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Abstract The present investigation uses proton transfer

reaction mass spectrometry (PTR-MS) combined with

multivariate and univariate statistical analyses to study

potential biomarkers for altered metabolism in urine due to

strenuous walking. Urine samples, in concurrence with

breath and blood samples, were taken from 51 participants

(23 controls, 11 type-1 diabetes, 17 type-2 diabetes) during

the Dutch endurance walking event, the International Four

Days Marches. Multivariate analysis allowed for dis-

crimination of before and after exercise for all three groups

(control, type-1 and type-2 diabetes) and on three out of

4 days. The analysis highlighted 12 molecular ions con-

tributing to this discrimination. Of these, acetic acid in

urine is identified as a significant marker for exercise ef-

fects induced by walking; an increase is observed as an

effect of walking. Analysis of acetone concentration with

univariate tools resulted in different information when

compared to breath as a function of exercise, revealing an

interesting effect of time over the 4 days. In breath, acetone

provides an immediate snapshot of metabolism, whereas

urinary acetone will result from longer term diffusion

processes, providing a time averaged view of metabolism.

The potential to use PTR-MS measurements of urine to

monitor exercise effects is exhibited, and may be utilized to

monitor subjects in mass participation exercise events.

Keywords Urine � Walking � Acetic acid � PTR-MS �
Acetone

1 Introduction

Due to a persistent absence of phenotypic symptoms during

progression, many chronic diseases like diabetes can remain

undiagnosed during the early stages of development. Even

after diagnosis, the suitability and effectiveness of medica-

tion or lifestyle interventions (diet, exercise etc.) are difficult

to interpret, yet critically important for managing the treat-

ment of a chronic disease. Personal omics profiling (POP)

aims to tackle these challenges by scanning individuals in

detail to identify the genetic basis for disease risk or treat-

ment efficacy, and using this knowledge to enable daily

monitoring with post-genomic technology (Chen et al. 2012;

Roukos 2008). Large-scale implementation of this approach

would however put a disproportionate burden on healthcare

resources, as this requires extensive use of highly advanced

technology. Likewise, this would require considerable effort

of the healthy examinee, as he/she would need to regularly

visit the appropriate medical infrastructure for a relatively

invasive procedure; typically the provision of blood samples.

Although highly sensitive to detect and monitor a broad

range of potential diseases, in its current state POP is too

impractical to be viably implemented.

A truly feasible implementation would be to collect

samples in locations where many members of the target
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group are voluntarily present. Several samples (breath,

urine) can then be obtained considerably less-invasively,

without requirement for specifically trained personnel.

However, metabolomics technology is put to the challenge

for such scenarios, as the sheer number of samples gener-

ated on such highly populated locations requires rapid

analysis and the diluted state of specifically volatile sam-

ples requires highly sensitive analysis platforms.

The volatile organic compounds (VOCs) emitted from

the skin (Turner et al. 2008), exhaled in breath (Buszewski

et al. 2007; Schwarz et al. 2009; Lourenço and Turner

2014) or present in urine (Huang et al. 2013; Mochalski

et al. 2012) have been well characterized in healthy people

in the literature (Costello et al. 2014). Changes in the

concentration of specific VOCs can indicate particular

diseases (Smolinska et al. 2014) and changes in metabolic

state, such as nitric oxide in airway inflammation (Barnes

et al. 2010) or acetone for diabetes (Storer et al. 2011), and

as such they are considered biomarkers (Mazzatenta et al.

2013). Proton transfer reaction mass spectrometry (PTR-

MS) (Lindinger et al. 1998; Blake et al. 2009) is a popular,

highly sensitive, on-line tool used to measure concentra-

tions of excreted metabolites, particularly in breath (Herbig

et al. 2009; Schwarz et al. 2009) but also urine (Pinggera

et al. 2005). The technique allows rapid analysis of VOCs,

due to its online capability. Accurate measurements of

VOC concentrations are possible in seconds. The present

study aims to use PTR-MS coupled with multivariate and

univariate statistical techniques to investigate potential

biomarkers for exercise altered metabolism in urine. In a

previous publication, breath acetone, which was measured

with proton transfer reaction ion trap mass spectrometry,

correlated positively with both non-esterified fatty acids

and beta-hydroxybutyrate (BOHB) (markers in blood for

fatty acid metabolism), providing real-time information on

fat burning (Samudrala et al. 2014). We now examine the

relation between urine acetone and breath acetone and

evaluate the VOCs in urine as possible biomarkers for the

effect of 4 days strenuous walking, as well as their inter-

play with medicated type 1 and type 2 diabetes mellitus.

