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1 Introduction

The discovery of the Higgs boson in 2012 by the ATLAS [1] and CMS [2] experiments at the

Large Hadron Collider (LHC) was a major scientific breakthrough. Confirming for the first

time conclusively the presence of the Higgs field and explaining the origin of the masses of

elementary particles, it renders the standard model mathematically self-consistent, allowing

it to be used to formulate credible predictions at high energies. At the same time it is clear

that the standard model needs to be extended to explain the puzzle of neutrino masses

and cosmological observables as well as the nature of dark matter.

If these open questions are related to the origin of masses it is likely that the precise

nature of the Higgs boson will differ quantitatively from what is expected in the standard

model. Lacking direct observations of particles beyond the standard model, the Higgs boson

is the most promising probe into possible ultra-violet completions of the standard model.

As such, a precise study of the properties of the Higgs boson, such as mass, spin/parity,

branching ratios and production rates, is a central part of the present and future preci-

sion Higgs physics program at the LHC that has been initiated since the discovery. The

remarkable performance of the LHC, delivering unprecedented luminosity, as well as the

unrelenting efforts of the experiments have led to vast improvements of Higgs analyses

resulting in more and more precise extractions of the properties of the Higgs boson.
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In order to truly exploit the potential of these excellent experimental results, it is

imperative to confront them with equally precise theoretical predictions. This demand

for precise predictions from theory has lead to a flurry of calculations in recent years at

next-to-leading (NLO) and next-to-next-to-leading (NNLO) order in perturbative QCD.

Higher order predictions are particularly important for Higgs phenomenology, in part due

to the slow convergence of the perturbative expansion in the strong coupling constant

for the dominant mode of Higgs hadroproduction via gluon fusion. The phenomenological

importance of these corrections can be seen from the large size of the NLO corrections [3, 4]

which almost double the leading-order prediction [5]. The magnitude of these perturbative

corrections indicate potentially significant contributions from even higher orders in the

perturbative series, leading to a substantial uncertainty on the gluon-fusion cross section.

Even with the inclusion of the NNLO [6–8] corrections to the gluon-fusion cross section

the perturbative series seems to converge slowly keeping the perturbative uncertainty at a

significant level.

Recently, the gluon-fusion cross section has been computed through next-to-next-to-

next-to-leading order (N3LO) in perturbative QCD [9–11] in the limit of an infinite top

mass. This calculation has lead to a reduction of the perturbative uncertainty, making

the theoretical predictions competitive with current experimental analyses. At this level

of precision, effects that go beyond the leading approximation of an infinite top mass or a

treatment in pure QCD, neglecting effects from quark masses or electroweak loops, become

important. The state of the art predictions for Higgs hadroproduction have been combined

in a consistent way in [12] and are also compiled in [13, 14].

The Higgs cross section is measured in dedicated regions of phase space as required by

the detector geometry and optimized by carefully designed experimental event selections.

Within these acceptance regions, the experiments have excellent capabilities to measure

a plethora of kinematic distributions for the Higgs boson and its decay products that

can be used to characterize the properties of the Higgs boson. As such it is imperative

for theoretical predictions to not only inclusively describe the total cross section but also

provide high precision theoretical predictions for differential cross sections. Recently, the

pp → H + 1 jet fully differential cross section has been computed at NNLO [15–17]. In

combination with the inclusive N3LO cross section this enables the computation of the

jet-vetoed Higgs cross section at N3LO [18]. Fully differential parton-level Monte-Carlo

simulations at N3LO will enable the study of efficiencies of many other event selection

criteria at the same accuracy in perturbation theory as the jet-veto efficiency.

One way to achieve this goal would be to attempt to generalize any of the meth-

ods available at NNLO (sector-decomposition [19–22], slicing [23–26], subtraction [27–30],

reweighting [31] and other methods [32]) to N3LO. However, the adaptation of any of these

methods to N3LO in full generality is a formidable task. Another avenue is to focus on some

specific differential observables at N3LO. To this end we introduced the Higgs-differential

method [33] and studied its feasibility in obtaining differential distributions without a so-

phisticated NNLO subtraction method. The method is fully-differential in all components

of the Higgs momentum and its decay products, extending ideas first used to obtain rapidity

distributions at NNLO [34, 35]. At the same time, it treats the additional QCD radiation
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inclusively (i.e. it integrates over the unrestricted phase space of all final state partons).

This enables us to compute differential Higgs boson observables, i.e. the Higgs boson rapid-

ity and transverse momentum distributions, as well as any distributions of decay products.

At a later stage the results obtained with this method may serve as a key ingredient to a

fully differential computation, for example in combination with qT -subtraction [25].

A complete analytical computation of N3LO Higgs differential cross sections presents a

formidable challenge. Key ingredients for such a computation are analytic expressions for

Feynman integrals in kinematic limits that can serve as boundary data as well as counter

terms that render the Higgs differential cross section finite in all its physical limits.

In this article we achieve a significant step towards this computation by performing

an expansion of the complete partonic cross sections around the production threshold of

the Higgs boson. The analytic information we obtain is comprised of the first two terms

of in the threshold expansion and represents the foundation of a complete future compu-

tation. Furthermore, we explore the phenomenological potential of threshold expansions

to approximate differential Higgs boson observables. Computations at very high orders

stress the reliability of conventional tools for higher order computations to their limits. We

identify a pitfall with the standard treatment of parton distribution functions within the

framework of LHAPDF and present our solution. Furthermore, we report on the complete

computation of contributions to the Higgs differential N3LO corrections involving explicit

logarithms of the perturbative scale.

The threshold prediction for the Higgs boson rapidity distribution at N3LO was also

obtained in [36–38] in the double threshold expansion. The logarithmic contributions

to the tranverse momentum spectrum for small transverse momenta were also obtained

in [39, 40] within the framework of SCET. We would like to point out that our method

does not rely on the simplification of the definition of the physical observables in any

kinematic limit. This allows us at least in principle to compute the Higgs differential

N3LO cross sections to any order in the threshold expansion. The results that we obtain in

this note are primarily a proof of principle, demonstrating that it is possible, to extend our

Higgs differential method to N3LO. Consequently, we do not claim any phenomenological

significance of the distributions presented in the following. This is applies in particular to

the transverse momentum distributions that we show in section 4. It is of course a well

known fact that transverse momentum distributions for Higgs production in gluon fusion

in the effective field theory have a fairly limited range of applicability. In the low end of

the transverse momentum spectrum, the cross section is dominated by large logarithms of

the transverse momentum that need to be resummed to all orders in perturbation theory

to obtain stable predictions. At the high tail of the transverse momentum spectrum the

cross section becomes sensitive to finite quark mass effects and the accuracy of the infinity

top mass approximation decreases rapidly. This can be countered by systematically adding

corrections to the infinite top-mass limit to the calculations. A detailed discussion of both of

these issues is premature at this point, as our first goal is to obtain a fixed order prediction

for the Higgs differential distributions in the infinite top-mass limit through N3LO in QCD.

Once this is achieved, it will be a separate issue to systematically improve upon this result

and combine it with known important effects as the ones mentioned above.

– 3 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
5

This article is organized as follows. In section 2, we review our method of Higgs-

differential calculations. In section 3 we describe how threshold expansions can be per-

formed for partonic Higgs-differential cross sections and obtain analytic results for the

N3LO coefficient function. In section 4 we critically asses the quality of results obtained

with a threshold expansion for differential distributions at NNLO. On the way to obtain

numerical results for distributions at N3LO we encounter in section 5.1 an issue that arises

when interpolating parton density functions. Naive usage of LHAPDF leads to a drop in

accuracy when computing N3LO results due to a lack of smoothness in the default inter-

polation routines. We illustrate our findings and discuss our way of avoiding this issue.

