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1 Introduction

Despite its many successes, the Standard Model (SM) might not be the complete de-

scription of the Electro-Weak Symmetry Breaking (EWSB). The concept of “naturalness”,

incarnated by the famous Hierarchy Problem, puts strong doubts on the possibility that

an elementary weakly-coupled Higgs doublet is entirely responsible for EWSB with no new

degrees of freedom and interactions appearing below a very high energy scale such as the

Planck mass MP . The problem is that if the SM emerges from a fundamental theory with

typical scale MP a realistic Higgs mass term, of the order of 100 GeV, can only be obtained

at a price of an “unnatural” cancellation taking place in the Higgs potential.

From the above discussion it is clear why the concept of naturalness is so important

in any extension of the SM that aims to solve the Hierarchy Problem. Any such model

is characterized by a new physics scale Λ which is typically constrained by observations

to lie in the TeV or multi-TeV region, well above the EWSB scale. A certain amount of

tuning, ∆, has to be performed on the parameters of the model in order to achieve this
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separation of scales, but, if naturalness is really relevant for Nature, the tuning must be

reasonably small.

The recent observation of a Higgs-like particle around 125 GeV [1, 2] adds a new rele-

vant piece of information to this discussion. Accommodating the observed Higgs mass into

a model might be problematic and require additional tuning. For instance, in the MSSM

the Higgs would naturally be lighter, raising it to the observed value requires increasing the

stop mass worsening the level of tuning. In the case of composite Higgs models (CHM),

which we consider in the present paper, the situation is basically reversed. As we will

see, models with moderate tuning typically predict a too heavy Higgs. A realistic Higgs

mass can be incorporated either at the price of fine-tuning, similarly to the MSSM, or by

lowering the mass of the fermionic resonances associated to the top quark, the so-called

“top-partners”.

The aim of this paper is to study quantitatively the fine-tuning issue in the context

of composite-Higgs models with partial fermion compositeness [3, 4] and to analyze the

interplay among the tuning and the Higgs mass. In the scenario we consider the Higgs is a

pseudo Nambu-Goldstone boson (pNGB) associated with a spontaneous global symmetry

breaking, most simply SO(5) → SO(4) [5–12] (see also [13]). The pNGB Higgs is charac-

terized by the scale of symmetry breaking f that controls its interactions, in particular

the potential. Various experimental results require that the electroweak-scale v ' 〈h〉 < f .

This can be achieved through cancellations in the potential with a precision that scales

as ∆ = f2/v2. A tuning of order 10% is often believed sufficient to comply with the

experimental constraints.

However it has been found that the tuning is typically larger in concrete constructions.

This has been verified explicitly in 5d holographic models [14–16] and explained para-

metrically in ref. [17, 18]. The point is that in specific models the Higgs potential might

assume a non-generic form that renders the cancellation more difficult to realize. Roughly

speaking, it can happen that the mass term is enhanced with respect to the quartic Higgs

coupling so that obtaining a small VEV requires more tuning. This crucially depends on

the structure of the potential that in turn is controlled by the quantum numbers of the

composite fermions.

In the present paper we explore different choices of the fermion representations and

classify them in terms of the structure of the Higgs potential they induce. We find three

categories. The first one is characterized by an enhanced tuning (or “double tuning” as

we dub it), due to the mechanism described above. Interestingly enough the most studied

models, namely the MCHM4 [11], MCHM5 and MCHM10 [12], all belong to this category.

The models in the second category are less tuned, to obtain a given scale separation v/f

the tuning is ∆ ∼ f2/v2, that is it follows the naive estimate. We denote this as “minimal”

tuning because we believe it is impossible to reduce it further with a better construction.

In the third category there are models with minimal tuning in which the tR quark is a

completely composite state.

The expected size of the Higgs mass mh is rather different in the three categories

described above. However we find that the only way to obtain a light Higgs with moderate

tuning in any of the three cases is to assume a low enough scale Λ for the top partners.
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This result is not surprising as the role of the resonances is to cut off the quadratically

divergent contribution to mh from the top quark loop in the SM. Following ref. [19] we have

δm2
h =

3√
2π2

GFm
2
tΛ

2 ⇒ ∆ ≥ δm2
h

m2
h

=

(
Λ

400 GeV

)2(125 GeV

mh

)2

. (1.1)

In agreement with the above equation we find that a moderate tuning, ∆ ' 10, requires new

fermionic resonances around 1 TeV. This bound should be compared with the one on spin-

one “ρ” resonances. For example from S-parameter estimates one finds for the electro-weak

resonances that mρ & 2.5 TeV. Therefore our result requires a certain separation among

the fermionic and bosonic resonance scales.

Obviously the one of eq. (1.1) is only a lower bound on the tuning. Low-energy argu-

ments cannot exclude that additional contributions to δm2
h could be present in the complete

theory, worsening the cancellation regardless of the presence of light fermions. This situa-

tion occurs in the popular MCHM4,5,10. In that case the role of the light top partners is to

reduce the Higgs quartic coupling, allowing for a light physical Higgs. The light resonances

do not saturate the quadratic divergence of δm2
h and the tuning remains large. If we accept

a large tuning there is no reason, a priori, why the fermionic resonances should be light,

the correlation among light Higgs and light resonances could be a peculiarity of the models

with doubly tuned potential. We construct an explicit model, with totally composite tR,

where all the resonances can be heavy and the Higgs mass is reduced by the tuning.

The paper is organized as follows. In section 2 we introduce the framework and discuss

the structure of the Higgs potential. We employ an effective field theory methodology

mainly based on ref. [20]. However we introduce a slight conceptual deformation of the

original approach: in order to account for a possible separation among fermionic and

vectorial resonances we assume that two separate mass scales, mψ and mρ, are present in

the strong sector. Correspondingly we have two couplings, gψ = mψ/f and gρ = mρ/f ,

contrary to ref. [20] where a single coupling gρ is present. In addition we also consider the

limit of weak strong-sector coupling gψ ∼ gSM ∼ 1. In section 3 we introduce our models

and estimate parametrically the amount of fine-tuning and the expected size of the Higgs

mass in each case. In section 4 we go beyond the estimates and analyze concrete calculable

implementations of the models based on the 4d frameworks developed in refs. [21] and [22].

We are then able to compute explicitly the Higgs mass and the tuning, quantifying the

deviations from the parametric estimates. In section 5 we summarize our results in view

of the observed Higgs mass mh = 125 GeV, by discussing the model-building options that

can lead to a realistic value. Finally we present our conclusions.

2 General structure

We start by giving a lightning review of the basic ingredients of modern constructions of

composite Higgs models with partial compositeness and introducing our notation. The

Higgs is a Goldstone boson arising from the spontaneous symmetry breaking of G → H.

We focus on the minimal coset SO(5)/SO(4) in this paper but the analysis can be readily

generalized. The SM gauge bosons are introduced as elementary fields, external to the
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strong sector, and gauge the SM subgroup of SO(5).1 As such, they are coupled linearly to

the corresponding currents and the elementary-composite gauge interactions take the form

Lgauge = gWµJ
µ . (2.1)

The situation is assumed to be analogous for the SM fermions. They are introduced

as elementary fields and coupled linearly to strong-sector fermionic operators with equal

quantum numbers under the SM

Lfermion = yfLfLOL + yfRfROR . (2.2)

In the IR, where the strong sector is assumed to confine, the interactions above will give

rise to mixings of the elementary degrees of freedom (W and fL,R) and the strong sector’s

resonances associated to the operators J and O. This mechanism realizes the paradigm of

partial compositeness, according to which the SM particles (i.e. the mass eigenstates) are

a mixture of elementary and composite state. The analogous phenomenon in QCD is the

well known photon-ρ mixing.

The fermion interactions of eq. (2.2) introduce an extra model-building ambiguity be-

sides the choice of the coset G/H. One must specify the representations of G in which the

fermionic operators OL,R transform, popular possibilities are rL = rR = 4, 5 or 10 and

correspond respectively to the holographic MCHM4, MCHM5 and MCHM10 5d models.

The choice of the representations has a strong impact on the structure of the Higgs poten-

tial, controlling for example the Higgs mass. As it turns out, the models considered in the

holographic MCHM all fall in the same universality class for what the Higgs potential is

concerned, we thus find particularly important to study alternatives.

Another interesting possibility is that the right-handed tR quark emerges directly from

the strong sector as a composite chiral state. In this case there is no elementary tR field

and no ytR mixing is present in eq. (2.2).

2.1 Split strongly interacting light Higgs

In order to discuss the implications of the above scenario we need a parametrization of the

dynamics of the strong sector. One can build explicit models, as we will do in the following

section, but also rely on model-independent estimates based on generic assumptions on the

strong sector along the lines of ref. [20]. At the simplest possible level the strong sector

can be characterized by one scale of confinement, mρ, corresponding to the lightest vector

resonances, and one coupling gρ, possibly related to the number of colors in a QCD-like

theory. The decay constant of the pNGB Higgs satisfies,

mρ = gρf , (2.3)

and the effective action is determined, in absence of unnatural cancellations, by simple

power counting rules. The vector resonances contribute at tree-level to the S parameter

1Notice that in order to accommodate the correct fermion hypercharges, an extra U(1)X global symmetry

is needed. The presence of this extra symmetry does not modify the general discussion of sections 2 and 3,

so we will neglect it for simplicity. We will however include the complete symmetry structure in the explicit

models studied in sections 4 and 5. See refs. [21, 22] for further details.
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of Electro-Weak Precision Tests (EWPT) and for this reason their mass is constrained to

the multi-TeV range, mρ & 3 TeV being a relatively safe choice. Therefore the coupling gρ
is preferentially large because this allows to decouple the vectors without raising f , which

would require more fine-tuning. Indeed we can hope to build a reasonably natural theory,

as we will discuss below, only for f . 1 TeV which implies gρ & 3.

