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ABSTRACT: In the present paper the eikonal equation is considered in the form of a second order, nonlinear 
ordinary differential equation with harmonic excitation due to internal wave. The harmonic excitation is taken 
imperfect, i.e. there is a random phase modulation due to Gaussian white noise. The amplitude and wave-
length of the acoustic wave are used as the principle signal characteristics in bifurcation analysis. The regions 
of instability, identified using the bifurcation diagrams, examined through phase diagrams and Poincare maps. 
The effect of stochastic nature in addition to chaotic one of internal waves is demonstrated by means of com-
parison of the numerical data obtained for perfectly periodic excitation. Preliminary analysis shows very 
strong dependence on noise intensity at some values of amplitude and wave length of the internal wave. 

1 INTRODUCTION 

The sound wave propagation has been used as 
a tomographic means to study and monitor the ocean 
for years (Munk and Wunsch, 1979; Munk et al., 
1995). The purpose of ocean acoustic tomography is 
to deduce from precise measurements of travel time, 
or of other properties of acoustic propagation the 
state of the ocean traversed by the sound field 
(Munk and Wunsch, 1979). The tomographic 
method introduced by Munk and Wunsch (1979) 
based on the fact that travel time and other measur-
able acoustic parameters are functions of tempera-
ture, water velocity, and other ocean parameters and 
can be interpreted to provide information about the 
intervening ocean using inverse methods. Arrival 
time has been the basic characteristic from which 
inversions have been performed to reconstruct ocean 
structure. For long-range propagation it has been ob-
served that ocean fluctuations (internal waves) affect 
the acoustic wave propagation limiting the resolu-
tion of tomographic scheme based on the time of 
flight. Recent theoretical and experimental studies 
by Simmen et al. have suggested that the breakdown 
in identifying signal arrivals at long ranges is due to 
ray chaos induced by a range-depended ocean struc-
ture. The chaotic behavior of rays has been investi-
gated in numerous works (Smith et al., 1991; Duda 
and Bowlin, 1994; Colosi et al., 1994; Zaslavsky and 

Abdulaev, 1997; Simmen et al., 1997; Wiercigroch 
et al.,1999). In their recent work, Wiercigroch et al. 
(1999) investigated non-linear dynamic behavior of 
basic ray equations in the presence of a wave-like 
forcing assuming that a single-mode sound speed 
perturbation is superimposed onto a genetic range-
independent sound speed profile known as the 
Munk’s canonical profile (Munk, 1974). Wierci-
groch and his colleagues investigated acoustic wave 
propagation using the ray equations together with 
stability analysis conducted by constructing bifurca-
tion diagrams, Poincare maps (Thompson and Stew-
art, 1987; Wiggins, 1990). Their approach fails to 
account for nondeterministic contribution from the 
internal waves. 

In the present work it is shown that considera-
tion of only chaotic behavior induced by internal 
waves somewhat simplifies the real problem, where 
the stochastic behavior has a substantial input. Our 
goal is not to precisely quantify acoustic fluctuations 
due to internal waves but rather to demonstrate that 
an addition of ideal turbulence model, such as white 
noise, leads to the different characteristics of the 
acoustic arrivals. Therefore, in the present paper we 
investigate the influence of nondeterministic excita-
tion induced by the internal waves on acoustic wave 
propagation as well as deterministic, chaotic behav-
ior. In the present formulation the eikonal equation 
is considered in the form of a second order, nonlin-
ear ordinary differential equation with harmonic ex-
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citation due to internal wave. The harmonic excita-
tion is taken imperfect, i.e. there is a random phase 
modulation due to Gaussian white noise. The ampli-
tude and wavelength of the acoustic wave are used 
as the principle signal characteristics in bifurcation 
analysis. 

PROBLEM STATEMENT 

In a standard form the eikonal equations can be writ-
ten as (Wiercigroch, et al., 1999): 

dz H dp H 

dr p dr z	 (1) 

Here H is a Hamiltonian: 

H (z, p)  
1 
p 2  V (z)  F (z, r) (2) 
2 

Where z is the ray depth and r is the horizontal range 
and F(z,r) is the external perturbation. The tangent 
of the ray angle  with respect to the horizontal axis 
is p  tan  . Figure 1 shows the diagram of acoustic 
wave propagation. 