Yet another crucial ingredient for N3LO Higgs-differential phenomenology are the com-

plete contributions due to explicit dependence on the perturbative scale which we obtain

in section 5.2. Then, in section 5.3 we demonstrate the impact of the newly obtained

approximations to the N3LO coefficient functions on the rapidity distribution of the Higgs

boson and discuss their validity. Finally, we conclude in section 6.

2 Higgs differential cross sections

In this section we briefly review the definition of Higgs differential cross sections introduced

in ref. [33]. Within this framework we consider scattering process of two protons that

produce at least a Higgs boson.

Proton(P1) + Proton(P2)→ H(ph) +X, (2.1)

P1 and P2 are the momenta of the colliding protons and ph the momentum of the Higgs

boson. The framework of Higgs differential cross sections allows to compute the scattering

probability for any observable that is solely dependent on the four momentum of the Higgs

boson. Typically such observables are related to the rapidity Y , transverse momentum pT
and mass mh of the Higgs boson.

ph ≡ (E, px, py, pz) =

(√
p2
T +m2

h coshY, pT cosφ, pT sinφ,
√
p2
T +m2

h sinhY

)
, (2.2)

where

Y =
1

2
log

(
E + pz
E − pz

)
, pT =

√
E2 − p2

z −m2
h.

E, pz and pT are the energy of the Higgs boson, its momentum along and transverse to

the beam axis in the laboratory rest frame, respectively. The master formula for a Higgs

differential cross section for an observable O is then given by

σPP→H+X [O] = τ
∑
i,j

∫ 1

τ

dz

z

∫ 1

τ
z

dx1

x1

∫ 1

0
dx

∫ 1

0
dλ

∫ 2π

0

dφ

2π

× fi(x1)fj

(
τ

x1z

)
1

z

d2σij
dx dλ

(z, x, λ,m2
h)JO(x1, z, x, λ, φ,m

2
h). (2.3)

Here, we employed the parton model and factorization of long and short range interac-

tions into parton distribution functions fi(x) and partonic differential cross sections. The
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momenta of the colliding partons are related to the proton momenta by p1 = x1P1 and

p2 = x2P2 = τ
x1z

P2. The variable τ is given by

τ =
m2
h

S
, S = (P1 + P2)2. (2.4)

The sum over i and j ranges over all contributing partons. The variables x, λ and φ

parametrize the momentum of the Higgs boson. φ is the azimuthal angle of the Higgs

boson with respect to the collision axis. x and λ are related to the more familiar Higgs

boson rapidity and transverse momentum by

Y =
1

2
log

[
x1

x2

1− z̄λ̄
1−z̄λx

1− z̄λ

]
, p2

T = s
z̄2λλ̄x̄

1− z̄xλ
. (2.5)

Here, x̄ = 1−x, λ̄ = 1−λ and z̄ = 1−z. The partonic Higgs differential cross section is given

by
d2σij
dx dλ(z, x, λ,m2

h). The observable we are interested in is specified by the measurement

function JO(x1, z, x, λ, φ,m
2
h), that filters the regions we are interested in. Assume we are

interested in computing the probability for a Higgs boson to be produced in the rapidity

interval Y ∈ [1, 2] the measurement function would take the form

JO(x1, z, x, λ, φ,m
2
h) = θ

(
2− Y (x1, z, x, λ, φ,m

2
h)
)
θ
(
Y (x1, z, x, λ, φ,m

2
h)− 1

)
. (2.6)

In ref. [33] the partonic Higgs differential cross sections were computed in heavy quark

effective theory for the gluon fusion production mode to NNLO in QCD perturbation theory

in terms of analytic functions of the variables z, x and λ. Higgs differential cross sections can

be easily combined with subsequent decays of the Higgs boson in order to allow for the pre-

diction of fiducial cross sections for Higgs boson decay products as demonstrated in ref. [33].

3 Threshold expansion for Higgs-differential N3LO

In this section we present the analytic computation for the first and second term of the

threshold expansion of the partonic N3LO coefficient functions. In order to derive our

results we strongly rely on techniques recently developed in refs. [11, 41, 42, 42, 43]. We

begin by clarifying the ingredients for our partonic coefficient functions. Next, we set-up

the notation for the partonic phase space integrals we perform to obtain Higgs differential

partonic cross sections. Finally, we explain how threshold expansion for Higgs differential

cross sections can be performed at the integrand level.

3.1 Setup of the calculation

The gluon fusion cross section in the standard model is mainly mediated by a top quark

loop, coupling the gluons to the Higgs boson. For the production of a Higgs boson with

the observed mass of mH = 125GeV with a transverse momentum below the top-pair

threshold, the process can be safely described in the limit where the top quark is infinitely

heavy. In this limit, the top quark can be integrated out, which induces an effective theory
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that directly couples the gluons to the Higgs boson via an effective dimension five operator.

The Lagrangian for this effective theory is given by,

Leff = LSM,5 −
1

4
C0HGµνa Gµνa, (3.1)

where H is the Higgs field, Gµνa is the gluon field strength tensor and LSM,5 denotes

the standard model Lagrangian with Nf = 5 light flavors. The bare Wilson coefficient

C0 is obtained by matching the effective theory to the standard model in the limit of

an infinitely heavy top quark [44–47]. The inclusive cross section σPP→H+X has been

computed at NLO [3, 4, 48] as well as at NNLO [6–8]. Recently, the N3LO corrections

were also computed [11, 12].

Within the effective theory, we can write the Higgs-differential partonic cross section as,

1

z

d2σ̂ij
dx dλ

(z, x, λ,m2
h) = (C0)2 σ̂0 ηij(z, x, λ)

= (C0)2 σ̂0

∞∑
k=0

(αS
π

)k
η

(k)
ij (z, x, λ). (3.2)

Dividing out the Born cross section,

σ̂0 =
π

8(n2
c − 1)

, (3.3)

we can write the partonic coefficient functions as,

η
(n)
ij (z, x, λ) =

Nij

2m2
hσ̂0

n∑
m=0

∫
dΦH+mδ

(
x− s(p1 + p2 − ph)2

(s− 2p1 · ph)(s− 2p2 · ph)

)
× δ

(
λ− s− 2p1 · ph

s−m2
h

)
M(n)

ij→H+m. (3.4)

The initial state dependent prefactors Nij are given by

Ngg =
1

4(1− ε)2(n2
c − 1)2

,

Ngq = Nqg =
1

4(1− ε)(n2
c − 1)nc

, (3.5)

Nqq̄ = Nqq = Nqq′ =
1

4n2
c

.

Here, g, q and q̄ indicate that the initial state parton is a gluon, quark or anti-quark re-

spectively. dΦH+m is the phase space measure for the production of a Higgs boson and m

partons and is explained in more detail below. M(n)
ij→H+M is the coefficient of αnS in the

coupling constant expansion of the modulus squared of all amplitudes for partons i and j

producing a final state Higgs boson and m partons summed over polarizations and colors.

To compute the nth order partonic coefficient functions we require all combinations l-loop

matrix elements with m external particles such that m+ l = n.

The parameter z̄ = 1 − z = 1 − m2
h
s tends to zero as we approach the production

threshold and the partonic center of mass energy becomes equal to the Higgs boson mass.
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In this work we perform a systematic expansion of the partonic coefficient functions around

the production threshold.