We find it necessary to extend the framework of ref. [20] by introducing a different

scale for the fermionic resonances, or at least for the ones associated to the top quark, i.e.

the top partners. The typical mass of the top partners is denoted as mψ, the associated

coupling gψ is defined by

mψ = gψf . (2.4)

We will see that taking mψ < mρ is practically mandatory to obtain a light Higgs with

a mild tuning of the parameters. Importantly, in the 5d holographic models the fermion

masses and couplings are tied to the ones of the vectors because they both originate geo-

metrically from the size of the extra dimension. As such, gψ < gρ is difficult to realize in

5d constructions. A simple way to construct explicit models implementing this scenario is

to employ the more general 4d constructions of refs. [21, 22].

Within the hypothesis of partial compositeness the couplings g, yL and yR are re-

sponsible for the generation of all the interactions among the elementary states and the

composite Higgs. In particular the SM Yukawas, at leading order in yL,R, take the form

ySM '
yLyR
gψ

' εL · gψ · εR , (2.5)

where we have introduced the mixings εL,R = yL,R/gψ of the left and right chiralities of

SM quarks. In general the quantities above are matrices in flavor space but in this paper

only the third generation will be relevant. There are few caveats with the above formula

that should be kept in mind. First of all it is valid only in an expansion in the mixings,

εL,R < 1. Therefore it will be in practice insufficient for the top quark when we will consider

the case gψ ∼ yL,R favored by a light Higgs. However, even if it can be violated at O(1), the

formula will still provide a valid parametric estimate. Second, the formula is parametrically

violated if some of the top partners, with specific quantum numbers, are accidentally lighter

than the others [18]. We will give below, in eq. (3.8), the correct formula for this case.

Notice that it is essential to include properly the effect of the light top partners in order

to understand how a light Higgs can be obtained (at the price of tuning, however) in the

5d holographic models where gψ ' gρ. Finally, notice that eq. (2.5) also holds in the case

of total tR compositeness if setting εR = 1. In this case one simply finds yt ' yL.

2.2 Higgs potential

Loops of elementary fields generate a potential for the Higgs because the elementary-com-

posite interactions of eqs. (2.1) and (2.2) break explicitly the SO(5) global symmetry.

While this radiative contribution to the potential is unavoidable, other contributions may

also exist, for example explicit symmetry breaking effects in the strong sector analogous

to quark masses in QCD. These would not change the analysis substantially and we will
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neglect them here. The largest contributions to the potential are typically associated to

the largest couplings in the SM, the top Yukawa and the gauge couplings

V (h) = V (h)top + V (h)gauge. (2.6)

The gauge contribution would be sub-leading for gρ ∼ gψ, and for this reason it is often

ignored. Nevertheless we will include it in what follows because it can be of similar size

as the fermion contribution or even dominant in the region gψ < gρ preferred by a light

Higgs. Similarly the bottom right quark contribution could also be relevant if the fermionic

coupling in the bottom sector is large, gbottom
ψ ∼ gρ > gψ. A large coupling in the bottom

sector is suggested by EWPT, and in particular by the need of keeping under control the

tree-level corrections to the ZbLbL vertex.

In an expansion in the elementary-composite interactions the Higgs potential is strongly

constrained by the SO(5) symmetry. This is best understood by promoting g, yL and yR to

spurions and noticing that the potential must formally respect the SO(5) symmetry under

which both the Higgs and the spurions transform [17, 21]. With this technique it is possible

to establish, order by order in the number of spurion insertions, the functional form of the

Higgs potential. Making also use of naive power counting to estimate the overall size one

finds, for the gauge contribution

V (h)gauge ∼
9 g2

64π2

m4
ρ

g2
ρ

s2
h , (2.7)

where sh = sinh/f . Higher order terms in the spurion expansion are small, being sup-

pressed by (g/gρ)
2. Notice that Vgauge is rather model independent because the quantum

numbers under SO(5) of the g spurion in eq. (2.1) are fixed.

The fermionic contribution, on the contrary, is not universal because the quantum

numbers of yL,R depend on the representation of the fermionic operators OL,R. Once the

choice of representations is made, the classification of the invariants can be carried out in

the same way as for the gauge fields. We can obtain the same result in a somewhat more

explicit way by first writing down the effective action for the elementary quarks obtained

by integrating out the strong sector, and afterwards computing the Coleman-Weinberg

one-loop Higgs potential. Neglecting higher derivative terms, the structure of the effective

Lagrangian obtained integrating out the heavy fermions is schematically,

L =

(
1 + ε2L

∑
i

ai fi(h/f)

)
q̄L /DqL +

(
1 + ε2R

∑
i

bi gi(h/f)

)
q̄R /DqR

+ ytf

(∑
i

cimi(h/f)

)
q̄LqR + h.c. , (2.8)

where the functions fi, gi and mi are trigonometric polynomials (respectively even, fi and

gi, and odd, mi) determined by the spurionic analysis for each given choice of the fermion

representation. In practice, the number of allowed polynomials is extremely limited in

concrete models. As explained in ref. [17] the number of say LL invariants corresponds to

the number of singlets under SO(4) contained in the product of rL × rL minus one, where
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IL, IR ILL, IRR, ILR

rL = rR = 5 sin2(h/f) sin2n(h/f) with n = 1, 2

rL = rR = 10 sin2(h/f) sin2n(h/f) with n = 1, 2

rL = rR = 14 sin2(h/f), sin4(h/f) sin2n(h/f) with n = 1, 2, 3, 4

rL = rR = 4 sin2(h/2f) sin2n(h/2f) with n = 1, 2

Table 1. table with all possible invariants appearing in the Higgs potential. For the case with

totally composite tR only the IL and ILL invariants are relevant.

rL is the SO(5) representation. For instance in the case of the MCHM5 there is only one

f1 = s2
h, one g1 = s2

h and m1 = sin(2h/f). The coefficients ai, bi and ci are a priori of order

one but their values can be reduced either by tuning or if the fermionic sector respects

some (approximate) global symmetry. We will give an example of this below.

The loops of SM fermions are UV divergent within the low energy theory described by

eq. (2.8), but they are cut-off by the non-local form factors which account for the presence

of the fermionic resonances of the full theory. The cutoff scale is provided by the scale mψ

of the fermionic resonances and therefore the Higgs potential takes the form

Vleading ∼
Nc

16π2
m4
ψ

∑
i

[
ε2L I

(i)
L (h/f) + ε2R I

(i)
R (h/f)

]
,

Vsub−leading ∼
Nc

16π2
m4
ψ

∑
i

[
y2
t

g2
ψ

I
(i)
LR(h/f) + ε4LI

(i)
LL(h/f) + ε4RI

(i)
RR(h/f)

]
. (2.9)

Notice that the term proportional to y2
t in the above equation is of order ε2Lε

2
R (see eq. (2.5)),

i.e. of the same order as the ε4L,R ones. The origin of the invariant trigonometric polynomials

I(i) can be tracked back to the fi, gi and mi of eq. (2.8), and again their number is quite

limited in explicit models. In the case of the MCHM5 there is only one quadratic invariant,

IL = IR = sin2(h/f), and a second one only emerges at the quartic order, ILL = sin2(2h/f).

The invariants are listed in table 1 for the various cases considered in the present paper.

One caveat to eq. (2.9) is that in the limit of full compositeness, εR ∼ 1 for the top

right, there are no contributions in ε2R or ε4R because the state is part of the strong sector

respecting the global symmetries. In this case the y2
t term in the second line of eq. (2.5)

becomes of the same order of the formally leading ε2L because, as mentioned above, yL
becomes of order yt. Indeed in the case of total tR compositeness there is a single source

of breaking of global symmetries, the mixing of the left doublet. Therefore the expansion

is truly in ε2L. Another important remark is that the very notion of leading and subleading

terms becomes useless in the limit of very small fermionic coupling, gψ ∼ yL,R because the

expansion in εL,R looses its validity. In this case, similarly to what we mentioned below

eq. (2.5) concerning the estimate of the Yukawa couplings, eq. (2.9) can be violated at O(1)

but still it provides a valid estimate of the size of the Higgs potential.
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3 Tuning and mass of the composite Higgs

The Higgs potential in eq. (2.9) generically has its minimum for 〈h〉 ∼ f . The phenomeno-

logical success of the model requires instead 〈h〉 < f , i.e. that the parameter

ξ =

(
v

f

)2

= sin2 〈h〉
f
, (3.1)

is smaller than one. As a benchmark in this paper we will mainly focus on the relatively

conservative choice ξ = 0.1, which corresponds to f ' 800 GeV. Achieving this requires

unavoidably some cancellation. However the actual level of fine-tuning ∆ which has to

be enforced crucially depends on the structure of the Higgs potential, which in turn is

determined by the choice of the fermionic representation and also by the size of the fermionic

coupling gψ. For what concerns the fine-tuning issue the composite Higgs models are

conveniently classified into three categories, which we will describe below. The popular

MCHM4, MCHM5 and MCHM10 all belong to the first class and they suffer of an enhanced

(or “double”) amount of tuning. The tuning will be smaller in the other two categories, it

will be of order

∆ = ∆min =
1

ξ
. (3.2)

We refer to ∆min = 1/ξ as the “minimal tuning” because we expect that it provides the

absolute lower bound for the tuning required by any model of composite Higgs, for sure

this is the case for all the models of the present paper.

