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ABSTRACT 

An Analysis Of Human Disturbance To Rocky Intertidal                                                                  

Communities Of San Luis Obispo County 

Grant Tyler Waltz 

 

The number of coastal areas open to public access in California and San Luis 

Obispo County is increasing due to the acquisition by California State Parks of land 

previously owned by private entities.  For example, California State Parks acquired 

property from the Hearst Corporation in 2005, which included 18 miles of coastline.  

California State Parks is responsible for providing public access in these newly acquired 

areas and also for maintaining the health of the natural systems found on these properties.  

Part of the California State Parks’ strategic vision maintains that they seek to consider the 

impacts of every decision they make on the next seven generations of Californians.  To 

balance the competing demand of providing access with long-term sustainability, State 

Parks managers require sound scientific data to evaluate the impacts of human access to 

the ecosystems they manage. 

One ecosystem susceptible to human access in these new State Park areas and in 

other areas throughout the state is the rocky intertidal (e.g. Beauchamp and Gowing 1982, 

Ghazanshahi et al. 1983, Hockey and Bosman 1986, Povey and Keough 1991, Addessi 

1994, Fletcher and Frid 1996, Brown and Taylor 1999, Murray et al. 1999, Van De 

Werfhorst and Pearse 2007).  This thesis represents a collaborative effort between State 

Parks Managers scientists at California Polytechnic State University San Luis Obispo, 

and scientists at Tenera Environmental Inc. to provide sound scientific data on the 
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impacts of visitors to rocky intertidal biological communities in San Luis Obispo County.  

A three-pronged approach was used to assess the effect of visitors to rocky intertidal 

communities: 1) an observational study to quantify visitor densities in publicly accessible 

rocky intertidal communities, 2) an experimental manipulation of visitor density to rocky 

intertidal communities based on the visitor densities observed in part 1 and used to 

identify organisms susceptible to foot traffic (access-indicator taxa), and 3) an 

observational study of publicly accessible rocky intertidal sites exposed to levels of foot 

traffic shown to cause declines in access-indicator taxa from part 2.  I was involved with 

all three portions of the study and my thesis is focused on presenting and discussing parts 

1 and 3 in detail. 

Visitor counts and the observational access-indicator taxa study (parts 1 and 3) 

were conducted in Montaña de Oro State Park (MDO) in San Luis Obispo County from 

2007-2009.  There was abundant accessible rocky intertidal coastline in the park.  Three 

popular rocky intertidal sites were chosen within the park to conduct visitor counts.  

Visitors were quantified from fixed locations on the bluff above each of the three 

observation sites on sixteen occasions during the course of three years.  These counts 

were used to estimate the annual number of visitors to each site.  The area of each 

intertidal observation site was also calculated and with the annual number of visitors, was 

used to calculate the annual density of visitors to the rocky intertidal at each site.  This 

represents a novel approach to quantifying visitor numbers to rocky intertidal 

communities.  Additionally, I examined whether there was a relationship between the 

number of cars entering the park and the density of rocky intertidal visitors or between 

the number of cars parked at each site and the density of rocky intertidal visitors.  
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The annual density of visitors at one of the observation sites in MDO, Hazard 

Reef, was shown to be approximately equal to the moderate treatment level from the 

experimental study (part 2).  This moderate level of visitor density was shown to 

significantly reduce the abundance of five rocky intertidal taxa: rockweed (Silvetia 

compressa, Hesperophycus californicus, and Fucus gardneri), Endocladia muricata, 

Mastocarpus papillatus, limpets, and chitons.  To assess whether long-term exposure to 

foot traffic could impact the abundance of access-indicator taxa in MDO, the abundance 

of these taxa was sampled at Hazard Reef and compared to the abundance of the same 

taxa at two adjacent sites with much lower annual densities of visitors.  A stratified 

random sampling design was used to assess the abundance of the five access-indicator 

taxa found in the mid-intertidal zone at these three sites in the spring of 2009.   

My work demonstrated that visitor densities and patterns of use were variable 

among the three accessed intertidal sites in MDO. Annual visitor numbers to the rocky 

intertidal for the three observation sites within MDO were between 3,000-5,000 people.  

There was no relationship between the number of cars entering the park and the annual 

density of visitors to the rocky intertidal.  The number of parked cars was significantly 

related to visitor density at one study site suggesting that under specific circumstances, 

controlling parking lot size may be a viable approach to managing impacts to intertidal 

areas.  Significant differences in limpet density (60 per m2) were detected in a moderately 

accessed intertidal site relative to adjacent and less visited sites.  The abundance of 

combined algae and limpets were lower at the moderate use site when the lower use sites 

were compared together against it.  Patterns of rocky intertidal habitat use and the 

estimated annual visitor density suggest that some areas in San Luis Obispo County may 
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be exposed to damaging levels of visitors.  The current study identified that the 

abundance of one out of five experimentally identified access-indicator taxa (Rockweed, 

Mastocarpus papillatus, Endocladia muricata, Limpets, and Chitons) had been 

significantly reduced at a popular rocky intertidal site, relative to adjacent and less visited 

sites.  
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GENERAL INTRODUCTION 
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Introduction 

 

The rocky intertidal is a relatively easily accessible marine environment with a 

diverse community structure including many species of plants, animals, and algae.  These 

communities have been accessed and used by humans for a variety of purposes including 

food, bait for fishing, sightseeing, and to collect organisms for aquaria (Hockey and 

Bosman 1986, Keough et al. 1993, Addessi 1994, Branch and Moreno 1994, Siegfried et 

al. 1994, Griffiths and Branch 1997, Lindberg et al. 1998, Castilla 1999, Crowe et al. 

2000).  Passive (not manipulating organisms, sight-seeing, photography, litter, and 

habituation behavior) and active (e.g., collecting or manipulating organisms) human 

disturbance has been shown to affect many natural systems (e.g., Burden and Randerson 

1972, Boyle and Samson 1985, Hockey and Bosman 1986, Addessi 1994, Murray et al. 

1999, Germaine and Wakeling 2000, Beale and Monaghan 2004, Stallings 2009).  These 

effects include but are not limited to: alterations to bird activity (e.g., Beale and 

Monaghan 2004), terrestrial animal distribution (e.g., Boyle and Samson 1985), plant 

cover (e.g., Burden and Randerson 1972), and sessile rocky intertidal organism 

abundances (e.g., Hockey and Bosman 1986, Addessi 1994, Murray et al. 1999).  The 

documented effects of passive and active human disturbance to rocky intertidal 

communities may increase as population size increases and as people move toward 

coastal areas (Turner et al. 1996, Department of Economic and Social Affairs Population 

Division 2000).  It is thus critical that there is a better understanding of how human 

visitation impacts ecological communities of coastal areas. 
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The rocky intertidal has functioned as a model community to study ecological 

interactions and processes such as predator/prey relationships (e.g., Paine 1969, Menge et 

al. 1994, Navarrete and Menge 1996, Navarrete et al. 2000, Robles et al. 2001), 

community structure (e.g., Paine 1969, Menge et al. 1997, Navarrete and Berlow 2006, 

Martins et al. 2008), keystone species (e.g., Paine 1969, Menge et al. 1994, Navarrete and 

Menge 1996, Salomon et al. 2006), habitat type (e.g., Sebens 1983, Hunt and Scheibling 

2001, Okuda et al. 2010), global climate change (e.g., Sagarin et al. 1999, Galbraith et al. 

2002, Smith et al. 2006, Firth et al. 2009), pollution (e.g., Gappa et al. 1990, Newey and 

Seed 1995, Medina et al. 2005, Atalah and Crowe 2012), the intermediate disturbance 

hypothesis (e.g., Dial and Roughgarden 1998, McClintock et al. 2007, Pfaff et al. 2010), 

and biological zonation (e.g., Lubchenco 1980, Johnson and Ledesma-Vasquez 1999, 

Boaventura et al. 2002).   In addition to understanding basic ecological principles such as 

those cited above, it has also served as a model for studying how human disturbance can 

alter the structure and function of ecological communities through their actions (e.g., 

Addessi 1994, Keough and Quinn 1998, Lindberg et al. 1998, Crowe et al. 2000, 

Whitaker et al. 2010, Huff 2011). 

Some forms of human disturbance previously examined include collecting and 

handling of organisms, impacts of pollution, and visitation (i.e., foot traffic) (e.g., 

Beauchamp and Gowing 1982, Ghazanshahi et al. 1983, Hockey and Bosman 1986, 

Povey and Keough 1991, Addessi 1994, Fletcher and Frid 1996, Brown and Taylor 1999, 

Murray et al. 1999, Sagarin et al. 2007, Van De Werfhorst and Pearse 2007, Atalah and 

Crowe 2012).  My thesis focused on elucidating the effects of public access and human 

visitation to rocky intertidal communities.  My work particularly focused on examining 
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the current impact of access to rocky intertidal communities and providing resource 

managers with information on the effects from current levels of visitation and the 

potential impacts of increased access. 

Prior work examining the effects of foot traffic on rocky intertidal communities 

has shown effects such as reductions in algal and sessile invertebrate cover and loss of 

diversity (e.g., Beauchamp and Gowing 1982, Ghazanshahi et al. 1983, Povey and 

Keough 1991, Brosnan and Cumrine1994, Fletcher and Frid 1996, Murray 1998, Keough 

and Quinn 1998, Brown and Taylor 1999, Clowes and Coleman 2000, Van De Werfhorst 

and Pearse 2007, Huff 2011, and Kimura et al. in prep., Appendix 1).  Most of these 

studies were also intended to provide information on the impacts of access to guide 

management decisions about coastal resources.  Studies designed to provide information 

specifically about the effects of foot traffic have done so using both manipulative 

experimental designs and observational studies (Beauchamp and Gowing 1982, 

Ghazanshahi et al. 1983, Bally and Griffiths 1989, Underwood and Kennelly 1990, Povey 

and Keough 1991, Addessi 1994, Fletcher and Frid 1996, Brown and Taylor 1999, 

Clowes and Coleman 2000, Tenera 2003, Van De Werfhorst and Pearse 2007).  

However, to date no study incorporates the following: 1) experimental manipulations of 

foot traffic based on observations of the levels of foot traffic occurring at publicly 

accessible shores and 2) using the results of an experimental manipulation to identify 

areas potentially impacted by public access, specifically from foot traffic.   

This study was divided into three parts, two of which I designed and conducted 

for my thesis:1) surveys to estimate the levels of visitor use at publicly accessible shores, 

which were then used to guide foot traffic levels applied in a field experiment; 2) an 
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experimental field study to determine effects from varying treatment levels of foot traffic 

derived from the visitor surveys done in collaboration with Tenera Environmental, Inc.; 

and 3) an observational study sampling access-indicator taxa identified in the field 

experiment in areas with varying levels of access to determine if impacts similar to the 

field experiment could be detected. The results of part two, which I helped design and 

implement, are introduced briefly below to provide perspective and background and 

covered in complete detail in Kimura et al. in preparation (hereafter cited as Appendix 1). 

 In summary, the results of the visitor observations discussed in Chapter One were 

used to set experimental visitor levels used in the field experiment (Appendix 1).  The 

results of the field experiment identified taxa affected by foot traffic (i.e., “access-

indicators”), which were then used to assess the effects of long-term public access to 

rocky shores in MDO (Chapter Two).   The collective results of my work may help 

California State Parks manage the resources of rocky intertidal shores in a way that 

allows for access and sustainability of the resources for generations to come. 

 

Summary of the Experimental Field Study (Appendix 1) 

 The effect of non-consumptive human activities on algae and sessile and mobile 

invertebrates in rocky intertidal communities was examined empirically by conducting a 

field experiment using a Before-After-Control-Impact (BACI) study design.  The 

experiment was designed to elucidate damaging visitor levels and identify taxa affected 

by public access (“access-indicators”).  This was achieved by simulating annual visitor 

levels comparable to those occurring at publicly accessible rocky intertidal communities.  

The visitor treatment levels were such that a pre-determined density of visitors was 
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applied to fixed plots and the visitor treatments (Impact) were designed such that 

‘visitors’ were behaving in a more realistic manner than what has been done in previous 

studies.  This experimental approach incorporating a BACI design, utilizing visitor 

counts from public areas to set treatment levels, and applying visitor treatments in a 

manner that more accurately simulates foot traffic represents a novel and more 

comprehensive approach to assessing impacts from visitors to rocky intertidal 

communities. 