2 Materials and methods

2.1 Subjects

All subjects participated in the International Four Days

Marches, July 2012, an annual walking event in Nijmegen,

the Netherlands, organized by the Dutch Walking Orga-

nization (KNBLO-NL). In total 51 participants gave urine

samples. Among them 23 were control (CT), 11 type-1

diabetes mellitus (T1DM) and 17 type-2 diabetes mellitus

(T2DM). Participants included 28 males and 23 females

with an age range of 25–85 years. Depending on their age

and gender, participants walked 30, 40 or 50 km per day.

The details of the subjects who participated in this study

are shown elsewhere (Samudrala et al. 2014). This study

was approved by the Medical Ethical Committee of the

Radboud University Nijmegen Medical Centre. Informed

consent was obtained from all individual participants in-

cluded in the study, and the study was conducted in ac-

cordance with the Declaration of Helsinki.

2.2 Urine samples

Urine samples were collected twice a day for 4 consecutive

days from each subject, once in the morning, prior to

walking (between 3:30 am and 8:30 am) and another at the

end of the walk (between 10:30 am and 17:30 pm).

After collection, the samples were transported via a

cooler (*6 �C) to a storage freezer of temperature

-80 �C. Samples were without any centrifuge separation

and without any anti-bacterial additives. The samples were

later defrosted, separated into two vials and refrozen. One

vial was used for VOCs analysis with PTR-MS and the

other was used for creatinine measurements. Creatinine

was measured via an enzymatic method using an

ARCHITECT clinical chemistry analyzer (Abbott

Laboratories, Abbott Park, Illinois, USA).

2.3 VOCs analysis from urine headspace

Urine measurements were performed with an in-house built

proton transfer reaction mass spectrometer (PTR-MS). A

detailed description of this instrument has been given

elsewhere (Steeghs et al. 2004) and the instrument bears a

strong similarity to commercially available devices (Lin-

dinger et al. 1998). Here, we give only a brief introduction

to the technique. Proton transfer reaction is a soft ioniza-

tion method in which VOCs with molecular mass (M) are

ionized by the transfer of a proton from a hydronium ion

(H3O
?), and are detected at mass M ? 1 using a quadru-

pole mass spectrometer. Signal intensity of the hydronium

ion and the protonated water cluster (m/z 19 and m/z 37) are

typically measured for normalization. Apart from them, 38

other ions were measured, including acetone (m/z 59); the

dwell time for each ion was 0.2 s.

Samples to be measured by PTR-MS were removed

from the freezer the night before the measurements to de-

frost at room temperature (*20 �C). The following day the
instrument was calibrated and samples prepared and mea-

sured. 10 ml of urine was transferred from the vial to a

glass cuvette with a 40 ml available volume. The closing

lid of the glass cuvette was sealed in place with a metal

fastening clip and an O-ring, with one gas inlet and one gas

outlet port to allow sampling. A constant flow of 2 l/h of
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air was passing through the cuvette to flush the head space.

The outlet for this flow was side sampled by the PTR-MS

at 1.5 l/h. For the duration of the measurement the samples

remained at room temperature. The intensity of the VOC

signal was observed to decrease with time, due to the

continuous flushing of the headspace. Therefore, to prevent

the concentration declining, the headspace was flushed and

measured for 4 min only for each sample. Beyond this time

the headspace concentration drop becomes unacceptable

(more than 18 % drop). Three samples were measured

sequentially using an automatic valve system (van Dam

et al. 2012) to switch between each cuvette. An example of

this measurement is shown in supplementary material: S1,

with a repetitious measurement for method validation. The

product ion intensities, measured in counts per seconds

(cps) were normalized to reagent ion signal, which gave

intensities in normalized counts per second (ncps). These

were further normalized to creatinine concentrations

(mmol) to give final units of ncps mmol-1. This allowed

the detected signals to be normalized with respect to the

level of biological dilution present in the sample (Amann

and Smith 2013). For the duration of analysis, the transfer

lines from the valves to the PTR-MS were heated up to

55 �C to prevent condensation.

