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De-Orbiting Upper Stage Rocket Bodies Using a 

Deployable High Altitude Drag Sail 

Robert Hawkins
1
 and Joseph Palomares1

California Polytechnic State University, San Luis Obispo, CA, 93407 

This report examines the effectiveness of a drag sail to de-orbit upper stage rocket 

bodies. Many other perturbations contribute to the de-orbiting of these rocket bodies, 

and these perturbations will also be discussed briefly. This paper will show the length of 

time needed to force the altitudes of various launch vehicle stages with varying drag area 

sizes to less than 100 km. The upper stage of the Delta IV launch vehicle in an orbit with 

an altitude of 500 km will naturally de-orbit in 720 days but when equipped with a 20 m
2
 

drag sail, it will de-orbit in just 510 days. For this particular example the 29% reduction 

in de-orbit time is very significant. Multiple examples will be displayed in this report to 

demonstrate the effectiveness of such a drag sail. 

Nomenclature 

A = area (m
2
) 

a = acceleration (km/sec
2
) 

c = speed of light (3 x 10
8
 m/s) 

cR = reflectivity coefficient 

 ̅       =  temporary variable 

CB = ballistic coefficient (kg/m
2
) 

Cd = drag coefficient 

F = force (N) 

G = gravitational constant (6.67 x 10
-11

 m
3
/kg · s

2
) 

h = altitude (km) 

H = scale height (km) 

I = mass moment of inertia (kg · m
2
) 

JD = Julian Date 

J = Zonal harmonic  

L = length (m) 

m = mass (kg) 

T = transformation matrix 

Tdy = torque (N · m) 

μ = standard gravitational parameter (km
3
/sec

2
) 

ω = argument of perigee 

ωo =  orbital frequency (rad/s) 

pSR = solar radiation pressure (N/m
2
) 

φinc = solar incidence angle (rad) 

r =  radius (km) 

Ω = right ascension of the ascending node 

ρ = density (kg/m
3
) 

σ = mass moment of inertia simplification factor 

τmin =  temporary variable 

Θ = true anomaly (rad) 

θ = pitch angle (rad) 

v = velocity (km/s) 
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  Subscripts 

 

2 = Second 

3 = Third 

4 = Fourth 

5 = Fifth 

6 = Sixth  

ECI = earth centered inertial coordinate frame  

ECEF = earth centered earth fixed coordinate frame 

PQW = perifocal coordinate frame 

NTW = satellite coordinate system 

x = x-coordinate 

y = y-coordinate 

z = z-coordinate 

☉ = sun 

☽ = moon 

⊕ = earth 

  

I. Introduction 

RBITAL debris has recently, and quickly, become one of the most serious concerns facing spacecraft today. 

Ever since Sputnik launched in 1957, the space environment has gone from an environment free of unused 

manmade hardware, to a junkyard, filled with millions of pieces of orbital debris. Although a great percentage of 

these pieces of debris are very small and don’t appear as if they would be able to cause significant damage to 

operational spacecraft, the velocities at which these pieces are orbiting can be in excess of 7 km/s (about 15,000 

miles per hour) and the relative velocities at impact can be anywhere from 9 to 14 km/s.
1
 To put this in 

perspective, a small 1 kg piece of space debris that impacts with a velocity of 10 km/s has the same kinetic 

energy as an empty 18 wheeler going 180 miles per hour.  

As the world rapidly evolves into a society that requires satellites for everything from watching television to 

credit card transactions, the orbital debris problem increases at an alarmingly high rate. From 1990 to 2010, the 

number of objects officially tracked by the United States Space Surveillance Network increased from about 

7,500 objects to over 16,000.
2
 This shockingly  high number does not even include pieces of space debris that are 

less than 1 cm in diameter. The number of objects currently in orbit that fall into that category exceeds 100 

million.
3 
 

One of the main reasons that space debris is a major issue for current and future space missions is the 

inevitability of collisions. The spike in orbital debris objects mentioned earlier was primarily due to two major 

events in which larger pieces of space debris were struck, either intentionally or accidently, and exploded into 

many smaller pieces of debris. The first major event was the intentional explosion of a Chinese weather satellite 

in 2007. This abnormal event couldn’t have been anticipated by those trying to mitigate the orbital debris issue. 

Another collision between American and Russian communications satellites in 2009, however, is a perfect 

example of why the orbital debris issue is at the forefront of current aerospace innovation because it was simply 

an accident. All of the remaining larger pieces of orbital debris, like defunct satellites and rocket bodies, present 

more collision risks that could further contaminate usable space. In order to prevent future satellites and rocket 

bodies from becoming collision risks, prominent space exploration entities like NASA are beginning to mandate 

preventative measures to mitigate further accumulation. 

 NASA’s mitigation procedure requires that any mission completely or partially operated by NASA must have 

completed an orbital debris assessment report and an end-of-mission plan. These two requirements examine the 

number of pieces of orbital debris that might be caused by the mission, their possibility for collisions, their 

expected orbits, as well as how long they will be in orbit.
4
 The end-of-mission plan must detail what the mission 

architects plan to do to ensure that their hardware does not become useless debris once their mission is 

complete.
5
 Geostationary Earth Orbiting (GEO) spacecraft have the option to maneuver to a graveyard orbit, 

approximately 300 km above GEO, while Low Earth Orbiting (LEO) spacecraft must reenter the atmosphere 

within 25 years.  

According to a study by Anselmo, Rossi, Pardini, Cordelli, and Jehn on the future of orbital debris, using a 

variety of mitigation techniques going forward will greatly limit the amount of new space debris that will exist in 
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the year 2100. The study predicts that by mitigating debris generated by explosions, debris generated during 

mission lifetime operations, and by immediately de-orbiting all spacecraft below 2000 km at the end of their 

mission, the amount of orbital debris larger than 1 cm in LEO can be kept at around 13,000 items, instead of the 

predicted 35,000 items.
6
 

 Many LEO satellites opt to use various methods to de-orbit themselves including active thrust maneuvers, 

electrodynamic tethers, solar sails, and drag enhancing mechanisms such as balloons and drag sails. Primarily, 

drag enhancing mechanisms have been designed for the smaller scale pieces of debris such as small research 

satellites called CubeSats.
7
 CubeSats are small 10 x 10 x 10 cm cube satellites that are generally used for 

educational or research based purposes.
8
 Several designs for drag enhancement devices have been suggested over 

the past few years including a deployable pyramid structure, a 5 m
3
 inflatable balloon, and an inflatable pillow-

shaped de-orbit device.
9
 All of these designs have produced analysis that suggest that de-orbit mechanisms can 

de-orbit the CubeSats at various altitudes within 25 years. Because the drag improvement mechanism functions 

effectively with the CubeSats, it makes sense that they would be logical choices in de-orbiting other types of 

spacecraft such as rocket bodies. 

