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Abstract
• Key message New types of distribution functions are
needed to model the dynamics of stands where important
age classes are represented by few trees. In this study the
gamma shape mixture model and two simulation methods
were used for generating tree diameter data.
• Context To analyse forest dynamics, it is necessary to know
distribution of the characteristics (mainly tree diameters) of
trees forming particular developmental phases. In many forest
inventories, the measurement of large diameter at breast
height (DBH) samples is practically impossible. In this case,
DBH distributions can be generated using theoretical models.
• Aims The aim of this study was to assess the precision of the
approximation of empirical DBH data using the gamma shape
mixture (GSM) model and kernel density estimation. The
strengths and weaknesses of the two simulation methods were
presented and discussed.
• Methods The GSM model was adopted to approximate em-
pirical DBH data collected in 20 near-natural stands. Two simu-
lation methods were used: (a) the procedure based on a multi-
modal distribution and gamma random numbers (MDGR proce-
dure) and (b)MCMC techniques withMetropolis–Hastings sam-
pling (MH method).
• Results The GSMmodel precisely fitted the investigated DBH
distributions. The MDGR procedure was slightly more precise
than theMHmethod, especially in the case of the samples of 250

DBHs. The level of homogeneity within the drawn DBH sets
was similar for all samples.
• Conclusion The GSM model is very flexible. The DBH
random variates, generated with the use of analysed proce-
dures, represented all tree generations being significant from
a biological point of view.

Keywords Gamma shapemixture (GSM)model . Bayesian
analysis .Diameter distribution . Simulation of diameter data .

Near-natural forest

1 Introduction

Disturbances occurring in forest ecosystems are one of the
most important determinants of spatio-temporal development
in stands (Gratzer et al. 2004). Due to disturbances of different
spatial scales, gaps of varying sizes are formed. These pro-
cesses have a significant effect on the structure of forests. The
specific vertical structure is closely related to the shape of the
diameter at breast height (DBH) distribution (Lawton and Putz
1988; Denslow et al. 1998). Many tree stands in various geo-
graphic regions contain cohorts of old trees, which are repre-
sented by only few individuals, but play a great role in stand
structure and in ecosystem functioning. It is difficult to find
distribution functions to represent these few large trees.
During the approximation of these highly skewed and
heavy-tailed DBH distributions, there is often the smoothing
problem, which in turn requires the use of methods that are
able to fit a tail probability well.

Different models have arisen naturally across a range of
problems when modelling DBH in forestry (e.g. Pretzsch
2010). Single flexible theoretical distributions (e.g. Weibull,
gamma) have often been used to fit empirical DBH data more
or less asymmetrically with a positive skewness (Merganič
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and Sterba 2006; Gove et al. 2008). Mixture distributions with
a few components are an appropriate tool for modelling bi-
and multimodal empirical DBH distributions (Zhang et al.
2001; Zasada and Cieszewski 2005; Podlaski 2011a, b;
Zasada 2013).

In order to model the dynamics of forest stands with co-
horts of old trees, new types of distribution functions are need-
ed. A new approach for density estimation of highly skewed
and heavy-tailed distributions, the gamma shape mixture
(GSM)model, employs a mixture of gamma density functions
with unknown weights (Venturini et al. 2008). A general
Bayesian approach allows the creation of a flexible model
characterised by a single parameter for all the gamma compo-
nents and the ordinary set of mixture weights (Jasra et al.
2005; Venturini et al. 2008). This method significantly im-
proves predictive performance in estimating tail probabilities
compared to standard approaches employing e.g. single flex-
ible theoretical distributions and mixture distributions with a
few components (Venturini et al. 2008). A particularly impor-
tant advantage of the GSM model is the possibility to use a
great number of mixture components. In the case of two-
generation stands where the two generations significantly dif-
fer in the number of trees, the model makes possible, among
other things, to generate random DBH data, taking into ac-
count the existence of small local DBH maxima. These max-
ima, representing the older generation and creating longer-
than-normal right tails, cannot be treated as atypical observa-
tions. The data are indispensable to correctly present DBH
distributions in the case of two-generation stands, in which
the older generation is formed by single old trees. Thereby,
proposals that overcome the problem of atypical observations
in distributions (e.g. by their identification and next, elimina-
tion) cannot be used.

