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Abstract: Er3+/Yb3+ codoped niobium pentoxide glasses were fabricated by the aerodynamic levitation 
(ADL) method with rapid cooling rate. All samples with various doping concentrations showed good 
upconversion luminescence properties under 980 nm laser excitation. The structure, transmittance 
spectrum, and luminescence properties of the samples were systemically investigated by XRD, 
UV–Vis–NIR spectrophotometer, and upconversion spectra. All transparent samples exhibited green 
and red upconversion emissions centered at 532, 547, and 670 nm. Experimental results showed that 
the sample codoped with 1 mol% Er3+/Yb3+ has the strongest upconversion emissions, and the 
increase of the doped Yb3+ concentration results in the increased red emission and reduced green 
emission. The logI–logP plot of green emission indicated that the green emissions reach the saturation 
at high pump power excitation, deviating from the low-power regime. After one-photon energy 
transfer (ET) process, 4I11/2+4I11/2→4F7/2+4I15/2 process between the two neighboring Er3+ ions was 
responsible for the population of the 4S3/2/4H11/2 states. The niobium pentoxide codoped with Er3+/Yb3+ 
bulk glasses could be used in the dye sensitized solar cell (DSSC) to improve the efficiency.  

Keywords: aerodynamic levitation (ADL); niobium pentoxide; upconversion; rare earth concentration; 
solar cell 

1  Introduction 

Upconversion luminescence materials have been 
extensively investigated for their promising 

applications in the fields of solar cell, biological 
diagnosis, infrared detection, and solid state lasers, etc. 
[1–13]. Due to their special anti-Stokes process which 
converts the low-energy photon into high-energy 
photon, the upconversion luminescence has attracted 
great attention of scientists. Chen et al. [14] reported a 
photolithography via upconversion nanoparticle-       
assisted photochemistry. Qiao et al. [15] used the 

 
†These authors contributed equally to this work. 
*Corresponding author. 
E-mail: jqli@ipe.ac.cn 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191558552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


J Adv Ceram 2017, 6(4): 312–319  

www.springer.com/journal/40145 

313

upcoversion nanoparticles to detect of primary gastric 
tumor and lymphatic metastasis. Yuan et al. [16] 
achieved the improvement of the overall conversion 
efficiency of the dye sensitized solar cells by using the 
upconversion colloidal nanoparticles. However, the low 
upconversion efficiency limits the practical application 
of upconversion luminescence materials. Thus, it is 
significant to improve the upconversion efficiency by 
developing upconversion luminescence materials of 
new type and novel structure. 

NaYF4 has the highest upconversion luminescence 
efficiency at present, but its preparation process needs 
fluorinated raw materials which are harmful to the 
environment. What is more, its poor machinability and 
chemical stability limit the application of fluoride 
upconversion luminescence materials. The oxide matrix 
material is a high desirable candidate material for 
upconversion luminescence. Glassy or disordered hosts 
are preferred as active layers for highly efficient solar 
cell application. Non-uniform broadening in absorption 
spectra of rare earth (RE) ions permits absorbing a 
larger part of the solar spectrum owing to the disorder of 
the host [17]. Unlike the nanoparticles, bulk 
upconversion luminescence glass with good mechanical 
property has been used in solar cell [18]. Lahoz et al. 
[19] reported the application of Ho3+ doped 
glass–ceramic materials via direct melting glass to 
further improve the conversion efficiency of the Si solar 
cells. However, most of bulk upconversion 
glass/ceramic materials were fabricated by traditional 
melt-quenching. There is stretching vibration in the 
network structure of conventional glass-forming oxides 
such as silica, boron oxide, and phosphorus pentoxide. 
High phonon energy limits the high efficiency of 
upconversion luminescence of conventional oxides. 
And the container will cause the heterogeneous 
nucleation and contamination. Aerodynamic levitation 
(ADL) method is a promising technique to vitrify 
materials with low glass-forming ability into bulk form 
under the containerless condition. It could suppress the 
inhomogeneous nucleation and container wall’s 
contact-pollution. Our previous work reported the 
La2O3–Nb2O5 bulk glass, which was hard to form by 
conventional processing method, was firstly prepared 
via ADL. The different Ta2O5 doping concentrations 
were studied at the same time [20]. Nb2O5 is used as 
network modifier, which has non-bridging oxygens [21] 
and contributes to host a content of rare earth ions. 
Niobium pentoxide is a candidate matrix material for 
efficient conversion of luminescence materials because 