3.1 Double tuning

As exhaustively discussed in ref. [18], a parametrically enhanced fine-tuning is needed in

all the models where a single invariant is present in the potential at the leading order in

εL,R. In this case the subleading terms must be taken into account in order to achieve a

realistic EWSB. For instance for rL = rR = 5 or 10 table 1 shows that the potential has

the form2

V 5+5 = Vleading + Vsub−leading =
Nc

16π2
m4
ψε

2
[
(aL + aR)s2

h + (bLε
2 + bRε

2)s4
h

]
, (3.3)

where aL,R and bL,R are model-dependent O(1) numerical coefficients. In the equation

above we have assumed, for simplicity, εL ' εR = ε = y/gψ, however nothing would be

gained if relaxing this assumption. Indeed it is possible to show that the case yL ' yR
discussed in the present section is the most favorable one, both the fine-tuning and the

Higgs mass would increase for large separation yL � yR or yR � yL.

The tuning of the Higgs VEV, provided the signs of the coefficients can be freely

chosen, requires ∣∣∣∣ aL + aR
bLε2 + bRε2

∣∣∣∣ = 2 ξ . (3.4)

2Very similar considerations hold in the case rL = rR = 4, the only change is in the functional form of

the leading and subleading terms.
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2mψ

mψ

mp

Figure 1. Schematic representation of the spectrum of the fermionic resonances.

The amount of cancellation implied by the equation above is

∆5+5 =
max(|aL|, |aR|)
|aL + aR|

' 1

ξ

1

ε2
, (3.5)

and it is parametrically larger than ∆min for ε < 1. This accounts for the “double” tuning

which has to be performed on the potential in eq. (3.3): one must first cancel the ε2 terms

making them of the same order of the formally subleading ε4 ones, and afterwards further

tune the ε2 and ε4 contributions. Once the minimization condition is imposed we can easily

obtain the physical Higgs mass,

m2
h =

8Ncg
4
ψf

2

16π2
ξ(1− ξ)ε4 (bL + bR) ' Nc

2π2
v2g4

ψε
4 . (3.6)

The advantage of the doubly tuned models, which helps in obtaining a light Higgs boson,

is that the Higgs quartic coupling is also automatically reduced in the tuning process. In

spite of the fact that the potential is generated at O(ε2) indeed the Higgs mass-term scales

like ε4 rather than ε2.

However the reduction of mh is not sufficient for a 125 GeV Higgs, one extra ingredient

is needed. Suppose indeed that we apply the naive estimate of eq. (2.5) for the top Yukawa.

Since εL ' εR = ε we would obtain ε '
√
yt/gψ and therefore, taking gψ ∼ gρ ∼ 5 as

reference value, a too heavy Higgs

m5+5
h '

√
Nc

2π2
y2
t g

2
ψv

2 = 500 GeV
(gψ

5

)
. (3.7)

For gψ & 2, a realistic Higgs mass requires that we deviate from the estimate of eq. (2.5),

and this can occur if the spectrum of the top partners is non-generic. Indeed, suppose that

one of the partners, with the appropriate quantum numbers to mix strongly with the left-

or right-handed top quark,3 becomes anomalously light, with a mass mp slightly smaller

than mψ as depicted in figure 1. Given that the Yukawa coupling arises from the mixing

with the partners, its size will be controlled by the mass mp of the lightest state. Therefore

3In the cases of the 5 + 5 and of the 10 + 10 these states must be in the 4 and/or in the singlet

representation of SO(4).
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eq. (2.5), that assumes a common mass mψ for all the partners, needs to be modified and

becomes [18]

yt ' yLyR
f

mp
. (3.8)

This estimates reduces to eq. (2.5) if mp ' mψ = gψf , but it can be parametrically different

in the case of a large separation mp < mψ. With the above equation and assuming yL ' yR
we obtain y '

√
ytmp/f and therefore a Higgs mass

m5+5
h '

√
Nc

2π2

ytmp

f
v = 100 GeV

(
ytmp

f

)
. (3.9)

A realistic Higgs is thus obtained if some of the top partners are light, at least below around

1 or 2 times f , i.e. . 2 TeV for ξ = 0.1.

No restriction is instead found on the overall scale mψ = gψf of the other fermionic

resonances. As long as the top partners are light a 125 GeV Higgs can be obtained even if

mψ is large, indeed this mechanism is at work in the 5d holographic models where mψ is

tied to mρ & 3 TeV. The price to pay, however, is a large tuning. Eq. (3.5) indeed becomes

∆5+5 ' 1

ξ

gψ
yt

mψ

mp
=

1

ξ

√
Nc

2π2

g2
ψv

mh
=

1

ξ
· 20

(
125 GeV

mh

)(
gψ
5

)2

, (3.10)

and the tuning easily overcomes 100 for a realistic value of ξ.

Notice that in the above discussion we have implicitly assumed the existence of a

separation among gψ and the elementary-composite couplings y, i.e. y < gψ. The situation

is completely different if we instead assume that all the fermionic couplings are of the same

order, i.e. gψ ' y ' yt = 1. In this case all the terms in the effective potential become

equally large and the issue of double tuning gets nullified, indeed we recover ∆5+5 = ∆min

from eq. (3.5). Moreover a light Higgs becomes natural (see eq. (3.7)) and there is no need

to rely on anomalously light partners with specific quantum numbers. In this case all the

fermionic resonances are generically light, with mass mψ ' f , we will consider explicit

models with these features in the following section.

3.2 Minimal tuning

The issue of double tuning appears to be the result of an unfortunate coincidence and not

much effort is needed to avoid it. Indeed it is enough to chose the fermionic representations

in such a way that two or more invariants are allowed in the leading order potential. Sticking

to irreducible representations the simplest choice is rL = rR = 14. Following table 1 and

again assuming εL ' εR the leading order potential has the form

V 14+14 = Vleading =
Nc

16π2
m4
ψε

2
[
(aL + aR)s2

h + (bL + bR)s4
h

]
, (3.11)

and it can be adjusted to give a realistic EWSB without need of relying on the subleading

terms. The minimization condition is∣∣∣∣aL + aR
bL + bR

∣∣∣∣ = 2 ξ , (3.12)
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and requires a degree of tuning

1

∆
=

|aL + aR|
max(|aL|, |aR|)

= 2 ξ
|bL + bR|

max(|aL|, |aR|)
. (3.13)

Therefore, in the absence of additional cancellations among bL and bR, the model has

minimal tuning ∆14+14 ' ∆min = 1/ξ.

The scenario however becomes problematic when we take into account that the Higgs

must be light. Indeed the estimate of m2
h is now

m2
h '

Nc

2π2
v2g4

ψε
2 , (3.14)

and it scales like ε2 and not like ε4 as in the case of double tuning. Adopting the naive

estimate in eq. (2.5) for yt, which implies ε '
√
yt/gψ, the Higgs is extremely heavy

m14+14
h '

√
Nc

2π2
ytg3

ψv
2 = 1 TeV

(
gψ
5

)3/2

. (3.15)

Of course we could rely on anomalously light top partners to reduce mh as we did in the

case of double tuning. However this mechanism can not reduce mh indefinitely because the

partners can not be arbitrarily light. One unavoidable contribution to their mass comes

indeed from the mixing with the elementary states, after diagonalizing the mixing one has

m2
p = m2

∗ + y2f2 where m∗ is the contribution to the mass that comes from the strong

sector. Even if m∗ was taken to vanish we will always have mp > yf due to the mixing

with the elementary states. From eq. (3.8) we thus obtain

y2 ' yt
mp

f
≥ yty ⇒ y ≥ yt . (3.16)

Therefore in no case the elementary-composite mixing can go below yt. This bound is not

significant in the doubly-tuned case because it corresponds to a very low Higgs mass. For

a minimally tuned model like the one at hand instead the bound gives

mh &

√
Nc

2π2
ytgψv = 500 GeV

(
gψ
5

)
. (3.17)

The Higgs is unavoidably too heavy in this class of models even if light top partners

are present.

However, notice that the same caution remark given at the end of the previous section

applies to the present case as well: when gψ ∼ y ∼ yt = 1 all the issues outlined above

disappear. We expect no difficulty in obtaining a light Higgs in this case, the prediction

is again that all the fermionic resonances will have to be light, slightly lighter than the

vector ones.