In ecology, for analysis of forest dynamics, based on sim-
ulation studies, one should use data sets (mainly DBH)
characterising the investigated stand in particular develop-
mental phases. Tree lists, minimally a set of DBHs with an
indicator of tree species, obtained frommeasurements made in
selected plots are used to define the initial condition. The
measurement of large DBH samples is practically impossible
in many forest inventories due to economic limitations (e.g.
Roesch et al. 2015). In this case, the DBH distributions can be
generated using theoretical functions (e.g. Thompson 2000,
Gehringer and Turnblom 2014).

Forest growth models based on progressing distributions
are characterised by the inclusion of stand heterogeneity in
the simulation approach, providing information on tree di-
mensions (e.g. Porté and Bartelink 2002). The accuracy of
such models is primarily determined by the flexibility of the
underlying type of theoretical function (e.g. Pretzsch 2010).
Stand development is presented as a periodic progression of
the frequency distributions. Each developmental phase is rep-
resented by a theoretical function of specified parameters. By

changing these parameters, the BDH distribution can be
shifted along the time axis. The DBH data generation makes
it possible to increase the number of DBHs for small samples
and then allows comparison of the model outputs with inde-
pendent data.

Procedures based on Markov chain Monte Carlo (MCMC)
techniques are frequently usedmethods for generating random
numbers from probability distributions (Liu 2001). TheMonte
Carlo methods have become one of the most important tools
to sample from complex distributions (e.g. Liu 2001; Robert
and Casella 2004). There have been several classes of Monte
Carlo techniques, e.g. MCMC techniques with Metropolis–
Hastings sampling, sequential Monte Carlo techniques that
include for example sequential importance resampling or par-
ticle filtering (Kong et al. 1994) and recent development of
methods with equi-energy sampling (Kou et al. 2006).

The aims of this study are (1) to compare the precision of
the approximation of empirical DBH data employing the
GSM model and kernel density estimation (parametric and
non-parametric methods) and (2) to assess the suitability of
two methods for generating random DBH data from the GSM
model: (a) the procedure using a multimodal distribution and
gamma random numbers and (b) MCMC techniques with
Metropolis–Hastings sampling. The GSMmodel has not been
previously used for the analysis of forest data.

2 The gamma shape mixture model

The GSM model is defined as follows (Lehmann and Casella
1998; Venturini et al. 2008):

f xjπ1; :::;π J ; θð Þ ¼ ∑
J

j¼1
π j f j xjθð Þ ð1Þ

where J is the number of mixture components (known and
fixed), π1, ..., πJ are mixture weights (proportions) (unknown)
and 1/θ is the scale parameter for the whole GSM model
(unknown). The gamma distribution fj(x| θ) has a probability
density function (PDF) given by

f j xjθð Þ ¼ θ j

Γ jð Þ x
j−1e−θ x ð2Þ

Each gamma distribution in the GSM model is indexed by
a component-specific shape parameter (j) and has a single
scale parameter (1/θ).

The GSM model could also be defined as follows
(Venturini et al. 2008):

p x1; :::; xnjz1; :::; zn; θð Þ ¼ θ
∑
n

i¼1
zi

∏
n

i¼1
Γ zið Þ

∏
n

i¼1
xzi−1i

� �
e
−θ ∑

n

i¼1
xi ð3Þ
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where z1, ..., zn are the missing elements of the sample
(Dempster et al. 1977; Diebolt and Robert 1994). Given
x1, ..., xn, an integer zi between 1 and J could be associated
to each xi that identifies the component of the mixture gener-
ating observation xi; this auxiliary variable zi identifies to
which component the observation xi belongs.