 The objective of this report is to provide computational analysis that suggests that rocket bodies can be 

effectively de-orbited using a drag enhancing mechanism. This report will examine the effect the drag sail will 

have on the rocket body’s stability throughout the duration of the sail’s life, as well as all of the perturbations 

that are involved throughout the orbital lifetime.   

II. Design 

 For the removal of debris at end-of-mission to be feasible, spacecraft must have the ability to de-orbit 

themselves. Assuming a spacecraft even has capability for such a maneuver, performing a de-orbiting burn is not 

preferable because it would shorten the life of spacecraft. Therefore implementation of a drag-inducing de-orbit 

device will be investigated here. The device will utilize a low-mass deployable 2-D sail that will increase the 

amount of surface area that is normal to the velocity vector. This drag will slow the spacecraft down, and slowly 

decrease the spacecraft’s orbital altitude until it eventually reenters. 

III. Analysis 

 Analysis was performed on the attitude as well as the orbit of the body. The orbital perturbations considered 

were non-spherical Earth in terms of J2 through J6 zonal harmonic perturbations, solar radiation pressure, drag, 

and the n-body effects of the Sun and Moon. Although the drag device only influences the acceleration due to 

drag and solar radiation pressure, other perturbations were included to accurately predict the orbit. Analysis was 

also conducted in the area of attitude determination of the body. The importance of this is that any rotational 

offset of the body will result in decreased area acting in the velocity vector. 

 The orbit will be propagated using MATLAB’s built in ordinary differential solver ode113. This solver will 

differentiate the forces experienced by the body and, from initial position and velocity vector, propagate the 

position and velocity forward in time. From Newton’s Law of Gravitation we have: 

    
    

                (1) 

where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between 

the two objects.
10

 For a body orbiting Earth a common substitution for the above equation is to replace the 

gravitational constant and m1 with Earth’s standard gravitational parameter, μ. Further simplification can be 

made by dividing both sides of the equation by the mass of m2, the mass of the body, yielding Eq. 2.
11

 

    
 

                 (2) 

 To propagate the orbit from a more than one dimensional standpoint the acceleration term as well as the 

position term must be made into vectors. Addition of other accelerations, such as the perturbation accounted for 

in this analysis, must also be added in before the equation is run through the ordinary differential solver, as seen 

in Eq. 3.
11

 

 ⃑    
 

   ⃑   ∑  ⃑                         (3) 

 It is also important to note that all operations run though the ordinary differential solver will be in the 

common ECI coordinate frame. 
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A. Acceleration Perturbations Due to Earth’s Zonal Harmonics 

 In a standard two-body problem it is assumed that both bodies are point masses, this is of course untrue for 

any physical body. Since the Earth is spinning it bulges at its center, an effect known as oblateness. Centrifugal 

force causes the Earth to be wider at the equator than at the poles. Ocean tides, mountain ranges, and simply the 

different densities of material that make up the Earth all contribute to the erroneous results when Earth is treated 

as a point mass. For the accuracy needed for this analysis zonal harmonics will be used to estimate the 

perturbation due to Earth’s oblateness. This method defines harmonic regions based only on latitude, giving no 

concern to different harmonic values based on longitude. The harmonics are named by the scheme Jl,m, in 

spherical harmonics m = 0 and is therefore usually neglected and l is equal to the number of harmonic zone 

minus one. For example, J2,0 is often referred to simply as J2 and contains three different zones. To calculate the 

perturbations from the second spherical harmonic the following Legendre polynomial will be used, 

     
    ⊕ ⊕
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)
 

  
   ⊕ ⊕

 

              (4) 

where J2 is the Legendre coefficient, μ⊕ is the standard gravitational parameter of Earth, R⊕ is the radius of 

Earth, and r is the radius from Earth to the spacecraft.
11

 To calculate the actual acceleration due to the second 

spherical harmonic the partial derivative of Eq. 4 must be taken with respect to each coordinate direction, 

resulting in Eqs. 4, 5, and 6.
12
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 It is important to note that Eq. 5 and Eq. 6 are very similar, while equation Eq. 7 is quite different. This is due 

to the rK term originally in equation Eq. 4 and taking the partial derivative with respect to it yields a much 

different result. The method of taking the partial derivatives is the same for all the zonal harmonic terms here, 

thusly only the Legendre polynomials seen in Eqs. 8, 9, 10, and 11 are shown here.
13
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 Finally, all of the harmonic terms are added to each other, as seen in Eq. 12.
11 
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 All of the zonal coefficients can be found in Appendix A. It should be noted that all of the spacecraft position 

terms, r, and the resulting acceleration terms are in the ECEF frame. This means a coordinate transformation 

from the ECI frame to the ECEF frame must be preformed, then back again. These coordinate transformations 

require an input of not only the vectors that are being transformed, but also the Julian date. Since the ECEF 

frame is fixed with respect to Earth such that IECEF always points out of longitude 0°, latitude 0° and the ECI 

frame rotates about the Earth’s poles such that the IECI always points towards the First Point of Aries, γ. If the 

assumption is made that Earth only rotates about its poles, then the only angle needed is the Greenwich sidereal 

time, θ, since KECEF is assumed to be equal to KECI. The algorithm used to calculate the Greenwich sidereal time 

can be found in Appendix B. A diagram of the conversion between the ECEF and ECI coordinate frames can be 

seen in Figure 1. 
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Figure 1. Earth with ECEF and ECI coordinate frames. 

 The coordinate transformation for the position vector only requires the use of a single transformation matrix 

using the Greenwich sidereal time. The equation for the coordinate transformation between a position vector in 

ECI to a position vector in ECEF is shown: 

       [ ]                  (13) 

where T is the transformation matrix, 

[ ]   [
         
          

   
]           (14) 

 and where θ is the Greenwich sidereal time. The transformations for the velocity and acceleration vectors are 

not so simple.
14

 Since the coordinate frames are rotating with respect to one another, additional terms must be 

added. For the proper velocity vector transformation the derivative of the position transformation equation must 

be preformed, as shown in Eqs. 15, 16, and 17. 

       
 

  
                   (15) 

       
 

  
  [ ]                  (16) 

       [ ]       [ ̇]                (17) 

Where  ̇ is the derivative of the T transformation matrix, 

[ ̇]   [

  ⊕      ⊕      

  ⊕       ⊕      

   

]          (18) 

and where  ⊕ is the spin rate of the Earth. Likewise for the transformation of the acceleration term we get, 

       
 

  
                   (19) 

       
 

  
 ([ ]       [ ̇]     )          (20) 

       [ ̈]        [ ̇]       [ ]               (21) 

where  ̈ is the double derivative of the T transformation matrix seen in Eq. 22. 
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[ ̈]   [

  ⊕
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]           (22) 

 For the transformation from the ECEF back to the ECI frame one must simply take the transpose of each of 

the transformation matrices. Although all transformations are shown below, the only transformation of interest is 

the transformation of the acceleration term. 