3.3 Minimal tuning with composite tR

Another interesting possibility which can alleviate the issue of a too heavy Higgs, is that

the tR is a completely composite chiral state that emerges from the strong sector. In this

– 11 –
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case the potential is entirely generated by the left coupling yL. By looking at table 1 we

see that a minimally tuned potential can be obtained also with a completely composite tR
if we assign the left fermionic operator to the 14. The potential is

V 14 = Vleading =
Nc

16π2
m4
ψε

2
L

[
a s2

h + b s4
h

]
, (3.18)

where a and b are, a priori, O(1) coefficients. To tune the electro-weak VEV we have to

require that the coefficient a can be artificially reduced to enforce the condition∣∣∣a
b

∣∣∣ = 2 ξ , (3.19)

which corresponds to a cancellation

∆14 =
1

|a| '
1

b ξ
. (3.20)

Provided that no additional cancellation is enforced on b the tuning is minimal

∆14 ' ∆min =
1

ξ
. (3.21)

The Higgs mass-term scales like ε2 as in the previous section, i.e.

m2
h '

Nc

2π2
bv2g4

ψε
2 . (3.22)

The difference with the previous case is that now εL is smaller, because for a totally

composite tR the top Yukawa is simply

yt ' yL ⇒ εL '
yt
gψ

. (3.23)

Therefore the Higgs mass is somewhat smaller,

m14
h '

√
b

√
Nc

2π2
y2
t g

2
ψv

2 =
√
b 500 GeV

(
gψ
5

)
, (3.24)

but not enough. Notice that no help can come in this case from anomalously light top

partners because the absolute lower bound yL ≥ yt derived in eq. (3.16) is already sat-

urated. We conclude that the Higgs is typically heavy also in the models with total tR
compositeness. Once again, the only possibility to obtain a 125 GeV Higgs with a minimal

amount of tuning is to lower the fermionic scale by taking gψ ∼ yL ' yt = 1.

The alternative way to obtain a light Higgs is to reintroduce additional tuning to

lower the Higgs mass. In the case at hand this could be achieved by artificially reducing

the parameter b that controls the Higgs mass (see eq. (3.24)), i.e. by taking4

b ' 1

16

(
mh

125 GeV

)2( 5

gψ

)2

. (3.25)

4An artificial reduction of mh through the tuning of the quartic term might be enforced also in the cases

–eq.s (3.3), (3.11)– considered in the previous sections. We will not discuss this possibility for shortness,

and also because it will never be relevant in the explicit models described in the following. In particular, we

find that in our explicit realization of the 5 + 5 doubly tuned scenario the structure of the Higgs potential

is constrained in a way that an additional cancellation of the quartic cannot occur at any point of the

fundamental parameter space.
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This obviously enhances the fine tuning. From eq. (3.20) we obtain

∆ ' 1

ξ

Nc

2π2
y2
t g

2
ψ

v2

m2
h

' 1

ξ
· 16

(
125 GeV

mh

)2(gψ
5

)2

. (3.26)

The level of tuning of this scenario is comparable with the one of doubly-tuned models

reported in eq. (3.10), however there is a crucial difference among the two cases. Indeed

in the case of section 3.1 the 125 GeV Higgs requires the existence of anomalously light

partners, therefore even if the fermionic scale mψ is high some of the resonances will be

light and easily detectable at the LHC. In the present case instead there is no need of light

partners and all the fermionic and gauge resonances could be heavy, lying in the multi-TeV

region. This kind of models evade the connection among light Higgs and light resonances

and they could even escape the direct LHC searches. Of course they are tuned, but the

level of fine-tuning is comparable with the one of the standard MCHM4,5,10 constructions.

Double tuning with composite tR. Another logical possibility that might be consid-

ered is the one of doubly tuned models with composite tR, for example a model where the

qL mixes with a 5 of SO(5) like the one discussed in ref. [31]. Contrary to other models

in the literature in this case tuning of the electo-weak VEV requires a cancellation in the

potential between terms controlled by y2
t and sub-leading ones proportional to y4

t . The esti-

mates for this case are easily extracted from section 3.1 by remembering that now yL ' yt,
and read

∆5 =
1

ξ

g2
ψ

y2
t

=
1

ξ
· 25

(
gψ
5

)2

, mh
5 =

√
Nc

2π2
y2
t v ' 100 GeV . (3.27)

Note that in this case the Higgs mass is independent of the strong sector coupling. In

this setup one thus expects sizable tuning, comparable with the one of the MCHM4,5,10,

but no need for anomalously light top partners to obtain a light enough Higgs. We will

not further discuss this option because it is difficult to realize it an explicit (holographic

or deconstructed) calculable model. In the minimal realizations, indeed, we find that the

Higgs potential is too constrained and that there is not enough freedom in the parameter

space to tune ξ to a realistic value.

4 Explicit realizations

In the previous sections we performed a general model-independent analysis of the fine-

tuning in composite Higgs scenarios. We identified three broad classes of models based

on the structure of the Higgs effective potential. Each class leads to different predictions

for the Higgs mass and for the amount of tuning in the Higgs potential,as summarized

in table 2. The aim of the present section is to verify the validity of the general analysis

by studying explicit models. The analysis will also allow us to quantify the amount of

deviation one may expect from the general estimates.

We will use the simple but complete 4d implementations of the composite Higgs idea

proposed in refs. [21] and [22]. These realizations are minimal in the sense that only a

limited number of composite resonances are included to ensure the calculability of the
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m2
h mh (GeV) ∆

Minimal Tuning 14L + 14R
Nc
2π2

ytg
3
ψv

2 125
( gψ

1.2

)3/2 1

ξ

Double Tuning 5L + 5R, 10L + 10R
Nc
2π2

y2t g
2
ψ v

2 125
( gψ

1.3

) gψ
yt

1

ξ

Composite tR 14L + 1R
Nc
2π2

y2t g
2
ψ v

2 125
( gψ

1.3

) 1

ξ

Gauge tuning
9

16π2
g2g2ρv

2 125
( gρ

3.2

) 9

8π2
g2g2ρ

v2

m2
h

1

ξ

Table 2. Estimates for Higgs mass and tuning in various composite Higgs models discussed in

section 3. For each class the possible embeddings of qL and tR are also described. The table

only include the minimal tuning required in each scenario and does not take into account possible

additional tuning which could lower the Higgs mass.

Higgs effective potential. Moreover these are the states potentially accessible at the LHC.

Keeping in mind unavoidable differences in the two constructions, to ensure the finiteness

of the effective potential at one-loop level it is sufficient to couple the SM fields to two

SO(5) multiplets, leading to a structure with “two levels” of composite states. For details

on both models see appendix B. In what follows the choice between the two realizations

is dictated by convenience. In all cases, we have checked that the two formulations agree

within the expected cut-off dependent effects. The comparison also allows to estimate the

model dependence of the results.

In order to evaluate quantitatively the tuning in a given model we adopt the definition

of fine-tuning given in ref. [23]

∆ = max
i

∣∣∣∣∂ logmZ

∂ log xi

∣∣∣∣ , (4.1)

where xi are the parameters of the theory, and mZ = g/ cos(θW )fsh/2, which actually

establishes the size of 〈h〉. Keeping fixed f and the gauge couplings, eq. (4.1) is exactly

equivalent to the tuning on sh and coincides with the definition of tuning usually adopted in

the composite Higgs scenarios. The choice of the Barbieri-Giudice measure has been made

also in the view of comparing the Composite Higgs tuning with the one of supersymmetric

scenarios. For example in the MSSM the tuning is of order 100 or greater, see ref. [24–29]

for a partial list of references.

In the CHM we do not know which are the fundamental variables of the theory that we

should vary to compute the tuning. Nevertheless we expect that, for a generic choice of the

parameters, the logarithmic derivative will typically reproduce the amount of tuning that

we defined in the previous section as the degree cancellation in the Higgs potential. For the

analysis of the explicit models we will compute the tuning by varying all the parameters

of the “fundamental” Lagrangian. For the numerical computation it is useful to notice

that the tuning can be extracted directly from the Higgs potential. Using the minimum
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condition V ′(sh) = 0, the tuning measure can be cast as follows

∆ = max
i

∣∣∣∣2xish c2
h

f2m2
h

∂2V

∂xi∂sh

∣∣∣∣ . (4.2)

Using this formula one can readily derive the tuning estimates of section 3.

When relevant we will also include in the tuning the gauge contribution. One inter-

esting point is that the gauge contribution to the potential, often considered sub-leading,

can be relevant in the region of small fermion mass scale, mψ < mρ. The amount of tuning

due to the gauge can be easily estimated. In the examples that follow the potential can be

approximated as

V ≈ αs2
h − βs2

hc
2
h . (4.3)

The Higgs VEV is determined by the condition s2
h = (β−α)/(2β), while the Higgs mass is

m2
h '

8β

f4
v2. (4.4)

In the limit mψ < mρ the gauge loops can give a sizable contribution to α in eq. (4.3), and

hence to the Higgs mass:

δmh ∼
3

4π
g gρv = 120 GeV

(gρ
3

)
. (4.5)

This contribution is of the size of the measured Higgs mass (125 GeV) for gρ ' 3. Using

eq. (2.7) with x = m2
ρ we can also quantify the tuning associated to gauge contributions as

∆gauge ≈
1

ξ

9

8π2
g2g2

ρ

v2

m2
h

. (4.6)

With obvious identifications of the couplings, one can notice that the estimate in eq. (4.6)

has exactly the same structure of the fermionic tuning in the minimally tuned models with

composite tR (see eq. (3.26)). Given the bound on the S-parameter, mρ & 2.5 TeV, eq. (4.6)

implies ∆ & 10 for a realistic Higgs mass. This is an irreducible source of tuning that exists

in all models where the Higgs is a pNGB even beyond partial compositeness and therefore

provides a lower bound.