the high valence of Nb2O5 is in favor of the 
upconversion of the rare earth elements. Taking into 
account its good machinability and chemical stability, 
Nb2O5 materials may have more promising future than 
fluorides on the application of the dye sensitized solar 
cell (DSSC). 

In this study, we have fabricated an upconversion 
niobium pentoxide bulk glass codoped with various 
ratios and contents of Er3+/Yb3+ by ADL. To enhance 
upconversion luminescence, the optimized 
concentration of the doped rare earth elements was 
found in our study. The limit of the doped rare earth 
elements concentration is related to the matrix network. 
Traditional network formers such as SiO2 with network 
rigidity will result in the formation of clusters that are 
not suitable to host a high content of rare earth ions. In 
contrast, niobium pentoxide as the network modifier 
may have the advantage of obtaining higher codoping 
concentration [22,23]. The possible upconversion 
mechanism was systematically discussed. We also 
explored the application of bulk upconversion 
luminescence on DSSC. And the results indicate that 
bulk upconversion luminescence glass with good 
mechanical property can be used in solar cell. 

2  Experimental 

The raw materials were high-purity Nb2O5 (99.99 wt%), 
La2O3 (99.99 wt%), ZrO2 (99.99 wt%), Yb2O3 (99.9 
wt%), and Er2O3 (99.99 wt%) powders weighed in 
stoichiometric composition. The first step to optimize 
the concentration of rare earth elements was to explore 
the maximum codoped concentration. The 
compositions of Er3+/Yb3+ codoped niobium pentoxide 
glass were (Nb0.64La0.2Zr0.16)O2.22–xYb2O3–2xEr2O3 
(x = 0.1, 0.2, 0.3, 1/3), and the obtained glass samples 
were labeled as NLZm (m = 1, 2, 3, 4) respectively. We 
also tried x = 0.4 (NLZ5), but the sample was opaque, 
thus it was not discussed below. Then under the total 
identical doping amount of 1 mol%, the samples with 
different proportion in rare earth elements were 
fabricated. The compositions of these bulk glasses were 
(Nb0.64La0.2Zr0.16)O2.22–yYb2O3–zEr2O3 (y/z = 0.5:0.5, 
1/3:2/3, 0.25:0.75, 0.2:0.8), and the obtained glass 
samples were labeled as NLZn (n = 6, 7, 8, 9) 
respectively. The detail contents of doped rare earth 
elements are shown in Table 1. Then the powders were 
mixed thoroughly in the agate mortar with small 
amount of ethanol added. After the process, the 
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mixtures were compressed into columnar rods. Then the 
rods were cut into small pieces with a mass of about 
80 mg after they were sintered at 1100 ℃ for 10 h in a 
resistance. Subsequently, the small samples were 
fabricated into spherical glasses by an ADL furnace. 
During the process, the sample was levitating away 
from the nozzle at the gas flow rate of 1200 SCCM and 
melted under CO2 laser of 80 W power for several 
seconds. After the laser power was turned off, the 
homogeneous melts of NLZ1–4 and NLZ6–9 were 
quenched into transparent solid spherical glasses with a 
diameter size of ~3 mm at an approximate cooling rate 
of 250 ℃/s. The details about ADL furnace have been 
introduced elsewhere [24,25]. A video camera with 
high-resolution charge-coupled device was applied to 
realize the magnified in situ observation of the samples. 
Simultaneously, infrared pyrometer (the temperature 
range from 278 to 2004 ℃) was employed to monitor 
the temperature of sample during the process at the laser 
emission rate of 0.8 [26]. Finally, for later 
measurements, the glass spheres were carefully 
polished into 1.5-mm-thick wafers or ground into 
powders. 