      [ ]                     (23) 

      [ ]         [ ̇]
 
                 (23) 

      [ ̈]
 
         [ ̇]

 
        [ ]                (24) 

 Although the zonal harmonics equations only call for the transformation of the position vector we must 

transform an arbitrary acceleration vector from the ECI to ECEF frames to add to the resulting acceleration from 

the harmonics equations. After this the acceleration term is to be transformed back to the ECI frame. A 

simplified diagram of this algorithm can be found in Appendix C. 

B. Acceleration Perturbations Due to N-Body Effects  

 An n-body analysis was done to calculate the perturbing forces due to the gravitational force exerted on the 

spacecraft from both the Sun and the Moon. Simply using Eq. 2 for calculating the gravitational effect of the Sun 

and Moon will yield erroneous results as there is a coordinate ambiguity. To keep all terms in the ECI frame the 

following equation is promising.
12

 

 ⃑     (
 ⃑     

      
  

 ⃑⊕  

 ⊕  
  )           (25) 

Where μ is a standard gravitational parameter and the subscripts n and sat represent the n-body in question and 

the spacecraft respectively. The convention for a variable with two subscripts is that it is from the first subscript 

to the second. For example, XA_B means from the A to the B. In the equation above the term  ⃑      is the position 

vector of the spacecraft from the n-body. Figure 2 shows a graphical representation of Eq. 25. 

 
Figure 2. Vector description of n-body interaction. 

 Errors using Eq. 25 result from numerical compounded differences from the small numbers seen from the 

term in the parenthesis. The following equation has been chosen instead, it results from a Taylor series expansion 

done by Geyling and Westerman.
12
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 All of the position vectors, as well as the resulting acceleration vector, are all in the ECI frame. Vallado 

shows a simplified way of calculating the position vectors from both the Sun and the Moon. The algorithms for 
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how to calculate the position vector from the Earth to the Sun and Moon in the ECI frame can be found in 

Appendix D and Appendix E respectively. 

C. Acceleration Perturbations Due to Solar Radiation Pressure 

 Since light carries energy with it, it exerts a force on an object when the object is struck by a photon. Using 

Einstein’s theory of special theory of relativity, the relationship between the solar flux and the speed of light is 

defined by using the following equation, 

    
  

 
              (27) 

where SF is the solar flux, c is the speed of light, and PSR is the solar radiation pressure.
12

 A commonly accepted 

average solar flux for objects at 1 AU from the Sun is 1367 Wm
-2

. Knowing this the calculation for finding solar 

radiation pressure can be completed.  

     
     

 

  

      
 

 

         
 

             (28) 

 From this the following equation can be utilized to calculate the solar radiation pressure inflicted on a body 

around Earth. 

 ⃑           ☉ ̂☉                (29) 

Where aSRP is the acceleration vector, cR is the reflectivity coefficient,  ☉ is the area of the body that is exposed 

to the Sun, and  ̂☉     is the unit vector of the position of the spacecraft in relation to the Sun in the ECI frame. 

The position vector from the Sun to the spacecraft is important because that is the direction that the solar 

radiation pressure will act in. This vector has already been calculated for determining the n-body interaction of 

the Sun, and the algorithm for calculating this vector can be found in Appendix D. 

 Further consideration must be given to the reflectivity coefficient and the area exposed to the Sun. For the 

solar radiation to take effect the body must have an amount of area facing the Sun; this makes knowing 

orientation of the body very important and attitude determination must be calculated. An accurate reflectivity 

coefficient is also needed to calculate the effect of solar radiation pressure. When light comes into contact with a 

material it either reflects the light, absorbs the light, or transmits the light, as displayed in Figure 3. 

 
Figure 3. Reflectance, absorptance, and transmittance of a material. 

  When the light is reflected the reflectivity coefficient is equal to 2, when the light is absorbed by the material 

the reflectivity coefficient is 1, finally when the light simply passes through the material the reflectivity 

coefficient is 0. Knowing the reflectivity coefficient of a body is often a quite difficult task which requires the 

knowledge of how much light is reflected and absorbed by the spacecrafts different surfaces. Furthermore since 

many different materials may cover the spacecraft, the orientation of the spacecraft becomes important again as 

the entire spacecrafts reflectivity coefficient is needed for any orientation. The knowledge of a material’s 

reflectivity coefficient is complicated further when a surface’s properties degradation is taken into account due to 

the space environment. For this simulation a highly reflective surface will be used with a cR of 1.9, and no 

degradation is assumed. It is further assumed that the area of the sail is much greater the area of the spacecraft so 

that only the area of the sail and the reflectivity coefficient of the sail is taken into account. 
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1) Eclipse Check 

 Calculations were also preformed to neglect solar radiation pressure when the spacecraft is in umbra; 

calculations were not done to account for the penumbra. Analysis was performed to find whether or not a line of 

sight existed between the Sun and the spacecraft, although this is not a true umbra it will be assumed to be 

acceptable. A diagram of line of sight can be seen in Figure 4. 

 

Figure 4. Absence of a line of sight between a spacecraft and the Sun shown as darkness. 

 The line of sight algorithm is taken from Vallado, and can be found in the Eq. 29.
12

  

      
| ⃑   |

    ⃑     ⃑☉ 

| ⃑   |
  | ⃑☉|     ⃑     ⃑☉ 

           (29) 

If τmin is less than 0 or greater than 1, then there is a line of sight between the spacecraft and the Sun, and solar 

radiation pressure is acting on the body. If τmin is less than 1 and greater than 0, the following equation must be 

calculated for; 

| ⃑      |
   

        | ⃑   |
    ⃑     ⃑☉      

 ⊕
          (30) 

if | ⃑      |
  is less than 1 than no line of sight exists, if not then there is a line of sight. 

 

2) Solar Incidence Angle  

The perturbations caused by solar radiation pressure are not only dependent on the amount of time spent in 

the sun, but also upon the orientation and angle at which the solar radiation pressure hits the spacecraft. Over the 

course of the orbital period, the spacecraft will be exposed to the sun at many different angles. This angle will be 

referred to as the incident angle, and will be denoted by the variable φinc. This incident angle is the angular 

displacement between the vector from the spacecraft to the sun, and the surface normal vector. In order to 

calculate this angle, the only two vectors needed are the surface normal vector, and the sun vector, both in the 

Earth Centered Inertial frame so that it may be utilized in the rest of the analysis. The first thing that needs to be 

done is to find the surface normal vector for the spacecraft in the spacecrafts NTW frame. This can be found by 

taking the unit normal vector and multiplying it through a rotation matrix about the pitch axis, and multiplying 

that rotation matrix by the spacecraft unit normal vector as shown below 

 ̂    [
 
 
 
] [

                
   