In what follows we will check the agreement of the numerical results obtained in two

explicit constructions with the general estimates of the tuning and of the Higgs mass.5

As we will see the agreement is very good in the large-gψ region while some deviation is

found in the small-gψ region. We will present our scans for a reference value f = 800 GeV,

corresponding to ξ = 0.1. As explained in ref. [30], these results are easily rescaled to other

values of f as long v/f . 1/2. This can be obtained by rescaling by the same amount all

the dimensionful parameters of the Lagrangian. The fact that the configuration is already

tuned, allows us to adjust ξ = v2/f2 to the desired value by small perturbations of the

parameters. In this way we find points where the Higgs mass remains unchanged, up to

corrections of order v2/f2. Note also that in so doing the tuning grows proportionally to

f2 as it immediately follows from eq. (4.2).

5As an operative definition of the fermionic coupling gψ we adopt the geometric mean of the mass

parameters of the Lagrangians divided by f . We have checked that other definitions give comparable results.
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4.1 Double tuning: CHM5

As a first explicit example we focus on the class of theories with “double tuning”. In

particular we consider one of the models widely discussed in the literature, the CHM5,

where the SM fermions couple to composite states in the fundamental SO(5) representation,

the 5. The effective Lagrangian for the SM fields has the general form,

Leff = q̄L/p

[
Πq

0 +
s2
h

2

(
Πq1

1 ĤcĤc† + Πq2
1 ĤĤ†

)]
qL

+ ūR/p

(
Πu

0 +
s2
h

2
Πu

1

)
uR + d̄R/p

(
Πd

0 +
s2
h

2
Πd

1

)
dR

+
shch√

2
Mu

1 q̄LĤ
cuR +

shch√
2
Md

1 q̄LĤdR + h.c. .

(4.7)

where Π’s are form factors functions of p2 depending on the model, see appendix. Ĥ

denotes the normalized Higgs doublet: Ĥ = ha/(
∑ |ha|2)1/2. The kinetic terms contain a

single functional dependence, s2
h. This confirms that the model belongs to the first class

described in section 3 where subleading terms must be used to tune the electro-weak VEV.

Let us now compare the numerical results with the general predictions derived in

section 3. For the scans we chose ξ = 0.1 and restricted the composite-fermions mass

parameters to the range [−10f, 10f ], while the coupling of the gauge resonances was fixed

to the value gρ = 5. The top mass was set to the value mt = mMS
t (2 TeV) = 150 GeV,

which corresponds to mpole
t = 173 GeV, and the bottom mass was loosely fixed to the value

mb ' 3 GeV.

First of all we consider the region with large values of gψ (gψ & 4). In this case, in

the absence of anomalously light top partners, the Higgs mass is predicted to be relatively

heavy. The plot in the left panel of figure 2 confirms this expectation and shows that the

estimate in eq. (3.7) correctly describes the upper bound of the Higgs mass as a function

of gψ. Notice that a light Higgs can still be obtained at large gψ if some top partners are

lighter than the overall scale mψ = gψf , as explained in the previous section.6 This comes,

however, at the price of a larger tuning, as confirmed by the scatter plot in the right panel

of figure 2.

The parametric estimate of the tuning reported in eq. (3.10) scales quadratically with

gψ. Therefore, to allow a comparison with the numerical scan, in the scatter plot we

normalized the tuning to (gψ/5)2. Since 4 . gψ . 8, from the vertical axis we can

approximately read the tuning ∆ of the model. For a light Higgs this is typically above

100, as already found to happen in the 5d versions of this model [15]. The estimate is shown

as the red line in right plot of figure 2. We see that it is in fair agreement with the numerical

results which typically fall within a factor 2 from the estimate. Some configurations exist,

however, in which the logarithmic derivative has a value significantly below the tuning

estimate. This spread is due to peculiar structure of the leading term of the Higgs effective

potential, which can give rise to a sort of “factorized” tuning. The mechanism is simple,

the leading term in the effective potential, at least in some regions of the parameter space,

6An explicit numerical check of this correlation has been presented in refs. [18, 21].
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Figure 2. Scatter plots for the CHM5 set-up corresponding to ξ = 0.1 for large values of gψ. In the

left panel we show the Higgs mass as a function of gψ and in the right panel the amount of tuning

as a function of the Higgs mass. The red lines correspond the general estimates given in eq. (3.7)

and eq. (3.10).

has an approximately factorized structure and the tuning can be achieved by partially

cancelling each factor in an independent way. Although the total amount of cancellation

is always the same at fixed gψ and Higgs mass, the logarithmic derivative is not able to

capture this “factorized” tuning and gives a smaller value for ∆.

We now consider the region of parameter space with small gψ, that is with light

composite-fermion mass scale. In this case εL ∼ εR ∼ 1, thus the expansion in the

elementary-composite mixings breaks down and all the terms appearing in the Higgs effec-

tive potential are potentially of the same order.7 This opens up the possibility to obtain

a suitable minimum, with no additional tuning, by using the sub-leading terms in the

potential, whose size is now comparable with the leading order ones.

Notice that, differently from the large-gψ case, in which the top-partners contributions

dominate the Higgs effective potential, in the present situation the corrections due to

the bottom partners and to the gauge fields can have a significant impact. Indeed the

estimates show that, in a typical point of the parameter space, the contributions of the

bottom partners and of the gauge fields to the Higgs mass can be of order 100 GeV. In

the case of the bottom this sizable contribution is explained by the fact that configuration

with relatively heavy partners are favored to reduce the corrections ZbLbL coupling. A

naive estimate gives

δgZbLbL
gSM
ZbLbL

' 2 · 10−3

(
4π

gbottom
ψ

)
ξ , (4.8)

suggesting a lower value gbottom
ψ & 5 on the scale of the bottom partners in order to satisfy

the experimental bounds. In our numerical analysis we will not impose a strict bound on

the bottom partner masses, but nevertheless we will give a preference to configuration with

a sizable value of gbottom
ψ .

7Notice that, for realistic values of the Higgs compositeness ξ � 1, the expansion of the potential as

a series in sin(h/f) is still possible. This implies that the results of the general analysis of the previous

sections remains approximately valid.
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Figure 3. Scatter plots for the CHM5 set-up corresponding to ξ = 0.1 for small gψ (we restricted

the top-partner mass parameters to the range [−3f, 3f ]). In the left panel we show the Higgs mass

as a function of gψ and in the right panel the amount of tuning as a function of the Higgs mass

for the same sample points. The red line in the left panel corresponds to the estimate given in

eq. (3.7).

As predicted by the estimates (see eq. (3.7)), the Higgs mass can easily take the

measured value mh ' 125 GeV if the top partners are light (gψ . 2). This can be clearly

seen from the scatter plot in the left panel of figure 3, where the Higgs mass is plotted as a

function of gtop
ψ . A sizable portion of the parameter space at small gψ shows an amount of

tuning in agreement with the estimate ∆ ∼ ξ−1 (see the plot in the right panel of figure 3).

A significant amount of spread is however present and several configurations show a degree

of tuning much higher than the estimate. Notice that in the plot we only included the tuning

related to the fermionic contribution to the Higgs potential. As discussed previously, the

gauge contribution implies an irreducible tuning ∆ & 10.

4.2 Minimal tuning with composite tR

As a second explicit example, we consider a model belonging to the class of minimally-

tuned scenarios with composite tR. A set-up with these properties can be realized by

coupling the left-handed elementary fermions to composite states in the symmetric SO(5)

representation, the 14. The new feature of this representation is that its decomposition

under SO(4),

14 = 9 + 4 + 1 , (4.9)

contains 3 representations. As a consequence, 2 different Higgs dependent structures will

appear proportional to the left handed mixing. The effective action for the SM fields

now reads,

Leff = q̄L/p

[
Π14L

0 +
c2
h

2
Π14L

1 +
s2
h

4
Π14L

1 ĤcĤc + s2
hc

2
hΠ14L

2 ĤcĤc

]
qL

+ t̄R/p
[
Π1R

0

]
tR + shchq̄LĤ

c [M ] tR + h.c. .

(4.10)

Note that only one field dependence appears in the LR terms, as also follows from group-

theory considerations since only one SO(4) invariant appears in the product of 14 × 1.

This is an important feature because it avoids dangerous Higgs mediated flavor-changing

neutral currents [17].
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Figure 4. Left panel: scatter plot of the Higgs mass as a function of gψ for ξ = 0.1 in the CHM14

set-up with composite tR. Right panel: scatter plot showing the amount of tuning as a function of

the Higgs mass for the same data set. The solid red lines show the estimates of the Higgs mass and

the tuning with yL = yt, while the dot-dashed ones correspond to the choice yL =
√

2/5yt and the

dotted ones to yL = 4yt. The black dots correspond to the points with yL ≤ 1, while the gray ones

have yL > 1.