A general Bayesian approach for estimating the unknown
parameters of the GSMmodel is often used. The π1, ..., πJ and
θ are independent a priori and the following conjugate prior
distributions are specified (Venturini et al. 2008):

π1; :::;π J∼DJ
1

J
; :::;

1

J

� �
ð4Þ

and

θ∼G α;βð Þ ð5Þ

where DJ(•) is a Dirichlet distribution and G(•) is a gamma
distribution, J, α and β are the hyperparameters. The posterior
distribution is (Venturini et al. 2008)

p π1; :::; π J ; θjx1; :::; xn; z1; :::; znð Þ∝ ∏
J

j¼1
π

1= Jð Þþn j−1
j

 !
θ
αþ ∑

n

i¼1
zi

� �
−1
e
− βþ∑

n

i¼1
xi

� �
θ ð6Þ

where

nj ¼ ∑
n

i¼1
Ι zi ¼ jð Þ

as well as j = 1, ..., J and Ι(•) is the indicator function.
The posterior distribution is estimated using a Gibbs sam-

pler, the parameter θ is derived analytically through integra-
tion. After having integrated out θ the posterior distribution is
(Venturini et al. 2008)

p π1; :::; π J ; θjx1; :::; xn; z1; :::; znð Þ∝ ∏
J

j¼1
π

1= Jð Þþn j−1
j ð7Þ

The primary advantage of this strategy is that the Markov
chain runs in a smaller space (Robert 1996; MacEachern et al.
1999; Venturini et al. 2008).

3 Materials and methods

3.1 Field measurements

The plots were sampled in two-generation stands with fir
Abies alba Mill. and beech Fagus sylvatica L., in protected,
near-natural forests in the Świętokrzyskie Mountains
(Świętokrzyski National Park, 50° 50′–50° 53′ N, 21° 01′–
21° 05′ E). The study area lies at an elevation between 320
and 590 m above sea level. The most common plant associa-
tions are Dentario glandulosae-Fagetum and Abietetum
polonicum (nomenclature after Matuszkiewicz 2008). In these
stands, 30 circular plots from 0.2 to 0.4 ha were randomly
selected. The radius of each plot was chosen so that the whole
plot was situated within the boundaries of a homogenous
patch of similar vertical stand structure. The age of trees, de-
termined on the basis of increment core analysis, carried out
during the present study and earlier dendrochronological

research, shows that in the investigated area fir and beech trees
of the older generation were usually characterised by DBHs
>70 cm (Podlaski 2008, 2011a, b; Podlaski and Żelezik 2012).
In each plot, the DBH was measured for all living trees
>6.9 cm in diameter.

3.2 Forest data

To identify similar DBH structures in the investigated plots,
21 were used variables: fractions of the tree number (10 var-
iables) and fractions of the basal area (10 variables) at 10-cm
intervals from 7 to 107 cm, and the number of main extremes
for DBH distributions (1 variable). The hierarchical cluster
analysis (HCA) was employed with the Jaccard measure and
the Ward’s minimum variance agglomeration method. The 20
plots were clustered in three main groups (Fig. 1):

1. Group RS includes DBH distributions showing the
rotated-sigmoid (RS) shape (10 plots) (Fig. 2).

2. Group BMS includes DBH distributions showing the typ-
ical bimodal M-shape (5 plots) (Fig. 3).

3. Group UID includes the unimodal irregularly descending
distributions (5 plots) (Fig. 4).

The remaining 10 plots, in which the share of fir and beech
assessed on the basis of a tree number was smaller than 80%
as well as DBH distributions forming transitional structures,
were not used in further studies.

In the investigated plots basal area for all species together
was from 10.78 to 63.09 m2 ha−1. The number of trees ranged
from 86 to 234 stems per plot. Fir and beech definitely dom-
inated and the appropriate values of the basal area varied from
6.62 to 53.5 m2 ha−1 for fir and from 0.10 to 25.58 m2 ha−1 for
beech.
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3.3 Data analysis

Fitting with the GSM model requires three hyperparameters:
the number of components J, and the α and β from the con-
jugate prior on θ. During the approximation of the empirical
DBH data using the GSM model, it was assumed that the
value of J = 250 and the weight of the prior information ω =
0.35 (ω values between 0.2 and 0.5 are usually choices; for
detailed information, see Venturini et al. 2008). With these
assumptions for each plot, the α and β values were calculated
as follows (Venturini et al. 2008):

β ¼
ω ∑

n

i¼1
xi

1−ω
ð8Þ

α ¼ J
max x1; :::; xnð Þ β ð9Þ

Kernel-type estimators are commonly used as non-
parametric estimators for density functions. Let x1, ..., xn be
sample DBHs from an unknown density f. Then, its kernel
estimate f is

f xjhð Þ ¼ 1

nh
∑
n

k¼1
K

x−xi
h

� �
ð10Þ

where K(•) is a kernel function and h is a bandwidth. In this
study, a Gaussian density as the kernel and a bandwidth
h = 2 cmwere used; the width for the DBH classes was chosen
to be 2 cm (see also Lopez-de-Ullibarri 2015).