               
]           (31) 

where θ is the angle about the pitch axis.
11

 That angle will be discussed more in the atmospheric drag section of 

this report. Once the unit normal vector is in the spacecraft’s NTW frame, a second transformation must be done 

to put the matrix into the ECI frame. This coordinate transformation is a bit more complicated and uses the 

transformation series shown below 

 ̂    {[
               
                

   

] [

   
               
                

] [
               
                

   

]}

 

[
                 
                  

   

]  ̂    (32) 

where ω is the argument of perigee of the orbit, i is the inclination in radians of the orbit, Ω is the right ascension 

of the ascending node, and Θ is the true anomaly in radians. Once the surface normal is in the ECI frame, it is 
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necessary to find the sun vector in ECI frame in order to find the angle between the two vectors. While finding 

the solar radiation pressure, the position vector of the sun relative to the Earth in ECI frame was found using the 

Julian Date, so this vector has already been found during previous analysis. At this point, a simple dot product 

and simple algebra will yield the incidence angle. The dot product is shown below 

    ̅      
  ̂                (33) 

This dot product will yield a single numerical value which is used to find the incident angle as shown in the 

following equation 

     
  

       
‖ ̂   ‖

             (34) 

This incident angle will be used in conjunction with the solar radiation pressure and the eclipse checking 

equations to achieve a more accurate simulation of the affects of solar radiation pressure on the drag sail.  

D. Acceleration Perturbations Due to Atmospheric Drag  

All of the perturbations previously discussed in this report were perturbations that are extremely difficult to 

manipulate in any useful way. N-body and zonal harmonic perturbations for example are natural perturbations 

and impossible to manipulate. Atmospheric drag is one perturbation that actually can be altered and used to the 

advantage of engineers. Because the acceleration due to the force of drag is dependent upon the cross sectional 

area, an increase in cross sectional area directly increases the acceleration. In this way, large cross sectional areas 

can be used to create large accelerations which will eventually lower the energy of the rocket bodies enough to 

de-orbit them. The atmospheric drag mostly affects the eccentricity and the semimajor axis of the orbit, but also 

has minor effects on the other orbital elements throughout the lifetime of the space vehicle. For elliptical orbits, 

the radius of perigee of the orbit tends to stay fairly constant, while the radius of apogee shrinks along with the 

eccentricity, slowly circularizing the orbit.
10

 This effect can be seen in Figure 5. 

 

Figure 5. Effect of Atmospheric Drag on Orbit Eccentricity 

While the effects of drag are exaggerated in Figure 5, the effect over a long period of time is clearly shown. 

The dotted line depicts the orbit as it would continue if there were no perturbations on it at all. The sequence of 

solid lines shows an exaggerated depiction of the effect drag will have on this particular orbit. The eccentricity of 

this orbit approaches zero as the radius of apogee gets smaller. As the radius of perigee gets smaller, the orbit 

will eventually get close enough to Earth to de-orbit.  

 Spacecraft in orbit experience their highest velocities at their radius of perigee. As the radius of perigee 

decreases, the velocity of the object at its radius of perigee increases. The interesting thing about this is that as 
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the radius of perigee decreases, the spacecraft is getting closer and closer to earth, and therefore increasing in 

drag force. The lower the altitude of the spacecraft, the higher the density of particles that the body will 

encounter, and the higher the drag force will be. This fact causes a brand of thinking which is often referred to as 

the drag paradox.
10

 This paradox is caused by the energy transfer that is taking place as the force of drag is 

imparted on the satellite. It can be shown that any force which adds total energy to the body will make the orbit 

larger and decrease the kinetic energy, and that any force which takes away total energy will make the orbit 

smaller and increase kinetic energy.  

Although at higher altitudes, n-body and solar radiation pressure are the dominant perturbations, the 

acceleration due to atmospheric drag is the second largest perturbation on lower altitude orbits, after Earth’s 

oblateness. Many conclusions can be drawn by examining the equation for the acceleration due to atmospheric 

drag, which is given below in Eq. 35 

       
 

 
   

 

 
              (35) 

where Cd is the drag coefficient, A is the cross sectional area in the drag vector, ρ is the density, m is the mass of 

the rocket body, and v is the magnitude of the rocket body’s velocity vector. 
12

 Although Eq. 35 looks relatively 

simple, one of the difficulties in atmospheric drag analysis is that some of the values are very difficult to find.  

For instance, the drag coefficient Cd is a dimensionless number that describes how severely the body will be 

affected by the force of drag.  This number is difficult to calculate and is different for every piece of space 

hardware. Frequently the drag coefficient is simply assumed to be 2.2 for plate-plate models of satellites, and 

about 2.0 or 2.1 for satellites that are modeled as spheres.
10

 Shown in the table below is a table with the kind of 

drag coefficients that past spacecraft have been given based on their approximate shape and size.
11

 

Table 1. Drag Coefficients of Previously Flown Spacecraft 

Satellite 
Mass  

(kg) 
Shape Min Cd Max Cd 

Min Ballistic 

Coefficient 

(kg/m
2
) 

Max Ballistic 

Coefficient 

(kg/m
2
) 

Oscar-1 5 Box 2 4 16.7 42.8 

Vanguard-2 9 Sphere 2 2 23.5 23.5 

Viking 277 Octagon 2.6 4 30.8 128 

OSO-7 634 9-Sided 2.9 3.67 165 437 

HEAO-2 3,150 Hexagon 2.83 4 80.1 174 

LDEF-1 9,695 12-Face 2.67 4 93.1 169 

SkyLab 76,136 Cylinder 3.5 4 47.1 410 

 

The drag coefficients shown in Table 1 are based on the cross sectional area normal to the drag vector, as 

well as the shape, size, and orientation of the satellites shown. Most of the satellites shown have a maximum drag 

coefficient of four, and all have a minimum drag coefficient greater than two. The only spacecraft on this table 

that includes solar panels is SkyLab, which has the largest minimum drag coefficient. For the analysis detailed in 

this report, the drag coefficient is assumed to be constant at 2.2.
11

 The ballistic coefficient, which is also shown 

in Table 1, is a parameter that is often times held constant in orbital analysis, but varies greatly depending on 

orientation and will therefore not be considered constant in this analysis. The equation for the ballistic coefficient 

is given in the simple equation below as 

   
 

   
              (36) 

Where m is the mass of the body, CD is the drag coefficient, and A is the cross sectional area normal to the 

drag vector. 

 Additionally, the cross sectional area normal to the drag vector is not always easy to find either. Although 

some spacecraft are stabilized in such a way that their cross sectional area is designed to be constant, small 

disturbances, including the torque due to drag, or nutation errors may cause the spacecraft to change its 

orientation such that the area is not constant. Even small errors in the cross sectional area need to be carefully 

monitored in order to achieve an accurate simulation of the effects of atmospheric drag.  If a spacecraft were to 

be tumbling, the cross sectional area could be changing enormously and be impossible to estimate. If a spacecraft 

were to change its attitude in order to perform various mission specific operations, the attitude changes would 

have to be taken into account in order to estimate the cross sectional area. For instance, if a spacecraft was 
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equipped with movable solar panels such that the panels adjusted their positioning to always have their 

maximum area in the sun, the area in the drag vector would inevitably change. An example of this type of 

maneuver is shown in the figure below. The solar panels in the figure below have a total surface area of one 

square meter. 