Let us now compare the numerical results with the estimates derived in the general

analysis of the previous sections. For the scans we set ξ = 0.1 and we chose randomly all the

composite-sector mass parameters in the range [−10f, 10f ] and the elementary-composite

mixing yL in the range [0, 4f ]. The top mass if fixed to the value mt = 150 GeV.

As a first observable we consider the Higgs mass. The estimates derived in the general

analysis predict that a linear correlation exists between mh and the fermion mass scale

parametrized by gψ (see eq. (3.24)). The numerical analysis, however, shows that a signif-

icant amount of spread is present in the explicit model (see left panel of figure (4)). The

origin of this deviation can be easily understood. We verified that the estimate for the

Higgs mass in eq. (3.22) is always in good agreement with the numerical results. On the

other hand, the relation between the top mass and the elementary-composite mixing yL in

eq. (3.23) can be significantly violated. This can be simply understood by inspecting the

approximate expression for the top mass

m2
t '

5

16
y2
Lf

2 mR

m2
R +m2

12/3

sin2

(
2v

f

)
, (4.11)

where mR encodes the mass mixing between the tR and the other composite states and

m12/3 is the mass of the resonance corresponding to the singlet component of the 14. An

accidentally small value of the mixing mR implies a suppression in the top mass, which

must be compensated by a larger value of yL. Using the approximate analytic expression

for the top mass one can derive the bound

mt .

√
5

2
yLv , (4.12)

which implies a lower bound on yL:

yL &

√
2

5
yt ' 0.6 . (4.13)
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Figure 5. Scatter plots in the CHM14 set-up with composite tR for ξ = 0.1 in the region of nearly

degenerate 9 and 4 (we allow for a maximal 10% split in the mass parameters). In the left panel we

show the Higgs mass as a function of gψ and in the right panel the mass of the lightest fermionic

resonance as a function of the Higgs mass. For the colors of the points and the meaning of the red

lines see the caption of figure 4.

Although the above inequality can be saturated, in a large part of the parameter space

some cancellation occurs and a value of yL significantly larger than the minimal one is

required. The spread on yL determines a corresponding spread in the relation between

the Higgs mass and the fermion scale gψ, following eq. (3.22). The estimate is in very

good agreement with the numerical results, as can be seen in figure 4, where we show the

scatter plot of the Higgs mass as a function of gψ. If we restrict our scan to regions with a

specific value of yL then, in the absence of spurious cancellation, the linear relation given

in eq. (3.22) is satisfied. For instance, in the left panel of figure 4 it is evident that the

points with yL ≤ yt (the black dots) fall typically in the region predicted by the estimates.

As already pointed out in the general analysis, there are only two possibilities to get

a realistic Higgs mass: considering the region of the parameter space in which all the

fermionic resonances are light (gψ . 2), or allow some extra tuning which cancels the

overall size of the effective potential. The relation between the value of the Higgs mass

and the amount of tuning is shown in the right panel of figure 4, in which we give the

scatter plot of the tuning, defined in eq. (4.1), as a function of the Higgs mass. Also in

this case one can see that the spread in the value of yL determines a corresponding spread

in the value of the tuning. In particular the tuning grows as y2
L and its estimate can be

derived from the general result in eq. (3.26) which corresponds to yL ' yt ' 1. Notice

that the configurations in which eq. (4.13) is saturated have the smallest possible tuning at

fixed Higgs mass. One can see that the general estimate is well satisfied and an excellent

agreement is obtained if the dependence on yL is taken into account.

As a final point, we show an example of a region of the parameter space which leads lo a

light Higgs at large gψ through some additional tuning. This region is obtained by reducing

the size of the breaking between the 9 and the 4, that is by choosing the mass parameters

corresponding to the two representations to be nearly equal. This choice automatically

leads to a cancellation of one of the invariants in the effective potential and does not imply

the presence of light states. The coefficient of the second invariant must then be tuned to

reduce its size and obtain a suitable minimum. One can see from the scatter plots in figure 5
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that this region of the parameter space leads to a realistic Higgs mass without the necessary

presence of light top partners. The plot on the right shows that, for a realistic Higgs mass,

the resonances can be much heavier than the typical masses required in the double-tuned

scenarios, mlightest . 1.5 TeV (see figure 6 and ref. [18]). The plot shows nevertheless a

preference for light states, obviously this is because at fixed Higgs mass points with smaller

gψ have lower degree of tuning and are more easily found in the numerical scan. However

the important point is that, at the price of tuning, resonances as heavy as 4 TeV can be

obtained with a light Higgs. A model with this feature is very difficult to be discovered.

5 Implications of a 125 GeV Higgs

In the light of the recent discovery of a particle compatible with the SM Higgs and mass

around 125 GeV we now wish to discuss the implications for composite models. As discussed

in the previous sections, a light Higgs can be obtained without additional tuning only if

the composite-fermion mass scale is small (gψ . 2). We will focus on this region of the

parameter space and we will present the main features of CHM5 and CHM14. As in the

previous analysis our numerical results are obtained for f = 800 GeV (ξ = 0.1), other

values of f can be extrapolated as explained in section 4.

As shown in ref. [18], the peculiar structure of the effective potential in the CHM5

implies the following relation between the Higgs mass and the mass of the lightest composite

fermions which mix directly to the top8

m2
h '

Nc

π2

m2
t

f2

m2
21/6

m2
12/3

m2
21/6
−m2

12/3

log
m2

21/6

m2
12/3

, (5.1)

where m12/3 and m21/6 are the masses of the singlet and of the doublet (including mixing

with elementary fields). It is easy to see why a simple formula holds in this case. The Higgs

mass is determined from the coefficient β in eq. (4.3) that is generated by the top Yukawa

contribution to the potential. In this model only one multiplet of resonances is necessary

for the finiteness of β and therefore a formula depending on m12/3 and m21/6 must hold,

at least at leading order in the mixings. Two multiplets are instead necessary to make α

finite. This however does not affect the Higgs mass due to the fact that α must be tuned

in order to obtain the correct Higgs VEV. Notice that the relation between the Higgs mass

and the lightest resonances masses is a peculiarity of the models with double tuning, in

which one of the invariants has a lower degree of divergence. In a general case at least two

multiplets of resonances are necessary for finiteness of each term in the potential [21, 22].

As a consequence, there is no guarantee that a simple correlation of the lightest states and

Higgs mass exists. We will see an example below.

The correlation in a blind scan between the singlet and the doublet mass is shown on

the left plot of figure 6. The lightest state is often an exotic doublet with hypercharge 7/6,

the custodian, that contains an exotic state of electric charge 5/3. The present experimental

8The same relation has been obtained by assuming that the Higgs effective potential satisfies the Wein-

berg sum rules in ref. [31, 32].
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Figure 6. Scatter plots for 125 GeV Higgs in CHM5. We varied the fermionic parameters in the

range 0.5− 5 TeV and imposed that the mixings are smaller than 3. On the left correlation of the

doublet and singlet masses. On the right tuning as a function of the mass of the lightest resonance.

bound is m5/3 & 700 GeV [33, 34] and starts carving out the natural region of the model.

In the right plot the tuning of the various points is considered. We see that no strong

correlation exists between the tuning and the mass of the lightest resonance. The tuning

varies between 10 and 100 with an average ∆avg = 30. Note that the lower bound is

saturated by the gauge contribution, which amounts to an irreducible tuning ∆ & 10.

The tuning is comparable with the tuning of supersymmetric models with light stops that

realize natural SUSY [24–29].9

Next let us consider the model with the composite tR and qL coupled to fermions in

the 14. This was also considered in ref. [32] but our results differ significantly from that

analysis. We find that a relation analogous to eq. (5.1) in which the Higgs mass is directly

related to the masses of the first level of resonances does not apply in this case. The reason

for this is the following. The Higgs mass can be determined by the fermionic contribution

to β. Contrary to CHM5 this is now generated at leading order in the mixings and for this

reason requires, as α, at least two SO(5) multiplets to be finite.10 As a consequence the

potential is sensitive to the second layer of resonances and no simple correlation will hold

among the lighter states.

In figure 7 we consider a particular region of parameter space corresponding to the

coupling of spin-1 resonances gρ ≈ 3. We find in this case that m27/6 and m(3,3)2/3 are

almost degenerate. The result can be simply understood. The gauge loops contribute

to the coefficient α in the potential and from eq. (4.5) this in isolation (upon tuning the

electro-weak VEV) produces a light Higgs for gρ ≈ 3. In CHM14 for m27/6 = m(3,3)2/3 the

fermionic contribution to α exactly vanishes due to an enhanced symmetry of the fermionic

sector in this limit (SU(13) explicitly broken by gauge interactions). The small correction

necessary to obtain a 125 GeV Higgs then requires m27/6 ≈ m(3,3)2/3 .

