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Abstract We study the Nemytskii operators u �→ |u| and u �→ u± in fractional
Sobolev spaces Hs(Rn), s > 1.
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1 Introduction and main result

In this paper we discuss the relation between the map u �→ |u| and the Dirichlet
Laplacian. Recall that the Dirichlet Laplacian (−�Rn)su of order s > 0 of a function
u ∈ L2(Rn), n ≥ 1, is the distribution
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〈(−�Rn)su, ϕ〉 ≡
∫

Rn

u (−�Rn)sϕdx :=
∫

Rn

|ξ |2sF[ϕ]F[u]dξ , ϕ ∈ C∞
0 (Rn),

where

F[u](ξ) = (2π)−
n
2

∫

Rn

e−iξ ·xu(x)dx

is the Fourier transform in Rn . The Sobolev–Slobodetskii space

Hs(Rn) = {u ∈ L2(Rn) | (−�Rn)
s
2 u ∈ L2(Rn) }

naturally inherits an Hilbertian structure from the scalar product

(u, v) = 〈(−�Rn)su, v〉 +
∫

Rn

uvdx .

The standard reference for the operator (−�Rn)sand functions in Hs(Rn) is the mono-
graph [8] by Triebel.

For any positive order s /∈ N we introduce the constant

Cn,s = 22ss

π
n
2

�
( n
2 + s

)
�

(
1 − s

) . (1)

Notice that
Cn,s > 0 if 
s� is even; Cn,s < 0 if 
s� is odd, (2)

where 
s� stands for the integer part of s. It is well known that for s ∈ (0, 1) and
u, v ∈ Hs(Rn) one has

〈(−�Rn)su, v〉 = Cn,s

2

∫∫

Rn×Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2s dxdy . (3)

Let us recall some known facts about the Nemytskii operator | · | : u �→ |u|.
1. | · | is a Lipschitz transform of H0(Rn) ≡ L2(Rn) into itself.
2. Let 0 < s ≤ 1. Then | · | is a continuous transform of Hs(Rn) into itself, by gen-

eral results about Nemytskii operators in Sobolev/Besov spaces, see [7, Theorem
5.5.2/3]. Also it is obvious that for u ∈ H1(Rn)
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〈−�|u|, |u|〉 = 〈−�u, u〉 =
∫

Rn

|∇u|2dx ,

〈−�u+, u−〉 =
∫

Rn

∇u+ · ∇u−dx = 0 .

Here and elsewhere u± = max{±u, 0} = 1
2 (|u| ± u), so that u = u+ − u−,

|u| = u+ + u−. On the other hand, for s ∈ (0, 1) and u ∈ Hs(Rn) formula (3)
gives

〈(−�Rn)su+, u−〉 = −Cn,s

∫∫

Rn×Rn

u+(x)u−(y)

|x − y|n+2s dxdy. (4)

From (4) we infer by the polarization identity

4〈(−�Rn)su+, u−〉 = 〈(−�Rn)s |u|, |u|〉 − 〈(−�Rn)su, u〉

that if u changes sign then

〈(−�Rn)s |u|, |u|〉 < 〈(−�Rn)su, u〉, s ∈ (0, 1). (5)

We mention also [4, Theorem 6] for a different proof and explanation of (5), that
includes the case when (−�Rn)s is replaced by the Navier (or spectral Dirichlet)
Laplacian on a bounded Lipschitz domain � ⊂ R

n .
3. Let 1 < s < 3

2 . The results in [2] and [6] (see also Section 4 of the exhaustive
survey [3]) imply that | · | is a bounded transform of Hs(Rn) into itself. That is,
there exists a constant c(n, s) such that

〈(−�Rn)s |u|, |u|〉 ≤ c(n, s)〈(−�Rn)su, u〉, u ∈ Hs(Rn).

In particular, | · | is continuous at 0 ∈ Hs(Rn).
It is easy to show that the assumption s < 3

2 can not be improved, see Example
1 below and [2, Proposition p. 357], where a more general setting involving Besov
spaces Bs,q

p (Rn), s ≥ 1 + 1
p , is considered.

At our knowledge, the continuity of | · | : Hs(Rn) → Hs(Rn), s ∈ (1, 3
2 ), is an

open problem. We can only point out the next simple result.

Proposition 1 Let 0 < τ < s < 3
2 . Then | · | : Hs(Rn) → H τ (Rn) is continuous.

Proof Recall that Hs(Rn) ↪→ H τ (Rn) for 0 < τ < s. Actually, the Hölder inequality
readily gives the well known interpolation inequality

〈(−�Rn )τ v, v〉 =
∫

Rn

|ξ |2τ |F[v]|2dξ

≤
(
〈(−�Rn)sv, v〉

)τ
s
( ∫

Rn

|v|2dx
)s−τ

s
, v ∈ Hs(Rn).
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Since | · | is continuous L2(Rn) → L2(Rn) and bounded Hs(Rn) → Hs(Rn), the
statement follows immediately. ��

Now we formulate our main result. It provides the complete proof of [5, Theorem
1] for s below the threshold 3

2 and gives a positive answer to a question raised in [1,
Remark 4.2] by Nicola Abatangelo, Sven Jahros and Albero Saldaña.