 

Figure 6. Cross Sectional Area Based on Spacecraft Orientation 

In Figure 6a the solar panels are pointed at the sun and are perpendicular to the drag vector, which is marked 

at the center of the spacecraft. In Figure 6b however, the sun is in line with the drag vector, so the solar panels 

are fully exposed to the force of drag. In the orientation depicted in Figure 6b the cross sectional area has 

increased, and the drag force will be more severe on the spacecraft than it would be if the spacecraft were in the 

orientation shown in Figure 6a. 

The other variable that varies a significant amount throughout the rocket body’s lifetime is the density of 

particles that the body is exposed to. The density of these particles is not as commonly known as the density of 

the air on Earth, and is the most difficult part of analyzing the acceleration due to drag. In order to find the 

density of the particles in an orbital path many different methods for estimating the density have been created, 

each with a different combination of computational intensity and accuracy.  The difficult thing about calculating 

the density is that it is dependent on so many other variables such as location around earth, time of day, a rotating 

atmosphere, ocean tides, solar rotation cycle, and much more. 

1)      Density Model  

Because the density of particles in space is such an unknown variable, and is exceedingly difficult to know 

with any deal of certainty, there have been numerous attempts to model the density as a function of orbital 

altitude that include everything from magnetic storm variations right down to winds and weather patterns. The 

affect that all of these events have on the particle density is complex and has been gathered through years of 

experimental data to form mathematical models. One of the simplest models that have been used to model the 

atmosphere is the U.S. Standard Atmosphere 1976 model. This model represents the steady state atmosphere at a 

moderate solar activity. This model has a low altitude section and a high altitude section which are calculated 

separately. The lower altitude section is calculated using equations for temperature and pressure, while the upper 

atmospheric model focuses on numerical integration techniques to find the density. The density and mean free 

path for the lower altitude section and the beginning portion of the high altitude section is shown in Figure 7. The 

definition of mean free path is the distance traveled by a particle in between collisions, which for high density 

regions is very small; this distance grows as density decreases. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

14 

 

Figure 7. Density and Mean Free Path as a Function of Altitude Using U.S. Standard Atmosphere Model 

 Over the same altitude range, it seems intuitive that the correlations of density and mean free path to altitude 

would be opposites. As the density of the particles decreases, there are fewer particles for moving particles to 

collide with. This means that the distance between the particles, or the mean free path, is larger. While the 

standard atmosphere model is sufficient for lower altitudes and is very useful for analysis of aircraft, a model that 

is more accurate at higher altitudes needed to be used for this analysis and so other models were also considered. 

 One of the other models that was looked at provided atmospheric data based on previously flown mission. 

The MSIS-86 atmospheric model used data from rocket flights and satellites to piece together atmospheric data 

that included neutral temperature, exospheric temperatures, densities of numerous gasses at various altitudes, as 

well as total density. The atmospheric model continued to improve as the model began to examine space shuttle 

flights and sounding rockets until it became a new atmospheric model called the MSIS-90. This model takes into 

effect many sources of uncertainty in density calculations including solar variation. One of the main solar 

variations that it takes into account is what is known as the F10.7 index. This value is used to interpret the 

contribution that solar flux gives to atmospheric density. It is unfortunately impossible to measure the solar flux 

from the Earth’s surface because the Earth’s atmosphere filters out the ultra-violet radiation. It has been found 

that the F10.7 index can be used to estimate the solar flux because both F10.7 solar radiation and ultra violet 

radiation. It varies over time and cycles roughly every eleven years. The atmospheric density is shown with 

average solar activity as well as variable solar activity in the figure below. 

 
Figure 8. Density as a Function of Solar Acitivity Using MSIS-90 Atmospheric Model 

 The graph on the left in Figure 8 shows the atmospheric density at average solar activity, which in this case 

has been taken to be 150 solar flux units or SFU’s. A solar flux unit is equal to 1 x 10
-22 

Watts*m
-2

*s
-1

. The graph 

on the right in Figure 8 shows the dotted green 150 SFU line sandwiched between a solar activity of 250 SFU’s 

depicted as the solid red line, and a solar activity of 70 SFU shown as a dashed blue line. These graphs clearly 

demonstrate that the solar activity has an effect on the density at higher altitudes, but hardly alters it at all at 
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altitudes lower than 200 km. This model is very sophisticated and takes into account a great many factors in 

calculating atmospheric density, but due to its complexity and excessive computation requirements, a simpler 

density model was selected to do the analysis. 

 The exponential atmospheric model is a simple model that assumes the density of the atmosphere gets 

smaller exponentially as the altitude of the orbit increases. The other assumption that this model makes is that the 

density distribution is a uniform sphere where the density of particles varies according to one very simple 

equation shown below  

     
[ 

        

 
]
            (37) 

where ρ0 is a reference density, hellp is the actual altitude of the spacecraft, h0 is a reference altitude, and H is a 

scale height. The actual altitude of the spacecraft can be calculated by simply calculating the norm of the radius 

vector in the Earth Centered Inertial frame, but the reference and scale values are not intuitive. The values for 

these variables have been found in David Vallado’s Fundamentals of Astrodynamics and Applications and are 

listed in the table below. 

Table 2.  Exponential Atmospheric Model Reference Variables
12

 

Actual 

Altitude 

hellp 

(km) 

Reference 

Altitude 

h0 

(km) 

Reference 

Density 

ρ0 

(kg/m
3
) 

Scale 

Height 

H 

(km) 

Actual 

Altitude 

hellp 

(km) 

Reference 

Altitude 

h0 

(km) 

Reference 

Density 

ρ0 

(kg/m
3
) 

Scale 

Height 

H 

(km) 