9To compare with the results often reported in SUSY literature a factor 2 in the definition of ∆ should

be taken into account.
10The case discussed in ref. [32] is obtained with a single SO(5) multiplet by tuning parameters of the

Lagrangian to render the contribution to β finite. However this does does not hold in a generic point of the

parameter space in our construction.
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Figure 7. Scatter plot for 125 GeV Higgs in CHM14. The gauge contribution is computed with

mρ = ma1/
√

2 = 2.5 TeV. On the left correlation between the 27/6 and (3, 3)2/3 states. On the

right fermionic contribution to the tuning as a function of the lightest fermionic resonance.

Concerning the tuning, the fermionic contribution is shown in figure 7 on the right. It

is typically smaller than in CHM5. This model realizes therefore the minimal tuning, given

by the gauge contribution. However it should be kept in mind that this conclusion relies on

our definition of tuning that identifies as one of the variables the splitting betweenm27/6 and

m(3,3)2/3 , see our basis of operators in appendix A.2. As a consequence m27/6 ∼ m(3,3)2/3

does not worsen the tuning. We can attach the following physical meaning to this: when

m27/6 = m(3,3)2/3 the fermionic sector of the theory acquires an enhanced global symmetry.

With a different choice of operators or different parameters in the gauge sector we expect

a similar tuning as the in the CHM5.11

6 Conclusions

We investigated quantitatively the tuning of composite Higgs models with partial compos-

iteness and the interplay with the predicted value of the Higgs mass. The tuning is often

estimated as 1/ξ = f2/v2. While this is the universal scaling in reality the situation is more

complex and depends on the quantum numbers of the composite fermions to which the SM

fermions couple. We identified three classes of models, summarized in table 2, character-

ized by the type of cancellation required to generate the electro-weak VEV. Within each

class the expected size of the Higgs mass can be different and thus the recent discovery of

a light Higgs can have a different impact. For the models in the second and third class it

is difficult to obtain a light enough Higgs for a large strong sector coupling.

However the tension with the observed Higgs mass disappears in the limit of light

fermionic scale, corresponding to gψ = mψ/f ∼ 1. In this case a light Higgs is easily

obtained and also the double tuning issue encountered for the models in the first category

11Notice that in the configurations with enhanced global symmetry only one of the two invariants in the

Higgs potential vanishes, while the size of the other still respects the general estimates. As a consequence,

for a sizable value of gψ, a large tuning is still necessary in agreement with the general results. The presence

of the enhanced symmetry can only mildly improve the amount of tuning, but not eliminate it. In the plots

shown in this section the small amount of tuning is a consequence of the small values for the fermionic scale

we used in the scans (gψ . 2).
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gψ ≃ 1

5L + 5R,14L + 14R, . . .

14L + composite tR, . . .

gψ ≃ gρ gψ ≃ gρ

anomalously

MCHM5,10,4

ad hoc tuning

14L + composite tR, . . .

light partners

tu
n
in
g

top partners mass

Figure 8. Schematic representation of the properties of the three basic classes of composite-

Higgs models.

tends to disappear. In the limit of small gψ all the models become equivalent for what

the structure of the Higgs potential is concerned and the three classes basically merge in a

single one. When gψ is weak many options open up to build models with a light Higgs and

a mild tuning. In section 4 and 5 we studied two examples of such a model: the one based

on the 5L + 5R representation and the one with a 14L and completely composite tR.

With our classification we found that the only way to obtain a light enough Higgs with

moderate tuning is to work at low gψ, i.e. to assume a low scale for the fermionic resonances.

The implication is that light fermionic colored resonances, the top partners, are an expected

feature of the composite Higgs models. Not observing these particles at the LHC would

rapidly carry the scenario in a finely-tuned territory. In this respect our set-up is similar

to the Natural SUSY construction, in which one requires the stop to be lighter than the

other supersymmetric states [35]. Indeed the amount of tuning is comparable in the two

cases. However in Natural SUSY one relies on additional non-minimal contributions to

obtain a heavy enough Higgs. In our case instead the model remains minimal and no other

contributions to the Higgs potential are required besides the ones from the top and the

gauge sectors. The need of light states for a moderate tuning is one further motivation for

a serious program of experimental top-partners search at the LHC. At present the stronger

bound is on the charge 5/3 state which is part of the bi-doublet [33, 34]. A study of the

available constraints will be presented by one of us in ref. [36].

We also considered the possibility of a larger tuning (100 or larger). In this case we

found two possibilities to obtain a realistic Higgs mass, as summarized in figure 8. One

option is to stick to models with doubly-tuned potential like the standard MCHM4,5,10. In

this scenario a light Higgs requires the presence of light top partners significantly below

the typical fermionic-resonance scale. The spectrum is characterized by one or two light

multiplets, a fourplet or a singlet of SO(4), while all the other resonances are heavy and lie
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in the mass range of the vectors, mρ > 2.5 TeV. In the case of low gψ previously discussed,

instead, all the fermionic resonances are light and they can have different quantum numbers.

For instance in the model with the 14 we expect light top partners in the 4, in the 1 and

in the 9 of SO(4). Alternatively, for similar tuning, one can also have models with heavy

fermionic resonances where the Higgs mass is tuned independently of the electro-weak

VEV, we provided one example based on the 14L and totally composite tR. This case is

indicated in the upper right corner of figure 8. A model of this kind is rather difficult to

test directly at the LHC, therefore if no top partners are found it might become the last

corner where the Composite Higgs scenario could hide.

Our results also have theoretical implications. If we insist on a moderate tuning we

need a separation among the mass scale of the fermonic and of the gauge resonances, and

it is not easy to imagine the origin of this separation. For examples in the models with a

geometrical origin, like the 5d holographic ones, the mass of the fermions is typically tied to

the one of the vectors since both originate from the compactification length of the space.

Therefore it is difficult to describe the separation with 5d models, indeed in this paper

we employed non-geometrical 4d constructions where the fermonic and gauge masses are

independent parameters. However at the fundamental level the problem remains. “Normal”

strongly-coupled theories like QCD are characterized by a unique scale of confinement and

all the resonances (aside from the baryons in the large-Nc limit) are expected to have

comparable masses. Moreover to obtain a light Higgs we are led to consider rather low

masses, that correspond to a weak fermonic coupling gψ ∼ 1. Thus the interpretation

of our models in terms of a strongly-coupled dynamics could be improper. It would be

interesting to identify a possible UV-completion of these constructions.
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A Structure of the explicit models

The general structure of calculable composite Higgs models was introduced in refs. [21, 22]

and we refer to these references for all details. The minimum number of states required

to achieve a finite potential at 1-loop is two complete SO(5) multiplets. Explicit formulas

can be found in the references above for the CHM5.

We present in this appendix the relevant models with the tL coupled to fermions in the

14 and a totally composite tR. We introduce two Dirac fermions in the 14 representation,

ψ and ψ̃. A suitable basis is given by symmetric traceless 5× 5 matrices. Under the SO(4)
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subgroup they decompose as

(3,3) :


T aaij = δai δ

a
j + δ4

i δ
4
j −

1

2
δij , a = 1, 2, 3

T abij =
1√
2

(δai δ
b
j + δaj δ

b
i ) , a < b , a, b = 1, . . . , 4

(2,2) : T̂ aij =
1√
2

(δai δ
5
j + δaj δ

5
i ) , a = 1, . . . , 4

(1,1) : T̂ 0 =
1

2
√

5
diag(1, 1, 1, 1,−4) .

(A.1)

A.1 Discrete composite Higgs model

The schematic structure of the theory can be visualized as a three-site model (see ref. [21]).

The underlying symmetry is given by two non-linear σ-models based on the symmetry

breaking pattern SO(5)L × SO(5)R/SO(5)D.12 This structure gives rise to two sets of

Goldstone bosons U1,2, which are in part reabsorbed by the gauge fields which gauge some

subsets of the global symmetries at each site. The net result is a theory containing only

the 4 Goldstone bosons corresponding to the usual Higgs doublet.

Each fermionic state is associated to one of the sites. In particular the first site is

associated to the elementary fields, while the other two are related to the composite states.

The vector-like composite resonances at the middle and last site ψ and ψ̃ are embedded

in the representation 14. In addition to the vector-like resonances, the composite tR is

embedded in a total singlet at the last site. At the last site we also allow for a breaking

of the SO(5)R global symmetry, in such a way to preserve only an SO(4) subgroup. This

explicit breaking, obtained through mass terms, encodes the SO(5)→ SO(4) spontaneous

symmetry breaking of the strong sector.

The Lagrangian for the composite states in the “holographic gauge”13 reads

Lf
comp = Tr[ i ψ /Dψ −mψψ]

+ Tr[ i ψ̃ /Dψ̃ − m̃ΦΦ̃Φ̃− m̃QQ̃Q̃− m̃T T̃ T̃ ]

+ Tr[ i tR /DtR −mRtRT̃L] + h.c.

−∆Tr[ψψ̃] + h.c. , (A.2)

where we denoted by Φ̃, Q̃ and T̃ respectively the (3,3), (2,2) and (1,1) components of

the ψ̃ multiplet. The mixing in the last line of the above equation comes from a mixing

term involving the U2 Goldstone matrix, ∆Tr[U †2ψU2ψ̃] + h.c., which appears in the non-

gauge-fixed Lagrangian.