η
(n)
ij (z, x, λ) = η

(n,SV )
ij (z, x, λ) +

∞∑
k=0

z̄iη
(n,k)
ij (z, x, λ). (3.6)

We separated the leading term in the expansion that is indicated by the superscript (SV )

and that is commonly referred to as the soft-virtual contribution. This particular term is

singular as z̄ → 0 and acts as a distribution on the measurement function and the parton

distribution functions as we explain below. All higher power terms depend on z in the

form of polynomials of logarithms log(1 − z). The individual terms η
(n,i)
ij (z, x, λ) depend

on the threshold variable z̄ in the form of polynomials of logarithms of the form log(z̄). In

this article we obtain the first and second term in the threshold expansion for all required

partonic coefficient functions.

The purely virtual matrix elements are independent of the expansion parameter and

were computed in refs. [49]. Matrix elements with two loop and one emission were computed

in refs. [42, 50, 51] and recomputed for the purpose of this article and are known to all

orders in z̄.

In order to obtain the required matrix elements with two or three additional partons

in the final state we followed the techniques developed in refs. [11, 42, 42, 43]. We generate

Feynman diagrams with QGRAF [52] and perform spinor and color algebra with a private

c++ code based on GiNaC [53]. Next, we perform a threshold expansion on the integrand

level and subsequently integrate out the momenta of all radiation produced in addition to

the Higgs boson. We discuss this step in greater detail below.

Our coefficient functions contain single poles in the variables z̄, x and λ. These poles

correspond to kinematic singularities of the Higgs boson cross section where the kinematic

degrees of freedom degenerate. Explicitly, they correspond to vanishing transverse mo-

mentum of the Higgs boson or vanishing virtuality of the system of all radiation produced

in association with the Higgs boson. Specifically, before expansion in the dimensional

regulator these singularities are of the form{
z̄−1+a1ε, x−1+a2ε, (1− x)−1+a3ε, λ−1+a4ε, (1− λ)−1+a5ε

}
(3.7)

where the coefficients ai are small integer numbers.

When we compute Higgs differential cross sections as in eq. (2.3) we integrate in the

variables z̄, λ and x and the singularities may lie within our integration range, depending

on the observable under consideration. For example, to compute the inclusive cross section

we integrate the variables x and λ within the interval [0, 1]. Consequently, regularization

of these divergences is required and we proceed as outlined in ref. [33] (and repeated in

appendix A). The analytic computation of the first two terms in the threshold expansion

of the N3LO coefficient functions represents one of the main results of this article. We

present this result in Mathematica readable form as supplementary material attached to

this paper.
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3.2 Higgs differential phase space

The integration measure for the production phase space of a Higgs boson and m additional

partons is given by

dΦm =
ddph
(2π)d

(2π)δ+(p2
h−m2

h)(2π)dδd

(
p1+p2+ph+

m+2∑
i=3

pi

)
m+2∏
i=3

ddpi
(2π)d

(2π)δ+(p2
i ), (3.8)

where

δ+(p2 −m2) = θ(−p0 +m)δ(p2 −m2). (3.9)

We want to develop a parametrization of the above phase space that allows us to compute

observables that are differential in the Higgs boson four momentum. Consequently, it seems

natural to separate the integration over the momenta of the Higgs and the final state parton

momenta. We can achieve this by inserting a unity

1 =

∫
ddk

(2π)d
(2π)dδ(k − p3 − p4 − · · · − pm+2)

∫ ∞
0

dµ2

2π
(2π)δ+(k2 − µ2). (3.10)

This identity allows us to write the H plus m parton phase space measure as an integral

over a phase space measure for two massive particles and m massless partons.

dΦm =

∫ ∞
0

dµ2

2π
dΦ2−mdΦ0−m

m . (3.11)

We choose the rest frame of the initial state partons

pµ1 =

√
s

2


1

0
...

0

−1

 , pµ2 =

√
s

2


1

0
...

0

1

 . (3.12)

We introduce the following definition of Lorentz invariant scalar products.

sij = (pi + pj)
2, i 6= j.

sii = p2
i . (3.13)

With this we have s = s12. We refer to the last component of our d-dimensional vectors as

z components and all other space like components as transverse components. The z-axis

is parallel to the collision axis of the incoming partons. In this frame we can now express

the energy- and z-component of any vector pi in terms of scalar products of this vector and

the two incoming momenta.

p0
i =

1√
s

(p1 + p2) · pi.

pzi =
1√
s

(p1 − p2) · pi. (3.14)

– 8 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
5

We start by parametrizing the phase space for two massive particles.

dΦ2−m =
ddph
(2π)d

ddk

(2π)d
(2π)δ+(k2−µ2)(2π)δ+(p2

h−m2
h)(2π)dδd(p1+p2+ph+k). (3.15)

In general we can write

ddpi
(2π)d

=
1

(2π)d
dEidp

z
i d
d−2p⊥i =

1

2(2π)d
dEidp

z
i d|p⊥i |2dΩd−2

(
|p⊥i |2

) d
2
−2
. (3.16)

Integrating out ph and using the above parametrization we find

dΦ2−m =
(2π)2−d

2
dEkdk

zd|k⊥|2dΩd−2

[
(k⊥)2

] d
2
−2

× θ(−Ek − µ)θ(Ek +
√
s−mh)δ(k2 − µ2)δ(s+ 2p12k + k2 −m2

h). (3.17)

We exploit the on-shell condition of k to perform the k⊥ integration to find |k⊥|2 = E2
k −

(kz)2 − µ2. Furthermore, we parametrize

2p1k = −(s−m2
h)λ =

√
s(Ek − kz) ,

2p2k = −(s−m2
h)λ̄ =

√
s(Ek + kz) , (3.18)

and find that

|k⊥|2 = E2
k − (kz)2 − µ2 =

(s−m2
h)2

s
λλ̄− µ2. (3.19)

Consequently,

dΦ2−m =
(2π)2−d

4
sz̄2dλdλ̄dΩd−2

[
(s−m2

h)2

s
λλ̄− µ2

] d
2
−2

× θ(−Ek − µ)θ(Ek +
√
s−mh)δ((s−m2

h)(1− λ− λ̄) + µ2). (3.20)

In order to make our live a little easier we are going to exploit the fact that we will later

on integrate over µ2 and re-parametrize µ2 = sz̄2λλ̄x:

dΦ2−m =
(2π)2−d

4
sz̄2dλdλ̄dΩd−2

[
sz̄2λλ̄(1− x)

] d
2
−2

× θ(−Ek − µ)θ(Ek +
√
s−mh)δ(sz̄(1− λ− λ̄(1− z̄λx))). (3.21)

Solving the θ constraints and integrating out λ̄ we find

dΦ2−m =
(2π)2−d

4
s
d
2
−2z̄d−3dλdΩd−2 (λ(1− λ))

d
2
−2 (1− x)

d
2
−2 (1− z̄λx)1− d

2

× θ(λ)θ(1− λ)θ(1− x)θ(z̄)θ(s). (3.22)

We now can combine the previous result and rewrite eq. (3.11) as

dΦm =

∫ ∞
0

dµ2

2π
dΦ2−mdΦ0−m

m

=
s
d
2
−1

4(2π)d−1
z̄d−1dλdΩd−2 θ(z̄)θ(s)

∫
dx θ(x)θ(1− x)θ(λ)θ(1− λ)

× (λ(1− λ))
d
2
−1 (1− x)

d
2
−2 (1− z̄λx)−

d
2 dΦ0−m

m . (3.23)
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The remaining massless parton measure is given by

dΦ0−m = (2π)dδd

(
k −

m+2∑
i=3

pi

)
m+2∏
i=3

ddpi
(2π)d

(2π)δ+(p2
i ). (3.24)

Analytic partonic coefficient functions for Higgs differential cross sections are now obtained

by performing the integration over m-parton final state squared matrix elements using the

above measure.