  A study site was chosen on Pacific Gas and Electric property in San Luis Obispo 

County, Ca.  Pacific Gas and Electric operated the Diablo Canyon Power Plant (DCPP), 

and managed 12,000 acres of adjacent coastal property on the central California coast.  

Much of the rocky coastline was closed to public access, which was an ideal situation to 

conduct a controlled experiment of visitor impacts because there was no background 

visitation occurring in the rocky intertidal community.  Experimental plots were located 

in the mid-intertidal community, characterized by dense stands of brown algae known as 

rockweed (Silvetia compressa, Fucus gardneri, and Hesperophycus califonicus). Plots 

were 4 m x 4 m square.  Sixteen test plots were established and the abundance of algae, 

sessile invertebrates, and mobile invertebrates were visually quantified for one year 

before the onset of experimental visitor applications (i.e., the impact). 

Following one year of monthly observation, three treatment levels of visitor 

densities were applied to test plots based on the densities recorded in my visitor surveys 

in an adjacent publicly accessible area (Chapter One).  The abundance of algae and 

sessile and mobile invertebrates continued to be sampled monthly during the 10 visitor 

applications spread out over eight months.  The difference in organismal abundance was 



7 
 

compared between the time periods before and after treatments were applied, and among 

the control plots and three intensities of visitor access. 

The following five taxa showed significant reductions in abundance due to 

simulated public access in the experimental plots: 

1. Rockweed: < 10% (Silvetia compressa, Hesperophycus californicus, Fucus 

gardneri) 

2. Mastocarpus papilllatus: < 10% 

3. Endocladia muricata: < 10% 

4. Limpets (Lottidae): ~25 individual m-2 

5. Chitons (Polyplacophora): ~ 2 individuals m-2 

The abundances of these taxa showed a gradient in the levels of change among the three 

treatments, with the greatest reductions in abundance occurring in the plots with the 

highest visitor density.  The moderate experimental visitor density was comparable to 

densities I observed at frequently accessed public shores in MDO (Chapter One), 

indicating that reductions in access-indicator taxa may also be occurring at publicly 

accessible shores in MDO, which I tested by conducting surveys of a commonly accessed 

intertidal area in MDO (Chapter Two). 
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CHAPTER ONE 

QUANTIFYING LEVELS AND PATTERNS OF VISITOR USE IN ROCKY 

INTERTIDAL COMMUNITIES 
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Introduction 

Active and/or passive human disturbance can result in changes in community 

structure and organismal abundance (e.g., Beauchamp and Gowing 1982, Ghazanshahi et 

al. 1983, Hockey and Bosman 1986, Povey and Keough 1991, Addessi 1994, Fletcher 

and Frid 1996, Brown and Taylor 1999, Murray et al. 1999, Van De Werfhorst and 

Pearse 2007, Smith et. al 2008).  For resource agencies to sustainably manage publicly 

accessible rocky shores and establish appropriate management actions, the threshold level 

of visitors leading to significant impacts needs to be determined.  Although previous 

research aimed to assist with management decisions has shown impacts to intertidal 

communities, I was not able to locate and review any studies which have the critical 

information needed to make use of the data in a management context.  Specifically, 

previous studies do not provide a means to correlate the observed impacts, either from 

experimental or observational field studies, to levels of access at public shores.  One of 

the problems is the absence of a metric for measuring the level of ‘human use’ in 

intertidal studies that relates directly into practical management policy.  Thus, managers 

are left knowing that there are impacts, but they have no way to relate human use metrics 

from intertidal studies to metrics used to manage access to public shores.  This study aims 

to remedy that situation by providing estimates of visitor use to publicly accessible rocky 

intertidal communities.  

In addition to providing an annual visitor use estimate to popular rocky intertidal 

communities in Montaña de Oro State Park (MDO) based on visitor density, visitor use 

values were used to set treatment levels in a controlled study examining the impact of 

visitor access on the rocky intertidal (Appendix 1).  To derive estimates, I made visitor 
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counts at three commonly accessed sites in one of the most visited state parks in San Luis 

Obispo (SLO) County, (MDO).  The measured counts were used to calculate the density 

of visitors, which was then used to set the experimental visitor levels used in the impact 

experiment. 

Visitor estimates have been made in rocky intertidal communities for both 

experimental and observational studies.  Past experimental studies have estimated relative 

levels of use (Beauchamp and Gowing 1982) and footstep density (Povey and Keough 

1991, Fletcher and Frid 1996, Brown and Taylor 1999) to justify applied treatments of 

experimental visitor levels.  Observational studies have estimated relative levels of use 

(Ghazanshahi et al. 1983, Addessi 1994, Clowes and Coleman 2000, Tenera 2003, Van 

De Werfhorst and Pearse 2007), footstep density (Bally and Griffiths 1989), the annual 

number of visitors to a location (Underwood and Kennelly 1990, Tenera 2003), or the 

density of visitors (people ha-1) (Clowes and Coleman 2000).  These use estimates then 

define lower use areas from higher use areas allowing for comparison of areas with 

differing levels of visitors.  None of these experimental or observational studies have 

estimated visitor density at publicly accessible shores to inform a priori the levels of 

impact that should be tested or evaluated in experimental or observational studies. 

The visitor use observations from my thesis build on previous experimental and 

observational work aimed to assist with resource use and protection decisions in rocky 

intertidal communities by providing a potentially more useful metric to estimate human 

impacts and set sustainable use levels.  The metric I used to quantify human use in 

intertidal communities was visitor density (people m-2 yr-1).  Visitor density as defined 

here includes the effects from both active and passive behavior as well as the effects from 
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foot traffic (trampling).  This metric provides a more realistic and, more importantly, a 

more useful estimate of the effects from people visiting intertidal communities for 

management use.   

Simply knowing the annual densities of people that visit particular sites and the 

actual impacts to the visited areas is not necessarily enough information for managers to 

be able to keep visitation below damaging levels.  It would be helpful to resource 

managers if they had a mechanism to adjust the density of visitors at a particular site.  To 

address this issue I examined whether there was a relationship between the density of 

visitors to these rocky intertidal areas and either the numbers of cars entering a state park 

or parked in lots near areas with rocky intertidal habitat.  It seemed intuitive that more 

cars entering a park or parked in a lot near rocky intertidal habitat would correlate to 

higher densities of visitors in the rocky intertidal.  I wanted to know if this assumption 

was valid and statistically significant for popular rocky intertidal areas in MDO.  In doing 

so I aimed to discuss whether pursuing either restrictions on the total number of cars 

entering a park or limiting parking lot size would be potential methods to limit the effects 

of human access.  A significant relationship between car totals and intertidal visitor 

density would indicate that State Parks managers may be able to predict and control 

damage to intertidal communities by regulating visitor densities through daily car limits 

to the park or by limiting parking availability adjacent to popular rocky intertidal areas.  

Taken together, the information from my thesis and the collaborative experiment with 

Tenera Environmental Inc. will provide a more concise assessment of visitor levels and 

impacts to rocky intertidal communities than previous work.  This should enable resource 

managers to actively manage the impacts to these communities due to human access.   
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Methods 

Study Site 

MDO is located in San Luis Obispo County (Fig. 1.1).  The park has a variety of 

activities, facilities, and habitats which attract approximately 700,000 visitors annually 

(California State Parks 2008).  There is extensive rocky shore habitat along the 

approximate seven miles of shoreline in MDO.  Several shoreline areas with rocky 

intertidal habitat within the park are well known to the local and visiting public and have 

relatively well defined trails providing access. Visitor observations were recorded at three 

commonly accessed sites within MDO: Hazard Reef, Spooner’s Cove, and Corallina 

Cove (Fig. 1.1).  Observation sites were chosen based on the presence of rocky intertidal 

habitat and information from park managers that identified these sites as a focus for 

visitors interested in intertidal communities. 

Individual site descriptions as follows: 

Hazard Reef (Lat. 35.289  Long. -120.883 GCS North American Datum 1983)   

Hazard Reef is the northernmost of the three sites.  The parking consists of dirt pull-outs 

adjacent to the road.  A well-worn trail winding half a kilometer through Hazard Canyon 

delivers visitors from the parking area to the shore. There is no ocean view of the reef 

from the parking area.  The shore at Hazard Reef is bordered to the north by a large 

stretch of sand beach and is the northernmost rocky bench in the park.  Extending south 

from Hazard Reef by about 1 km is a large stretch of rocky bench.  Hazard Reef has a 

popular surf break and is also popular with school groups.  The sandy area at Hazard 

Reef is the smallest of the three observation sites, and there are no facilities, fire pits, or 

picnic tables. 
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Spooner’s Cove (Lat. 35.274   Long. -120.888 GCS North American Datum 1983)  

Spooner’s Cove is the middle site, roughly halfway between the northern entrance of the 

park and the border with private property owned by Pacific Gas & Electric Co. that is 

part of the Diablo Canyon Power Plant property.  There is a large, well-defined dirt 

parking lot at Spooner’s Cove adjacent to Pecho Road.  The site is in full view from 

Pecho Road as motorists approach from either the north or south.  Spooner’s Cove is a 

large sandy cove with rocky intertidal areas on the northern and southern ends of the 

cove.  There is also a rock bench (3-5 m wide), which is frequently accessed by visitors 

near the outflow of a perennial creek at the northern end of the Cove.  There are 

restrooms and picnic benches present at Spooner’s Cove. 

Corallina Cove (Lat. 35.269 Long. -120.895 GCS North American Datum 1983)  

Corallina Cove is the southernmost observation site with parking provided by dirt pull 

outs adjacent to Pecho Road.  Corallina Cove is accessed after walking over half a 

kilometer along a bluff trail then following a divergence that leads to the beach at 

Corallina Cove.  The Cove is not visible from Pecho Road.  Corallina Cove has a sand 

beach larger than Hazard Reef but smaller than the beach zone at Spooner’s Cove (~ 125 

m long oriented north to south).  There are large rocky intertidal platforms extending out 

to sea perpendicular to the shore on the northern and southern borders of the cove.  

Corallina Cove is popular with educational groups and had one sign discussing tide pool 

etiquette at the top of the bluff where the access trail diverges from the main bluff trail.  

There are no facilities, fire pits, or picnic benches. 

 

Visitor Observations 
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Visitor observations were made consecutively at each site on the same day.  Day 

types observed included weekdays, weekends, holidays, and non-holidays throughout the 

calendar year in an attempt to encompass the range of visitor levels which may be 

influenced by work or school breaks (holidays), weekends, or weekdays.  Sample days 

were opportunistically chosen and were generally days with tides low enough to expose 

the rockweed community.  Also recorded were the weather conditions (sky, temperature, 

and wind speed) and number of cars in the parking areas for each site at the start and 

finish of the observation period.  Sites were sampled 16 days during 2007-2009 .  

Observation times primarily occurred around the low tide for that day, ideally occurring 

for a period starting one hour before low tide and continuing for an hour after low tide.  

Observations were made at each site for one hour from a location with a full view of the 

site.  Individual site observation periods (1 hour) were divided into 10-minute segments.  

A visitor count was recorded at the start of each 10-minute segment.  Visitors were 

categorized based on their vertical location (relative to sea level) on the shore and 

substrate: Beach (sand zone), Bare Rock (rock without significant biotic coverage), and 

Covered Rock (rocky substrate with significant algal and invertebrate coverage - CR).  

Separate ‘Surfer’ and ‘Fisher’ designations were also assigned to visitors possessing 

surfing or fishing gear and/or actively participating in these respective activities.  

Activities of shore visitors were recorded as Passive (not manipulating organisms or 

substrate) or Active (manipulating organisms or substrate).  CR areas of special interest 

were delineated using landmarks, and visitors to these areas were recorded in a ‘covered 

rock known area’ category (CRKA).  The size (m2) of CRKAs were later calculated and 

used to estimate the visitor densities in these areas.  
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Area Estimates 

Rocky intertidal areas with algal cover (CRKA) were estimated for each of the 

three observation sites.  The total are of each site was estimated by walking the perimeter 

of each CRKA with a hand-held GPS when the tide was +0.61 m mean lower low water 

(MLLW), the same approximate tide level of the upper mid-intertidal community 

examined in the experimental field study (Appendix 1).  ESRI ArcGis software was used 

to plot these GPS points (decimal degrees) on NOAA chart 18703 (Morro Bay).  The 

points were connected in the order recorded to construct a polygon and to calculate the 

area of each polygon.  