0 – 25 0 1.225 7.249 150 – 180 150 2.070 x 10
-9 

22.523 

25 – 30 25 3.899 x 10
-2

 6.349 180 – 200 180 5.464 x 10
-10 

29.740 

30 – 40 30 1.774 x 10
-2

 6.682 200 – 250 200 2.789 x 10
-10 

37.105 

40 – 50 40 3.972 x 10
-3

 7.554 250 – 300 250 7.248 x 10
-11 

45.546 

50 – 60 50 1.057 x 10
-3

 8.382 300 – 350 300 2.418 x 10
-11 

53.628 

60 – 70 60 3.206 x 10
-4 

7.714 350 – 400 350 9.518 x 10
-12 

53.298 

70 – 80 70 8.770 x 10
-5

 6.549 400 – 450 400 3.725 x 10
-12 

58.515 

80 – 90 80 1.905 x 10
-5

 5.799 450 – 500 450 1.585 x 10
-12 

60.828 

90 – 100 90 3.396 x 10
-6 

5.382 500 – 600 500 6.967 x 10
-13 

63.822 

100 – 110 100 5.297 x 10
-7 

5.877 600 – 700 600 1.454 x 10
-13 

71.835 

110 – 120 110 9.661 x 10
-8 

7.263 700 – 800 700 3.614 x 10
-14 

88.667 

120 – 130 120 2.438 x 10
-8 

9.473 800 – 900 800 1.170 x 10
-14 

124.64 

130 – 140 130 8.484 x 10
-9 

12.636 900 – 1000 900 5.245 x 10
-15 

181.05 

140 – 150 140 3.845 x 10
-9 

16.149 1000 + 1000 3.019 x 10
-15 

268.00 

 
While the exponential atmospheric model is not the most accurate model available for density, by using these 

intervals and reference values, it is possible to mitigate the inaccuracies enough to simulate the drag effects for 

design and general studies.
10

 This model is the model that is used for the analysis detailed in this report. A 

sample calculation for the atmospheric density experienced by a spacecraft at 425 km is shown below. This 

sample calculation utilizes Eq. 37 and reference numbers from Table 2. 

     
[ 

        

 
]
             (38) 

              [ 
       

      
]
           (39) 

              

               (40) 

 This calculation shows that the density of the drag inducing particles is extremely low at that high of an 

altitude, but over an extended period of time, even a density that low can take its toll on a spacecrafts orbit.  

 

2)      Gravity Gradient Stabilization  

 The drag perturbations caused by this density, as well as all of the previously discussed perturbations, are the 

reasons that many past spacecrafts have become unstable over the course of their mission lifetime. It is because 

of these perturbations that attitude control methods have needed to be used. As spacecraft have evolved over the 
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years, so too have the methods for controlling a spacecrafts attitude. There are many ways to maintain 

stabilization both passive and active, including thrusters, spin stabilization, and of course gravity gradient 

stabilization. Without these methods of attitude control, many satellite missions would be unable to perform their 

necessary tasks.  

 In the case of this particular project, a passive method is preferred to an active method like thrusters, which 

require fuel. If the stabilization method was to use thrusters, the 

use of a drag sail would not be necessary, because a de-orbit 

maneuver could be done with the thruster. For rocket bodies it 

makes the most sense to utilize their existing geometry in the best 

possible way. For many of the rocket bodies that will be analyzed 

in this report, their length makes spin stabilization highly unlikely. 

Because of their mass moments of inertia, spin stabilization about 

an axis that would allow the drag sail to remain perpendicular to 

the drag vector is unstable in many of the vehicles.  

 For these reasons, gravity gradient was the obvious choice of 

stabilization for the rocket bodies equipped with their deployable 

drag sail.  Figure 9 shows a cylindrical rocket body with a drag sail 

in a circular orbit. The rocket body in this figure is gravity gradient 

stabilized such that the drag sail is always perpendicular to the 

force of drag, causing the maximum cross sectional surface area to 

be exposed, and the maximum amount of drag to be utilized. In 

order for the rocket body to be stabilized using gravity gradient 

stabilization, the rocket body must be able to maintain its principal axes aligned with the orbital frame without 

the use of thrusters or any other active device. This definition imposes some restrictions on which geometries can 

actually be stabilized using this method.  Because of these restrictions, a discussion about the mass moments of 

inertia of the rocket bodies is necessary to discuss stability.  

 The mass moments of inertia for the rocket bodies in this report will be modeled as simple cylinders. The 

equations for the mass moments of inertia for a cylinder are shown below,  

   
 

 
    

 

  
                 (41) 

                     (42) 

    
 

 
                    (43) 

where m is the mass of the rocket body, r is the radius of the rocket body, and L is the length of the rocket 

body.
15

 The z-axis is along the length of the rocket body through the center of the circular ends, and the x and y 

axes complete the triad. At this point in order to simplify the mathematics three simplifying constants need to be 

introduced. These constants are shown in the equations below and are simply combinations of the mass moments 

of inertia.
14 

   
       

  
               (44) 

   
       

  
               (45) 

   
       

  
.               (46) 

 Now the angular equations of motion need to be defined in order to set up the stability conditions that will be 

necessary for gravity gradient stabilization. Those angular equations of motion are listed below.
14

 Since there are 

no control torques or wheel induced angular momentum, those variables are equal to zero in these equations of 

motion. The resulting equations of angular motion are 

       ̈     
 (     )    (        ) ̇        (47) 

       ̈    
 (     )    (        ) ̇         (48) 

       ̈     
                    (49) 

Figure 9. Gravity Gradient Stabilization 
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where φ, ψ, and θ are the angles about the x, z, and y axes respectively in radians, and ω0 is the orbital frequency 

in rad/s. The angular motion about the x and z axes are noticeably different than the angular motion about the y-

axis. For this reason there will be two different stability analyses done for stability about those axes.
13

 By taking 

the Laplace transformation of Eq. 50, a characteristic equation of the motion about the y-axis can be found to be 

   
   

        

  
               (50) 

and yields only one unstable root that occurs when Ix is greater than Iz. This is the only constraint for stability 

about the y-axis, but the stability conditions that are required to maintain stability about the x and z axes are 

much more stringent. Rearranging equations 47 and 48 and taking the Laplace transformation of those rearranged 

equation yields the following determinant 

     
 [          ]      

       ,         (51) 

which when placed in term of s
2
 allows for an equation that can be analyzed for stability conditions. This 

stability equation in terms of s
2
 becomes  

  

  
  

              √                    

 
.         (52) 

Equation 52 yields three stability conditions after analyzing the roots of the equation. The term underneath the 

square root must be positive, and because of this the following three conditions for stability must be fulfilled. 

            √                (53) 

                      (54) 

                         (55) 

 

These three inequalities can be plotted onto a σx – σz plane to show the classic stability region plot in Figure 10. 

This plot shows which combinations of moments of inertia will allow for stability about the x and z axis for 

gravity gradient stabilization. These conditions along with the stability condition that pertains to the y-axis 

describe the requirements for stability using this method.
14 

 

Figure 10. Gravity Gradient Stability Regions 
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Figure 11. Drag Distributed Load 

In order for the body to be stabilized using gravity gradient stabilization, the spacecraft must either fall in section 

1 or 2 of this stability region graph. Once it has been determined that the spacecraft will be stabilized using 

gravity gradient stabilization, the analysis of how the spacecraft reacts to the natural torques can begin. For this 

analysis, it has been assumed that disturbance torques about the x and z axes are negligible and they have not 

been taken into account. It has also been assumed that the body starts in an orientation that allows it to be gravity 

gradient stabilization. No maneuvers are done to put the body into an initial position after payload or stage 

separation.  