3.3 Threshold expansions for Higgs differential cross sections

In this section we describe our method to perform a threshold expansion at the integrand

level for the required matrix elements for the N3LO coefficient function that involve two

or more partons. We start by regarding matrix elements that correspond to purely real

radiation diagrams and contain no closed loops and then we address the case of virtual

radiations.

Consider as an example the following scalar phase space integral.

I(p1, p2, k) =

p1

ph

p2p1

p2

ph

=

∫
dΦ0−3 1

p2
23p

2
25p

2
34p

2
45p

2
134p

2
145

, pi1...in = pi1 + · · ·+ pin (3.25)

In the above picture solid lines correspond to scalar propagators, doubled line to massive

external legs and lines crossed by the dashed line represent the on-shell constraints of the

phase space integration measure.

As described above, the threshold limit corresponds to the kinematic configuration

where all radiation produced in association with the Higgs boson is uniformly soft. It is

thus natural to perform the variable transformation pf → z̄pf [41]. Here, pf indicates the

momentum of any final state parton, which can be identified in (3.25) by the momenta

crossing the dashed line, namely p3, p4 and p5. This rescaling induces a transformation on

the phase space measure dΦ0−3 → z2d−6dΦ0−3 contained in (3.25) given that k → z̄k.

Performing a series expansion of the integrand yields

I(p1, p2, z̄k) = z̄2d−14

[∫
dΦ0−3 1

(2p2p3)(2p2p5)p2
34p

2
45(2p1p34)(2p1p45)

+O(z̄1)

]
= z̄2d−14

[
I(0) + z̄I(1) + . . .

]
. (3.26)

Every term in the soft expansion of a Feynman integral can be written in terms of

a linear combination of soft integrals as already observed in ref. [43, 54]. Soft integrals

are Feynman integrals that are independently homogeneous under rescaling of the initial

momenta p1, p2 or all momenta in the integral simultaneously.
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Consider for example what happens to our example integral I(0) as we rescale

p1 → λ1p1.

I(0) → λγ11 I
(0). (3.27)

The associated rescaling dimension can be easily read off the integral and in the specific

case of our example we find γ1 = −2.

In general,

p1 → λ1p1 : Is → λγ11 Is ,

p2 → λ2p1 : Is → λγ22 Is ,

{p1, p2, pf , k} → λ3{p1, p2, pf , k} : Is → λγ33 Is . (3.28)

The last line in the above equation indicates a simultaneous rescaling of all momenta in

the curly bracket. Note that the respective scaling dimensions γi depend on the specific

integral in question but for simplicity we write them without any argument.

We realize that the integrated soft integrals are functions of four Lorentz invariant

scalar products s, k2, 2p1k and 2p2k. We can use the scaling behavior of our soft integrals

to determine its functional dependence on three of the four scalar products. Consequently,

the soft integrals depend on one variable that is invariant under any of the three rescaling

symmetries. This invariant cross ratio is given by the dimensionless variable x = k2s
2kp12kp2

,

introduced in eq. (2.3). Combining these properties we are able to write:

Is(s, k
2, 2kp1, 2kp2) = sγ1+γ2−γ3/2(2kp1)γ3/2−γ2(2kp2)γ3/2−γ1 Ĩs(x). (3.29)

Once our integrand is expressed in terms of integrals that only depend on the cross ratio

x we can use standard phase space integral techniques to compute these functions. In

particular, we employ the framework of reverse unitarity [7, 34, 35, 55, 56] to express our

differential partonic cross sections in terms of a few soft master integrals. Subsequently,

we make use of the method of differential equations [57–59] to compute our soft master

integrals. The soft expansion greatly simplifies these steps as in the expression above we

only need to maintain functional dependence on x. The resulting functions are harmonic

polylogarithms [60] in the x variable.

Note, that so-far we did not apply the relation among the invariants that arises due to

the on-shell constraint for the Higgs boson, p2
h−m2

h = s+ 2kp2 + 2kp3 + k2− sz = 0. This

relation is inhomogeneous under rescaling the final state momenta k and will introduce

sub-leading terms in the z̄ expansion. In ref. [42] this issue was solved by performing

a systematic expansion of the on-shell constraint by including it in the reverse unitarity

method. Here, we choose to impose the aforementioned on-shell constraint only after

reduction to master integrals.

An additional complication arises when loop integrals are part of the phase space

integrand. The loop momentum can take arbitrary values that are parametrically smaller

or larger compared to the parameter z̄ we want to expand our cross section in. The obstacle

is easily illustrated by regarding a single propagator containing a loop momentum l and a

– 11 –



J
H
E
P
0
1
(
2
0
1
8
)
1
4
5

rescaled final state momentum z̄p3. The expansion

1

(l2 + z̄2lp3)
=

1

l2

∞∑
i=0

(
− z̄2lp3

l2

)i
, (3.30)

is simply not convergent if for example l is uniformly smaller than z̄.

To be able to perform a systematic threshold expansion at the integrand level for the

partonic cross section we rely on the strategy of regions [61] that allows to consistently

treat the problem. In particular, we want to expand contributions with one loop and two

additional partons in the final state around the threshold limit. Exactly this issue was

addressed in much detail in ref. [43] and we refrain from repeating the procedure here.

Once the loop and phase space integrand is expanded we perform a reduction of the loop

integrals to loop master integrals.

The initial step of performing the reduction of loop integrals allows us to determine

the rescaling behavior of the loop integrals under the scaling transformations introduced

in eq. (3.28). Next, we embed the loop master integrals again in terms of their Feynman

propagator representation into the phase space integration and we subsequently perform

the combined loop and phase space integral in the same fashion as the pure phase space

integrals discussed above (i.e. via reverse unitarity and differential equations). Again,

we benefit from having only to maintain functional dependence on the cross ration x by

inferring the dependence of our integral on the other variables from its behavior under

scaling transformations.

With the techniques summarized in this section we can perform a threshold expansion

of the partonic Higgs differential cross sections at arbitrary order in the strong coupling

constant and to arbitrary power in z̄. Specifically, we perform the computation of tree

level partonic cross sections with three partons in the final state and partonic cross section

with one loop and two partons in the final state to first and second order in the threshold

expansion. Extending the threshold expansion to higher powers is technically challenging

and is left for future work. As a result we obtain all ingredients to compute the first and

second term in the threshold expansion of the N3LO Higgs differential cross section.

4 Validating the threshold expansion for differential observables

at NNLO

In proton collisions with a fixed center of mass energy the probability for two constituent

partons to collide can be understood as a function of center of mass energy of the colliding

partons. This probability is falling as the center of mass energy of the colliding partons

rises. In particular, if the two partons under consideration are gluons this probability is

falling faster as a function of their energy than the probability for two quarks or one quark

and one gluon. As the main source for the production of a Higgs boson at the LHC are two

colliding gluons this implies that there is a kinematic enhancement for the Higgs boson to

be produced from a system of gluons with as little energy as possible. The lowest possible

energy to produce a Higgs boson is referred to as its production threshold and corresponds

to the Higgs boson mass. In general, it can be expected that the bulk of Higgs bosons
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produced in proton collisions are produced at their production threshold and the cross

section to find more energy in the produced system is falling with energy.

In the past this simple kinematic consideration was exploited to derive simplifications

for the prediction of Higgs boson cross sections. Perturbative NNLO [6] and N3LO [11]

corrections were approximated in the form of an expansion around the threshold. Factor-

ization properties of the leading term in the threshold expansion are commonly exploited

to perform all order resummation of threshold enhanced terms. In this section we will an-

alyze the performance of an expansion of partonic Higgs differential cross sections around

the production threshold.