Theorem 1 Let s ∈ (1, 3
2 ) and u ∈ Hs(Rn). Then formula (4) holds. In particular, if

u changes sign then

〈(−�Rn)s |u|, |u|〉 > 〈(−�Rn)su, u〉 .

Our proof is deeply based on the continuity result in Proposition 1. The knowledge
of continuity of | · | : Hs(Rn) → Hs(Rn) could considerably simplify it.

We denote by c any positive constant whose value is not important for our purposes.
Its value may change line to line. The dependance of c on certain parameters is shown
in parentheses.

2 Preliminary results and proof of Theorem 1

We begin with a simple but crucial identity that has been independently pointed out
in [5, Lemma 1] and [1, Lemma 3.11] (without exact value of the constant). Notice
that it holds for general fractional orders s > 0.

Theorem 2 Let s > 0, s /∈ N. Assume that v,w ∈ Hs(Rn) have compact and disjoint
supports. Then

〈(−�Rn)sv,w〉 = −Cn,s

∫∫

Rn×Rn

v(x)w(y)

|x − y|n+2s dxdy. (6)

Proof Let ρh be a sequence of mollifiers, and put wh := w ∗ ρh . Formula (3) gives

〈(−�Rn)sv,wh〉 =〈(−�Rn)s−
s�v, (−�)
s�wh〉

=Cn,s−
s�
2

∫∫

Rn×Rn

(
v(x) − v(y)

)(
(−�)
s�wh(x) − (−�)
s�wh(y)

)
|x − y|n+2(s−
s�) dxdy.

Since for large h the supports of v and wh are separated, we have

〈(−�Rn)sv,wh〉 = −Cn,s−
s�
∫∫

Rn×Rn

v(x) (−�)
s�wh(y)

|x − y|n+2(s−
s�) dydx .

Here we can integrate by parts. Using (1) one computes for a > 0

�
Cn,a

|x − y|n+2a = Cn,a(n + 2a)(2a + 2)

|x − y|n+2a+2 = − Cn,a+1

|x − y|n+2(a+1)

and obtains (6) with wh instead of w.
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Since the supports of v andw are separated, it is easy to pass to the limit as h → ∞
and to conclude the proof. ��
Remark 1 Motivated by (6) and (2), A.I. Nazarov conjectured in [5] that

〈(−�Rn)s |u|, |u|〉 − 〈(−�Rn)su, u〉 < 0 if 
s� is even;
〈(−�Rn)s |u|, |u|〉 − 〈(−�Rn)su, u〉 > 0 if 
s� is odd

for any not integer exponent s > 0 and for any changing sign function u ∈ Hs(Rn)

such that u± ∈ Hs(Rn).

Lemma 1 Let s ∈ (1, 3
2 ) and ε > 0. If a function u ∈ Hs(Rn) has compact support

then (u − ε)+ ∈ Hs(Rn), and

〈(−�Rn)s(u − ε)+, (u − ε)+〉 ≤ c(n, s)〈(−�Rn)su, u〉 + c(n, s, supp(u))ε2 .

Proof Take a nonnegative function η ∈ C∞
0 (Rn) such that η ≡ 1 on supp(u). Clearly

u − εη ∈ Hs(Rn). Hence, by Item 3 in the Introduction we have that (u − εη)+ =
(u − ε)+ ∈ Hs(Rn) and

〈(−�Rn)s(u − ε)+, (u − ε)+〉 ≤ c(n, s)〈(−�Rn)s(u − εη), u − εη〉
≤ c(n, s)

(〈(−�Rn)su, u〉 + ε2〈(−�Rn)sη, η〉).
The proof is complete. ��

In order to simplify notation, for u : Rn → R and s > 0 we put


s
u(x, y) = u+(x)u−(y)

|x − y|n+2s .

Lemma 2 Let s ∈ (1, 3
2 ) and u ∈ Hs(Rn)∩C00 (Rn). Then (4) holds, and in particular


s
u ∈ L1(Rn × R

n).

Proof Thanks to Lemma 1 we have that (u− −ε)+ ∈ Hs(Rn)∩C00 (Rn) for any ε > 0.
Next, the supports of the functions u+ and (u− − ε)+ are compact and disjoint. Thus
we can apply Theorem 2 to get

〈(−�Rn)su+, (u− − ε)+〉 = −Cn,s

∫∫

Rn×Rn

u+(x)(u(y)− − ε)+

|x − y|n+2s dxdy. (7)

Take a decreasing sequence ε ↘ 0. From Lemma 1 we infer that (u− − ε)+ → u−
weakly in Hs(Rn), as (u− − ε)+ → u− in L2(Rn). Hence the duality product in (7)
converges to the the duality product in (4). Next, the integrand in the right-hand side
of (7) increases to 
s

u a.e. onR
n ×R

n . By the monotone convergence theorem we get
the convergence of the integrals, and the conclusion follows immediately. ��
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Lemma 3 Let s ∈ (1, 3
2 ) and u ∈ Hs(Rn). Then 
s

u ∈ L1(Rn × R
n).