The density of glass samples was measured by an 
Archimedes’ method and all the data were an average of 
three experiments. The reflective index was determined 
by spectroscopic ellipsometry (SENTECH SE850). The 
detail content, density, and refractive index of doped 
rare earth elements are shown in Table 1. X-ray 
diffraction (XRD; Smartlab 9, Rigaku Corporation, 
Tokyo, Japan) was employed to identify the structure of 
the sample. The transmittance spectrum of the prepared 
wafer in wavelength from 350 to 2500 nm was recorded 
by a UV–VIS–NIR spectrophotometer (PERSEE 

TU-1901). Upconversion luminescence spectra were 
recorded by a spectrofluorometer (Fluorolog-3, Jobin 
Yvon, Paris, France) excited by a diode laser with 980 
nm continuous wave (0.5–1500 mW power was used). 
The DSSC equipped with bulk niobium pentoxide 
upconversion glass was synthesized according to the 
procedure reported previously [27] and the whole 
device is shown in Fig. 9. The current–voltage (I–V) 
characteristics of the cells were measured with an AM 
1.5 solar simulator (CEP-25TF, Bunkoukeiki Co., Ltd.). 
Data were collected by source meter (Keithley 2400). 

3  Results and discussion 

Since the same properties are obtained in NLZ codoped 
with the different concentrations and proportions of Er3+ 
and Yb3+ ions, XRD patterns of the NLZ4 and NLZ9 as 
the typical samples of NLZ1–4 and NLZ6–9 were 
measured and shown in Fig. 1. Weak and broad 
diffraction bands are observed in the spectra. The XRD 
patterns indicate that NLZ1–4 and NLZ6–9 samples are 
amorphous-like NLZ glass [28]. 

Figure 2 shows the transmittance spectra of the NLZ 
bulk glass without Er3+/Yb3+ and NLZ4 ranging from 
350 to 2500 nm. Thickness of each sample is 1.5 mm. 
The transmittance of the pure matrix NLZ glass is 
below 70% and decreases rapidly in the visible region. 
The transmittance of the NLZ4 sample is about 70% in 
the visible region and increases to 76% in the 
near-infrared region. In the most visible and 
near-infrared region, the transmittance of the sample 
doped with Er3+/Yb3+ is higher than that of the matrix. 
The good transmittance will cause the infrared light 
irradiating through the whole upconversion glass, 

Table 1  Composition, density, and refractive index of 
Er3+/Yb3+ codoped NLZ1–9 glass samples 

Sample Yb2O3 

(mol%) 
Er2O3 

(mol%) 

Density of 
glass 

sample,  
(g/cm3) 

Reflective 
index of 

glass 
sample at 

632.8 nm, n

Total 
number of 

model 
photon 

emissionsb

NLZ1 0.10 0.20 5.35 2.144 5.78×108

NLZ2 0.20 0.40 5.39 2.387 8.01×108

NLZ3 0.30 0.60 5.27 2.244 8.73×108

NLZ4a 0.33 0.66 5.61 2.287 8.89×108

NLZ6 0.50 0.50 5.86 2.242 1.10×109

NLZ7a 0.33 0.66 5.61 2.287 8.89×108

NLZ8 0.25 0.75 5.68 2.279 4.71×108

NLZ9 0.20 0.80 5.38 2.273 5.96×108

aNLZ4 and NLZ7 actually are the same composition. In order to compare 
the different rule of luminescence more clearly, we use the different 
number in two types of contrast discussion. 
bThe value is obtained by integrating the area of the curve in Fig. 3. 
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Fig. 1  Measured XRD patterns of powders NLZ, NLZ4, 

and NLZ9. 
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producing the upconversion light. Furthermore, the 
upconversion light can transmit the energy through the 
glass, which can be utilized by solar cells. As noted in 
Fig. 2, five obvious absorption peaks centered at 488, 
522, 651, 790, and 1545 nm are assigned to the 
transitions from the 4I15/2 ground state to the 4F7/2, 4H11/2, 
4F9/2, 4I9/2, and 4I13/2 excited states of Er3+ ions, 
respectively. The absorption peak centered at 978 nm is 
illustrated by the transitions 4I15/2→4I11/2 of Er3+ ions 
and 2F7/2→2F5/2 of Yb3+ ions. 