As the partonic differential cross sections were computed analytically as a function of

z̄ in ref. [33] we can easily perform a threshold expansion a posteriori. In the following we

want to study the quality of this approximation as higher and higher terms in the expansion

are included for differential observables. In order to do so we compute the rapidity and

transverse momentum distribution of the Higgs boson. We perform a threshold expansion

for all matrix elements occurring at NNLO and keep lower order matrix elements exact.

We then truncate the expansion at different orders and compare with the exact results.

To derive numerical values we numerically perform the remaining integrals in eq. (2.3)

over the partonic cross sections in conjunction with MMHT2014 parton distribution func-

tions [62] in a private C++ implementation. We perform renormalization and convolutions

with the mass factorization counter terms numerically. We only expand the partonic NNLO

matrix elements around the production threshold. This leads to a mismatch in the can-

cellation of infrared and ultra violet divergences which are treated in the framework of

dimensional regularization. Specifically the cancellation of poles in the dimensional reg-

ulator is only given up to the respective order in the threshold expansion at which we

truncate. Throughout this section we choose the perturbative scale to be µ = mh.

Let us first consider the inclusive cross section produced at a perturbative scale µ = mh.

In refs. [63] similar studies were performed for the inclusive cross section at NNLO and our

findings agree. We show the inclusive cross section through NNLO in figure 1 for different

truncation orders. The first few terms in the threshold expansion (in red) significantly

deviate from the exact result (in blue). After the first five terms the expansion stabilizes

and subsequent terms gradually improve the result. The agreement after including five

terms in the expansion is fairly good. Further improvement is achieved at a comparably

slow rate. This slow convergence of the remaining difference to the exact result can be

attributed to explicit divergences of the partonic coefficient functions at the high energy

limit z = 0. A similar behavior was observed for the expansion of the N3LO corrections to

the inclusive cross section in refs. [11, 12, 63].

In figure 2 we show the rapidity and transverse momentum distribution. Increasing

truncation order of the threshold expansion is indicated by increasingly dark shades of red

and the exact result in blue. As for the inclusive cross section we observe that the first few

terms display large variations from the full result. After about five terms the expansion

stabilizes and adding higher terms shows gradual improvements on the approximation.

Note that in order to derive a physical prediction for the first couple of bins in the transverse

momentum distribution logarithms of the transverse momentum should be resumed to all
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Figure 1. Inclusive production probability for a Higgs boson as a function of the truncation order

of the threshold expansion for the NNLO correction (red). The blue line represents the unexpanded

NNLO inclusive cross section.

(a) (b)

Figure 2. NNLO absolute rapidity (left) and transverse momentum (right) distribution for the

Higgs boson. The blue line represents the exact result. Increasingly darker shades of red represent

higher and higher truncation order of the threshold expansion.

orders in perturbation theory. No such procedure was applied here as this is beyond the

scope of this article.

The actual quality of the expansion can be studied in more detail by analyzing the rel-

ative deviations of the expanded distributions from the full result. In figure 3 we show the

rapidity and transverse momentum distribution normalized to the unexpanded respective

distributions. We note that by including only the third term in the expansion the rapidity

distribution at NNLO is approximated to a level better than five percent. The transverse

momentum distribution is improved as higher terms in the expansion are included. How-

ever, even with ten terms in the expansion the overall agreement between the exact result

and the expansion is merely at the level of ten percent.

At large rapidity the quality of the threshold expansion deteriorates as the Higgs boson

is produced with a larger boost along the beam axis and thus on average more energy is in

the final state system. The stark difference between the behavior of the rapidity and of the
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(a) (b)

Figure 3. NNLO absolute rapidity (left) and transverse momentum (right) distribution for the

Higgs boson. The blue line represents the exact result. Increasingly darker shades of red represent

higher and higher truncation order of the threshold expansion. All lines are normalized to the exact

NNLO distributions.

transverse momentum distribution can be understood by considering the structure of the

partonic coefficient functions. The transverse momentum of the Higgs boson is identically

zero at leading order as there is now parton produced for the Higgs boson to recoil against.

At the kinematic threshold all radiation produced in association with the Higgs boson is

soft and does not provide any recoil either. Adding terms in the threshold expansion only

gradually builds up the functional dependence of the matrix elements on the transverse

momentum. At the same time, the partonic matrix elements are singular as the transverse

momentum of the Higgs boson vanishes. The partonic transverse momentum distribution

contains kinematic singularities at finite values of z̄ that are expanded by the threshold

expansion. This leads to a slower convergence compared to the rapidity distribution.

We can conclude that the quality of a threshold expansion is subject to the particu-

larities of individual observables. If such an expansion is to be used to approximate cross

section predictions a dedicated analysis of the quality of the approximation has to be per-

formed specific to every observable. Complementing threshold expansions with expansions

in the rapidity of the Higgs boson would be an interesting way forward and such studies

are left for future work.

It is commonly the case that predictions for inclusive cross sections become available

prior to predictions for exclusive observables. Suppose this was the case for NNLO Higgs

differential cross sections. In this case we could approximate differential cross sections at

NNLO by performing a threshold expansion. To further improve the expanded results we

could ensure that the inclusive cross section is reproduced by the differential approximation

and only shapes are computed by the approximated result. We define the improved Higgs

differential cross section to be

σImproved
PP→H+X [O] =

σFull

σExpanded
σExpanded
PP→H+X [O] . (4.1)

Here, σFull and σExpanded are the inclusive cross section without and with expanding around

the threshold limit respectively. σExpanded
PP→H+X [O] is the Higgs differential cross section based

on partonic coefficient functions approximated by a threshold expansion.
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(a) (b)

Figure 4. NNLO absolute rapidity (left) and transverse momentum (right) distribution for the

Higgs boson. The blue line represents the exact result. Increasingly darker shades of red represent

higher and higher truncation order of the threshold expansion. All lines are normalized to the

exact NNLO distributions. The expanded distributions were reweighted such that their cumulant

reproduces the unexpanded NNLO cross section.

We show predictions for the rapidity and transverse momentum distribution based

on the improved approximation in figure 4 normalized to their exact counter parts. The

effect of the rescaling is largest for low truncation order where the difference between the

inclusive cross section based on the expansion and the full result is largest. We observe that

the rapidity distribution is approximated at a level significantly better than two percent

including just three terms in the threshold expansion throughout the rapidity interval

[0, 3]. The significant deviations of the shape of the transverse momentum distribution

based on the threshold expansion are only mildly impacted by rescaling the distribution to

the correct inclusive cross section.

5 Numerical results for approximate N3LO cross sections

In the following we discuss the remaining ingredients required to promote our analytical

results for approximate N3LO differential partonic cross sections to distributions. As in any

calculation of hadronic observables we require parton distributions functions as an external

input. Special care has to be taken not to introduce artifacts due to the interpolation of the

input parton grids. Next we discuss scale dependence of the cross section that we extract

to all orders in the threshold expansion. Combining all ingredients obtained, we then show

differential distributions.

5.1 Curious encounters with parton distribution functions

We compute predictions for the total cross sections and distributions by performing Monte-

Carlo integrals over the remaining variables of the Higgs phase space given in eq. (2.3).

This requires numerical values for the parton distributions which are obtained by accessing

the grids of standard PDFs [62, 64–67] through LHAPDF [68]. The parton distributions

functions f(x,Q2) are functions of the partonic momentum fraction x and the scale Q2.

Internally, the parton distributions are stored as finite grids in (x,Q2) space. These grids
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are interpolated on-the-fly by LHAPDF to provide the value of the parton distribution at the

requested point in (x,Q2) space to the user. By default, this interpolation is performed

using a log-cubic spline.