12An extra U(1)X global symmetry must be included to accommodate the fermion hypercharges. See

refs. [21, 22] for further details.
13In this gauge the Goldstone matrix U2 is set to the identity and the physical Goldstones are encoded

in the matrix U = U1. The terminology “holographic gauge” is derived from the holographic technique in

extra-dimensional theories [37]. For a discussion on how to reach this gauge see ref. [21].
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The fermions at the first site only include the qL elementary doublet. The Lagrangian

for the elementary states is

Lf
elem = i qL /DqL − yLfπTr[U †q14L UψR] + h.c. , (A.3)

where q14L denotes the embedding of the elementary doublet qL into the bidoublet of the

14 representation. The Goldstone decay constant fπ is related to the decay constants of

the two original non-linear σ-models by fπ = f/
√

2.

A.2 Minimal 4D composite Higgs

The Lagrangian with composite tR can be obtained by a slight modification of the setup of

ref. [22] where the tR is coupled with the strong sector fields in an SO(5) invariant fashion.

In this section we briefly review the model discussed in that paper.

The setup is a two-site model: a σ model SO(5)L × SO(5)R/SO(5)L+R parametrized

by the unitary matrix Ω and a second one SO(5)2/SO(4) parametrized by the vector Φ.

Resonances are introduced as SO(5) gauge fields by gauging the diagonal subgroup of

SO(5)R and SO(5)2. In the unitary gauge, before gauging the SM symmetry, we have a

massless fourplet of scalar fields with quantum numbers of the Higgs doublet, while the

orthogonal combination of GB’s forms the longitudinal components of the ρ’s. In the

fermion sector, each SM fermion chirality is coupled to a complete Dirac SO(5) multiplet,

which can occur in any representation. Only couplings with certain chirality are retained

similarly to 5D models.

For CHM14 with composite tR the action reads,

L14L+1R = q̄el
L i /D

el
qel
L

+ ∆qLTr
[
Ω†q̄el

LΩψT

]
+ h.c.

+ Tr
[
ψ̄T
(
i /D

ρ −mT

)
ψT
]

+ Tr
[
ψ̄
T̃

(
i /D

ρ −m
T̃

)
ψ
T̃

]
+ t̄comp

R i /D
ρ
tcomp
R + ∆tRΦT ψ̄TΦtcomp

R + h.c.

− Y1Φψ̄T,LψT̃ ,RΦ− Y2ΦT ψ̄T,LΦΦTψ
T̃ ,R

Φ− Y3Tr
[
ψ̄T,LψT̃ ,R

]
+ h.c. .

(A.4)

where ψ
T,T̃

are Dirac fermions in the 14. For simplicity we ignore a possible coupling of

tR with ψ
T̃

. Integrating out the strong sector fields one obtains the following expressions

for the form factors appearing in (4.10),

Π14L
0 = ΠLL[mT ,mT̃

, Y3],

Π14L
1 = 2(ΠLL[mT ,mT̃

, Y1/2 + Y3]−ΠLL[mT ,mT̃
, Y3])

Π14L
2 =

5

4
ΠLL[mT ,mT̃

,
4(Y1 + Y2)

5
+ Y3]− 2ΠLL[mT ,mT̃

, Y1/2 + Y3]

+
3

4
ΠLL[mT ,mT̃

, Y3]

Π1R
0 = ΠRR[mT ,mT̃

,∆],

M = M [mT ,mT̃
,∆]

(A.5)
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where

ΠLL[m1,m2,m3] =

(
m2

2 +m2
3 − p2

)
∆2

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

ΠRR[m1,m2,m3] =

(
m2

2 − p2
)

∆2

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

M [m1,m2,m3] =
m1(m2

2 − p2)

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

. (A.6)

From here the Higgs potential can be computed as explained in ref. [22].

If one does not introduce ψ
T̃

, the action has an accidental symmetry due to which

Π14L
1 vanishes. If this is the case the electro-weak VEV must be tuned with the gauge

contribution. A light Higgs mass is obtained for gρ ∼ 3. To be general in our plots we

consider the model described in eq. (A.4).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,
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[16] C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-goldstone Higgs,

JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

[17] J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1

[arXiv:1105.5403] [INSPIRE].

[18] O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs,

JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

[19] R. Barbieri and A. Strumia, The ’LEP paradox’, hep-ph/0007265 [INSPIRE].

[20] G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs,

JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

[21] G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135

[arXiv:1106.2719] [INSPIRE].

[22] S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042

[arXiv:1110.1613] [INSPIRE].

[23] R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B

306 (1988) 63 [INSPIRE].

[24] M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs sector and

fine-tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].

[25] H. Baer et al., Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs

boson, arXiv:1210.3019 [INSPIRE].

[26] C. Wymant, Optimising stop naturalness, Phys. Rev. D 86 (2012) 115023

[arXiv:1208.1737] [INSPIRE].

[27] S. Cassel and D. Ghilencea, A review of naturalness and dark matter prediction for the Higgs

mass in MSSM and beyond, Mod. Phys. Lett. A 27 (2012) 1230003 [arXiv:1103.4793]

[INSPIRE].

[28] L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04

(2012) 131 [arXiv:1112.2703] [INSPIRE].

[29] A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of

naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

[30] M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166

[arXiv:1205.0232] [INSPIRE].

[31] D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013

[arXiv:1205.0770] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.75.055014
http://arxiv.org/abs/hep-ph/0612048
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0612048
http://dx.doi.org/10.1016/0550-3213(82)90345-5
http://dx.doi.org/10.1016/0550-3213(82)90345-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B199,206
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.032
http://arxiv.org/abs/hep-ph/0605292
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605292
http://dx.doi.org/10.1103/PhysRevD.77.115012
http://arxiv.org/abs/0801.1645
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1645
http://dx.doi.org/10.1088/1126-6708/2008/09/008
http://arxiv.org/abs/0804.1954
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1954
http://dx.doi.org/10.1016/j.nuclphysb.2011.07.008
http://arxiv.org/abs/1105.5403
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5403
http://dx.doi.org/10.1007/JHEP01(2013)164
http://arxiv.org/abs/1204.6333
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.6333
http://arxiv.org/abs/hep-ph/0007265
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0007265
http://dx.doi.org/10.1088/1126-6708/2007/06/045
http://arxiv.org/abs/hep-ph/0703164
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703164
http://dx.doi.org/10.1007/JHEP09(2011)135
http://arxiv.org/abs/1106.2719
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2719
http://dx.doi.org/10.1007/JHEP04(2012)042
http://arxiv.org/abs/1110.1613
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1613
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B306,63
http://dx.doi.org/10.1103/PhysRevD.86.075015
http://arxiv.org/abs/1206.5800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5800
http://arxiv.org/abs/1210.3019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.3019
http://dx.doi.org/10.1103/PhysRevD.86.115023
http://arxiv.org/abs/1208.1737
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1737
http://dx.doi.org/10.1142/S0217732312300030
http://arxiv.org/abs/1103.4793
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4793
http://dx.doi.org/10.1007/JHEP04(2012)131
http://dx.doi.org/10.1007/JHEP04(2012)131
http://arxiv.org/abs/1112.2703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2703
http://dx.doi.org/10.1007/JHEP02(2012)144
http://arxiv.org/abs/1112.4835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4835
http://dx.doi.org/10.1007/JHEP10(2012)166
http://arxiv.org/abs/1205.0232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0232
http://dx.doi.org/10.1007/JHEP08(2012)013
http://arxiv.org/abs/1205.0770
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0770


J
H
E
P
0
3
(
2
0
1
3
)
0
5
1

[32] A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08

(2012) 135 [arXiv:1205.6434] [INSPIRE].

[33] CMS collaboration, Search for a heavy partner of the top quark with charge 5/3,

CMS-PAS-B2G-12-003 (2012).

[34] ATLAS collaboration, Search for exotic same-sign dilepton signatures (b′ quark, T5/3 and

four top quarks production) in 4.7 fb−1 of pp collisions at
√
s = 7 TeV with the ATLAS

detector, ATLAS-CONF-2012-130 (2012).

[35] A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model,

Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

[36] A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner’s hunter

guide, arXiv:1211.5663 [INSPIRE].

[37] G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05

(2007) 060 [hep-th/0703287] [INSPIRE].

– 30 –

http://dx.doi.org/10.1007/JHEP08(2012)135
http://dx.doi.org/10.1007/JHEP08(2012)135
http://arxiv.org/abs/1205.6434
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6434
http://cds.cern.ch/record/1478430
http://cds.cern.ch/record/1478217
http://dx.doi.org/10.1016/S0370-2693(96)01183-5
http://arxiv.org/abs/hep-ph/9607394
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9607394
http://arxiv.org/abs/1211.5663
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5663
http://dx.doi.org/10.1088/1126-6708/2007/05/060
http://dx.doi.org/10.1088/1126-6708/2007/05/060
http://arxiv.org/abs/hep-th/0703287
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703287

	Introduction
	General structure
	Split strongly interacting light Higgs
	Higgs potential

	Tuning and mass of the composite Higgs
	Double tuning
	Minimal tuning
	Minimal tuning with composite t(R)

	Explicit realizations
	Double tuning: CHM(5)
	Minimal tuning with composite t(R)

	Implications of a 125 GeV Higgs
	Conclusions
	Structure of the explicit models
	Discrete composite Higgs model
	Minimal 4D composite Higgs