Proof Take a sequence of functions uh ∈ C∞
0 (Rn) such that uh → u in Hs(Rn) and

almost everywhere. Since 
s
uh → 
s

u a.e. on R
n ×R

n , Fatou’s Lemma, Lemma 2 for
uh and the boundeness of v �→ v± in Hs(Rn) give

∫∫

Rn×Rn


s
u(x, y)dxdy ≤ lim inf

h→∞

∫∫

Rn×Rn


s
uh (x, y)dxdy

= c(n, s) lim inf
h→∞ 〈(−�Rn)su+

h , u−
h 〉

≤ c(n, s) lim
h→∞〈(−�Rn)suh, uh〉 = c(n, s)〈(−�Rn)su, u〉,

that concludes the proof. ��
Proof of Theorem 1 Take a sequence uh ∈ C∞

0 (Rn) such that uh → u in Hs(Rn) and
almost everywhere. Consider the nonnegative functions

vh := u+
h ∧ u+ = u+ − (u+ − u+

h )+ , wh := u−
h ∧ u− = u− − (u− − u−

h )+.

Then vh, wh ∈ Hs(Rn). Next, take any exponent τ ∈ (1, s). By Proposition 1 we
have that u± − u±

h → 0 in H τ (Rn); hence (u± − u±
h )+ → 0 in H τ (Rn) by Item 3 in

the Introduction. Thus,

vh → u+ , wh → u− in H τ (Rn) and almost everywhere, as h → ∞. (8)

Now we take a small ε > 0. Recall that (vh − ε)+ ∈ H τ (Rn) by Lemma 1.
Moreover, from 0 ≤ vh ≤ u+

h , 0 ≤ wh ≤ u−
h it follows that

supp((vh − ε)+) ⊆ {uh ≥ ε}; supp(wh) ⊆ supp(u−
h ).

In particular, the functions (vh − ε)+, wh have compact and disjoint supports. Thus
we can apply Theorem 2 to infer

〈(−�Rn )τ (vh − ε)+, wh〉 = −Cn,τ

∫∫

Rn×Rn

(vh(x) − ε)+wh(y)

|x − y|n+2τ dxdy.

We first take the limit as ε ↘ 0. The argument in the proof of Lemma 2 gives

〈(−�Rn )τ vh, wh〉 = −Cn,τ

∫∫

Rn×Rn

vh(x)wh(y)

|x − y|n+2τ dxdy. (9)

Next we push h → ∞. By (8) we get

lim
h→∞〈(−�Rn )τ vh, wh〉 = 〈(−�Rn )τu+, u−〉 .
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Further, since the integrand in the right-hand side of (9) does not exceed 
τ
u(x, y),

Lemma 3, (8) and Lebesgue’s theorem give

lim
h→∞

∫∫

Rn×Rn

vh(x)wh(y)

|x − y|n+2τ dxdy =
∫∫

Rn×Rn


τ
u(x, y)dxdy .

Thus, we proved (4) with s replaced by τ . It remains to pass to the limit as τ ↗ s. By
Lebesgue’s theorem, we have

lim
τ↗s

〈(−�Rn )τu+, u−〉 = lim
τ↗s

∫

Rn

|ξ |2τF[u+]F[u−]dξ

=
∫

Rn

|ξ |2sF[u+]F[u−]dξ = 〈(−�Rn)su+, u−〉.

Now we fix τ0 ∈ (1, s) and notice that 0 ≤ 
τ
u ≤ max{
τ0

u ,
s
u} for any τ ∈ (τ0, s).

Therefore, Lemma 3 and Lebesgue’s theorem give

lim
τ↗s

∫∫

Rn×Rn


τ
u(x, y)dxdy =

∫∫

Rn×Rn


s
u(x, y)dxdy .

The proof of (4) is complete. The last statement follows immediately from (4), polar-
ization identity and (2). ��

Example 1 It is easy to construct a function u ∈ C∞
0 (Rn) such that u+ ∈ Hs(Rn) if

and only if s < 3
2 .

Take ϕ ∈ C∞
0 (R) satisfying ϕ(0) = 0, ϕ′(0) > 0 and xϕ(x) ≥ 0 on R. By direct

computation one checks that ϕ+ = χ(0,∞)ϕ ∈ Hs(R) if and only if s < 3
2 . If n = 1

we are done. If n ≥ 2 we take u(x1, x2, . . . , xn) = ϕ(x1)ϕ(x2) . . . ϕ(xn).
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