U,−) ∧ j | j ∈ JQTop}.

The weak equivalences are those maps which induce isomorphisms on rational stable
homotopy groups (or equally rational homology). The fibrant objects are the levelwise
HQ-local �-spectra.

Proof This follows from [5, Lemma 8.6] and [6, Lemma 4.14]. �
Now we perform the same operation with the stable model structure on O(n) �

(Jn Top).

Definition 7.7 Define the rational model structure on O(n)�(Jn Top) to be the local-
isation of the stable model structure on O(n) � (Jn Top) with respect to

Q′
n = {O(n)+ ∧ Jn(U,−) ∧ j | j ∈ JQTop U ∈ sk Jn}.

We denote this model structure O(n) � (Jn Top)Q.

It is easily checked that the fibrant objects of O(n) � (Jn Top)Q are the objectwise
HQ-local objects whose adjoints of suspensions maps are weak homotopy equiva-
lences. We are now ready to prove our main result, Theorem 3.3.
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7.3 The Quillen equivalences

Proposition 7.8 There is a Quillen equivalence

O(n)SpQ
α∗
n

O(n) � (Jn Top)Q.

(−)∧JnJ1

Proof If we apply J1 ∧Jn (−) to a map of the form O(n)+ ∧ Jn(U,−) ∧ j for j
some trivial cofibration in LHQ Top we obtain the map O(n)+ ∧ J1(nU,−) ∧ j .
These maps are weak equivalences in O(n)SpQ so we have a Quillen pair between
the localisations by [10, Proposition 3.3.18]. The adjunction ((−)∧Jn J1, α

∗
n) on non-

rationalised model categories is a Quillen equivalence by [3, Section 8]. So we can
apply [11, Proposition 2.3] to see that the localised adjunction is a Quillen equivalence.

�
If we apply the left derived functor of Resn0 /O(n) to the maps in Q′

n we obtain the
set

Jn ∧ JQTop = {Jn(U,−) ∧ j | j ∈ JQTop U ∈ sk Jn}

which we used to localise the n-homogeneous model structure. Hence we obtain the
following result by the same proof as for Proposition 7.8. Againwe use [3, Section 8] to
see that (Resn0 /O(n), Indn0 ε∗) is a Quillen equivalence between the non-rationalised
model categories.

Proposition 7.9 Define n-homog-J0 TopQ to be the left Bousfield localisation of the
model category n-homog-J0 Top at the set Jn ∧ JQTop. There is a Quillen equivalence

O(n) � (Jn Top)Q

Resn0 /O(n)

n -homog- J0 TopQ .
Indn0 ε∗

Thuswehave now shown that n-homog-J0 TopQ has the correct homotopy category,
namely the homotopy category of rational spectra with an action of O(n). We can
identify the derived composite of the above adjunctions and learn more about the
cofibrant-fibrant objects of n-homog-J0 TopQ.

Corollary 7.10 There is an equivalence of homotopy categories

Ho(O(n)SpQ) ∼= Ho(n-homog-J0 TopQ).

Let  be a rational spectrum with O(n)-action, then the image of  in the category
Ho(n-homog-J0 TopQ) is given by

V 
→ �∞
((

 ∧ SR
n⊗V

)
hO(n)

)
.
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Let F be a cofibrant and fibrant object of n-homog-J0 TopQ. Then F is an objectwise
HQ-local n-homogeneous functor.

Proof Combining the two propositions above at the level of homotopy categories
gives the equivalence. That the equivalence agrees withWeiss’s classification theorem
follows from the proof of [3, Theorem 10.1].

Let F be a cofibrant and fibrant object of n-homog-J0 TopQ. Then F is in particular
n-homogeneous, so it defines a spectrum F with O(n)-action. We know that Indn0 F
is objectwiseHQ-local, hence the spectrumF is objectwiseHQ-local by theQuillen
equivalences above. Now consider the n-homogeneous functor defined by F :

V 
→ �∞((SnV ∧ F )hO(n)).

This functor is objectwise HQ-local and it is objectwise weakly equivalent to F , thus
F itself is objectwise HQ-local. �

Thus we have shown that n-homog-J0 TopQ is a model for the homotopy theory of
n-homogeneous functors in J0 Top that are objectwise HQ-local. Secondly we have
shown that such functors are determined, up to homotopy, by rational spectra with an
action of O(n).
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