In the following, we want to study the numerical evaluation of the soft-virtual term of

the rapidity distribution at N3LO. In the strict soft limit, the rapidity distribution takes a

particular simple form, since the partonic rapidity becomes unity. Thus the hadron level

rapidity Y is just a function of the parton momentum fractions, which can be seen from

taking the limit z̄ → 0 in eq. (5.1). The differential partonic cross section in that limit is

therefore simply the soft-virtual inclusive cross section [9] and we can write the hadronic

cross section as,

dσgg
dY

=
σ0

9v2

(αs
π

)5
∫ 1

τ
dzfg

(√
τ

zY

)
fg

(√
τY

z

){
1124.31 δ(1− z) + 1466.48

[
1

1− z

]
+

− 6062.09

[
log(1− z)

1− z

]
+

+ 7116.02

[
log2(1− z)

1− z

]
+

− 1824.36

[
log3(1− z)

1− z

]
+

− 230

[
log4(1− z)

1− z

]
+

+ 216

[
log5(1− z)

1− z

]
+

}
. (5.1)

Evaluating the soft-virtual term of the rapidity distribution at N3LO using the NNLO

sets from NNPDF 3.0 at αs(mz) = 0.118 obtained using the default LHAPDF setup, we observe

an unexpected loss of accuracy. As can be seen in figure 5, the rapidity distribution displays

strong oscillations. Clearly, the soft-virtual limit of the rapidity distribution in eq. (5.1) has

no structures that would warrant this oscillatory behaviour. Comparison with lower orders

in perturbation theory suggest strongly that these features are numerical artifacts which

should be suppressible by more careful numerics. The origin of these numerical artifacts

can be understood when analyzing the influence of the interpolator used in LHAPDF to

obtain continuous values from the discrete (x,Q2) grids.

Figure 5 shows how the oscillations of the rapidity distribution change with different

interpolation orders of the parton distributions. Clearly, these oscillations are artifacts of

the interpolators lacking smooth higher order derivatives as can be seen from the fact that

the magnitude of the oscillations increases when using lower rank splines for interpolation.

These artifacts seem to be caused by the appearance of high powers of logarithms of z in

the partonic cross section. As can be seen in eq. (5.1), the soft-virtual N3LO contribution

to the rapidity distribution contains terms of form[
log(1− z)n

1− z

]
+

, (5.2)

for n ∈ [0, 5]. In comparison, the soft-virtual NNLO contribution to the rapidity distri-

bution contains only terms for n ∈ [0, 3]. It seems therefore that the n = 4 and n = 5

terms pick up contributions from discontinuous higher moments of the interpolator. This

hypothesis can be tested at NNLO. With the default log-cubic interpolator the soft-virtual

contributions to the NNLO rapidity distributions are smooth, as expected. Switching how-

ever to a log-linear interpolator, we see the same kind of oscillatory behavior appearing in
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Figure 5. Soft-virtual term of the N3LO correction to the absolute rapidity distribution evaluated

with various ways of interpolating the PDF grid. The blue line is obtained using a linear interpolator,

the yellow line was obtained using a log-linear interpolator, the green line was obtained using a cubic

interpolator. The solid orange line was obtained using the default LHAPDF setting, which uses a

log-cubic interpolator. The solid purple line was obtained using our custom fit to the LHAPDF grid,

which is described in the text. Note that the excursions of the blue and yellow line from the central

value obtained through the fit were divided by a factor of five to be able to visualize the oscillations.

the NNLO rapidity distribution. It is clear that we need a smoother way to interpolate

the LHAPDF grids in order to obtain useful predictions at N3LO. One way to obtain smooth

values from the parton distributions, is to evolve the parton distributions to a fixed value

of Q2 using LHAPDF and fit the resulting grid in x space with an analytic function that is

sufficiently smooth. We make an empirical ansatz for the function as,

fQ2(x) = c0(1−x)c1xc2 +(1−x)c3
[
c4+c5

√
x+c6x+c7 log2(x)+c8 log4(x)+c9 log6(x)

]
.

(5.3)

We fit this ansatz to points obtained from evolving the gluon NNLO NNPDF 3.0 grid to a

scale Q2 = (125GeV)2, finding a χ2/ndof of 1.9× 10−7 with the parameters:

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

3.0752 4.7260 6.5836 3.7279 -3.1264 7.9413 -5.1894 0.4548 -0.0004 0.0001

Evaluating the rapidity distribution with the fitted x-dependence for the PDFs, we

obtain the smooth line in figure 5.

Performing a fit for parton distribution functions in terms of a smooth functions en-

tails the disadvantage that this procedure has to be repeated for every required PDF set

and ensuring a high fit quality sufficient for arbitrary observables is a non trivial task.

Furthermore, assessing the goodness of such a fit should be subsequently incorporated in

the analysis of uncertainties of cross section predictions. As such it seems advantageous to

use instead a higher order interpolator for LHAPDF grids. We therefore implement a custom

interpolator that is able to interpolate with splines of varying polynomial degree. We test

the interpolation with degree six and degree twelve Legendre polynomials. The results can

be seen in figure 6.
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Figure 6. Soft-virtual term of the N3LO correction to the absolute rapidity distribution evaluated

with various ways of interpolating the PDF grid. The dashed blue line shows again the default

LHAPDF setup and the dashed yellow line shows again the fit for comparison. The dashed green

line shows our interpolator using order 6 polynomials in log(x) space. The orange line shows the

interpolator with order 12 polynomials in log(x) space.

As one can see in figure 6, the interpolation with log-polynomial splines at order

6 smoothes the oscillations in comparison to the default LHAPDF setup, however some

artifacts still remain. Using log-polynomial splines at order 12 then leads to acceptably

smooth results.

The numerical results at N3LO in the remainder of the paper are obtained using the

order 12 interpolator.

It should of course be noted that although the loss of accuracy cannot be directly

observed in inclusive calculations at N3LO, we can still expect an effect to appear from the

integral over the oscillations. To test this, we integrate the threshold expansion through 37

terms of the inclusive N3LO cross section, as obtained in [11], with two different ways of

obtaining numeric values for the parton distributions. We integrate the cross section with

values for NNPDF 3.0 directly taken from LHAPDF and compare with integrating the cross

section using the fit obtained in eq. (5.3). We observe a deviation of about 1.3% of the

full N3LO coefficient. We can therefore conclude that the effect on the total cross section

through N3LO is negligible.

We want to stress here the generality of the appearance of this loss of accuracy. Even

though we show here numbers obtained using a particular PDF provider, we have inves-

tigated all common PDF sets from the big collaborations and find that these artifacts

appear for any PDF set. We should also point out that the appearance of these oscilla-

tions is not specific to our calculation. These features had not been observed before, as

the interpolators provided by default are smooth enough for NNLO calculations, however

any calculation at N3LO that relies on LHAPDF will be susceptible to this effect. Clearly,

it is desirable to study the effect of interpolator choices in more detail and to provide a

flexible means of interpolating LHAPDF grids at sufficiently high orders to obtain smooth

predictions for future N3LO phenomenology.
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5.2 Exact scale variation at N3LO

After ultraviolet (UV) renormalization of the coupling constant and the Wilson coefficient,

and after suitable redefinition of the parton distribution function, the Higgs differential

cross section takes its final and finite form. The coefficient of α3
S can be written as

η̃
(3)
ij (z, x, λ, Lµ) =

0∑
k=−3

[
εk
(
m2
h

µ2

)−3ε

η
(3,k)
ij (z, x, λ) + εkC

(3,k)
T (z, x, λ, Lµ)

]
+O(ε). (5.4)

Here Lµ = log
(
m2
h

µ2

)
. The coefficients C

(3,k)
T correspond to the Laurent series coefficients

of the sum of UV renormalization counter term and mass factorization counter term. They

are constructed in the usual way in terms of lower order cross sections and universal

anomalous dimensions and splitting functions [33]. The renormalized coefficient function

is finite as the residual poles of the partonic coefficient function and the counter terms

cancel. Consequently we find

η
(3,k)
ij (z, x, λ) = −C(3,k)

T (z, x, λ, 0), k < 0. (5.5)

It is thus easy for us to construct these coefficients explicitly. Utilizing the above identity

we may write the finite term of the N3LO coefficient function as

η̃
(3,0)
ij (z, x, λ, Lµ) = η

(3,0)
ij (z, x, λ) + C

(3,0)
T (z, x, λ, Lµ) + 3C

(3,−1)
T (z, x, λ, 0)Lµ

− 9

2
C

(3,−2)
T (z, x, λ, 0)L2

µ +
9

2
C

(3,−3)
T (z, x, λ, 0)L3

µ. (5.6)

With this all contributions explicitly depending on the perturbative scale µ of the N3LO

coefficient functions are known. Additional dependence on the perturbative scale µ arises

due to the multiplication of the partonic coefficient functions with the Wilson coefficient

and due to the dependence of the strong coupling constant, the Wilson coefficient and the

parton distribution functions on the perturbative scale.