The consistency of the analysis was checked by

calibrating each day, before the start of the experiment with

a standard gas mixture consisting of methanol (m/z 33),

acetaldehyde (m/z 45), acetone (m/z 59), isoprene (m/z 69),

benzene (m/z 79), toluene (m/z 93), O-xylene (m/z 107) and

alpha-pinene (m/z 137), each in 1000 ppbv ± 5 %

(ppbv = part per billion volume) in a nitrogen dilution gas

(Linde, Dieren, the Netherlands). The calibration was

performed using different concentrations, from 35 to

1000 ppbv obtained by dilution of the standard mixture

with nitrogen gas.

2.4 Statistical analysis

The data was first analyzed using a multivariate technique

allowing the significance of all ions to be assessed. Uni-

variate analysis was then repeated for those ions of highest

significance to the multivariate model. Finally, the m/z 59

product ion of acetone was analyzed univariately for

comparison with breath. The methods of univariate and

multivariate analysis used in this analysis are explained

below.

2.5 Multivariate analysis

Analysis with multilevel partial least squares discriminate

analysis (M-PLS-DA) (van Velzen et al. 2008; Szymańska

et al. 2012) was carried out to study the effects of exercise

from a multivariate perspective. Variation in the data

contains an inter-individual part and an intra-individual

part. The inter-individual subject variation describes the

difference between the subjects, which is unrelated to the

effect of exercise. In this study each subject participated

both before and after exercise (and therefore serves as his/

her own control), allowing for an intra-subject evaluation

of the effect of exercise. In order to study the effect of

exercise on the different groups, a separate M-PLS-DA

model was built for each of the three groups (T1DM,

T2DM and CT). The data were auto-scaled before analysis

by M-PLS-DA. To evaluate the exercise effect on the

different days, separate M-PLS-DA models were built for

each of the days, taking all the groups together. The models

aim to discriminate between before and after walking, and

allow for identification of those ions that are important for

this classification. Thirty-three ion signals in the range of

m/z 33–m/z 117 were chosen for this analysis from the forty

that were measured. Five ions were discarded because their

count rate fell consistently below the detection limit of the

instrument.

As a measure of model performance, the area under the

receiver operator curve (AUROC) was calculated. The

AUROC represents a ratio between the number of true

positives and the number of false positives in the classifi-

cation, where an AUROC of 1 represents perfect classifi-

cation (Zweig and Campbell 1993). All M-PLS-DA models

included double cross validation (van Velzen et al. 2008;

Smit et al. 2007; Westerhuis et al. 2008). The optimal

number of latent variables was chosen with a fourfold

single cross validation. A subsequent fivefold double cross

validation was used to assess the model performance on a

test set. The statistical significance of the model perfor-

mance was assessed by a subsequent permutation analysis

with 1000 realizations. To evaluate which ions played an

important role in this classification, the rank products of the

variables in the model are used. All variables were ranked

according to their PLS regression coefficients. The vari-

ables with the lowest rank products are the ones with the

largest discriminative capability. The significance of the

ranks was assessed by comparing the variable ranks of the

model to those in the 1000 permutation tests, and a p value

was assigned accordingly. Results are represented in a

radar plot, where each variable is presented on one of the

radial axes (Saary 2008). Against each axis, the value

1 - p is plotted, such that tests with lower p-values are

positioned toward the outside of the radar field, and higher

p-values are positioned toward the middle of the graph.