 

Estimate of Available Tides 

The total number of hours the rocky intertidal community was exposed annually 

was calculated by totaling the number of hours the tide was less than or equal to +0.61 m 

MLLW.  Total tide hours per year were calculated based on the number of days with a 

tide less than or equal to +0.61 m MLLW between 9 am and 5 pm during the time of year 

not on daylight savings or between 9 am and 6 pm for days on daylight savings.  Each 

tide-day matching the above criteria was then assigned a three hour time period available 

for intertidal access.  Tide days were determined using the 2009 NOAA tide predictions 

for Port San Luis (Station ID 9412110, NOAA 2009), and were measured relative to 

mean lower low water (MLLW). The total number of available tide-days meeting these 

criteria was 201. 
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Annual Covered Rock Visitor Estimates 

The total annual CR zone attendance was estimated using two methods.  Both 

methods utilized the average hourly covered rock zone visitation rates calculated from the 

visitor observations.  The first method multiplied the hourly CR zone visitation rate by 

the estimated annual exposure hours (603 hrs.) for each of the three observation sites.  

The second method utilized the percentage of daily visitors in the CR relative to the 

MDO daily park visitor totals.  The percentage was calculated for each of the sixteen 

observation days and the daily percentage was multiplied by the annual estimated number 

of visitors to MDO in 2007/2008 (652,943).  

 

Density of Covered Rock Visitor Use 

Annual densities of use at Hazard Reef, Spooner’s Cove, and Corallina Cove were 

determined for the CRKA by multiplying the average hourly number of visitors in these 

areas by three hours (assumed tidal exposure hours per day) and by the number of CRKA 

exposure days per year (201).  The calculated value was then divided by the covered rock 

area exposed when the tide level equaled +0.61 m MLLW.  The units of visitor density 

were reported as people m-2 year-1. 

 

Statistical Analysis 

The association among the following set of variables for each observation site was 

examined using linear regression: hourly numbers of people at covered rocky intertidal 

areas (CR), daily number of cars entering the park, numbers of people at shoreline areas 

in the park, numbers of cars in parking lots associated with shoreline areas, and tide 
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height.  Sixteen observation days were analyzed for each site.  The average hourly visitor 

rate was calculated using each of the seven counts made during the observation hour for 

each observation day.  The significance of the above relationships was tested (α = 0.05). 

R2 values were used to determine the amount of variation observed in the response 

variables explained by the predictor variables in the model.  All analyses were done using 

MiniTab ver. 16.0 statistical software. 

 

Relationship Between Hazard Reef Visitor Density and Parking Lot Car Totals    

To address whether controlling parking lots size may be an effective means to 

control impacts to rocky intertidal communities from visitor access, I further examined 

the association between visitors at Hazard Reef and the number of cars parked in the 

parking area at Hazard Reef.  To do this analysis, annual visitor density was calculated 

from the hourly rate of CRKA visitation observed at Hazard Reef and using visitor counts 

made in the CRKA.  However, the CRKA was not established until the third visitor 

observation event, so the regression between annual visitor density and cars parked in the 

lot at Hazard Reef was based on 14 visitor observations, instead of the 16 used to 

calculate hourly CR visitors.  Additionally, there was an outlier visitor count observed 

when a large school group visited Hazard Reef but which did not park in the lot I used to 

make my parked car estimates.  I performed a second regression with this outlier 

removed.  Annual CRKA visitor density data were log base 10 transformed. The 

significance of the relationship between parking lot car totals and annual CRKA visitor 

density was tested (α = 0.05).  R2 values were used to determine the amount of variation 

observed in the response variables explained by the predictor variables in the model. 



18 
 

Results 

Annual Estimates of Covered Rock Visitors to Montaña de Oro 

An estimated 4,679 (SE± 1,337) people annually visit the CR at three popular 

rocky intertidal sites in MDO based on a calculation multiplying the hourly CR visitor 

rate by the annual CR exposure hours.  Hazard Reef experienced the greatest estimated 

number of visitors (2,213 SE± 1,356) followed by Corallina Cove (1,520 SE± 301) and 

Spooner’s Cove (937 SE± 285) (Fig. 1.2).  An estimated (3,279 SE± 813) people visited 

the CR at these three rocky intertidal areas in MDO using a calculation multiplying the 

daily percentage of CR visitors by the MDO annual visitor total. 

 

Visitor Use Estimates by Site 

Spooner’s Cove had the greatest number of visitors in the beach zone (18.8 people 

hr-1, SE ± 3.9) and the fewest visitors to the CR zone (1.7 people hr-1, SE ± 0.5).  In 

contrast, Hazard Reef had the fewest beach visitors (1.4 people hr-1, SE ± 0.6) but the 

greatest number of visitors to the CR zone (4.2 people hr-1, SE ± 2.5).  Corallina Cove 

had the least difference in hourly visitation rates between the beach and CR zones (4 and 

2.6 people hr-1 respectively, SE ± 0.8 and 0.6) (Fig. 1.3).  No surfers or fishers were 

observed at Corallina Cove, while both Spooner’s Cove and Hazard Reef were utilized by 

surfers and fishers (Fig.1.3). 

 

Determination of Covered Rock Area 

Hazard Reef had the largest observed CRKA of the three observation sites (1,960 

m2) and Spooner’s Cove had the smallest (462 m2).  The CRKA at Corallina Cove was 

1152 m2. 
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Annual Density of CR Use 

In the CR zone, Corallina Cove had the lowest annual density of visitor use (1.00 

people m-2 yr-1), followed by Hazard Reef (1.21 people m-2 yr-1).  Spooner’s Cove had the  

highest annual visitor density, (1.90 people m-2 yr-1 Fig. 1.4), due to its small area.   

 

Annual Density of CRKA Use 

In the CRKA, Spooner’s Cove had the lowest density of visitors (1.5 people m-2 

yr-1), Corallina Cove had 2.0 people m-2 yr-1, and Hazard Reef had the highest at 3.9 

people m-2 yr-1 (Fig. 1.5). 

 
Relationship between Daily Number of Cars Entering Montaña de Oro and Shore Visitors 

A significant relationship was not detected between daily car totals and number of 

shore visitors at any of the three sites: Hazard Reef (p = 0.617, n = 16); Spooner’s Cove 

(p = 0.277, n = 16); and Corallina Cove (p = 0.266, n = 16) (Fig. 1.6).  

 

Relationship between Daily Number of Cars Entering MDO and Hourly CR Visitors 

A significant relationship was not detected between daily car totals and the 

number of visitors to the CR zone at any of the three sites (Hazard Reef p = 0.901, n = 

16; Spooner’s Cove p = 0.488, n = 16; and Corallina Cove p = 0.881, n = 16) (Fig. 1.7).  

 

Cars in Parking Areas as Predictors for Number of Total Shore Visitors 
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A significant relationship between parking lot car totals and the hourly number of 

shore visitors was detected at all three sites: Hazard Reef (p = 0.002, n = 16); Spooner’s 

Cove (p = 0.000, n = 16); and Corallina Cove (p = 0.015, n = 16).  The number of cars 

parked at each site was positively correlated with the hourly number of shore visitors at 

all three sites (Fig. 1.8).  The number of cars parked at each observation site explained 

the following amount of variation at each site: Hazard Reef (R2 = 0.4935), Spooner’s 

Cove (R2 = 0.8800) and Corallina Cove (R2 = 0.3518).  At Hazard Reef and Corallina 

Cove the number of cars parked at each site explained more variation in the total number 

of shore visitors than did the daily number of cars entering MDO. 

 

Cars in Parking Areas as Predictors for the Number of CR Visitors 

A significant relationship was not detected between the number of cars parked at 

each site and the hourly number of CR visitors at: Hazard Reef (p = 0.081, n = 16); 

Spooner’s Cove (p = 0.108, n = 16); or Corallina Cove (p = 0.184, n = 16) (Fig. 1.9).  

 

The Relationship between the Number of Cars Parked at Hazard Reef and CRKA 

Visitors 

A significant relationship was detected between the annual density of CRKA 

visitors and the daily number of cars parked at Hazard Reef ( p = 0.003, n= 14; Fig 1.10).  

The number of cars parked at Hazard Reef explained the majority of the variation 

observed in the annual CRKA visitor density observations (R2 = 0.526). Parking lots built 

to the size indicated on the x-axis were estimated to receive the corresponding annual 

visitor density if that number of cars parked every available three-hour tide day for one 



21 
 

year.  These data contained an outlier, which was a large school group that was recorded 

in the CRKA but which did not park in the parking area for Hazard Reef.  With the 

outlier removed there was still a significant relationship between the number of parked 

cars and the density of CRKA visitors ( p = 0.03, n = 13; Fig 1.11).  The number of cars 

parked at Hazard Reef explained some of the variation observed in the annual CRKA 

visitor density observations when the outlier was dropped from the analysis (R2 = 0.34).   

 

Relationship between Tide Height and Covered Rock Visitors 

A significant relationship was detected between tide height and the number of 

hourly CR visitors at Spooner’s Cove (p = 0.026, n = 16), but not  at Hazard Reef (p = 

0.394, n = 16) or Corallina Cove (p = 0.208, n = 16) (Fig. 1.12).  Some variation in 

hourly number of CR visitors at Spooner’s Cove was explained by tide height (R2 = 

0.3058). 

 

 

Discussion 

The study in this chapter was designed to provide visitor estimates in rocky 

intertidal communities to guide experimental treatment levels and to provide resource 

managers an estimate of the distribution and levels of visitation to three popular rocky 

intertidal sites in MDO.  Three issues were addressed in this chapter and contributed to a 

larger research effort done in cooperation with Tenera Environmental Inc.:  

1) estimates of annual rocky intertidal visitor use 
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2) estimates of rocky intertidal visitor density and protocol to estimate visitor density 

and 

3) and assessing whether parking lot car counts were related to rocky intertidal 

visitor density. 

There are very few examples of visitor use studies which have been closely integrated 

with the design of experimental field studies of rocky intertidal biological communities 

where the results are used to guide treatment levels in the experiment, and none have 

used the metric of annual visitor density (Bally and Griffiths 1989, Povey and Keough 

1991 Brown and Taylor 1999, Huff 2011).  There are not any published studies 

calculating annual visitor densities, per m2, from repeated timed visitor counts.  The 

visitor use estimates presented here were incorporated into a novel integrative study 

examining visitor impacts to rocky intertidal and other shoreline biological communities.      

Annual visitor density estimates at three commonly accessed rocky intertidal 

communities were made (Figs. 1.4 and 1.5) and used to guide visitor densities applied in 

a manipulative field experiment (Appendix 1).  The metric developed from the visitor 

surveys related directly to the number of visitors to an area and may be more useful to 

resource managers than previous metrics based on the density of footsteps.  Managers are 

likely to find it easier to control impacts from foot traffic by regulating visitor density, 

and therefore more likely to incorporate results from a study of visitor density effects, 

because the metric is directly related to the number of people visiting an area.  Visitor 

density estimates were made by obtaining: visitation rates based on timed visitor counts, 

the area of the habitat exposed at the desired tide level, and determining the annual hours 

of rocky intertidal exposure.  In contrast, it may be more difficult to manage the impacts 
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of foot traffic using information from studies incorporating foot step density as the 

experimental metric (Povey and Keough 1991, Keough and Quinn 1998, Ferreira and 

Rosso 2009, Huff 2011), for which a scale of footsteps per person would have to be 

calculated and, which to date, has not been calculated.  For this reason, the visitor density 

metric and calculation methods presented here may be more valuable to resource 

managers addressing impacts to rocky intertidal communities than metrics used in 

previous studies.  Additionally, the entire study may be more relevant to management 

decisions because the experimental applications were rigorously justified using timed 

visitor counts at rocky intertidal communities of defined area.   

The study of visitor impacts, using the density of people as the metric of impact, 

may also be applicable in systems outside the rocky intertidal.  For example, studies 

examining the effects of SCUBA diving on underwater communities often quantified the 

number of fin or appendage contacts with the substrate and measured whether there was a 

response (e.g., a reduction in organism density, an increase in damaged individuals, or 

fewer fish) (e.g., Barker and Roberts 2004, Worachananant et al. 2008, Di Franco et al. 

2009, Poonian et al. 2010).  A more applicable metric, from a resource management 

context, may be one less focused on these relatively specific diver contact incidents.  