Two statistics were proposed for comparing the precision
of the approximation of empirical DBH data using the GSM
model and the kernel density estimation:

BDIF ¼ BGSMj j− Bkerj j ð11Þ
ADIF ¼ AGSM−Aker ð12Þ

with

B• ¼ 1

l
∑
l

q¼1
nq−nq
� �

ð13Þ

A• ¼ 1

l
∑
l

q¼1
nq−nq
��� ��� ð14Þ

where nq and nq are the observed and predicted numbers of
trees for the GSMmodel (B• ≡ BGSM and A• ≡ AGSM) or for the

Fig. 1 Correspondence analysis (CA) ordination diagrams (CA1 and
CA2 are ordination axes); 21 variables were used in the analysis to
describe empirical tree DBH distributions. a ‘Ellipse’ diagram—the
weighted correlation defines the direction of the principal axis of the
ellipse. b ‘Spider’ diagram—each point is connected to the group

centroid (large black circles). Cluster RS—rotated-sigmoid DBH
distributions, cluster BMS— typical bimodal M-shape DBH
distributions, cluster UID—unimodal, irregularly descending DBH
distributions

Fig. 2 Approximation of the
empirical DBH distribution of an
example stand from the group RS
using the kernel density estimator
and the GSM model (plot No.
RS07)
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kernel density estimation (B• ≡ Bker and A• ≡ Aker), respective-
ly, in the qth DBH class in the investigated plot; l is the num-
ber of DBH classes. The values of the B• and A• statistics
indicate a measure of the bias and the flexibility of the
analysed models, respectively.

3.4 Simulation studies

In order to generate random DBH data from the GSM model,
the procedure using a multimodal distribution and gamma
random numbers (hereinafter the MDGR procedure) and
MCMC techniques withMetropolis–Hastings sampling (here-
inafter the MH method) were employed. Gamma random
numbers were generated in multinomial distribution cells
using the acceptance-rejection principle with proper choice
of the majorisation function (when the shape parameter was
less than 1) or as the sum of two independent gamma variates
(when the shape parameter was greater than or equal to 1)
(Ahrens and Dieter methods; for detailed information, see
Ahrens and Dieter 1974, 1982). The standard Metropolis–
Hastings algorithm with jumping normal distribution was
used (Robert and Casella 2004). For each plot, the following
scheme was employed:

1. The empirical DBH distribution was fitted with the GSM
model.

2. 50 samples of 100, 250 and 500 DBHs each were drawn
using the GSM model and the MDGR procedure.

3. 50 samples of 100, 250 and 500 DBHs each were drawn
using the GSM model and the MH method.

The k-sample Anderson-Darling tests (Scholz and
Stephens 1987) were used to test the null hypotheses that (1)
the samples come from the same but unspecified continuous
distribution function and (2) the samples drawn using the
MDGR procedure (block 1) and the MH method (block 2)
come from the same but unspecified continuous distribution
function (this function may change from block to block).

In the first case, the analyses were conducted for 50 sam-
ples containing 100, 250 and 500 DBHs for the MDGR pro-
cedure and the MH method; in total, six null hypotheses were
tested for each plot. The Anderson-Darling k-sample test was
employed; if AD is the Anderson-Darling criterion for k sam-
ples, its standardised test statistic is (Scholz and Zhu 2016)

T :AD ¼ AD−μ
σ

ð15Þ

with μ and σ representing the mean and standard deviation of
AD.