2.6 Univariate analysis

The normality of the data distribution was evaluated using

a Lillefors test. All the ion signals measured from the urine

headspace were found to have a non-normal distribution,
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such that non-parametric tests were used for all subsequent

analyses. A Wilcoxon signed rank test was used to deter-

mine the effect of exercise on each individual mass. To

evaluate the effect of time—the change of concentration

over the 4 days—the Friedman test was used because of its

ability to handle multiple attempts. Both the Wilcoxon

signed-rank test and the Friedman test are ‘paired’ tests,

comparing data from the same subject over different set-

tings. Associations between the intensity of two ion species

were evaluated using Spearman correlations. Any p-val-

ues\ 0.05 were considered significant and p\ 0.1 were

considered trend to be significant. All statistical analyses

were performed in MATLAB (version 2014a, The Math-

works, Natick, Massachusetts, USA). Boxplots were made

in Origin (version 9.0, Origin lab, Northampton, Mas-

sachusetts, USA).

3 Results

First, the effect of exercise on the detected VOCs is shown

and studied as a whole using multivariate analysis. After

that, possible identification and univariate analysis of sig-

nificant ions is evidenced. Finally, the effect of exercise on

headspace acetone is evaluated by univariate analysis.

3.1 Multivariate analysis of the full data-set

Multivariate analysis was used to study the effect of ex-

ercise on detected ions and consequently emitted com-

pounds from the urine headspace. A different classification

model to extract the effect of exercise was made for each of

the three groups, and the model performances are shown in

Table 1(a).

In all three groups, M-PLS-DA is able to extract a

higher significant exercise effect than classification of a

randomly permuted dataset. The highest model perfor-

mance is achieved for the CT group, followed by T2DM, as

can be seen by comparing the AUROC in Table 1(a). The

contribution of each mass (m/z value) to the classification

model is represented in a radar plot in Fig. 1. All three

groups are represented in the same figure, allowing direct

comparison of the variable’s importance to each of the

models generated from a particular group. The outermost,

bold black circle of the graph indicates the 5 % sig-

nificance level. Values on and outside of this circle are

considered significant. The circle drawn with a thinner line

indicates the 10 % significance level. Ions near to the cir-

cumferences of these two circles are of particular

importance.

Considering the 33 ions involved in this analysis, three

ions: m/z 61, m/z 62 and m/z 79 showed significant con-

tributions in discriminating the effect of exercise for all

groups. In addition to these ions, m/z 43 is contributing for

CT and T1DM groups, m/z 73 only for T1DM and m/z 83

for T2DM. This indicates that these ions are strongly in-

volved in forming a multivariate model to discriminate the

effect of exercise in the three groups of subjects.

To evaluate the effect of exercise over the course of the

4 days, M-PLS-DA was used to classify between before

and after exercise on each of the days. Four different

models were made, and their performances are shown in

Table 1(b).

Discrimination of before and after exercise was sig-

nificantly relevant for all days, except for day 2. The ability

to discriminate was greatest for day 4, followed by day 3.

This shows that the perceived metabolic effect of exercise

increases from day to day, and is especially high on the last

2 days of the marches. The significance of the variable

contribution is shown in a radar plot in Fig. 2.

The ions at m/z 61, 62 and 79 are contributing sig-

nificantly to the discriminative model on all 4 days. Other

ions exhibit significance on some but not all days and these

are summarized in Table 2. The possible compounds/

fragments for these ions measured in urine headspace are

shown also in Table 2 with reference to the previously

reported urine analysis and PTR-MS ion identification

techniques.

The signals at m/z 61, 62 and 79 were consistently

significant in both multivariate analyses. The signal ob-

served at m/z 61 showed a correlation with m/z 62 (data not

shown), relating to its 13C (1.1 %) carbon isotope with a

slope value of 2.6 %; which is close to the theoretically

predicted 2.3 % for a two carbon ion. This strongly sug-

gests that m/z 62 is due to the 13C isotope of m/z 61 and that

m/z 61 contains two carbon atoms. The ion signal observed

at m/z 79, was found to have a significant contribution for

prolonged exercise. The signal of m/z 79 was higher after

exercise than before on day 2, 3 and 4. The correlation

between m/z 61 and m/z 79 is R2 = 0.88. Therefore, m/z 79

may be the single hydrate cluster of m/z 61

(61 ? 18 = 79). These correlations, along with knowledge

of PTR-MS product ion identification imply that m/z 61,

m/z 62 and m/z 79 are from the same compound. We

Table 1 The ability of the models used to distinguish between before

and after exercise is shown separately for (a) each group, for all

4 days together, and for (b) each day, for all three groups together

(a) Model performance per group (b) Model performance per day

Group AUROC p value Day AUROC p value

CT 0.87 \0.001 1 0.63 0.012

T1DM 0.70 0.004 2 0.64 0.066

T2DM 0.81 \0.001 3 0.90 \0.001

4 0.94 \0.001
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propose that they are all product ions of acetic acid, an