Instead, SCUBA diving impact studies could focus on the effect from a predetermined 

density of divers occurring at a site.  Examining the effects from divers on a per area or 

volume basis would capture most or all of the non-extractive events that occur when 

divers visit an area (e.g., contacting the reef, disturbing fish) and allow for a discussion of 

the impacts of diving based on a metric resource managers are familiar with, the number 

of divers at a given site. 
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As a starting point to estimate annual visitor density to popular rocky intertidal 

biological communities, annual visitor numbers were estimated at the three study sites in 

MDO.  Two methods, based on the multiplying the hourly number of CR visitors by 

either the annual number of rocky intertidal exposure hours or by the percentage of daily 

CR visitors to daily MDO visitors, were used to estimate the annual number of CR 

visitors. The two annual estimates of CR visitor levels were within 1400 people per year 

of each other.  The lower estimate multiplying the percentage of daily CR visitors to daily 

MDO visitors was 70% (~3,300 visitors per year) of the estimate multiplying the hourly 

number of CR visitors by the annual number of rocky intertidal exposure hours (~4,700 

people per year).   Given the 30% difference between estimation methods, further 

examination of these two methods is necessary to determine which is more accurate.  

However, the results indicated that the three popular sites in MDO State Park received 

between 3,000-5,000 visitors per year (Fig. 1.2).  These annual visitor estimates suggest 

that popular rocky intertidal communities in SLO County were less heavily visited than 

popular areas in northern and southern California where hundreds to more than one 

thousand visitors have been observed on a single day (Addessi 1994, Clowes and 

Coleman 2000, Murray 1997, Tenera 2003, Tenera 2004, Van de Werfhorst and Pearse 

2007, Whitaker et al. 2010). 

Visitor counts showed that the distribution and number of visitors to rocky 

intertidal areas in MDO State Park was variable over the relatively short distance among 

the three sites (Fig. 1.3).  Hazard Reef and Corallina Cove had more people in the 

covered rock (CR) zone relative to the total number of visitors to the shore, while most 

visitors to Spooner’s Cove were in the beach zone.  The total number of shore visitors 
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was much greater at Spooner’s Cove than the other two sites (Fig. 1.3).  These results 

seem counter-intuitive; sites with more shore visitors should also have more CR visitors 

(e.g., Spooner’s Cove).  However, differences among sites (e.g., physical features, 

facilities, ease of access and parking) likely contributed to the observed differences in 

visitor distribution along the shore.  Tenera (2004) suggest that rocky intertidal 

communities adjacent to sandy beaches may be exposed to higher levels of visitors than 

those without adjacent sandy beaches in northern California.  Spooner’s Cove had the 

smallest and least accessible covered rock zone, yet had a large parking area and a large 

sandy beach that were visible from the road.  It also had picnic facilities and restrooms.  

Rocky intertidal biological communities may be susceptible to damage at sites with 

similar access and facilities to Spooner’s Cove, but with a larger and more accessible 

covered rock area.  In contrast, Hazard Reef was not visible from the road, did not have 

facilities, and the majority of visitors to the site entered the covered rock zone, yet the 

overall density of visitors was arguably lower than if the site had easier access, more 

visibility, or facilities to draw visitors.  Other studies suggest that the amount of visitors 

to rocky intertidal biological communities decreases as the distance from an access point 

increases (e.g., Addessi 1994).  The visitor counts presented here indicate that there may 

be a similar trend in the total number of visitors to a site along a gradient of accessibility.  

As the ease of access, road visibility, or presence of facilities decreases visitors may be 

less inclined to explore a shoreline.  

This conclusion was consistent with the assumptions made by Smith et al. 2008 to 

subjectively grade shore use levels as either high or low by taking into consideration the 

ease of parking and ease of accessing the shore.  Resource managers should consider the 
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site characteristics and how these characteristics influence visitor activity when managing 

the rocky intertidal resources of a particular site.  Grading sites based on ease of access 

may be an effective means for resource managers to determine whether specific sites, 

with abundant rocky intertidal habitat, are susceptible to large numbers of visitors thereby 

leading to significant impacts to rocky intertidal biological communities. 

My data suggest that regulating the total number of cars entering MDO would not 

be an effective or accurate means to control the number of visitors to rocky intertidal 

habitats in MDO State Park.  A significant relationship was not detected between the 

number of cars entering MDO State Park and either the number of shore or CR visitor 

numbers (Figs. 1.6 and 1.7).  MDO State Park was host to diverse terrestrial and marine 

habitats which drew visitors for a variety of recreational purposes not necessarily linked 

to the rocky intertidal.  Visitors can participate in a variety of activities including: hiking, 

biking, riding horses, photography, camping, touring the historical visitor center, surfing, 

fishing, etc.  Based on estimates of the percentage of people annually visiting the CR 

zone, only 0.5% of the people annually entering MDO were participating in activities in 

the rocky intertidal at the three observation sites.  Such a small percentage would suggest 

that most of the people entering MDO do not visit the rocky intertidal, or at least do not 

visit the rocky intertidal at the three sites examined here.  There was also some question 

as to how accurate the State Parks daily car counts were in relation to the shore visitor 

counts.  Car counts were based on a daily total obtained from a counter placed on the 

road that cars drive over as they enter the park.  These data did not record the time that 

each count was made, therefore the visitor counts could not be related to the number of 

cars entering the park during the three hour observation time.  There do not appear to be 
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any published studies examining the relationship between daily car totals and either shore 

or CR visitor numbers.  Car count data including the time which cars are entering a park 

may be more effective at elucidating any relationship between daily car totals and the 

number of shore or CR visitors.  

The number of cars parked at the observation sites was more strongly related to 

the number of shore and CR visitors than were the MDO daily car totals. This result 

indicates that people may be parking at sites with rocky intertidal habitat, but not 

necessarily visiting the CR zone.   Shore visitor levels were significantly related to the 

number of cars parked at each site.  However, the relationships between cars parked at 

each site and the number of CR visitors were not significant at any of the sites.  Other 

observational studies of visitor distribution along rocky shores around Monterey, CA. 

showed that ~80% of visitors do not enter the CR zone (Clowes and Coleman 2000, 

Tenera 2003).   

Further examination of the relationship between the number of cars parked at 

Hazard Reef and the CRKA visitor density at Hazard Reef suggest that regulating 

parking lot size may be an effective means for resource managers to control visitor 

density to rocky intertidal communities.  There was a significant relationship detected 

between the number of cars parked at Hazard Reef and the density of people in the 

CRKA zone (Fig. 1.10).  Though none of the relationships between parking lot car counts 

and CR visitor density were significant, the relationship was the strongest at Hazard Reef 

(Fig. 1.9a).  For this reason, the relationship between parking lot car counts and CRKA 

(covered rock known area) was further analyzed at that site.  Visitor count data from this 

analysis was based on two fewer surveys than for the CR analysis because the CRKA 
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was not delineated during the first two observations.  The observation area for CRKA 

visitor counts was also smaller than for the CR visitor counts, possibly contributing to the 

significant relationship observed between parking area car totals and CRKA visitor 

density.  The smaller CRKA observation area was closer to the Hazard Reef parking area.  

Visitors parking in the Hazard Reef lot may have been more likely to walk to the closer 

CRKA than to the CR farther from the observed parking area.  The relationship between 

the number of cars parked at Hazard Reef and the density of CRKA visitors contained an 

outlier which was a large school group that did not utilize the observed parking area.  

With this data point removed the relationship between the number of parked cars and 

CRKA visitors was still significant (Fig. 1.11).  This indicates both a strength and 

weakness of the car counts, from this study, in lots near rocky intertidal biological 

communities to potentially predict the density of visitors.  The weakness in these 

observations was that the observed parking areas did not include all areas where cars 

could be parked for people to access the observed CRKA zones.  This weakness could be 

addressed by using a more complete sampling design that included all possible parking 

areas.  In addition, visitors to CR zones could be interviewed to determine exactly where 

they parked to access the rocky intertidal.  The strength, as mentioned above, is that 

despite the incomplete sampling of parking areas, there was still a significant relationship 

between the number of cars parked at one of the major parking areas for Hazard Reef and 

the density of CRKA visitors.  These findings were similar to those from a study 

assessing the recreational usage of river shoreline which found a relationship between the 

number of visitors and the size of the parking area (Santiago et al. 2008).  This study also 

developed a model, incorporating among other factors the number of parking spaces, to 
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predict visitor use and suggests the number of parking spaces could be used to regulate 

the number of visitors to recreation areas along the shore of a river. 

Further experimental work manipulating parking lot size and observing CRKA 

visitor density may be able to provide a scale of expected CRKA visitor density based on 

the number of parking spaces in a lot.  Determining this scale would require detecting a 

significant relationship between the number of parked cars and the rocky intertidal visitor 

density based on experimental manipulations of parking lot size. With this scale, visitor 

density could be predicted and controlled using the number of parking spaces.  For 

example, to appropriately size a parking lot, managers should determine the area of the 

rocky intertidal they are allowing access to, calculate the ratio of the area of their reef  

relative to Hazard Reef (1,960 m2 at +0.61 m MLLW), and multiply by the target annual 

visitor density.  A more detailed hypothetical discussion of how parking lot car counts, 

CRKA visitor observations, and the results of an experimental manipulation of visitor 

densities to rocky intertidal communities could be used to manage the effects of visitor 

access to rocky intertidal communities is provided in Appendix 2.   

A statistically significant relationship between tide height and CR visitor numbers 

was only detected at Spooner’s Cove.  This result may be due to a lack of sampling on 

days with higher tides, as it was assumed no CR would be exposed when the tide rose 

above a certain level, thereby excluding access.  A significant relationship between tide 

height and CR visitor numbers might have been detected at Hazard Reef and Corallina 

Cove if more days had been sampled with higher tides, thereby excluding access to the 

CR at Hazard Reef and Corallina Cove.  However, most of the sampling occurred when 

the tide level was low enough for visitors to access the rocky intertidal habitat.  This 
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finding also indicates that at Hazard Reef and Corallina Cove, the amount of people 

visiting the rocky intertidal community was not strongly dependent on extremely low 

tides, but that people visited these areas equally when the tide was low enough to allow 

access (Fig. 1.11).  Again, site differences likely contributed to the observed relationships 

between tide height and CR visitor numbers.  The rocky intertidal habitat at Spooner’s 

Cove was more difficult to access as the tide height increased than the CR habitat at 

either Hazard Reef or Corallina Cove (pers. obs.).  Therefore, a strong correlation 

between tide height and visitor numbers would not be expected.  Tide height was 

incorporated in the calculation estimating the annual exposure hours of rocky intertidal 

habitat.  Based on the results above indicating that visitors would go to these areas when 

they were exposed and not only on the lowest tides, the tide value used to calculate 

annual exposure hours was ≤ +0.61 m MLLW. 

