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• What are thermoelectrics?
• NASA’s uses 
• Life time performance criteria
• The irradiation
• Research method and data

• Resistivity
• Thermal Conductivity

• Conclusion



• Conversion of heat into electric energy.
• Done based on the Seebeck Effect.
• Temperature differential causes 

electrons to diffuse to the cold side. 
(Potential barrier that arises to prevent 
diffusion is the Seebeck voltage.)

• The connection of p- and n-type 
elements creates a power device. 

α = Seebeck coefficient
T = Temperature
ρ = resistivity
k= Thermal conductivity
All of which are testable in 
the lab
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Why use thermoelectrics to power spacecrafts?

• NASA’s deep space and 
planetary missions
–Where solar power is not 
available or not practical.

• Compact, solid-state 
devices
–Survives the vibrations from 
launch.  
–No vibration or 
electromagnetic interference 
for sensitive instrumentation. 

• Long lifetimes
–Voyager over 30 years



• The thermoelectric power systems used are called 
Radioisotope Thermoelectric Generators (RTGs) which 
power deep space probes and rovers.

Cassini - Saturn Mars Science Laboratory

RTG

http://saturn.jpl.nasa.gov/;                      http://marsprogram.jpl.nasa.gov/msl/



• The hot side of RTG’s is typically 
kept at temperatures around 
1275K.  How???

• Through alpha decay based heat 
sources.

• Pu-238 is the heat source used.

Hot Pu-238

Hot Side

pn

Cold Side



• Under ATEC project, high-temperature 
TE materials are under development 
for integration into Radioisotope 
Thermoelectric Generators (RTGs) at 
the Jet Propulsion Laboratory (JPL). 

1)http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=521
2)http://marsprogram.jpl.nasa.gov/msl/multimedia/images/?I
mageID=3504 
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RTG System Conversion Efficiency (%)

x 4 Improvement
ZTave ~ 2.2

x 2 Improvement
ZTave ~ 1.1

"GPHS-RTG" Si-Ge
ZTave ~ 0.55

Thot = 1275 K
Tcold = 500 K

Current Status based on 
Advanced Segmented TE 

Materials Performance

"MMRTG" 
PbTe/TAGS
ZTave ~ 0.85

Heat rejection to space. 



• Determine potential problems which could lead to the 
degradation of RTG’s power supply over time:
• Sublimation of materials
• Breakdown of interfacial electrical contact resistance
• Degradation of thermoelectric properties
• Mechanical behavior

Potential impact of irradiation on 
thermoelectric materials!



• Undesired contaminating Pu-240 in Pu-238 may cause a 
degree of fission neutron radiation over time.

• Fission neutrons in the energy range of 100KeV to 8MeV could 
cause lattice damage in TE materials.
• Some of this damage may be annealed in real time during operation. 

• Any change in the lattice structure may effect the TE properties 
of the materials used. 
• This would decrease the performance of RTG’s over time. 

Zintl Phases Lattice
 Fe, Ru, Os, Co, Rh, Ir  P, As, SbLa, Ce, Pr, Nd

Skutterudites Lattice La3-xTe4



• The below samples were exposed to 
17 years worth of neutron radiation 
in 35 minutes. This was done near 
room temperature at the Ohio State 
University Research Reactor 
(OSURR).
• 3 Samples: n-type La3-xTe4

• 3 Samples: p-type Yb14MnSb11 (Zintl)
• 3 Samples: n-type filled skutterudites
• 3 Samples: p-type filled skutterudites 

AIC

3 samples 
per ampoule

Samples separated
Inside the ampoule
By quartz separators



• The TE properties of the materials were tested at two different 
stages
• Pre-irradiation at room temperature (RT)
• Post-irradiation RT and high temperature (HT) measurements.

• The properties tested were:
• Electrical resistivity (ρ)
• Thermal conductivity (K)
• Seebeck coefficient (α) (pending)



Seebeck change was all under 10%
- Within margin of error for RT Seebeck



Resistivity change was within 5%
Within margin of error for RT Hall measurements

RT Electrical resistivity did not degrade!



All TC data measured 
post irradiation was within 
the spread of the pre-
irradiation data, as well 
as within measurement 
error.

Thermal Conductivity 
(TC) Measurements

Post-Irradiation Thermal 
Conductivity was compared to 
pre-irradiation average
- Avg. has 12% spread.



Post-Irradiation Thermal 
Conductivity was 
compared to pre-irradiation 
average
- Avg. has 12% spread.

TC data points fell within the 
spread of the pre-irradiation 
data points. 



- Sample 1 and 3 fell within the 
spread of the pre-irradiation data
- Sample 2 was just beyond it.  
Accounting for error on each 
individual measurement Sample 2 
may still fall within spread. 

LaTe followed the Pre-Irradiation 
curve almost exactly.

- No HT degredation.



Left: Non-irradiated 
Zintl
Right: Irradiated Zintl



• n-Skutterudite, p-Skutterudite, and LaTe post-irradiation 
resistivity and thermal conductivity all were within the margin of 
error or spread of pre-irradiation measurements. 

• Due to contamination in the original Zintl sample batch, the 
behavior of post-irradiated data was skewed.



• No explicit radiation damage could be measured in TE properties of 
n- and p-Skutterudites.
• Pending Seebeck measurements

• LaTe: Displayed no noticeable change in TE properties. 
• Zintl: May have been influenced from the neutron irradiation, but 

original sample batch was contaminated, thus new samples need to 
be created and tested.

• Overall it seems these materials will be able to resist degradation to 
any neutron radiation.  

• Further research :
• HT Seebeck should still be recorded for all of the samples.
• Zintl had contaminates in the original sample and needs to be remade. 
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