identification that we base on putative annotation, (level 2)

as described by Sumner et al. (2007). Using this identifica-

tion, no additional information is provided by treating these

ions separately. Therefore, univariate analysis of acetic acid

is shown from here on by univariate analysis of the ion at m/

z 61 and the effect of exercise on this ion is verified.

3.2 Univariate analysis of acetic acid

The multivariate analysis showed that acetic acid sig-

nificantly contributed to the models and allowed for the effect

of prolonged exercise to be discriminated. Therefore, this ion

was analyzed by univariate analysis. In Fig. 3, box plots are

shown for acetic acid for all the 4 days, including all sub-

jects. There is a significant effect due to exercise on acetic

acid for all days; with p-values, 0.03 on day 1 and\0.001 for

days 2–4. Both univariate and multivariate analysis high-

lighted the significance of this ion with respect to an effect of

exercise, therefore it is confirmed that this ion is a possible

marker for the effect of exercise in urine headspace.

Apart from these ions, other ions were putatively an-

notated (level 2) (Sumner et al. 2007) based on previous

identification in similar studies shown in Table 2; mea-

sured urine VOCs as an effect of exercise (Enea et al.

2010) or diabetic markers (Deja et al. 2013) or markers for

other disorders (Huang et al. 2013; Troccaz et al. 2013).

In addition to the acetic acid signal, significant ions are

observed that may be product ions of hexanoic acid. How-

ever the signal of either product ion or fragment ions didn’t

appear on each day in every group. This could be due to

other ionic species being present at the same m/z values.

3.3 Univariate analysis of acetone (m/z 59)

Wang et al. (2008) reported finding an equilibration between

urine acetone and breath acetone in two subjects, implying a

correlative relationship. In the present study, breath con-

centrations and urinary headspace concentrations of acetone

were checked for correlation, but no correlation was ob-

served. A strong correlation for acetone concentration in

urinary headspace with exercise was reported by Orhan et al.

(2004). Acetone is obviously detected using PTR-MS, with a

product ion observed atm/z 59. In the left panel of Fig. 4, the

effect of exercise is shown on all participants with respect to

the variation of acetone levels before and after exercise for

the 4 consecutive days. For day 1 and day 2 there is no

significant effect of exercise onmeasured headspace acetone

(p = 0.46; p = 0.33). However, on the last 2 days, day 3 and

day 4 the effect due to prolonged exercise is significant, with

Radarplot per group (all days)
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p-values 0.049 and\0.001 respectively. The effect of ex-

ercise on CT subjects is significant (p\ 0.001), but not on

T1DM and T2DM subjects (Fig. 4, right panel). In contrast

to our previous experiments with breath acetone (Samudrala

et al. 2014); there is a significant, exercise effect on acetone

concentration in urine headspace when judged as a function

of time.

4 Discussion

Multivariate analysis revealed which measured ion signals

contributed significantly to discriminating the effect of

exercise. These results are validated using cross-validation

and permutation testing, confirming the validity of the

analysis for this data. The low number of samples is not

optimal, and the results of the multivariate analysis should

be confirmed in a larger cohort. These ion signals are

shown in Table 2 with putative annotations. In PTR-MS,

identification of ions is difficult and there is no library for

the compound identification. However, tentative identifi-

cation can be made depending on an ion’s fragmentation

pattern and/or using isotopic ratios (Crespo et al. 2012) or

comparing with the NIST mass spectrum (NIST 2011).

Acetate is a product of fatty acid metabolism. It can

either convert into acetyl-CoA and participate in the Krebs

cycle to produce energy, or with two molecules of acetate it

can form acetoacetate which further converts into acetone

due to decarboxylation (Miekisch et al. 2004). Xu et al.