Figure 3 displays the upconversion emission spectra 
of NLZ glass doped with different concentrations of 
Er3+ and Yb3+ ions under 980 nm laser excitation. The 
upconversion emission spectra of all samples doped 
with different concentrations of Er3+ and Yb3+ ions have 
two main peaks centered at 532 and 547 nm of 
4H11/2/4S3/2→4I15/2 in the green emissions and one peak 
centered at 670 nm of 4F9/2→4I15/2 in the red emission.  

As illustrated in Fig. 3, the red upconversion 
emissions are enhanced with the increasing 

concentration of Er3+ and Yb3+ ions, ranging from 0.3 to 
1 mol% (NLZ1–4). Different from the increasing 
tendency of the intensities of red emissions, the green 
emissions of NLZ2, NLZ3, and NLZ4, which are 
centered at around 547 nm, are far more than the 
intensity of NLZ1. The spectra results show that it 
obeys the rule that the emission intensity is enhanced 
with the increase of the rare earth concentrations of both 
Er3+ and Yb3+ ions. We also calculated total green and 
red emitted photon numbers of all samples which are 
summaried in Table 1. Clearly NLZ6 codoped with 
1 mol% Er3+ and Yb3+ ions shows the strongest 
upconversion luminescence. Insert of Fig. 3 is the 
digital image of NLZ6 sample under excitation of 
0.25 mW 808 nm laser, and the green upconversion 
emission is strong to be seen by naked eyes. The red 
emission may be attributed to 4I13/2(Er3+) + 
4I11/2(Er3+)→4F9/2(Er3+) + 4I15/2(Er3+). And green 
emission is 2F5/2(Yb3+) + 4I15/2(Er3+)→2F7/2(Yb3+) + 
4I11/2(Er3+), 4I11/2(Er3+) + 4I11/2(Er3+)→4F7/2(Er3+)+4I15/2 
(Er3+). The cross relaxation (CR) process between the 
two neighboring Er3+ ions is responsible for the 
population of the 4S3/2/4H11/2 states. However, the green 
emissions reach the “saturation” state when the 
concentration of codoped rare earth ions is larger than a 
certain threshold. In SiO2 and other traditional 
networker formers, the rare earth element ion 
concentration can be increased, but unfortunately result 
in the formation of clusters due to the network rigidity 
of these glasses. In the glasses containing modified ions, 
the local environment of rare earth ions is defined 
preferentially by non-bridging oxygens [29]. In NLZ 
glass, Nb2O5 is used as network modifier, which has 
non-bridging oxygens [21] and contributes to the glass 
matrix to host a high content of rare earth ions.  

The upconversion process is a multi-photon process. 
The emission intensity (I) is proved to be a function of 
pump power (P) and the number of photon absorbed per 
photon emitted (n): nI P . The curves reported in the  
literature are linear [30,31]. The emission intensity 
depends on the pump power because that the low energy 
photons can be absorbed by Er3+ and Yb3+ ions in an 
“unsaturated” upconversion process. The luminescence 
mechanism is showed in Fig. 4, which has been 
illustrated in the previous work [21]. Some new 
phenomena occurred in our experiments. Figure 5 
depicts that the logI–logP plots of the red emission are 
linear and the slope values (it is the photon absorbed per 
photon emitted n in the formula above) are ranged from 
1.88 to 2.24. n decreases with the increase of rare earth 
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Fig. 2  Transmittance spectra of the undoped NLZ glass 
and doped NLZ4 sample. 