In summary, this study presents another metric of rocky intertidal use was 

provided which may be easier for resource managers to integrate into policy than other 

metrics, such as foot step density.  The results of these surveys indicated that regulating 

the number of cars entering MDO State Park would not be an effective means to control 

access to rocky intertidal biological communities.  A stronger relationship was detected 

between the number of cars parked near rocky intertidal communities and the annual 

number of rocky intertidal visitors. Further controlled manipulation of parking lot size 

may clarify whether parking lot size could accurately be used to predict and control 

visitor access to rocky intertidal communities.  Finally, estimates of visitor levels to 

rocky intertidal communities suggest that impacts are much less in SLO County than 

what occurs in areas of northern and southern California, but future studies should be 
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conducted to elucidate any relationships among shores with differing levels of visitor 

density and the abundance of organisms in rocky intertidal communities.  
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 Figure 1.1 Map displaying the position of the visitor use study area in a) California, b) San Luis Obispo 

County, and c) specific observation sites in Montaña de Oro State Park. 
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Figure 1.2.  Annual estimates of total covered rock (CR) attendance by site (error bars are one standard 
error of the mean).  Annual attendance was calculated by multiplying the average hourly visitor rate by the 
estimated number of hours each area is exposed to foot traffic per year (603 hours).   
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Figure 1.3.  Average hourly visitation rates (error bars represent one standard error) of visitation to 
different shore zones at three observation sites within Montaña de Oro state park.  Hourly estimates 
were the average number of visitors recorded from counts made every ten minutes over the course of an 
hour.  Sixteen observations were used to calculate average hourly visitor rates. 
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Figure 1.4.  Annual density of visitation per m2 (error bars represent one standard error) in the covered 
rock zone (CR) at three popular sites within Montaña de Oro State Park.  Density was calculated by 
multiplying the average hourly visitor rate by 603 available visitation hours per year.  That value was then 
divided by the area of the respective observation site to determine annual visitor density. 
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Figure 1.5.  The average hourly number of people visiting the covered rock known area (CRKA) (error 
bars represent one standard error).  Rates were calculated by combining the hourly average ‘covered rock 
known area passive’ and ‘covered rock known area active’ to provide a single covered rock known area 
rate.  Visitation rates were based on the average CRKA hourly rates from 16 observation days.  Note: rates 

are different than those listed in Table 1 due to restricting the calculation to only ‘covered rock 

known area’ observations. 
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Figure 1.6.  Regression analysis of the daily number of cars recorded by California State Parks staff 
entering MDO State Park and the average hourly number of shore visitors at: a) Hazard Reef,  b) Spooner’s 
Cove, and c) Corallina Cove.  Total shore visitors were quantified as all people recorded in the beach, bare, 
and covered rock zones.    
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Figure 1.7.  The relationship between the daily number of cars entering MDO State Park recorded by 
California State Parks and the hourly number of visitors to the covered rock zone at: a)  Hazard Reef, b)  
Spooner’s Cove, and c) Corallina Cove.  Each covered rock visitor rate data point represents the average 
number of visitors recorded in the covered rock zone every 10 minutes for one hour.   
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Figure 1.8.  The relationship between the daily numbers of cars parked adjacent to observation sites and 
the hourly rate of total shore visitation at: a) Hazard Reef, b) Spooner’s Cove, and c) Corallina Cove. Total 
shore visitors were quantified as all people recorded in the beach, bare, and covered rock zones.  Each total 
shore visitor rate data point represents the average number of visitors recorded in the covered rock zone 
every 10 minutes for one hour.  Car counts are the average number of cars parked at each site at the start 
and finish of the one hour observation period. 
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Figure 1.9.  The relationship between the daily numbers of cars parked adjacent to observation sites and 
the hourly number of visitors to the covered rock zone at: a) Hazard Reef, b) Spooner’s Cove, and c) 
Corallina Cove.  Each covered rock visitor rate data point represents the average number of visitors 
recorded in the covered rock zone every 10 minutes for one hour.   
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Figure 1.10.  The relationship between the average numbers of cars recorded at the start and end of each 
one-hour observation period and the annual density of covered rock visitors at Hazard Reef.  Note: figure 
represents the non-transformed values of annual CRKA visitor density, not the log transformed values used 
in the regression analysis.     
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Figure 1.11.  Relationship between the average numbers of cars recorded at the start and end of each one-
hour observation period and the annual density of covered rock visitors at Hazard Reef without the school 
group outlier.  Note: figure represents the non-transformed values of annual CRKA visitor density, not the 
log transformed values used in the regression analysis.  
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Figure 1.12.  The relationship between tide height and the hourly rate of covered rock visitors at: a) Hazard 
Reef, b) Spooner’s Cove and c) Corallina Cove.  Each covered rock visitor rate data point represents the 
average number of visitors recorded in the covered rock zone every 10 minutes for one hour. Tide height 
was based on NOAA predictions for Port San Luis. 
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CHAPTER 2 
 

ASSESSING THE ABUNDANCE OF ACCESS INDICATOR TAXA ON PUBLIC 
ROCKY SHORES IN MONTAÑA DE ORO STATE PARK 
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Introduction 

 
Human visitation to natural areas can lead to changes in behavior, abundance, and 

distribution of individual organisms as well as to changes in community structure (e.g. 

Dale and Weaver 1974, Addessi 1994, Lindberg et al. 1998, Blair 1999, Niemelä et al. 

2000, Cahill et al. 2002, Fernández-Juricic 2002, Berger 2007).  Temperate rocky 

intertidal ecosystems are subject to human disturbance, both directly and indirectly.  

Direct disturbances are impacts resulting from people visiting the intertidal, whereas  

indirect disturbances result from human activity in areas spatially removed from the 

affected intertidal community (e.g., sewage outflow, global climate change, and oil 

spills).  Direct human disturbance can generally be defined as affecting intertidal 

communities in two ways: consumptive (harvesting) and non-consumptive (e.g., foot 

traffic) activities.   

A body of literature exists examining the effects of foot traffic using both 

experimental applications (trampling) as well as observational studies comparing 

communities among areas with varying levels of visitation.  Experimental and 

observational studies have detected significant reductions in algal and invertebrate taxa 

caused by or related to foot traffic.  Affected algal taxa include: algae in the order Fucales 

(Povey and Keough 1991, Brosnan and Cumrine 1994, Fletcher and Frid 1996, Murray 

1997, Keough and Quinn 1998, Schiel and Taylor 1999, Clowes and Coleman 2000, Van 

De Werfhorst and Pearse 2007, Appendix 1), non-coralline fleshy and turf species 

(Brosnan and Cumrine 1994, Fletcher and Frid 1996, Murray 1997, Clowes and Coleman 

2000, Huff 2011, Appendix 1), and coralline species (Fletcher and Frid 1996, Murray 

1997, Keough and Quinn 1998, Brown and Taylor 1999, Schiel and Taylor 1999, Clowes 
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and Coleman 2000).  Affected invertebrate taxa include: tube forming polychaetes 

(Murray 1997), mussels and other bivalves (Brosnan and Cumrine 1994, Murray 1997, 

Brown and Taylor 1999, Van de Werfhorst and Pearse 2007), barnacles (Brosnan and 

Cumrine1994 and Murray 1997), limpets (Povey and Keough 1991, Murray 1997, 

Keough and Quinn 1998, Appendix 1) and other mollusks (Keough and Quinn 1998, 

Brown and Taylor 1999, Appendix 1).  Bare space has also been shown to increase with 

increased foot traffic (Schiel and Taylor 1999, Clowes and Coleman 2000, Van De 

Werfhorst and Pearse 2007).  In addition to impacting individual taxa, foot traffic can 

also decrease the diversity (Beauchamp and Gowing 1982) and abundance of algal and/or 

invertebrate taxa in rocky intertidal communities (Beauchamp and Gowing 1982, 

Ghazanshi 1983, Addessi 1994, Brown and Taylor 1999).   

This study focused on describing the direct impacts of foot traffic upon rocky 

intertidal communities at a location open to public access.  Instead of quantifying all or 

the majority of taxa in these communities, I restricted my sampling to five focal taxa 

previously identified as susceptible to experimental foot traffic (e.g., Povey and Keough 

1991, Brosnan and Cumrine1994, Keough and Quinn 1998, Appendix 1), which I call 

access-indicator taxa.  I quantified access-indicator taxon abundance at three rocky 

intertidal sites with various densities of foot traffic (Fig. 2.1).  The visitor density at three 

adjacent rock benches in MDO State Park was estimated using similar methods to those 

from Chapter 1, but the observation time was reduced from 60 minutes to 30 minutes.  

The most densely visited shore had an estimated annual visitor density of 1.2 people m-2 

yr-1, which was between the moderate and high experimental densities shown to affect the 
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five access-indicator taxa in Appendix 1.  The less visited shores had estimated annual 

visitor densities near zero. 

Similar observational studies on the effects of foot traffic have been conducted, 

but this study was unique in the approach and purpose. The approach relied on the results 

from a controlled field study to focus sampling on taxa previously identified as 

susceptible to impacts, and the purpose was to determine if similar levels of impacts 

could be detected in intertidal areas open to public access. Since the treatments in the 

field experiment were selected based on levels of visitor access at the same areas used for 

the observational study, I was assured that the treatment levels bracketed the levels of 

access at the observational site.   While there is always uncertainty associated with the 

results of most observational studies, the focus on already identified access-indicator taxa 

and the ability to verify results with the field experiment provided additional support that 

impacts detected in the access indicator taxa were the result of human access. Focusing 

on access-indicator taxa was also critical in providing evidence to resource managers that 

the levels of impacts detected in the field experiment were occurring in MDO.  

My sampling focused on three algal and two invertebrate access-indicator taxa, 

previously identified in Appendix 1 and other experimental and observational studies as 

being significantly impacted by visitor levels similar to those observed at MDO.  I 

expected the abundance of access-indicator taxa to be greater in areas with lower 

densities of visitors (i.e., Hazard Mid and Hazard Far).  Reductions in the abundance of 

these taxa would provide evidence that foot traffic was having a significant impact on the 

rocky intertidal communities at this location.  The sampled algal taxa were: rockweed in 

the family Fucaceae (Silvetia compressa, Fucus gardneri, and Hesperophycus 
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californicus), Endocladia muricata, and Mastocarpus papillatus.  Algae in the order 

Fucales, which includes the family Fucacea, have been identified by several studies as 

being sensitive to foot traffic (Beauchamp and Gowing 1982, Povey and Keough 1991, 

Fletcher and Frid 1996, Keough and Quinn 1998, Murray 1999, Schiel and Taylor 1999, 

Clowes and Coleman 2000, Van De Werfhorst and Pearse 2007) and also provide 

important overstory cover (Dayton 1971 and Lilley and Schiel 2006).  Endocladia 

muricata is a turfy red alga that has been implicated as important for understory 

communities (Dayton 1971).  Mastocarpus papillatus is a fleshy red alga that can provide 

both overstory or understory cover in the rocky intertidal (Dayton 1971).  In addition to 

algae, I sampled the abundance of two herbivorous mollusk groups: limpets (Lottia 

digitalis, L. gigantea, L. limatula, L. pelta, L. scabra, and Tectura scutum) and chitons 

(Lepidochitona dentiens, Lepidochitona hartwegii, Tonicella lineata, Mopalia muscosa, 

and Nuttalina californica).   

The study site was located in Montaña de Oro Sate Park (MDO), one of the most 

visited state parks in San Luis Obispo County.  One particular rocky area in the park was 

unique because it was exposed to relatively high densities of visitors and was also 

adjacent to two sites with similar swell exposure, relief, and geology (pers. obs.) that had 

fewer visitors (Fig. 2.2).  The orientation of the study site allowed for sampling along a 

defined difference of visitor density at three areas, each separated by less than 600 m of 

sandy shore.  Considering the results from Appendix 1, I hypothesized that the change in 

abundance for these taxa between Hazard Reef (high visitor density) and Hazard Mid and 

Hazard Far (low visitor density) would be similar to the change detected between control 

and treatment plots in Appendix 1.  Because the annual moderate experimental visitor 
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densities in Appendix 1 were similar to the densities observed at Hazard Reef, it seemed 

logical to assume that the reductions in algal and invertebrate abundance observed in that 

study might be comparable to reductions at a similar rocky intertidal community, but 

exposed to years of public access.  These reductions were 10-15 percent cover for Silvetia 

compressa (Fuciod algae), ~5 percent cover for Endocladia muricata, 2-3 percent cover 

for Mastocarpus papillatus, 2-6 limpets/m2, and < 1 chiton/m2 (Appendix 1). 

 

 

Methods 

Site Description 

The comparison of access-indicator taxon abundance at an area with high levels 

of visitor access to areas that have lower levels of access was conducted in MDO at 

Hazard Reef (described in Chapter 1) and two adjacent rock benches (Hazard Mid and 

Hazard Far).  Hazard Reef (Fig. 2.3) is one of the areas in MDO that receives large 

numbers of visitors due to the rocky intertidal habitat, but also due to other activities such 

as surfing and fishing.  This access path at Hazard Reef results in the area being exposed 

to higher concentrations of visitors than less known or more difficult to access rocky 

shoreline areas, such as Hazard Mid and Hazard Far.  Visitor density to the intertidal 

habitat present at Hazard Reef was estimated at 1.2 people m-2 yr-1 (Chapter 1), which fell 

between the moderate and high experimental treatment densities that were shown to 

affect the abundance of access-indicator taxa in Appendix 1. The five access-indicator 

taxa identified in Appendix 1 were found in the intertidal zone at Hazard Reef and the 

rocky habitat extending south from Hazard Reef as a nearly continuous stretch of 
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relatively flat rocky intertidal bench habitat, which was similar in geology and vertical 

relief to that of Hazard Reef.  This adjacent flat rock bench included the comparison sites 

Hazard Mid and Hazard Far.  Hazard Mid and Hazard Far are also visited by individuals 

and educational groups, though the density of visitation was lower than that of Hazard 

Reef.   