 The first thing that needs to be discussed is the specific natural torque 

being analyzed, and how it was calculated. The natural torque being 

considered for this gravity gradient stabilization analysis is the torque 

caused by the drag force. The drag force is not a force that is concentrated 

at a specific point, but it is rather a distributed load along the length of the 

sail. Figure 11 shows the distributed load that has been assumed for this 

analysis. The distributed load was concentrated into a single load and was 

applied to the sail at the location of the centroid of the distributed load. 

The distributed load shown in Figure 11 is exaggerated to show that there 

is a difference in drag between the top and bottom of the sail. The 

difference in drag between the top and bottom has been considered linear 

for ease of computation, and because the difference between the top and 

bottom force is so small that the type of distribution of the distributed load 

does not have a very noticeable effect. The other thing to notice in Figure 

11 is the exaggerated effect that the drag force will have on the spacecrafts 

orientation. As the force of drag continually pushes on the lower half of 

the sail with a stronger force than the upper half, the body will begin to tilt in the direction shown by the cylinder 

drawn with dashed lines. The angle about the y-axis shown in Figure 6 is of particular interest as time goes on. 

As this angle changes, so does the cross sectional area exposed to the force of drag, and the goal is to have the 

maximum cross sectional area exposed to the drag vector at all times. The time response about the y-axis, or the 

pitch axis, is dependent partially on the geometry. If Ix < Iz then one of the roots of the stability equation will be 

unstable and the pitch will change exponentially as time goes on. If the body has neutral stability, which means Ix 

= Iz, the time response of the pitch angle can be found using the equation below 

           ̇     
     

   
              (56) 

where t is the time that the body is exposed to the torque, Tdy is the torque about the y-axis, θ is the pitch, and the 

first two terms to the right of the equals sign are initial conditions for the pitch angle and change in pitch angle. 

A fully stabilized gravity gradient spacecraft has the mass moment of inertia relationship of Ix > Iz and has a pitch 

angle time response that follows the relationship shown in the following equation 

     
   

     
   

[      (  √    )].            (57) 

 

This equation and its derivatives are the equations primarily used to include the pitch angle in the drag analysis.
14

 

The results of the pitch angle analysis as well as the stability of the rocket bodies will be discussed in the 

Stability and Angle of Attack section of this report.        

 

IV. Results 

The following sections will analyze the products of the analysis detailed in the previous sections. These 

results take into account all of the orbital perturbations and stability concerns listed in the analysis section. The 

first section will examine the effect that different drag sail sizes have on the time it takes to de-orbit a rocket 

body. This section will discuss a variety of sail sizes and ultimately select one size for further analysis. The 

second part of this results section takes the sail size that was chosen in the first section and performs the stability 

analysis for all of the rocket bodies being analyzed. For the first section not all of the rocket bodies that were 

analyzed have results shown. The results for the rocket bodies not shown can be found in Appendix F. 
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A.  De-Orbiting Various Rocket Bodies With Various Sail Sizes 

The first and most important question to analyze is whether or not a drag sail will actually make a difference 

or not during the de-orbiting process for a second or third stage rocket body. In order to do that, the drag sail size 

was varied for a number of different rocket bodies at a number of different altitudes. The rocket bodies that were 

analyzed in this report include the second stage of a Delta II, the second stage of a Delta IV, the second stage of 

an Atlas V, the second stages of both the Falcon 1 and Falcon 9, and the Pegasus XL. The results of this analysis 

for all of the vehicles can be seen in Appendix F, but for the body of this report, in order to demonstrate the 

usefulness of the drag sail on both the small and large rocket bodies,  This report will focus primarily on the 

Pegasus XL to represent the smaller rocket bodies, and the Delta IV second stage to represent the larger rocket 

bodies. 

For each rocket body, the sail size was varied from 0 m
2
 to 50 m

2
 in increments of 10 m

2
. These 6 sizes for 

the drag sail (one size being no drag sail at all) were then placed on the rocket bodies at the same starting altitude 

which was also varied from 200 km to 500 km in increments of 100 km. The following four graphs correspond to 

these results for the Pegasus XL as it de-orbits using the various drag sail sizes.  

 

Figure 12. Orbital Decay of Pegasus XL for Various Sail Sizes 

 From these charts it is clear that the drag sail, in any size, will have a significant effect on the de-orbit time. 

At the lowest starting altitude, the drag sail decreases the orbit time by about 72% using the 10 m
2
 sail, and at the 

highest starting altitude of 500 km, the drag sail decreases the orbit time by an 68%. This type of percentage is 

also consistent for the 300 and 400 km cases, as their de-orbit time is decreased by 71% and 70% respectively. 

The trend in these percentages shows that as the starting altitude of the orbit increases, the percentage of time 

that a drag sail can cut from a de-orbit lifetime decreases, but not by much. The percentage may be lower, but the 

amount of actual time that is saved is much greater. With the maximum drag sail size of 50 m
2
 at the highest 

analyzed starting orbit of 500 km, the drag sail decreases the orbit lifetime by 91% and over 3 years. The 

minimum starting altitude with a 50 m
2
 sail decreases the orbit lifetime by a higher percentage of 93%, but only 

decreases the de-orbit time by 1.3 days.  

 These results are quite different than the results of the Delta IV heavy. The Delta IV heavy results are shown 

in the figure below for the same range of starting altitudes and sail sizes 
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Figure 13. Orbital Decay of Second Stage Delta IV for Various Sail Sizes 

 The Delta IV sees a very different result than did the Pegasus XL. Because of its large mass, the Delta IV 

second stage does not respond nearly as strongly to the drag sail, but it still responds strongly enough. The 10 m
2 

drag sail decreases the four orbits by an average of 16.25%, and the 10 m
2
 drag sail decreases the orbit life from 

720 days to about 605 days for a starting altitude of 500 km. The effects are not as severe as the effects seen by 

the Pegasus XL, but the effects are still noticeable and still reduce the orbital lifetime by a significant amount. 

 One of the questions that these graphs can answer is which sail size would be the optimum one to choose for 

a standard drag sail size. Immediately it would seem that the sail size that de-orbits the body the fastest would be 

the obvious choice. But for practicality and implementation reasons, it seems more reasonable to choose a sail 

size that significantly decreases the de-orbit time, but would not be unreasonably large. To make the selection for 

which sail size to analyze in the next section, the Pegasus XL graphs were used. In the Pegasus XL analysis it 

appears that there is a large difference between the de-orbit time between no sail and a 10 m
2
 sail, and there is 

also a sizeable difference between the de-orbit time for a 10 m
2
 sail and a 20 m

2
 sail. The difference in de-orbit 

time for a 20 m
2
 sail and a 30 m

2
 sail is not as large, and the 40 and 50 m

2
 sails have been deemed too large to 

practically consider. For these reasons the 20 m
2
 sail has been chosen as the optimal sail size based on the results 

for all of the rocket bodies, but particularly on the smaller bodies, where there are larger jumps in de-orbit times 

for different area sizes.  