Ocean r 
surface 

Sound 
speed 
profile 

c(z) 

 

z 

Figure 1. Sketch of underwater acoustic ray propagation. 

The potential energy V(z) is related to the ray depth 
through the sound speed profile and may be ex-
pressed as (Munk, 1974): 

1 2V (z)  
2 
1 c0 / c(z) , 

(3) 
ac(z)  cch 

 
1   

 
e 2(z z ) / B  2 

z  za 1
 

B 

where , B are constants, cch - the sound speed at 

the sound channel axis, za - the depth at the sound 

channel axis [Monk]. The ray traveling in the ocean 

is subject to perturbation due to internal waves. The 
latter is usually considered as a single-mode wave: 

3z / 2B 2
F (z, r)  2Ae sin r,  (4) 

R 

Substituting (3) and (4) into (1) one gets two, 
nonlinear differential equations with external har-
monic excitation. Such system has been studied ex-
tensively in Wiercigroch et al. (1999). However, it is 
reasonable to assume that the perturbation due to the 
internal waves is not perfectly harmonic, but rather 
imperfectly harmonic. Such an excitation may be 
modeled by a harmonic function with randomly per-
turbed phase or random phase modulation, and is 
written as: 

3z / 2BF (z, r)  2Ae sin q(r), 

dq 2
  (t),	 (5) 

dr R 
 (t)  0,  (t)  (t  )  D  (  ) 

where (t) is zero mean Gaussian white noise. Thus, 
the following system will be investigated numeri-
cally: 

dz 
 p,

dr 
2( z za ) / Bdp 2 2 1  e

 c c  
3 


 
dr B 0 ch c(z)
 (6) 

3z / 2B	 
3 
Ae sin q(r)

2B 
dq 2

  (t)
dr R 

In the above formula, A and R can be viewed as the 
mean amplitude and frequency of excitation. Influ-
ence of noise intensity D onto the behavior of that 
system will be considered in the next section. 

3	 RESULTS OF NUMERICAL SIMULATION 

The system of nonlinear, stochastic differential 
equations (6) will be solved numerically in this sec-
tion for certain values of parameters A,R and D. 
Equations (6) have to be solved for the following 
values of constants and initial conditions for Monte 
Carlo simulation: 
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B  1.3,  0.0074, z  1.0,c  1.53a ch 0 

7.50 0.1 z(0)  1.0, (0)  
0.2 

It is worth reminding that the purpose of this paper 0.3 

z 
(k
m
) 

is not to precisely quantify acoustic fluctuations due 0.4 

to random excitation induced by internal waves but 
rather to show that a ray-based description of sound 
propagation through internal waves that includes 
only deterministic excitation, not stochastic, fails to 
accurately capture the important characteristic. In 
order to perform the comparison in the following the 
results for phase planes and bifurcation diagrams 
will be plotted for two cases: (I) for purely determi-
nistic excitation (D=0), and (II) accounting for de-
terministic excitation as well as stochastic one. For 
comparison purposes the physical data such as am-
plitudes and wavelength of interest as well as initial 
conditions are taken as mentioned above. 
First we investigate the influence of the wavelength, 
R onto the depth z, for a fixed value of the ampli-
tude, A. The bifurcation diagram shown in Figure 2 
constructed based on the ray acoustic equation that 
does not include the influence of random excitation. 
It can be noted that the effect of chaotic behavior of 
internal waves is small up to R=8km. After that, the 
system responses become irregular. 
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Figure 4. Bifurcation diagram z=f(R) (A=0.005); D=0.1 sec-2 