 

Visitor Observations 

Observations were made on five occasions to quantify visitors at the three survey 

sites at Hazard Reef between June and September 2009.  Observation days were 

opportunistically chosen and included weekdays and weekends.  Observations occurred 

at a time of day around the low tide.  The visitor count methodology was the same as that 

used in Chapter One, except that observations were made for 30 minutes, not 60.  The 

average hourly visitor rate was extrapolated from the 30 minute observation periods and 

used to calculate the annual visitor density using the same methodology as Chapter One.  

 

Field Sampling 

The survey transect location was determined by laying a transect tape parallel to 

shore through the middle of the ‘rockweed’ zone (Fig. 2.2a).  The rockweed zone 

(community of the upper-mid intertidal characterized by the brown algae collectively 

known as rockweed) location was defined as the rocky shore and accompanying 

organisms between the upper extent of rockweed (onshore) and the lower extent of 

rockweed (offshore) relative to vertical location on the rock bench.  The transect start 

location was at Hazard Reef (Lat. 35.28729 Long. -120.88413 GCS North American 
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Datum 1983) and terminated ~ 1 km south at Hazard Far (Lat. 35.28021 Long. -

120.88854 GCS North American Datum 1983).  GPS coordinates were recorded at 

numerous locations along the transect to later locate the transect on a georeferenced 

satellite image of the coastal habitat (Fig. 2.3).   

The survey transect was broken into 20 m sample segments (Fig. 2.2b).  These 

segments were visually sampled for the abundance of the five access-indicator taxa as 

well as the percent cover of bare rock.  The 20 m sample segments were further divided 

into 25m2 sample quadrants.  The transect tape in each sample segment was treated as an 

x-axis beginning at the zero meter mark and ending at 20 m.  A y-axis center point was 

determined by randomly picking a number between 3 and 17 using a Texas Instruments 

TI 83 graphing calculator.  Numbers were chosen between 3 and 17 to prevent 

overlapping sampling between adjoining 20 m sample segments.  One y-axis was chosen 

for each 20 m sample segment.  The 5 m perpendicular y-axis transect tape was laid at the 

number randomly chosen for each sample segment (Fig. 2.2c) and was used to define a 5 

m x 5 m quadrant (Fig. 2.2c) centered where the 5 m perpendicular transect crossed the 

20 m transect line.  Due to the variable nature of the rocky intertidal habitat, not all 20 m 

segments were sampled along the entire kilometer of the transect.  Segments were not 

sampled if they did not contain >25 m2 of continuous suitable rockweed habitat.  

Unsuitable habitat included large, deep channels, elevated geology (platforms, boulders, 

and ridges), tidepools, and sand.  GPS coordinates were recorded at the start and end 

points of each sample segment.   

Within the 25 m2 sample quadrant, (3) one square meter sample quadrats were 

placed at randomly selected x- and y-coordinates.  The percent cover of the algal 
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indicator taxa and bare rock were visually estimated using methodology described in 

Appendix 1.  To assist in the estimation of cover the quadrats were divided into 25 cm x 

25 cm sub-quadrats (n = 16), each of which was further subdivided into 9 sub-units. 

Cover was estimated and recorded in the field as the number of large sub-quadrats and 

smaller sub-units (Fig. 2.2d). These numbers were converted to percentage cover for 

analysis.  The three algal taxa were: rockweed, Mastocarpus papillatus, and Endocladia 

muricata.  Bare rock was defined as exposed base substrate lacking any sessile algal or 

animal growth.  The numbers of two taxa of motile invertebrates were counted in each 1 

m2 quadrat: limpets (Lottidae) and chitons (Polyplacophorans). 

  

The Number of 20 m Sample Segments:  

There were (8) 20 m sample segments at Hazard Reef, (9) 20 m sample segments 

at Hazard Mid, and (16) 20 m sample segments at Hazard Far. 

 

Statistical Analyses 

The abundance of access-indicator taxa was compared across sites using a nested 

analysis of variance (ANOVA), which was analyzed using a general linear model (GLM) 

constructed with the PROC GLM procedure in SAS (Ver. 9.3).  The analysis was 

designed to test the hypothesis that there were no differences among the three areas or 

‘Sites’ (Hazard Reef, Hazard-Mid, and Hazard-Far). Sites were the main factor in the 

analysis and the 20 m sample segments nested within sites was the error term.  The 1 m2 

sample quadrat values composed the data in the nested ‘Segments(Site)’ error term. As 

the primary interest was to detect any differences between the heavily visited Hazard 
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Reef site and the two sites with low levels of visitors, an a priori linear contrast was 

constructed to test this hypothesis. Both the main effects and the linear contrasts were 

tested using Segment(Site) as the error term using a probability level of 95% (p ≤ 0.05) to 

determine statistical significance.  The assumption of homogeneity of variance was 

assessed prior to ANOVA with Levene’s Test and data were transformed when 

appropriate to comply with the assumptions of the test.  Percent cover data for combined 

algae and rockweed were natural log transformed (ln x+1).  The data for Silvetia 

compressa, Endocladia muricata, Mastocarpus papillatus, Lottidae, and Polyplacaphora 

data were not transformed. 

 

 

Results 

Visitor Surveys 

Visitor density was highest at Hazard Reef.  The annual visitor density to the 

covered rock zone (intertidal habitat covered with a significant amount of organisms) at 

Hazard Reef was 0.91 people m-2 yr-1 (Fig. 2.1).  There were no covered rock zone 

visitors observed at Hazard Mid or Hazard Far (Fig. 2.1).  The density of visitors 

observed from five observations at Hazard Reef was similar to the visitor density (1.2 

people m-2 yr-1) for the same area calculated in Chapter One. 

 

Access-Indicator Taxon Abundance: 

Algal percentage cover was lower at Hazard Reef relative to Hazard Mid and 

Hazard Far for all sampled taxa (Fig. 2.4), while abundances were lower at Hazard Reef 
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for Lottidae, but not for Polyplacaphora (Fig. 2.5).  A significant difference in the 

abundance of Lottidae was detected among the three study sites using the nested 

ANOVA (p = 0.004, Table 2.1).  A significant difference was also detected for Lottidae 

using the a priori contrast (p = 0.019, Table 2.1).  Limpets were most abundant at Hazard 

Mid.  No other significant differences were detected among sites for the other taxa, but a 

significant difference between Hazard Reef and Hazard Mid and Hazard Far was detected 

using the linear contrast for combined algal coverage (p = 0.023, Table 2.1).  Combined 

algal cover was more abundant at Hazard Mid and Hazard Far than Hazard Reef.    

 

 

Discussion 
 

I compared the abundance of access-indicator taxa at publicly accessible shores 

receiving annual visitor densities approximately equal to the ‘moderate’ experimental 

level applied in Appendix 1 (Hazard Reef MDO) with two adjacent areas exposed to 

minimal densities of visitors (Hazard Mid and Hazard Far).  I wanted to determine 

whether similar changes in these access indicator taxa, due to experimental applications 

of foot traffic, could be detected in the adjacent State Park. 

Significantly fewer limpets were present at Hazard Reef than Hazard Mid or 

Hazard Far.  Additionally, combined algal cover was significantly lower at Hazard Reef 

when compared to the combined percent cover at Hazard Mid and Hazard Far.  I 

observed differences between 10% - 15% in the percent cover of algae and 10 – 40 

individuals/m2 of limpets among Hazard Reef and Hazard Mid and Hazard Far. Two 

separate studies, one experimental the other observational, found similar The trends in the 

percent cover (algae) or density (mobile invertebrates) of access-indicator taxa were 
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similar to the results from the field experiment (Appendix 1) and to results from another 

study of rocky intertidal disturbance along a gradient of visitor access (Van de Werfhorst 

and Pearse 2007).  The magnitude of the differences in abundance of combined algal 

cover at Hazard Reef versus Hazard Mid and Hazard Far was similar to the magnitude of 

the difference between control and experimental plots from Appendix 1.  The 

experimental plots located on PG&E Diablo Canyon Power Plant property from 

Appendix 1 showed comparable reductions in the percent cover, relative to controls, of 

total algae (10-20%). Van de Werfhorst and Pearse (2007) also observed similar patterns 

of reduced algal abundance along a gradient of visitor density of 0.0 people m-2 yr-1, 0.5 

people m-2 yr-1, and 18.7 people m-2 yr-1at three rock benches in Santa Cruz, California.    

The results from both the experimental and observational studies indicate that visitor 

densities between 0.91-1.2 people m-2 yr-1 can significantly reduce the abundance of 

certain taxa.   

Additionally, these results show that increased visitor density may lead to larger 

reductions in important habitat-forming algae such as rockweed, which was the most 

abundant access-indicator algal taxon sampled at the Hazard sites (12-22%).  It was also 

the dominant algal taxon in most of the survey segments.  Rockweed provides shaded and 

moist habitat which a variety of marine organisms may use during a low tide.  Removal 

or reductions in rockweed may cause other algae to die off (Keough and Quinn 1998), 

invertebrates will have fewer places to take shelter during low tide (Brown and Taylor 

1999), and changes in the community composition may occur (Beauchamp and Gowing 

1982, Brosnan and Cumrine 1994, and Clowes and Coleman 2000).  In addition to 

functioning as habitat, rockweed recruit dispersal distance has been shown to be limited 
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from the parent plant, which may limit the ability of rockweed to recover from 

disturbance (Williams and Di Fiori 1996, Coleman and Brawley 2005, Pearson and 

Serrão 2006).  Rockweed has been shown to be sensitive to foot traffic, leading to 

reductions in cover, in multiple studies (Beauchamp and Gowing 1982, Povey and 

Keough 1991, Fletcher and Frid 1996, Keough and Quinn 1998, Murray 1999, Schiel and 

Taylor 1999, Clowes and Coleman 2000, and Van De Werfhorst and Pearse 2007, 

Appendix 1).  Assuming foot traffic had contributed to the significantly lower 

abundances in combined algal cover (primarily composed of rockweed) between Hazard 

Reef and Hazard Mid and Hazard Far, and considering the results of Appendix 1, these 

results suggest that resource managers should monitor and actively manage visitor 

densities to rocky intertidal biological communities.  Monitoring and active management 

could prevent a significant reduction in the abundance of important habitat-forming algae 

in the rocky intertidal.  

The observational design of this study does not allow other biotic and abiotic 

factors to be eliminated as explanatory factors when discussing the differences in access-

indicator taxa abundance observed among the sites in MDO State Park.  However, in this 

study other factors were not closely linked, a priori, to reductions in the abundance of the 

access-indicator taxa as was done with foot traffic.  Additionally, these taxa were 

specifically predicted to decrease in abundance by levels comparable to the reductions 

observed in Appendix 1.  The fact that reductions in the abundance of combined algal 

taxa and limpets were observed, the reductions were comparable to those observed in 

Appendix 1, and the visitor densities in MDO were similar to those applied in 

experimental plots provides support that foot traffic at Hazard Reef was the most likely 
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cause of the differences in access-indicator taxa abundance at Hazard Reef relative to 

Hazard Mid and Hazard Far.   

A limited sub-set of the species found in the rockweed zone was sampled in this 

study.  Sampling was restricted to these access-indicator species because experimental 

results indicated that these were the species which would most likely decline in the 

presence of the visitor densities occurring at Hazard Reef (Appendix 1).  This does not 

mean that other species in the community were not affected by foot traffic.  Previous 

experimental and observational studies have shown impacts to temperate rocky intertidal 

species from foot traffic (Povey and Keough 1991, Brosnan and Cumrine1994, Fletcher 

and Frid 1996, Murray 1997, Keough and Quinn 1998, Brown and Taylor 1999, Schiel 

and Taylor 1999, Clowes and Coleman 2000, Huff 2011).  These changes were based on 

quantifying footstep density or relative levels of use.  It would be interesting to determine 

a scale of footstep density based on the observed visitor density at Hazard Reef and 

determine if there may be other taxa, identified from the above studies, which would 

show a reduction in cover or abundance from the density of footsteps at Hazard Reef.  

The abundance of any other access-indicator species could then be sampled to determine 

potential impacts due to foot traffic on other taxa at Hazard Reef and the implications for 

other less visited or soon to be open rocky intertidal areas. 