We now present the impact of the all contributions of the α3
S coefficient on the Higgs

differential cross sections. Specifically, we compute contributions to the rapidity distribu-

tion for the Higgs boson given by all ingredients that explicitly contain a logarithm Lµ.

We include the partonic coefficient function at N3LO as

η̃
(3,0)
ij, RGE(z, x, λ, Lµ) = η̃

(3,0)
ij (z, x, λ, Lµ)− η̃(3,0)

ij (z, x, λ, 0) (5.7)

as well as all contributions to the α3
S coefficient of the cross section containing renormal-

ization group logarithms that arise due to the multiplication of the Wilson coefficient with

lower order coefficient functions. We thus obtain all contributions to the N3LO correction

to the Higgs differential cross section involving explicit RGE logarithms.

We show numerical impact of the contributions involving RGE logarithms on the N3LO

corrections to the rapidity distribution of the Higgs boson in figure 7. We choose µ = mh
2

as a central scale which results in the prediction given by the solid line. The red bands

correspond to a variation of the perturbative scale in the interval µ ∈
[
mh
4 ,mh

]
. The

contribution is monotonously rising as we increase the perturbative scale. At µ = mh the
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Figure 7. N3LO correction to the absolute rapidity distribution arising from coefficients of log-

arithms of the perturbative scale µ. The band corresponds to a variation of the scale within the

interval µ ∈ [mh/4,mh].

argument of the RGE logarithm is one and the contribution considered here is identically

zero. The corresponding inclusive cross section agrees for all scales with the results of

ref. [11]. The contribution presented here on its own does not allow for an improved pre-

diction at N3LO since the finite coefficient functions without any RGE logarithms are still

missing. However, it represents one more essential stepping stone towards Higgs differential

cross sections at N3LO.

5.3 Numerical results for approximate differential distributions at N3LO

In section 4 we discussed the phenomenological implications of performing a threshold

expansion for Higgs differential cross sections at NNLO. The findings clearly indicate that

several terms in the expansion are required. Particularly, predictions made by performing

the threshold expansion to only the first or second order displayed sizable deviations from

the true result. Nevertheless, in section 3 we went on to compute the first and second

term in the threshold expansion of the N3LO coefficient function. The main motivation

is that this result provides key ingredients for the full analytic computation of the N3LO

coefficient functions. Furthermore it represents the complete soft counter term for the

Higgs differential cross section at N3LO. In this section we will demonstrate that the same

pattern as observed for the first two terms in the expansion at NNLO proliferates at N3LO.

We implemented the analytical results we obtained for the partonic coefficient functions

in terms of the first and second term in the threshold expansion into a private c++ code.

Furthermore, we combine our new results with our computation of the exact scale variation

contributions obtained in section 5.2. We show our results for the N3LO corrections to the

rapidity distribution of the Higgs boson in figure 8a. Results including only the first

term in the threshold expansion are shown in blue and including also the second term

in red. The bands correspond to variations of the perturbative scale around the central
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(a) (b)

Figure 8. The left plot shows the contribution of the N3LO partonic cross section to the absolute

rapidity distribution of the Higgs boson approximated by including the first (blue) an by including

the first and second (red) term in the threshold expansion. The right plot shows the rapidity

distribution of the Higgs boson computed through different orders in perturbation theory. N3LO

contributions were approximated by performing a threshold expansion through the second term.

value µ = mh
2 by a factor of two. It is evident that the two predictions based on the

first and second order expansion wildly differ which confirms our expectation from the

analysis at NNLO. While the scale variation of the correction to the rapidity distribution

based on the leading term in the threshold expansion is monotonously increasing with the

scale the second order approximation is not. The negative contributions arising from the

explicit RGE logarithms are, depending on the exact value of the scale, compensated by the

positive contributions arising from the N3LO coefficient function and the Wilson coefficient.

Clearly, the scale variation can in no way describe the uncertainty due to truncation of the

threshold expansion after a finite number of terms. If we were to derive phenomenological

predictions from the threshold expansion at N3LO, especially with only so few terms,

we would have to carefull study the progression of the threshold expansion and derive a

measure of uncertainty from e.g. analyzing the threshold expansion at an order where the

full result is known, similar to what was done in [12] for the inclusive cross section.

In figure 8b we combine the predictions for the corrections to the rapidity distribution

at N3LO based on the first and second term in the threshold expansion with lower order

results (in red). Exact lower order results are shown for LO, NLO and NNLO in green,

yellow and blue respectively. We observe a fairly large impact of the approximate N3LO

corrections on the rapidity distributions.

The inclusive cross section obtained with our current next-to-soft coefficient functions

differs significantly from the inclusive cross section obtained in ref. [11]. Our approximate

results show large differences between the two newly computed terms. This confirms our

NNLO analysis that demonstrates that an approximation based only on the first and second

term in the threshold expansion is insufficient in order to improve on currently existing phe-

nomenological predictions. Further subleading terms in the threshold expansion or a com-

plete computation are required. Improvements towards this goal will be part of future work.
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6 Conclusions

In this article we achieve several key steps towards predicting differential observables to

N3LO in QCD perturbation theory. We illustrate how a systematic expansion around

the production threshold of Higgs-differential cross sections can be performed to arbitrary

order. We apply this method to obtain the first and second term in the threshold expansion

of the N3LO coefficient functions in analytical form. This analytic data represents a corner

stone of a complete N3LO calculation as it constitutes the complete soft limit of the cross

section and contains vital boundary information for the computation of master integrals via

differential equations. Furthermore, the obtained information may in future work serve as

data to extract anomalous dimension for the resummation of logarithms in the transverse

momentum of the Higgs boson.

Furthermore, we analyze the performance of a threshold expansion for the Higgs-

differential cross section. We start by considering corrections at NNLO, for which also the

exact result is known. Analyzing the analytic structure of the NNLO coefficient functions

shows that their threshold expansion is convergent within the unit interval of the threshold

parameter z̄. When studying the inclusive cross section in the threshold expansion, we

observe that a oscillatory behaviour of the series when only including the first three powers

in z̄. The series then stabilizes within inclusion of the first five coefficients, resulting in a

difference of 3% compared to the full NNLO result. Further improvement due to including

even higher order terms is comparably slow.

Next, we analyze the quality of differential predictions obtained with threshold expan-

sions. The rapidity distribution of the Higgs boson at NNLO displays similar behaviour as

the inclusive cross section. Including about five terms stabilizes initial oscillatory pattern

and leads to good approximations of the full result. The distribution starts to deviate from

the full result at high rapidities as more and more energy is required in the final state.