 

B.  Stability and Angle of Attack  

The previous results clearly show that the rocket bodies examined in this study de-orbit quickly, and de-orbit 

even more quickly with the aid of the drag sail. But one of the most important questions is whether the rocket is 

stable as it orbits, and how well does the body keep the drag sail in the drag vector.  

The question as to whether the rocket body will remain stable using gravity gradient stabilization can be 

answered by using the mass moments of inertia of the rockets, the simplifying factors in Eqs. 44-46, and 

examining the stability plot from Figure 10. Using the mass moment of inertias and the simplification factors, the 

stability locations of each of the utilized rocket bodies is shown in the figure below. The quantity σx from Eq. 44 

is along the horizontal axis of this plot, while the quantity σz from Eq. 46 is along the vertical axis.  
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Figure 14. Gravity Gradient Stability Plot for Rocket Bodies 

 Although it appears that the Atlas V, Delta IV, and Falcon 9 look to be dangerously close to a region of 

instability, their pitch axes remain stable and do not diverge in an unacceptable fashion. One thing to notice from 

this plot is that the three longer rocket bodies are the three that sit close to the region of instability, while the 

three rocket bodies that have smaller length to diameter ratios sit more towards the center of the stable region. It 

should be noted however, that rocket bodies with too small of a length to diameter ratio will become inherently 

unstable as oblate spinners and will not function well with this drag sail. Despite the close proximity of the 

Falcon 9, Delta IV heavy, and Atlas V rocket bodies to the region of instability, their pitch axes vary quite 

similarly to the other three rocket bodies. That is, they are no less stable than the other three despite their location 

on the chart. This fact is shown below in Figure 15, which shows all of these rocket bodies and their pitch angle 

over time as the bodies de-orbit from 400 km. 

 
Figure 15. Pitch Angle Over Time for 400 km Decay 

 The pitch angle, also known as angle of attack in this case, appears a slow and smooth increase followed by a 

sharp and large increase at the end. The reason for the large upturn at the end of each of the graphs, is that when 

the force of drag is getting larger and larger, it starts to affect the pitch angle more and more. At the end of their 
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orbital decay none of these pitch angles are in excess of 10 degrees, and at this point in the mission lifetime, they 

are sure to de-orbit after just a few hours regardless of how much surface area is in the drag vector. The three 

larger vehicles seem to experience less of a change in pitch angle than do the three smaller vehicles, and this is 

because the larger masses of those vehicles make it difficult to alter their orientations, whereas the less massive 

vehicles can be more easily influenced. 

 

 

V. Conclusion 

Utilizing the force due to atmospheric drag when de-orbiting spacecraft is a common practice and one of the 

most effective ways to reduce the de-orbit time of a space vehicle. Drag enhancing mechanisms have historically 

been designed for small satellites, and have tested with very favorable results, which lead to the conclusion that a 

drag enhancing mechanism would also perform well on larger space vehicles. By using a drag enhancing 

mechanism such as a drag sail, along with several other orbital perturbations, should help reduce the time it takes 

larger vehicles such as rocket bodies to de-orbit. The objective of this report is to produce adequate 

computational evidence that such a drag sail, when used on a variety of rocket bodies, will de-orbit a rocket body 

in significantly less time than if no drag sail were used. 

The analysis performed in this report provides sufficient computational evidence that the use of a drag sail, in 

any size, will have a positive effect on the time it takes to de-orbit a rocket body. This report has implemented 

such a drag sail onto six different launch vehicle stages including a Delta IV, Delta II, Falcon 1, Falcon 9, Atlas 

V, and a Pegasus XL, all of which have shown a decrease in de-orbit time when equipped with a drag sail. It has 

shown a 20 m
2
 sail is a preferable balance between optimized de-orbit time and practical implementation, and it 

has also been shown that the rockets will remain stable throughout their de-orbit using gravity gradient 

stabilization. The chosen sail size decreases the de-orbit time for the Pegasus XL by an average of 84% for 

altitudes of 200 km, 300km, 400km, and 500 km, and decreases the de-orbit time for a Delta IV second stage by 

an average of 16.25% for the same range of altitudes. 

This report serves as an adequately accurate representation of what a gravity gradient stabilized rocket body 

will experience while using a drag sail to decrease the de-orbit time. Some of the perturbations used in this report 

could use models with increased accuracy such as the J2 perturbations and the density model used for the 

atmospheric drag model, but the models used in this report are commonly used for detailed analysis. In order to 

progress in the design of the sail discussed in this report there are many other things that need to be considered. 

The packing and deployment of the sail, as well as the material that the sail is made of need to be explored, and a 

deeper look into beginning of life attitude and control needs to be done. 
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Appendix A – Earth’s Zonal Coefficients 

The following coefficients are from Coffey, Deprit, and Deprit. 

Zone Zonal Coefficient 

J2 1.082635e-3 
J3 -2.54321530e-6 
J4 -1.6109877e-6 
J5 -2.3578565e-7 
J6 5.431685e-7 

 

Appendix B - Greenwich Sidereal Time Algorithm 
 The algorithm for calculating the Greenwich sidereal time requires the knowledge of the Julian date number, 

J0, and the universal time, UT in hours. The following algorithm is from Vallado and calculates the Greenwich 

sidereal time in degrees. 

    
           

     
 

                                            
                 

  

                   
  

  
 

A diagram is shown as a visual representation of this algorithm.  

 
Appendix C – Block Diagram of J2 through J6 Calculation 
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Appendix D – Earth to Sun Position Vector Algorithm 

 To calculate the position vector of the Sun in the ECI frame the only needed input is the Julian date, JD. The 

following algorithm is from Vallado; 

   
            

     
 

  ☉
                     

 ☉                            

             ☉
                   ☉                    ☉  

 ☉                              ☉                     ☉   
                        

 ⃑⊕☉    ☉ [

   (         )

         (         )

         (         )

]AU 

where 1 AU is the average distance from the Sun to the Earth, approximately 1.49597871e8 km.  

 

 

 

 

 

Appendix E – Earth to Moon Position Vector Algorithm 

 To calculate the position vector of the Moon in the ECI frame the only needed input is the Julian date, JD. 

The following algorithm is from Vallado; 

 

 
 ̅                                                 

 ☽   
 

    
 

 ⃑☽    ☽ [

   (         )    (         )

      ̅    (         )    (         )         ̅    (         )

      ̅    (         )    (         )         ̅    (         )

]    

 

where RE is the average radius of the Earth, 6378 km. 
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Appendix F – Varying Sail Size for Various Rocket Bodies 

 

Delta II 

 
 

Atlas V 
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Falcon 9 
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Appendix G – MATLAB Code 

 If you would like to obtain a copy of the MATLAB codes used, please contact the Aerospace Engineering 

Department at kabercro@calpoly.edu.  
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