In the second case, the analyses were conducted for 50
samples containing 100, 250 and 500 DBHs; in total, three
null hypotheses were tested for each plot; the combined
Anderson-Darling k-sample test was employed. This multiple

Fig. 4 Approximation of the
empirical DBH distribution of an
example stand from the group
UID using the kernel density
estimator and the GSM model
(plot No. UID03)

Fig. 3 Approximation of the
empirical DBH distribution of an
example stand from the group
BMS using the kernel density
estimator and the GSM model
(plot No. BMS03)

Annals of Forest Science (2017) 74: 29 Page 5 of 10 29



procedure combines several independent k-sample Anderson-
Darling tests into one overall test. If ADi is the Anderson-
Darling criterion for the ith block of ki samples, its standardised
test statistic is (Scholz and Zhu 2016)

T :ADi ¼ ADi−μi

σi
ð16Þ

withμi and σi representing the mean and standard deviation
of ADi. The combined Anderson-Darling criterion is (Scholz
and Zhu 2016)

ADcomb ¼ ∑
M

i¼1
ADi ð17Þ

and

T :ADcomb ¼ ADcomb−μc

σc
ð18Þ

where

μc ¼ ∑
M

i¼1
μi ð19Þ

σc ¼
ffiffiffiffiffiffiffiffiffiffiffi
∑
M

i¼1
σ2
i

s
ð20Þ

and M is the number of blocks (M = 2).
These statistical analyses enabled the assessment of the

level of homogeneity within drawn samples (Jamshidian and
Jalal 2010). The k-sample Anderson-Darling tests do not re-
quire the user to assume that each analysed group belongs to a
normal population and has the same variance. In all the cases,
the first version of the Anderson-Darling test statistic was
computed (for detailed information, see Scholz and Stephens
1987).

For each generated set of 50 samples, the fraction of sam-
ples with DBHs >70 cm was calculated. These fractions
allowed assessment of the suitability of the two investigated
methods in generating randomDBH data from the GSMmod-
el; the main assessment criterion was the occurrence of trees of
an older generation (characterised by DBH >70 cm).

Computational procedures were implemented using the
statistical software R (R Core Team 2015); the GSM and the
kSamples packages of R were also used (Venturini 2015;
Scholz and Zhu 2016).

4 Results

In all plots, one to three trees representing the older gen-
eration (DBH exceeding 70 cm) were present. In three
plots, the DBH of the thickest trees reached 100 cm.
Trees of a DBH lower than 50 cm represented from 89

to 99% of all the trees in the investigated plots, whereas
those with a DBH lower than 25 cm accounted for 46 to
74% of all the trees. The number of trees varied from 215
to 935 N ha−1. The mean skewness for the plots was
1.3276. Generally, investigated DBH distributions are
highly skewed and heavy-tailed (Figs. 2, 3 and 4).

The GSM model consists of 250 single gamma functions
(J = 250). Each of these functions has a particular mixture
weight (π1, ..., πJ). The sum of all the mixture weights for a
given model is equal to 1. The sums of 50-length intervals of
mixture weights reflect the approximate distribution of these
proportions (Table 1). In the plots, DBH distributions are
asymmetrical and that is why mixture weight distributions
also have longer-than-normal right tails. The mean sums of
the 50-length intervals of mixture weights for the investigated
plots varied from 0.478732 to 0.0111045 (from left to right;
Table 1).

The BDIF and ADIF statistics compare the bias and the flex-
ibility of the GSM model and the kernel density estimation
(negative numbers show that the GSM model is ‘better’). The
BDIF values were higher than zero in the case of all the 20
investigated plots (range 0.009–0.295), while the ADIF values
were lower than zero for 14 plots and higher than zero for 6
plots (from −0.619 to 0.218) (Table 1). The values of the cal-
culated statistics indicate that the bias was lower for the kernel
density estimation, while the GSMmodel was characterised by
greater flexibility.

A desirable method of random variates generation must
include various criteria, especially precision. For precise cri-
terion p value parameters based on the Anderson-Darling k-
sample test were calculated (Table 2).