(2014) have recently raised the level of interest in acetate

Radarplot per day (all groups)
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in relation to training by showing its importance in the

mammalian stress-response to hypoxia. In addition, Fush-

imi et al. (Fushimi and Sato 2005; Fushimi et al. 2001)

have shown that increased dietary acetic acid can stimulate

glycogenesis, leading to increased glycogen recovery in

skeletal muscles. Going on to conclude that increased di-

etary intake of acetic acid may be beneficial in glycogen

recovery post-exercise.

In this study, evidence is presented that acetate in urine

may be used to monitor the effect of subsequent days in-

tense walking. Using breath analysis, of the same subjects,

acetone was observed as a direct reflection of burning fat as

an effect of walking (Samudrala et al. 2014). In univariate

analysis, it is clearly evidenced that for each of the 4 days

of exercise, acetate levels in urine are raised by the exer-

cise, similar to the acetone behavior in breath analysis of

the same cohort.

Two other ions, m/z 43 and m/z 79 could be the fragment

and monohydrate cluster of acetic acid, drawing on

evidence from the NIST chemistry web book and correla-

tion analysis. As mentioned earlier, ketone bodies can be

detected in urine samples. One of the ketone bodies that

has been shown by Samudrala et al. (2014) to have a

correlation with breath acetone is BOHB. In the present

study, m/z 83 and m/z 87 showed contribution to the model

on day 1 and day 3, respectively. These could be ion

fragments of protonated BOHB in comparison with NIST

mass spectrum. Previous studies also showed the occur-

rence of this compound in the urine of diabetic subjects

(Deja et al. 2013) and due to physical exercise (Enea et al.

2010). Since these two ions are tentatively identified in this

study, there is a possibility that several other compounds

can have the same ion as a fragment. However, the ratio of

these fragment ions will vary depending on the parent ion.

Protonated hexanoic acid (m/z 117) has a major fragment

ion at m/z 87. There are also minor fragment ion peaks at

m/z 73, m/z 83 and m/z 55. Though these ions were high-

lighted on different days in different groups of people there

Table 2 Ions from the headspace of urine measurements that showed significant contribution in discriminating the effect of the exercise during

the 4 days walking program

m/z Possible protonated

-monomer (M)

-fragment (F)

-cluster (C)

-isotope (I)

Effect of exercise

on each group (Fig. 2)

CT/T1DM/T2DM

Effect of exercise

on each day (Fig. 3)

Day 1/Day 2/Day 3/

Day 4

Inter-comparison

with previous

related NMR and

MS studies

Volatile

compound

identificationa

43 Acetic acid; CAS: 64-19-7 (F) CT, T1DM Day 3, Day 4 Enea et al. (2010) NIST-MS*; FCA

55 Water cluster (C)

Hexanoic acid; CAS:

142-62-1 (F)

Phenol; CAS: 108-95-2 (F)

Day 1 Brown et al. (2010),

Huang et al. (2013),

Troccaz et al. (2013)

NIST-MS*

61, 62, 79 Acetic acid (M, I, C) CT, T1DM, T2DM Day 1, Day 2,

Day 3, Day 4

Enea et al. (2010) ICA; CCA

73 Succinic acid; CAS:

110-15-6 (F)

Hexanoic acid (F)

T1DM Deja et al. (2013),

Huang et al. (2013)

NIST-MS*; CID

75 Methional; CAS:

3268-49-3 (F)

Day 4 Troccaz et al. (2013) NIST-MS*

83 Hexanoic acid (F) T2DM Huang et al. (2013) NIST-MS*; CID

85 3-Hydroxy butyric acid;

CAS: 300-85-6 (F)

Succinic acid (F)

Day 1 Deja et al. (2013) NIST-MS*

87 3-Hydroxy butyric acid (F)

Hexanoic acid (F)

Day 3 Deja et al. (2013),

Huang et al. (2013)

NIST-MS*; CID

95 Dimethyl disulfide;

CAS: 624-92-0 (M)