While the level of foot traffic observed at MDO State Park did not appear to cause 

declines greater than 15% in the abundance of any access-indicator taxa, further declines 

in the abundance of species in the rockweed zone may have more noticeable impacts on 

the community.  If the majority of the differences in abundance among the access-

indicator taxa observed in this study at Hazard Reef relative to Hazard Mid and Hazard 
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Far was primarily from human access, it would seem to suggest that certain areas in San 

Luis Obispo County should be considered susceptible to impacts from human access 

leading to foot traffic.  The information from this study, coupled with the visitor use 

estimates and the experimental results of Appendix 1 may prove useful to resource 

managers in the County, as well as other areas, when developing management plans for 

current and future levels of rocky intertidal access and use.   
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Table 2.1 Results of ANOVA comparing a) test of abundances of access-indicator taxa among Hazard 
Reef, Hazard Mid and Hazard Far study sites using nested ANOVA, and b) a priori contrast comparing 
abundances at Hazard Reef with the average abundances at the Hazard Mid/Far sites.  Significant 
differences (p < 0.05) either indicating a difference in abundance among sites (Sites) or between Hazard 
Reef and the Hazard Mid/Far sites are displayed in bold.   

 
  Combined Algae 

  DF Type III SS MS F P 

a) Site 2 6.706 3.353 3.000 0.065 

b) Contrast DF Contrast SS MS F P 

  1 6.420 6.420 5.750 0.023 

  Silvetia compressa 

  DF Type III SS MS F P 

a) Site 2 1259.206 629.603 1.660 0.208 

b) Contrast DF Contrast SS MS F P 

  1 1173.612 1173.612 3.090 0.089 

   Rockweed 

  DF Type III MS MS F P 

a) Site 2 4.954 2.477 1.200 0.316 

b) Contrast DF Contrast SS MS F P 

  1 4.712 4.712 2.28 0.142 

  Endocladia muricata 

  DF Type III SS MS F P 

a) Site 2 1092.074 546.037 1.191 0.166 

b) Contrast DF Contrast SS MS F P 

  1 435.706 435.706 1.520 0.227 

  Mastocarpus papillatus 

  DF Type III SS MS F P 

a) Site 2 10.628 5.314 0.510 0.603 

b) Contrast DF Contrast SS MS F P 

  1 9.318 9.318 0.900 0.350 

  Lottidae 

  DF Type III SS MS F P 

a) Site 2 40713.448 20356.724 6.690 0.004 

b) Contrast DF Contrast SS MS F P 

  1 18561.386 18651.386 6.100 0.019 

  Polyplacaphora 

  DF Type III SS MS F P 

a) Site 2 27.182 13.591 3.080 0.061 

b) Contrast DF Contrast SS MS F P 

  1 3.705 3.705 0.84 0.367 
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Figure 2.1.  The annual visitor density (+ standard error of the mean) in the covered rock zone at three 
adjacent rocky intertidal areas in MDO State Park. 
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Figure 2.2.  Representation of: a) the transect placement through the study community, b) division of the ~ 
1 km transect into 20 m sample segments, c) placement of the 5 m perpendicular transect to form a 25m2 
sample quadrant, and c) division of the 1m2 sample quadrat into 25 cm x 25cm sub-squares (n=16), each of 
which was further divided visually into ninths (gray grid).  Images b), c), and d) are subsets if image a). 
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Figure 2.3.  Aerial photograph showing sample transect labeled by red lines.  Transect start point was the 
northern end of Hazard Reef.  Transect end point was southern end of Hazard Far bench.  Yellow lines 
indicate independently identified access areas where individuals and educational groups have been 
observed.   Trail locations connecting the shore with a dune hiking trail are indicated by red arrows. 
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Figure 2.4.  A comparison of the percentage cover (SE + 1) for access-indicator algal taxa.   
Abundance was calculated as the percent cover m-2. 
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Figure 2.5 A comparison of Lottidae (limpets) and Polyplacophora (chitons) density (number of 
individuals m-2) among study sites.  Density was calculated as the mean number of individuals m-2 for all 
20 m segments in each site.  Error bars represent one standard error of the mean 
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Appendix 1 

 

A comprehensive approach for understanding the impacts of visitation to temporally  

variable ecological systems: A model study of the rocky intertidal community 

 

Scott Kimura1, Grant T. Waltz2, John R. Steinbeck1, Dean E. Wendt2 

1 Tenera Environmental Inc., San Luis Obispo, California, 93401 

USA 

2 Center for Coastal Marine Sciences, California Polytechnic State 

University, San Luis Obispo, California, 93407 USA  

 

ABSTRACT 

Connecting changes in ecological communities to impacts from human visitation can be 

difficult, especially in temporally variable systems whose stressors are also variable. 

High variability inherently obscures our understanding of systems and ultimately limits 

our ability to take management actions to protect many marine and terrestrial ecological 

systems (e.g., coral reefs, kelp forests, salt marshes, dessert communities, coastal dunes). 

Here we report a novel approach to demonstrate how to understand the real impact of 

visitation in highly variable ecological communities, and then how to determine if 

commonly visited areas are being compromised by visitation. Our methodology involves 

three essential elements: 1) quantification of visitation levels through visitor surveys in 

the ecological community of interest; 2) a controlled field experiment to identify species 

that are affected by visitation (i.e., “access indicator taxa” (AIT)) using a before-after-

control-impact design (BACI); importantly the impact activities and levels are realistic 
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because they are based entirely on observations and data from visitor surveys; and, lastly 

3) field sampling of currently open areas to identify changes in abundance of identified 

access indicator species. In our study we focused on the rocky intertidal zone in central 

California as a model system. We first completed surveys on the number of visitors to 

areas of rocky shoreline at a popular California State Park to determine visitor densities 

over time. We then tested exposure levels determined from the visitor surveys using a 

BACI design field experiment on a rocky shoreline area with no public access. Lastly, we 

sampled rocky shoreline in the State Park with low levels of visitors and compared that 

area to areas with higher visitor levels similar to those that we tested in our experiment. 

We found in the field experiment that our high exposure treatment of ca. three people per 

hour per m2 resulted in statistically significant reductions in abundances of marine algae 

over ten treatment applications. Although the visitor densities in the high exposure area 

sampled in the field study in the Park (ca. two people per hour per m2) were estimated to 

be slightly less than the high exposure treatment used in the field experiment, the 

differences in algal abundance with the area with lower visitor use were similar to the 

changes detected in our experiment. The results of the field study confirmed that the 

results of the field experiment were realistic and could be used to help manage visitor 

levels in the area. We feel that our three-pronged approach serves as a model with study 

design fundamentals that can be adapted for other studies aimed at determining impacts 

from human visitation.  

Key words: BACI analysis, carrying capacities, management implications, resource 

stewardship, rocky intertidal zones, trampling effects, visitor access 
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INTRODUCTION 

Resource managers are often faced with the problem of balancing the potentially 

conflicting goals of resource protection and public access even though many studies (e.g. 

Liddle 1975, Liddle and Kay 1987, Andres-Abellan et al. 2006, Baines and Richardson 

2007, Leujak and Ormond 2008, Remacha and Delgado 2011) have shown that public 

access can result in negative impacts to the resources that these agencies are tasked to 

protect. In fact, the stated missions of resource agencies such as the California Coastal 

Commission (http://www.coastal.ca.gov/strategy.html) and California State Parks 

(http://www.parks.ca.gov/?page_id=91) clearly include both resource conservation and 

public access. The competing demands of access and resource protection require robust 

information on the impacts of access to natural resources. Unfortunately, management 

decisions to balance resource protection and access are often made based on anecdotal 

information or data gathered from field studies that may not fully account for the 

variability inherent in natural systems. These shortcomings are especially problematic 

when resource managers need to defend decisions that are controversial or in need of 

support by stakeholder and user groups.   

Our study resulted from a collaborative effort among scientists, resource managers, and 

stakeholder groups in San Luis Obispo County, California to identify research needs for 

protecting coastal resources. One of the agencies involved in the collaboration was 

California State Parks, which has jurisdiction for nearly half (45%) of the open coastal 

shoreline in the county (Figure 1). Due to recent acquisition of several new large coastal 

areas to become open to public access, State Park managers became interested in 
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determining, as a baseline, if the current level of public access in Montaña de Oro State 

Park (MDO), one of the more popular coastal parks in the County, was affecting the 

biological resources along the shore. The result of any studies used to determine 

sustainable levels of visitor use could then be used to assess whether public access should 

be better controlled in this and other new coastal parks.  

The comprehensive research program we describe here was designed to provide park 

managers with information that could be used in determining the sustainable levels of 

visitor use in rocky intertidal areas by studying the effects of trampling or foot traffic. To 

fully understand the impacts and then to provide useful information for decision making 

on public access we designed a research program with three components: 1) surveys of 

the current levels of visitor access along shoreline areas; 2) a manipulative field 

experiment to determine the potential effects of the levels of visitor access observed in 

the visitor surveys; and, 3) an observational study that used results of the manipulative 

experiment to predict impacts in a commonly visited area. The general approach we 

outline is applicable to any ecosystem or habitat where managers need quantitative 

assessment of impacts in an effort to balance public access with resource protection. 

While this comprehensive approach was to provide greater support for park management 

decisions on resource protection, it was also designed and executed to overcome some of 

the shortcomings of previous studies of human disturbance in natural areas that have been 

the subject of considerable previous research (e.g., Chan 1970, Beauchamp and Gowing 

1982, Ghazanshahi et al. 1983, Underwood and Kennelly 1990, Addessi 1994, Keough 

and Quinn 1998, Schiel and Taylor 1999, Murray et al. 1999, Ambrose and Smith 2004, 

Van De Werfhorst and Pearse 2007). Effects of human disturbance to vegetation and 
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wildlife from people simply visiting areas have been detected in many communities and 

ecosystems (e.g. Liddle 1975, Liddle and Kay 1987, Andres-Abellan et al. 2006, Baines 

and Richardson 2007, Leujak and Ormond 2008, Remacha and Delgado 2011). The 

presence of people and accompanying noise can disturb species behaviors and alter 

species abundance and distribution patterns (Chan 1970, Bally and Griffiths 1989, 

Ferreira and Rosso 2009). Changes in species abundance levels and distribution can also 

result from illegal collecting and from trampling. Detecting species changes that may 

result from human activities can be difficult, however, especially in spatially and 

temporally variable ecological systems such as the rocky intertidal or coral reefs. The 

inherent variability was addressed in our study through the use of a field experiment 

using a before-after-control-impact (BACI) design that controlled for natural variation by 

concurrently sampling plots with and without foot traffic both before and after/during the 

application of the treatments (Stewart Oaten, et al. 1986). Although BACI designs have 

typically been used for analysis of data from observational studies with unreplicated 

impacts, the designs are also applicable to controlled field experiments where data are not 

independent, due to repeated sampling of the experimental units (Stewart-Oaten and 

Bence 2001). Although problems of independence can also be addressed by using 

repeated measures analysis (Green 1993), the use of BACI is a robust alternative 

approach (Steinbeck et al. 2005). 

We chose to focus on the rocky intertidal community for our study because of the interest 

of California State Park managers and the prevalence of this habitat at many of the 

coastal park areas in central California. Rocky intertidal areas have also become 

increasingly popular places to visit for education and recreation, and are often where 
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people are exposed to ‘hands-on’ marine biology for their first time. Visiting rocky 

shores, however, comes with the potential for impacts to occur from collecting (Chan 

1970, Ghazanshahi et al. 1983, Underwood and Kennelly 1990, Addessi 1994, Schiel and 

Taylor 1999, Murray et al. 1999, Ambrose and Smith 2004). Effects from trampling can 

also occur (Beauchamp and Gowing 1982, Brosnan and Crumrine 1994, Keough and 

Quinn 1998, Van De Werfhorst and Pearse 2007, Huff 2011). While restrictions on 

collecting are intended to prohibit or limit people from removing organisms, there are 

generally no restrictions controlling where and how much people can walk once down on 

the shore. 

Understanding the shortcomings of previous studies on visitor impacts to natural areas 

was a core element in the design of our research as we wanted to ensure that knowledge 

from our work would provide a foundation for making decisions on coastal access. The 

primary shortcomings of previous empirical studies are twofold: 1) experimental impact 

levels do not reflect the intensity of impact found in real-world situations (impact levels 

are often much higher in experiments); and, 2) the nature of the emulated impact in 

experimental treatments does not often reflect the nature of impact in natural conditions. 