1. With the MDGR procedure—from 0.0109 to 0.9253 for
samples of 100 DBHs, from 0.0719 to 0.9798 for samples
of 250 DBHs and from 0.0172 to 0.8839 for samples of
500 DBHs

2. With the MH method—from 0.0001 to 0.8791 for sam-
ples of 100 DBHs, from 0.0001 to 0.7821 for samples of
250 DBHs and from 0.0001 to 0.8897 for samples of 500
DBHs

In terms of precision, the MDGR procedure provides
higher p values than the MH method, but the differences are
small (Table 2). Therefore, the MDGR procedure is slightly
more precise than the MHmethod. This is especially so in the
case of the samples of 250 DBHs. The presented results are
confirmed by the combined Anderson-Darling k-sample test
(Table 3). The p values were from 0.0001 to 0.9036 for sam-
ples of 100 DBHs, from 0.0022 to 0.9964 for samples of 250
DBHs and from 0.0001 to 0.8838 for samples of 500 DBHs
(Table 3). The high p values show that the level of the homo-
geneity within drawn DBH sets was similar for all generated
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samples and for all the three groups of DBH distributions (RS,
BMS and UID; Table 3).

The greatest fractions for generated samples containing
DBHs >70 cm were achieved for the MDGR procedure in
the case of simulations of 500 DBHs in a sample (maximal
fraction was equal 1.00 for ten plots; Table 4). The smallest
fractions were obtained for the MH method in the case of
simulations of 100 DBHs in a sample (maximal fraction was
equal 0.96 for one plot; Table 4).

The simulations that were carried out showed that both of
the investigated methods are capable of simulating the DBH
data from the GSM model, but the MDGR procedure was
slightly more effective than the MH method.

5 Discussion

For generating the DBH data sets from the GSM model, one
can use the MDGR procedure and, to a lesser degree, the MH
method, preferably to simulate large sets containing e.g. 500
DBHs. In the case of smaller sets, it is always necessary to
check if within the generated data there are DBHs representing
trees from an older generation. A similar procedure can be used

in all stands, in which one of the tree generations is represented
but by few trees.

This paper has compared two methods for generating ran-
dom DBH data from the GSM model fed with real data from
forests with fir and beech in one geographical region. Future
research can be concerned with forests consisting of different
species and growing in different regions.

The GSM model is very flexible and thus it allows
precise approximation of irregular data sets with local
extremes. Increasing the value of J, we can increase the
precision of the approximation but this may cause numer-
ical problems. If we want to include empirical irregularity
in the GSM models, then we should increase the value of
J but if multimodality is random, then we should decrease
the value of J. In the case of existence of specific sub-
populations, it is desirable to use mixture models, in
which component densities represent these subpopulations
(Podlaski and Roesch 2014). However, it is necessary to
remember that mixture models are not very useful where
there is a significant difference in the number of elements
constituting the subpopulations, as exemplified by highly
skewed and heavy-tailed distributions in which one of the
subpopulations forms the distribution tail. The very small
number of elements of this subpopulation usually makes

Table 1 Sums of mixture weights (π1, ..., πJ ; J = 250), scale parameter (1/θ) and goodness-of-fit statistics (BDIF, ADIF) for the gamma shape mixture
(GSM) model