Day1 Troccaz et al. (2013) NIST-MS*

117 Hexanoic acid (M) Day2 Huang et al. (2013) NIST-MS*; CID

Possible identification of these ions in correspondence with the related literature and by some additional identification methods

Star (*) represents that the ion is tentatively identified
a NIST-MS, Identification by comparison with NIST mass spectrum (NIST 2011); ICA, identification by isotopic correlation analysis; CCA,

cluster correlation analysis, using clusters formed due to the reaction with water; FCA, fragment correlation analysis, correlation between

potential fragment and monomer ions; CID, suggested fragments from experiments performed by Ion trap mass spectrometer with the pure

compound
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could be a possibility that the origin of these ions is from

the same parent molecule, hexanoic acid. Interference from

other ions at the same mass may be confusing the analysis

of hexanoic acid, for example when considering an ion at

m/z 55 in PTR-MS studies, the H3O
?�2H2O water cluster is

a habitual concern (Brown et al. 2010).

Hexanoic acid is a medium chain fatty acid linked to

fatty acid metabolism. Hexanoate has been observed in

elevated levels in blood plasma of humans with T1DM, and

rats with T1DM and T2DM under oxidative stress as a

result of lipid peroxidation (Januszewski et al. 2005). This

elevation in blood plasma could explain why the product

ions at m/z 73 and 83, tentatively attributed to hexanoic

acid, contribute significantly to the M-PLS-DA model

shown in Fig. 1 only for T1DM and T2DM, respectively.

Huang et al. (2013) found that hexanoic acid is an im-

portant biomarker for the discrimination between patients

with gastro esophageal cancer measured from urine head-

space, along with another marker, acetic acid. Acetate and

hexanoate are both transported through the cellular mem-

brane by monocarboxylate transporter (MCT) proteins.

These proteins have been shown to be altered by endurance

training, and were studied with relation to possible up-

regulation of the MCT-1 protein leading to improved

clearance of lactate (Opitz et al. 2014). An increase in

clearance rates for hexanoate and acetate would make a

plausible explanation for the increase in acetic and

hexanoic acids seen in urine. That a link exists between

acetate, hexanoate and lactate is also of note because lactic

acid is a commonly used marker for muscular activity

(Gladden 2004). A correlation was looked for between

hexanoic acid and acetic acid in this study, however no

such correlation was found.

Urine is an odorous biological liquid. Therefore, the

presence of odor compounds like sulfides are possible, due

to the presence of different bacteria. A recent study by

Troccaz et al. (2013) showed that dimethyl sulfide,

trimethylamine, dimethyl disulfide, methional, and some

phenols are responsible for this odor due to several bac-

terial interactions. However, the presence of these bacteria

may vary from person to person, due to the changes in body

conditions and the amount of by-products the body is

producing for excretion. This is the reason that methional

and dimethyl disulphide are mentioned in Table 2 as pos-

sible compounds.

Urine analysis is a non-invasive method for investigat-

ing integrated responses after application of stress/exercise

on humans (Enea et al. 2010). However, only a few studies

have reported the impact of physical exercise on urinary

headspace VOCs (Orhan et al. 2004; Pechlivanis et al.

2010; Enea et al. 2010), while others report the effects of

physical characters such as gender, age, and diurnal var-

iation (Slupsky et al. 2007). A recent study on urinary

headspace by Enea et al. showed that metabolomics is a
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Fig. 4 Univariate analysis of acetone: Left panel Urine headspace

acetone concentrations measured before and after the walk over 4

consecutive days for all participants. Right panel Headspace acetone

concentrations measured before and after the walk in CT, T1DM, and

T2DM for 4 days. Data are displayed as box plots showing the

median, interquartile ranges (25 %, 75 %); whiskers indicate the

10–90 % values. *indicates p\ 0.05
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promising tool to gain insights into changes induced by

short term, intense physical exercise, with measurements

made using proton NMR spectroscopy (Enea et al. 2010).

In their study they observed the changes in the creatinine,

lactate, pyruvate, acetate, BOHB and hypoxanthine due to

the effect of short term intensive exercise.