The second observable we analyze is the transverse momentum distribution of the Higgs

boson. The quality of the approximation obtained including the same amount of terms in

the threshold expansion as for the rapidity distribution is greatly reduced. While including

higher and higher terms in the expansion is improving the approximation the convergence

is so slow that even with ten terms in the expansion the deviations from the exact result are

the level of ten percent. In general, the approximations based on threshold expansions can

be improved by normalizing differential cross sections such that their cumulant reproduce

the exact inclusive result.

Our analysis at NNLO shows that the threshold expansion for Higgs-differential cross

sections can be a powerful tool. The quality of the approximation has to be carefully as-

sessed for every observable under consideration. Even for comparatively inclusive observ-

ables as the total cross section or the rapidity distribution several terms in the threshold

expansion are required to obtain a reliable approximation.

We study the numerical impact of the newly obtained terms in the threshold expansion

of the N3LO coefficient function. The resulting rapidity distribution displays a similar

pattern as we observed for the corresponding NNLO coefficient function. For improved

phenomenological predictions more terms in the threshold expansion are required. Already
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now we obtain the full corrections at N3LO due to terms with explicit dependence on the

perturbative scale.

When computing corrections at N3LO to the rapidity distribution of the Higgs boson

we observe that the widely used framework for parton distribution functions LHAPDF needs

to be modified. The routines used by the tool to interpolate underlying grids for the parton

distributions are insufficient to produce smooth distributions at N3LO. As a consequence

we observe an oscillatory pattern that is modulating the N3LO correction to the rapidity

distribution obtained with the soft-virtual approximation. We advocate to implement a

log-polynomial interpolator of order twelve or a smooth fitting procedure.
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A Regularization of coefficient functions

Consider a function f(x) = x−1+aεfh(x), for some integer a and with fh(x) holomorphic

around x = 0. We are interested in integrating the function over a test function φ(x) on

the range [0, 1]. In the case of our Higgs-differential cross section, the test function φ(x)

corresponds to the product of the parton luminosity and the measurement function. We

can explicitly subtract the divergence at x = 0 and integrate by parts to obtain

I =

∫ 1

0
dxf(x)φ(x) =

∫ 1

0
x−1+aεfh(x)φ(x)

=

∫ 1

0
dxx−1+aε [fh(x)φ(x)− fh(0)φ(0)] +

1

aε
f(0)φ(0). (A.1)

We now want to give an expression for the partonic cross section that is finite even if all

inclusive integrations are performed. To this end we define in a slight abuse of notation,

fs(0) ≡ δ(x)

[
x−1+aε − 1

aε

]
fh(0). (A.2)

Here the δ distribution is to be understood as acting only on the test function and not on

its coefficient in the square bracket. It is easy to see that fs(0) integrates to zero. We can

therefore regulate the integrand f(x) by subtracting fs(0),

I =

∫ 1

0
dxf(x)φ(x) =

∫ 1

0
dx (f(x)− fs(0))φ(x), (A.3)

so that every term of its ε expansion can be integrated numerically.
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In the case of our Higgs-differential cross sections, we need to regulate potential end-

point divergences in the three remaining variables z̄, x and λ, cf. eq. (2.3). We define the

distributions σs that subtract the limits of σ(z̄, x, λ) and label them by the kinematic limit

of the cross section that they reproduce. For example σ(z̄, 0, λ) takes care of the limit of the

cross section as x goes to zero. After partial-fractioning to avoid simultaneous singularities

on both endpoints of the integral, we obtain the following decomposition,

σf (z̄,x,λ)≡σ(z̄,x,λ)−σs(z̄,x,1)−σs(z̄,x,0)−σs(z̄,1,λ)−σs(z̄,0,λ)−σs(0,x,λ)

+σs(z̄,1,1)+σs(z̄,1,0)+σs(z̄,0,1)+σs(z̄,0,0)+σs(0,x,1)+σs(0,x,0)

+σs(0,1,λ)+σs(0,0,λ)−σs(0,1,1)−σs(0,1,0)−σs(0,0,1)−σs(0,0,0). (A.4)

One main result of this article is the analytic computation of the partonic coefficient

functions η
(k)
ij (z, x, λ) as defined in eq. (3.6). We created finite versions of this coefficient

functions in the spirit discussed above and provide them in Mathematica readable form as

supplementary material attached to this paper.
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[47] M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the

LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

[48] D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at

proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].

[49] T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the

quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094

[arXiv:1004.3653] [INSPIRE].

[50] C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys.

Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].

[51] C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real

contribution to inclusive Higgs production at N3LO, JHEP 02 (2015) 077 [arXiv:1411.3587]

[INSPIRE].

[52] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279

[INSPIRE].

[53] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic

computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1

[cs/0004015] [INSPIRE].

[54] Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N3LO Higgs boson and Drell-Yan

production at threshold: The one-loop two-emission contribution, Phys. Rev. D 90 (2014)

053006 [arXiv:1404.5839] [INSPIRE].

[55] C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in

NNLO QCD, Phys. Rev. D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].

[56] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron

colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004)

094008 [hep-ph/0312266] [INSPIRE].

[57] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams

calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[58] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.

Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[59] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[60] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15

(2000) 725 [hep-ph/9905237] [INSPIRE].

[61] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,

Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

– 28 –

https://doi.org/10.1016/S0550-3213(98)81004-3
https://arxiv.org/abs/hep-ph/9708255
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9708255
https://doi.org/10.1088/1126-6708/2006/01/051
https://arxiv.org/abs/hep-ph/0512058
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0512058
https://doi.org/10.1016/j.nuclphysb.2006.03.020
https://doi.org/10.1016/j.nuclphysb.2006.03.020
https://arxiv.org/abs/hep-ph/0512060
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B744,121%22
https://doi.org/10.1016/S0550-3213(97)00679-2
https://arxiv.org/abs/hep-ph/9611272
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9611272
https://doi.org/10.1103/PhysRevLett.70.1372
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,70,1372%22
https://doi.org/10.1007/JHEP06(2010)094
https://arxiv.org/abs/1004.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3653
https://doi.org/10.1016/j.physletb.2013.10.063
https://doi.org/10.1016/j.physletb.2013.10.063
https://arxiv.org/abs/1309.4393
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4393
https://doi.org/10.1007/JHEP02(2015)077
https://arxiv.org/abs/1411.3587
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3587
https://doi.org/10.1006/jcph.1993.1074
https://inspirehep.net/search?p=find+J+%22J.Comput.Phys.,105,279%22
https://arxiv.org/abs/cs/0004015
https://inspirehep.net/search?p=find+J+%22J.Symb.Comput.,33,1%22
https://doi.org/10.1103/PhysRevD.90.053006
https://doi.org/10.1103/PhysRevD.90.053006
https://arxiv.org/abs/1404.5839
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5839
https://doi.org/10.1103/PhysRevD.67.037501
https://arxiv.org/abs/hep-ph/0208115
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D67,037501%22
https://doi.org/10.1103/PhysRevD.69.094008
https://doi.org/10.1103/PhysRevD.69.094008
https://arxiv.org/abs/hep-ph/0312266
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D69,094008%22
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B254,158%22
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B580,485%22
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,110,251601%22
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,A15,725%22
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9711391


J
H
E
P
0
1
(
2
0
1
8
)
1
4
5

[62] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the

LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

[63] F. Herzog and B. Mistlberger, The Soft-Virtual Higgs Cross-section at N3LO and the

Convergence of the Threshold Expansion, arXiv:1405.5685 [INSPIRE].

[64] S. Dulat et al., New parton distribution functions from a global analysis of quantum

chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].

[65] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04

(2015) 040 [arXiv:1410.8849] [INSPIRE].
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