Plot Sum of mixture weights ∑
j
π j 1/θ BDIF ADIF

From j = 1
to j = 50

From j = 51
to j = 100

From j = 101
to j = 150

From j = 151
to j = 200

From j = 201
to j = 250

RS01 0.67689 0.19323 0.10282 0.01428 0.01278 0.400 0.207 –0.301

RS02 0.64994 0.20898 0.10591 0.01632 0.01885 0.399 0.199 –0.280

RS03 0.67065 0.21081 0.08248 0.02813 0.00793 0.394 0.211 –0.533

RS04 0.64571 0.16443 0.13710 0.03988 0.01288 0.351 0.202 –0.425

RS05 0.68832 0.16493 0.10556 0.01542 0.02576 0.364 0.288 –0.398

RS06 0.44696 0.48711 0.04808 0.00634 0.01152 0.365 0.255 –0.397

RS07 0.43762 0.51367 0.04080 0.00116 0.00675 0.376 0.119 –0.275

RS08 0.39801 0.39664 0.19245 0.00317 0.00972 0.309 0.223 –0.367

RS09 0.56332 0.31142 0.11604 0.00139 0.00783 0.363 0.247 –0.619

RS10 0.48905 0.36658 0.13131 0.00619 0.00688 0.322 0.295 –0.485

BMS01 0.47679 0.20201 0.27207 0.04256 0.00657 0.356 0.040 –0.048

BMS02 0.35270 0.21065 0.29226 0.13513 0.00927 0.324 0.010 –0.041

BMS03 0.40667 0.30650 0.24149 0.03985 0.00548 0.365 0.010 0.183

BMS04 0.33827 0.26670 0.26833 0.10116 0.02554 0.308 0.032 –0.010

BMS05 0.39048 0.33637 0.19457 0.07229 0.00628 0.354 0.009 0.218

UID01 0.48104 0.33537 0.15545 0.01402 0.01412 0.402 0.016 0.047

UID02 0.38603 0.43741 0.15317 0.01523 0.00815 0.361 0.009 –0.055

UID03 0.37308 0.36297 0.19275 0.06103 0.01017 0.309 0.058 0.064

UID04 0.34382 0.50031 0.14395 0.00434 0.00759 0.397 0.037 0.053

UID05 0.35929 0.46679 0.10878 0.05712 0.00802 0.324 0.020 0.015
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impossible to associate the component of the mixture
model with the subpopulation.

Fir and beech trees from the older generation usually create
only small local DBH maxima within a lower threshold of
over 70 cm. This kind of highly skewed and heavy-tailed
distribution is correctly approximated by the GSM model.
The precision of the GSM model was comparable to the ap-
proximation precision obtained with the use of the kernel den-
sity estimation. This is a very interesting result because the
kernel density estimation is characterised by high flexibility
(e.g. Buch-Larsen et al. 2005; Podlaski and Roesch 2014).

The problem of highly skewed and heavy-tailed distributions
can be circumvented by data transformations. Procedures of this
kind are used, among others, in the analysis of variance and in the
regression models (Box-Cox, etc.). However, there are some
possible drawbacks of these methods (Garay et al. 2016): (1)
transformations reduce information on the underlying data gen-
eration scheme, (2) parameters may lose interpretability on a
transformed scale and (3) transformations are usually not univer-
sal and often vary with the data set. Hence, in the case of

modelling the highly skewed and heavy-tailed DBH distribu-
tions, it is necessary to seek flexible theoretical models.

6 Conclusions

This study has revealed that the GSM model is flexible and
accurate when modelling the highly skewed and heavy-tailed
DBH distributions of two-generation stands. The GSMmodel
precisely separates older and younger tree generations; it is
useful in smoothing the small local DBH maxima. A simula-
tion study has shown that the MDGR procedure was slightly
more precise than theMHmethod. The DBH random variates,
generated with the use of these methods from the GSMmodel,
represented all tree generations that are significant from a
biological point of view. The high structural diversity of
patches of natural, near-natural and managed forests, especial-
ly with shade-tolerant species, should stimulate further re-
search related to the analysis of empirical DBH distributions
in the context of the GSM model.

Table 2 The p values for the
Anderson-Darling k-sample test
comparing DBH distributions
within drawn DBH samples