This study represents the first measurements of the

headspace of urine samples using PTR-MS to investigate

the effect of prolonged exercise. Pinggera et al. (2005)

have used PTR-MS for urinary measurements of acetoni-

trile in smokers, although they did not look for correlation

with breath acetonitrile; they did find correlation between

acetonitrile and smoking behavior. Using SIFT-MS, Wang

et al. (2008) claimed that acetone was equilibrated amongst

the body fluids by comparing acetone in breath with uri-

nary headspace measurements of healthy volunteers. This

claim is made on only a very limited cohort size of two

volunteers. The data which we present did not show a

correlation between urinary acetone and breath acetone.

Metabolites produced in the body as a result of different

metabolisms are diffused from blood into urine and breath

for further elimination. Breathing rate is typically 15–20

times per minute for adults and urination frequency is

typically 6–7 times per 24 h (Nitti 2002). This variation in

timing means that breath analysis provides insight into

metabolic changes at the moment the sample is taken,

whereas metabolites in urine samples result from a longer

term diffusion process. This is the expected reason for the

difference in the behavior of urinary acetone and breath

acetone as an effect of prolonged exercise.

Samples of urine collected by this study were not treated

with any antimicrobial agent, such as sodium azide. Sam-

ples were also not immediately deep-frozen. For these

reasons, the notion that bacterial growth or metabolic

degradation may have occurred in the sample and could

have contributed compounds to the VOC profile cannot be

discounted. In future studies it is recommended to add an

antibacterial agent (Orhan et al. 2004; Slupsky et al. 2007)

and to deep-freeze samples immediately after acquisition,

as suggested in a review article by Want et al. (2010).

Typical inter-day and intra-day variations of urine head-

space samples measured with PTR-MS were not evaluated

for this study. Diurnal variation has been analyzed by

Slupsky et al. (2007) using NMR spectroscopy. A careful

understanding of biological variation under control condi-

tions is useful for assessing the importance of observed

variation in non-control groups.

Previous studies reported mass spectrometry based

techniques in measuring urine headspace measurements for

different applications (Smith et al. 1999; Wahl et al. 1999;

Huang et al. 2013). However, most of the studies use NMR

spectroscopy to analyze urine samples. Metabolomics is a

rapidly expanding field in recent years, due in part to the

advancement of NMR. This technique detects a wide range

of compounds with easy, straightforward quantification.

However, NMR has a limited sensitivity that can detect

only concentrations of 10 lM, or a few nmol, at high fields

using cryoprobes (Pan and Raftery 2007). Furthermore, the

time to record simple spectra can be 4–5 min, whereas

PTR-MS has the capability to measure in a matter of sec-

onds, and while in this study measurements were per-

formed over a few minutes, with the implementation of

auto-sampling methodology samples could be measured

much faster.

PTR-MS has shown itself capable of revealing consid-

erable shifts in the expression of several urine volatiles.

These shifts could be analyzed very rapidly. Fast analyses

could be coupled to dedicated multivariate statistical

methods, which have already proved their merits in meta-

bolomics, and do so again in this study. Thereby, this

technology could be employed in large-scale public events.

Specifically those events which focus on diet and physical

exercise and in which a large number of individuals can be

monitored non-invasively within a time-frame that would

allow variations in their physiological states to be observed.

5 Concluding remarks

Multivariate analysis allowed for discrimination of before

and after exercise for all three groups and on three out of

4 days. The advantage of using multivariate analysis in

highlighting 12 ions from 33 is shown clearly by this study.

Acetic acid in urinary headspace is identified as a significant

marker for exercise effects induced by walking. An increase

in acetic acid is observed after exercise for all days, and all

groups. The potential to use acetic acid in urine to monitor

exercise effects is exhibited and may have particular ap-

plication in conjunction with PTR-MS for monitoring the

effect on participants in a mass participation exercise event.

Analysis of acetone concentration with univariate tools re-

vealed different information when compared to breath as a

function of exercise; making known an interesting effect of

time over the 4 days. Breath samples provide insight into

metabolic changes at the moment the sample is taken,

whereas metabolites in urine samples result from a longer

term diffusion process. This difference in timing may allow

complementary information to be obtained.
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