Figures 3 and 4 show bifurcation diagrams for the 
cases, when Gaussian white noise is included. There 
are two noise intensities have been examined in the 
numerical experiment. It is clear that the region of 
unique solution observed in Figure 2 tends to be re-
placed with irregular system response with increased 
noise intensity, D, right from the beginning. As R 
continues to increase, occasions in which the ray di-
verges and intersects the ocean surface at z=0 are 
observed. No white noise system predicts the first 
occurrence of surface intersection in the region 
around R=12.5km. In the presence of white noise the 
first intersection is predicted to take place at 
R=8.0km, and it becomes much more frequent for 
R  10 km. Finally, for the higher value of the white 
noise intensity the rays constantly intersect the ocean 
surface starting at R=5.0km. In order to investigate 

z 
(k
m
) 0.3 

0.4 

0.5 

0.6 

this behavior in details we plot the phase planes for 
specific values of the wavelength. We start with 
phase diagram plotted for the value r=3.0km, which 
corresponds to the region with the unique solution as 
it shown in Figure 3. 
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Figure 2. Bifurcation diagram z=f(R); A=0.005; D=0 
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Figure 5. Phase plane; A=0.005, R=3. km; D=0. 

Figure 3. Bifurcation diagram z=f(R) A=0.005; D=0.01 sec-2 

Figure 5 presents the wave ray trajectories in the 
z  plane, computed for A=0.005. The observa-
tion is consistent with the characteristics of a quasi-
periodic motion. Quasi-periodicity does not break 
off or change to a different type of motion. 
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Figure 6. Phase plane: A=0.005, R=12.9 km, D=0. 

Our observations are in agreement with the conclu-
sion made by Wiercigroch et al., that for an internal 
wave perturbation of wavelength R=1km and a 
launch angle 7.5   wave rays remain trapped in the 
sound channel. 
The next we select a value of R=12.9km, i.e., the 

exact location of a spike in the bifurcation diagram 
depicted in Figure 2 and plot the phase planes for 
systems without and with white Gaussian noise re-
spectively. Again, we examine two different white 
noise intensities. It is seen in Figure 6 that the trajec-
tory loop does not close. The response again reveals 
the characteristics of quasi-periodic motion. With 
the increased intensity of added white noise the 
phase diagrams shown in Figures 7 and 8 exhibit 
windings and intricate structure, indicating the pres-
ence of microcaustics and microfolds; this is not 
evident from a phase plane obtained as a solution of 
ray equation that accounts for deterministic excita-
tion only (Simmen et al., 1997). 
The second parameter of interest is an amplitude, 

0 A. The effect of random excitation on the wave am-

0.5 
plitude is examined through the bifurcation diagram 

(A)fz  for a fixed wave length, R=1km. As it has 

1 
been done in Wiercigroch et al. (1999), an A range 
is used out of convenience, A<0.01. 

1.5 ) m
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Figure 7. Phase plane: A=0.005, R=12.9 km, D=0.1 sec-2. 
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0 Figure 9. Bifurcation diagram: z=f(A), R=1km, D=0 

0.5 From the Figure 9 it is seen for the small values 
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) 

1.5 
amplitude with the following highly unstable behav-

2 ior. 
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Figure 8. Phase plane: A=0.005, R=12.9 km; D=0.99sec-2 

of A diagram suggests a stable unique solution, 
while addition of white nose depicted in Figure 10 

1 

for the same wave length results in a sudden jump of 
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Figure 10. Bifurcation diagram: z=f(A), R=1km, D=0.01sec-2. 

4 CONCLUSION 

In the present paper the effect of turbulence on 
chaotic behavior of acoustic rays has been investi-
gated. In order to do that a nonlinear eikonal equa-
tion subjected to imperfectly periodic excitation has 
been considered and analyzed numerically. It has 
been shown that the results with and without random 
phase modulation may significantly differ from each 
other. Namely, imperfect periodicity may signifi-
cantly reduce propagation range of the ray, forcing it 
to come to the surface. Moreover, it may develop 
and/or enhance microcaustics, which significantly 
complicate identification of signals and its propaga-
tion. 
An introduced refinement, random phase modula-

tion (white Gaussian noise), into the conventionally 
viewed nonlinear eikonal equation (perfectly har-
monic waves) allowed to formulate more realistic 
model of underwater sound wave propagation. 
Bifurcation diagrams have demonstrated the vari-

ous regimes of sound ray behavior. The diagrams 
can be designed for predicting the behavior of ocean 
sound propagation under various environmental and 
operational conditions. 
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