Plot Samples of 100 DBHs Samples of 250 DBHs Samples of 500 DBHs

MDGR
procedurea

MH methodb MDGR
procedure

MH method MDGR procedure MH method

RS01 0.9253 0.0297 0.8078 0.1976 0.3301 0.0009

RS02 0.0582 0.0038 0.9798 0.0037 0.6010 0.0291

RS03 0.6648 0.0001 0.7463 0.0001 0.0924 0.0001

RS04 0.8603 0.0305 0.1516 0.0577 0.8856 0.0047

RS05 0.4721 0.0031 0.8919 0.0001 0.0263 0.0006

RS06 0.4708 0.5851 0.8513 0.4444 0.0935 0.2412

RS07 0.4452 0.1675 0.6376 0.0951 0.5768 0.8390

RS08 0.3950 0.0810 0.2444 0.2489 0.7798 0.8061

RS09 0.1200 0.0070 0.0719 0.0118 0.0330 0.2469

RS10 0.4200 0.2767 0.6434 0.0179 0.1769 0.8099

BMS01 0.6946 0.8743 0.9177 0.1956 0.1090 0.4082

BMS02 0.5359 0.0172 0.7526 0.1888 0.7488 0.5131

BMS03 0.5717 0.6526 0.4623 0.2471 0.5513 0.5977

BMS04 0.5778 0.8791 0.3161 0.5320 0.7599 0.2769

BMS05 0.2923 0.6314 0.9241 0.7821 0.8939 0.0861

UID01 0.2080 0.7176 0.1280 0.5187 0.2531 0.0930

UID02 0.1098 0.7715 0.5172 0.0355 0.7183 0.1302

UID03 0.2167 0.0469 0.8524 0.4696 0.2260 0.8897

UID04 0.3961 0.8530 0.2067 0.3511 0.3385 0.4795

UID05 0.0109 0.1558 0.9657 0.1492 0.0172 0.5158

aGamma random numbers were generated in multinomial distribution cells using the acceptance-rejection prin-
ciple with proper choice of the majorisation function (when the shape parameter was less than 1) or as the sum of
two independent gamma variates (when the shape parameter was greater than or equal to 1) (Ahrens and Dieter
methods; for detailed information, see Ahrens and Dieter 1974, 1982)
b The standard Metropolis–Hastings algorithm with jumping normal distribution was used (Robert and Casella
2004)
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Table 4 Fractions of the DBHs
>70 cm, assessing the frequency
of trees representing the older
generation in the sample; in all the
investigated plots, the older
generation was composed of trees
with DBHs above 70 cm

Plot Samples of 100 DBHs Samples of 250 DBHs Samples of 500 DBHs

MDGR
procedurea

MH methodb MDGR
procedure

MH method MDGR
procedure

MH method

RS01 0.86 0.80 0.96 0.94 1.00 1.00

RS02 0.86 0.92 0.98 1.00 1.00 1.00

RS03 0.84 0.78 1.00 0.96 1.00 1.00

RS04 0.74 0.66 0.96 0.96 1.00 1.00

RS05 0.96 0.96 0.98 1.00 1.00 1.00

RS06 0.68 0.64 1.00 0.88 1.00 1.00

RS07 0.54 0.34 0.76 0.68 1.00 0.96

RS08 0.52 0.30 0.88 0.62 0.98 0.84

RS09 0.58 0.46 0.82 0.76 0.98 0.96

RS10 0.50 0.28 0.84 0.70 0.90 0.92

BMS01 0.54 0.50 0.82 0.66 0.98 0.90

BMS02 0.58 0.44 0.82 0.76 0.98 0.98

BMS03 0.64 0.48 0.86 0.86 0.98 0.96

BMS04 0.52 0.44 0.72 0.72 0.96 0.88

BMS05 0.42 0.32 0.80 0.60 0.98 0.96

UID01 0.84 0.84 1.00 1.00 1.00 1.00

UID02 0.60 0.28 0.94 0.76 1.00 0.88

UID03 0.54 0.30 0.78 0.48 0.98 0.80

UID04 0.56 0.48 0.92 0.84 1.00 0.96

UID05 0.62 0.26 0.76 0.58 0.98 0.80

a,b For the characteristics of the MDGR procedure and the MH method, refer to Table 2

Table 3 The p values for the
combined Anderson-Darling k-
sample test comparing DBH
distributions within drawn DBH
samples grouped in two blocks;
DBHs drawn using the MDGR
procedure were grouped in the
first block and DBHs drawn using
the MH method were grouped in
the second block

Plot Samples of 100 DBHs Samples of 250 DBHs Samples of 500 DBHs

RS01 0.3108 0.4980 0.0046

RS02 0.0015 0.1982 0.1135

RS03 0.0001 0.0022 0.0002

RS04 0.2442 0.0356 0.1094

RS05 0.0187 0.0095 0.0001

RS06 0.5551 0.7420 0.0815

RS07 0.2261 0.2445 0.8061

RS08 0.1229 0.1769 0.8838

RS09 0.0053 0.0047 0.0386

RS10 0.3001 0.0964 0.4761

BMS01 0.8851 0.6236 0.1553

BMS02 0.0687 0.4404 0.7016

BMS03 0.9036 0.3028 0.6201

BMS04 0.8380 0.4023 0.5346

BMS05 0.4505 0.9964 0.4287

UID01 0.4340 0.2244 0.0851

UID02 0.3522 0.1016 0.3428

UID03 0.0435 0.7581 0.6164

UID04 0.7125 0.2086 0.3848

UID05 0.0101 0.6657 0.0647
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