 
Fig. 3  Upconversion emission spectra of NLZm (m = 1, 2, 
3, 4, 6, 8, 9) glass samples at the excitation of 1.5 W 980 nm 
laser. Insert is the digital image of the NLZ6 sample under 
excitation of 0.25 mW 808 nm laser. 
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ion concentration for the CR process: 4I13/2(Er3+) + 
4I11/2(Er3+)→4F9/2(Er3+) + 4I15/2(Er3+). The rate of CR 
process is proportional to 1/R6, where R means the 
distance between two neighboring Er3+ ions [29]. The 
increasing concentration of Er3+ ions shortens the 
distance between two neighboring Er3+ ions. 
Consequently, 4F9/2 levels are more generated and red 
emissions enhance that lead to the reduction of 
absorbed photons. 

However, the curve of logI–logP of green emission 
shows parabolic curve (Fig. 6). The curves in the low 
pump power are the linear lines with the slope values 
close to 2, and the line slope decreases (the number of 
photon absorbed per photon emitted is decreased) with 
the increase of pump power to 1500 mW. It indicates 
that the green light emissions saturate at high pump 
power excitation, deviating from the low-power regime 
[32,33]. 

The slope values become smaller in the green 
emissions for NLZ1–4, which may be attributed to the 
ET process. After one-photon ET process: 2F5/2(Yb3+) + 
4I15/2(Er3+)→2F7/2(Yb3+) + 4I11/2(Er3+), 4I11/2(Er3+) + 
4I11/2(Er3+)→4F7/2(Er3+) + 4I15/2(Er3+). The CR process 
between the two neighboring Er3+ ions is responsible for 

the population of the 4S3/2/4H11/2 states. This is because 
at high laser pump power, the efficient ET process will 
result in quantities of Er3+ ions at the 4I11/2 state, and 
then the CR process occurs due to the long-lived 4I11/2 
state of Er3+ ions. The concentrations of rare earth ions 
also affect the mechanism of luminescence. For the 
reason that the distance between Yb3+ and Er3+ ions is 
shortened and attributed to the occurrence of energy 
back transfer (EBT) process. Green emission is the 
main luminescence mechanism and EBT is easy to be 
gained in the green emissions.  

The upconversion luminescence of NLZ doped with 
1 mol% concentration of Er3+ and Yb3+ ions expresses 
good performance thus we keep the total identical 
doping amount for the latter experiment. The samples 
with the same concentration of Er3+ and Yb3+ ions 
(codoped amount 1 mol%) but in different ratios have 
been tested. The logI–logP plot of the NLZ6–9 shows 
the parabolic curve in the green emissions in Fig. 7. The 
increased concentration of Yb3+ ions contributes to the 
absorption of photons in ET process: 2F5/2(Yb3+) + 
4I15/2(Er3+)→2F7/2(Yb3+) + 4I11/2(Er3+), and the intensity 
of green emissions increases with increased addition 

Fig. 4  Energy level diagram of Er3+ and Yb3+ in NLZ 
glass and possible mechanisms. 

2.7 2.8 2.9 3.0 3.1 3.2

4.5

5.0

5.5

6.0

6.5

7.0

 

Lo
g 

(in
te

ns
ity

 (c
ps

))

Log (pump power(mW))

 NLZ1 slope =2.24
 NLZ2 slope =2.14
 NLZ3 slope =1.81
 NLZ4 slope =1.69
 NLZ6 slope =1.43
 NLZ8 slope =1.97
 NLZ9 slope =1.88

 
Fig. 5  Log–log plot of the red emission intensity versus 
the pump power of NLZm (m = 1, 2, 3, 4(7), 6, 8, 9). 
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Fig. 6  Log–log plot of the green emission intensity versus 
the pump power of NLZm (m = 1, 2, 3, 4). 
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Fig. 7  Log–log plot of the green emission intensity versus the 
pump power of NLZn (n = 6, 7, 8, 9). 
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amount of Yb3+ ions. The increase of the pump power 
and the photon numbers leads to the generation of 4I11/2 
and CR happens between two neighboring Er3+ ions, 
while the energy level of 4F7/2 generates and emits green 
luminescence. The curve slope value decrease means 
the number of absorbed photon per emitted photon 
decreases with the increase of pump power. 

The distances between the Er3+ and Yb3+ ions become 
shortened with the increased concentration of the Yb3+ 
ions. The shortening distance contributes to the 
increased rate of CR (4I13/2(Er3+) + 4I11/2(Er3+)→ 
4F9/2(Er3+) + 4I15/2(Er3+)) and EBT (4S3/2(Er3+) + 
2F7/2(Yb3+)→4I13/2(Er3+) + 2F5/2(Yb3+)) processes, 
resulting in an enhanced population of the 4F9/2 and 4I13/2 
states. Since the population of the 4F9/2 state results from 
the 4I13/2 state of Er3+ ion via ET process: 4I13/2(Er3+) + 
2F5/2(Yb3+)→4F9/2(Er3+) + 2F7/2(Yb3+), the increased 
population of the 4F9/2 and 4I13/2 states would lead to the 
enhanced red upconversion emission and the reduced 
green upconversion luminescence emission. Therefore, 
the intensity ratios of the green to red emission  g/rR  
are increased with the reduced concentration of Yb3+ 
ions (Fig. 8). 

Upconversion luminescence materials have been 
used to improve the efficiency of solar cell, such as 
lanthanide doped upconverting nanoparticles (UCNPs) 
[16]. Bulk upconversion luminescence glass obtains 
advantages: (1) it can enlarge the concentration of the 
doped rare earth ions in order to obtain high 
upconversion luminescence; (2) the bulk glass form can 
be mechanically fabricated; (3) it can be easily for the 
practical use. Thus, it will be very helpful in the 
application for solar cell. The NLZ6 has been applied in 
the DSSC, as shown in Fig. 9. The I–V characteristics of 

DSSC and DSSC with upconversion luminescence 
material NLZ6 are shown in Fig. 10. Light-to-electricity 
conversion efficiency ( ) was obtained according to 
equation [27]: 

sc oc in/J V FF P   
where scJ  is the short-circuit photocurrent density, 

ocV  is the open-circuit voltage, FF is the fill factor, and 

inP  is the incident radiation power. Compared with the 
control solar cell, ocV  of DSSC with NLZ6 glass is 
from 0.70 to 0.69 V, and scJ  increases from 13.63 to 
13.96 mA/cm2. FF is 0.67. The solar cell efficiency has 
been improved from 6.78% to 6.84%. It proves the 
potential application of upconversion luminescence 
glass in DSSC.  

4  Conclusions 

Niobium pentoxide glasses codoped with Er3+/Yb3+ 
were fabricated by the aerodynamic levitation method 
with rapid cooling rate. All transparent samples 
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exhibited green and red upconversion emissions 
centered at 532, 547, and 670 nm. The sample with 1 
mol% Er3+/Yb3+ obtained the strongest upconversion 
emissions. The logI–logP plot of green emission 
indicates that the green emissions saturate at high pump 
power excitation, deviating from the low-power regime. 
The slope values become smaller in the green emissions 
for sample with different concentration of Er3+/Yb3+ 
may be attributed to the ET process. After one-photon 
ET process, 4I11/2 + 4I11/2→4F7/2 + 4I15/2 process between 
the two neighboring Er3+ ions is responsible for the 
population of the 4S3/2/4H11/2 states. The increased 
concentration of Yb3+ resulted in the increased red 
emission and reduced green emission for the increased 
rate of CR and EBT processes. The niobium pentoxide 
codoped with Er3+/Yb3+ bulk glasses has been applied in 
the DSSC. ocV  increased from 0.69 to 0.70 V, and solar 
cell efficiency has been improved from 6.78% to 6.84%. 
The results indicate these upconversion luminescence 
material glass could be considered to be applied in 
DSSC to improve the efficiency of solar cell. 
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