For example, many studies have applied pre-specified footsteps in a uniform fashion in 

relatively small test plots (e.g, <1 m2) (Bally and Griffiths 1989, Povey and Keough 

1991, Brosnan and Crumrine 1994, Keough and Quinn 1998, Brown and Taylor 1999, 

Denis 2002, Clowes 2002, Huff 2011). Using this approach, the test subjects (people) end 

up stepping repeatedly on organisms in the same small spaces with the applications 

repeated in the same fashion in subsequent trials. Our observations, however, of people 

visiting rocky intertidal areas indicate this approach does not accurately represent normal 
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behavior of people on the shore and the subsequent impacts to which rocky intertidal 

organisms are exposed. Although many previous studies utilized control plots to account 

for natural variation that can otherwise confound the interpretation of results, the 

interpretation of the results may consequently be hampered by the application of 

treatment levels that were not representative of the type and intensity of actual foot traffic 

under normal visitation conditions.  

Although a few previous experimental studies of trampling impacts on rocky intertidal 

communities have used control plots to account for natural variation (Bally and Griffiths 

1989, Povey and Keough 1991, Brosnan and Crumrine 1994, Keough and Quinn 1998, 

Brown and Taylor 1999, Denis 2002, Clowes 2002, Huff 2011), several other studies 

have used strictly observational comparisons of species abundances between areas with 

high and low/no numbers of visitors (Addessi 1994, Ambrose and Smith 2004; Tenera 

2003, 2004). The later approach, may result in ambiguous results, as the areas being 

compared may have inherent physical or habitat differences that result in differences in 

species composition or abundance among observed plots. We addressed this issue by 

using the data from our BACI experiment to predict shifts in abundance of a suite of 

“access indicator taxa” among areas open to the public with different levels of visitation. 

Thus, the results from our observational study were based a priori on our BACI study. 

We believe the integration of results from our three interrelated studies (visitor surveys, 

controlled field experiment, and observational field study) provides a useful framework 

for quantifying the impacts of visitation in highly variable ecological communities and it 

provides useful data to resource managers charged with balancing public access and 

resource protection. 
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METHODS 

Our study was in three parts: 1) visitor counts in several intertidal areas to determine 

visitor densities and duration; 2) a manipulative field experiment testing those exposure 

and concentration levels for impacts; and 3) a field observational study to ground-truth 

the results of the field experiment and determine whether differences between high and 

low use areas could be attributed to visitor traffic, based on how well the differences 

between areas of similar foot traffic exposure matched the changes detected in the 

experiment.  

Visitor Surveys  

The foot traffic exposure levels chosen to be tested in our experiment were based on 

visitor observations and counts completed along rocky shoreline areas inside Montaña de 

Oro (MDO) State Park, a coastal State Park in San Luis Obispo County, California that 

experiences the highest numbers of visitors to State Parks in the county with rocky 

shorelines (Figure 1). Over 500,000 people visit MDO State Park each year (California 

State Parks 2008), and a portion of these people visit several specific, rocky intertidal 

areas in the park for education and recreation.  

Timed counts of people on rocky shorelines in the park were completed in areas of 

known sizes at two popular places known locally as Hazard Canyon and Corallina Cove 

(Figure 1). The visitor survey area was the upper mid-intertidal zone at both locations, 

which other studies have shown is the zone where people exploring rocky shores spend 

most of their time (Clowes 2002; Tenera 2003, 2004). Counts of people in both areas 

were made every 10 minutes for one hour from cliff top locations, similar to the method 
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used by Murray et al. (1999). The counts at both locations were made on the same day, 

and 14 days were sampled, which included weekdays, weekends, holidays, and non-

holidays. The counts were completed during daytime low-tide periods (within 2-3 hours 

before and after low tides of +0.6 m mean lower low water [MLLW] and lower) and 

when weather conditions were conducive to visitor activity. The size of each visitor area 

was delineated using GPS. ESRI ArcGIS software was used to plot the GPS data and to 

calculate the intertidal area where people were counted.  

We calculated annual visitation (visitor exposure levels) that occurs at Hazard Canyon 

and Corallina Cove based on the equation: annual visitor exposure = average person 

hours m-2 × 945 hours yr-1 (Table 1). Person hrs m-2 values were the averages of our timed 

visitor counts. The 945 hours value was the total hours in 2007 (the year of our study) 

when tide levels were equal to or less than +0.6 m MLLW between 10:00 am and sunset; 

tide levels low enough to access the visitor areas and within the assumed daily period 

when most people visit the shore.  

The hourly exposure times were derived from Tides & Currents V2.00 (Nautical 

Software Inc.) and based on NOAA tide predictions for Port San Luis, California, the 

nearest tide station to the experiment site (approximately 13.7 km south of the experiment 

site). The tidal curve for each day in 2007 was plotted, and the number of hours (to the 

nearest half hour) that the tide level was below +0.6 m MLLW between 10:00 am and 

sunset each day for the year were totaled.  

Field Experiment 
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The site of our field experiment (35o13’53.46”N, 120o 52’52.01”W) was on a bench rock 

platform 3.4 km south of MDO State Park and surrounded by private land owned by 

Pacific Gas and Electric Company (PG&E) (Figure 1). Completing our experiment in an 

area closed to public access was important, as it provided assurance that no unaccounted 

foot traffic occurred in the test plots. The bench rock platform (tidal elevation 

approximately +0.9 m MLLW) at the experiment site extended approximately 50-75 m 

seaward from the base of a 10 m tall shore cliff.  

Like MDO State Park where we completed our visitor counts, the bench rock platform of 

the experiment site had large areas covered with the rockweed species Silvetia 

compressa. The platform with S. compressa was appropriate for our study because S. 

compressa, like many rockweed species, is sensitive to trampling effects (Murray and 

Gibson 1979, Fletcher and Frid 1996, Denis 2002). In addition, S. compressa provides 

important habitat and shelter for invertebrates and smaller algae, particularly during low 

tide when the intertidal is exposed to air and direct sunlight (Gunnill 1982, 1984; Jenkins 

et al. 1999).  

Other algae characteristic of the upper mid-intertidal zone and with rockweed in central 

California (Abbott and Hollenberg 1976, Sparling 1977) were also abundant on the bench 

rock experimental site. These included the red algae Mastocarpus papillatus and 

Endocladia muricata. Common invertebrates were limpets (Lottiidae), acorn barnacles 

(Chthamalus fissus), chitons (Cyanoplax hartwegii), and black turban snails 

(Chlorostoma funebralis).  
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The manipulative experiment portion of our study was designed as a before-after-control-

impact (BACI) study (Stewart Oaten, et al. 1986, Stewart-Oaten and Bence 2001). We 

established 19 plots of 8 m2 size (2 m x 4 m) on the bench rock site, intentionally 

avoiding areas of sand, deep tidepools, surge channels, turnable substrate, and high relief 

rocks. The 2 m x 4 m plot size was chosen because it was the largest size that could be 

accommodated on the bench rock site and in the rockweed zone without having plots 

overlap one another. The corners of the plots were marked with stainless steel anchor 

bolts.  

Sampling 

Non-destructive biological sampling was done in three 1 m2 quadrats positioned end-to-

end and centered longitudinally in each 8 m2 plot. The percent cover of each algal and 

sessile invertebrate species, including bare substrates, was visually estimated using cross-

string grids in the quadrats to help estimate cover. Overstory species were sampled first, 

and then their blades and branches were moved to expose and tally the coverage of the 

understory species and to count all motile invertebrates.  

Pre-Treatment and Treatment Applications 

Species abundances in the 19 plots were first sampled monthly for 13 months (February 

2007-February 2008) before any experimental trampling was conducted. The data were 

analyzed using a Tukey test for additivity (Tukey 1949) to determine if the abundances of 

numerically dominant taxa had similar patterns of abundance among surveys. This test 

was done to ensure the data met the assumption of additivity for the BACI analysis model 

(Stewart-Oaten et al. 1986), which in some taxa required square root or log 
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transformation of the data. We also calculated the Bray-Curtis dissimilarity among plots 

to help identify plots with the greatest differences in species composition. The additivity 

and Bray Curtis analyses were used to identify three plots that had patterns of species 

changes and species composition that differed from the other quadrats. These three plots 

were not included in the experimental treatments in order to minimize the variation 

among the plots and to better meet the assumptions of the BACI model. The remaining 

16 plots were randomly divided into three different visitor exposure level groups 

(treatments) and a control group, each group having four plots.  

Instead of treatment exposures being based on pre-determined numbers of footsteps, our 

treatment exposures were: 1) low-2 people in each plot for 10 minutes; 2) medium-2 

people in each plot for 20 minutes; and 3) heavy-4 people in each plot for 40 minutes. 

Control plots were not exposed to any visitor traffic. Our visitor exposures were repeated 

10 times over the next 8 months to bracket the visitor exposure levels that we estimated 

occur on MDO State Park rocky shores in a year (Figure 2). Biological sampling 

continued monthly during this period (March-October 2008); the sampling was scheduled 

independent of when the experimental trampling exposures were applied. 

Our test subjects were student volunteers from two local colleges. We initially intended 

the treatments to be applied as ‘blind trials’, in which our volunteers would be unaware 

that they were the subjects of a trampling study. However, this became unworkable, due 

to the difficulty of finding a new set of volunteers unfamiliar with the study for each trial. 

We overcame this by having our returning volunteers complete various activities in the 

test plots that simulated visitors exploring the intertidal zone. Volunteers were given a list 

of activities to do at any pace and order, which included matching species to pictures, 
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taking pictures, counting species, comparing counts, and sharing observations. The 

volunteers were also told they did not have to constantly walk around in the plots during 

the experiment or complete all of the activities. Our volunteers were instructed to behave 

as if visiting the shore with friends, family, or school. Consequently, time was spent 

walking, talking, standing still, kneeling, and squatting. Organisms were touched and 

picked up on occasion to emulate that commonly observed activity as well. Although our 

study was based on numbers of people in the test plots for specific periods of time, we 

also counted how many steps our test subjects took while inside the test plots during one 

of the surveys. Eight people were watched for 10 minutes while they were inside the 

plots, and their footsteps were counted.  

Analysis Methods  

The data analyzed from the field experiment focused on the most abundant algae and 

invertebrates, based on the average abundances from all of the plots prior to the treatment 

period. This consisted of seven taxonomic groups of algae that together comprised almost 

97% of the total non-crustose algal cover and nine invertebrate taxa that together 

comprised 97% of the total invertebrate counts. The acorn barnacle (C. fissus) and mussel 

(Mytilus spp.) were recorded as percent cover, and were also analyzed.  

The Before-After-Control-Impact (BACI) design for the experiment used the data 

collected in the before (B) period to estimate the average differences between the control 

(C) and treatment (or impact [I]) plots, which were then compared to estimates of the 

average differences in the period after (A) the application of the treatments. In BACI 

designs, the sampling events provide the replication for the average differences or 
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‘deltas’ between the treatment and control abundances. The deltas from each survey from 

the BACI design were calculated as the difference in the mean abundance from the three 

quadrats within each 8 m2 plot for each survey using the formula xi-I - i-C (the abundance 

for each treatment plot (xi-I) minus the mean abundance from the control plots ( i-C) for 

each survey i). The calculated deltas were analyzed using ANOVA. 

Analysis using the BACI model requires the data to conform to certain statistical 

assumptions that are generally the same as those for analysis of variance (ANOVA), and 

are described in detail by Schroeter et al. (1993). The deltas for the treatment plots were 

tested for additivity, serial correlation, and homogeneity of variances prior to analysis to 

determine if they met appropriate assumptions using the original data and the data 

transformed using a range of transformations and constants, as described in Steinbeck et 

al. (2005). The data were analyzed using the “Proc Mixed” procedure in SAS (Littell et 

al. 1996). This program analyzes mixed-model ANOVAs that include random and fixed 

factors, and can accommodate autoregressive error structures that may occur with 

serially-correlated data.  

The following ANOVA model was used to test the hypothesis that treatment plots were 

unaffected by trampling: 

Xijk = u + Ti +Pj + TPij + Sk(j) + TSik(j) 

where Xijk = the delta value for a treatment (T) for a given survey (S) within a period (P) 

(transformed as appropriate); u = the mean difference across all treatment, period, and 

survey effects; Ti = the effect of the i th treatment; Pj = the effect of the j th Period; TPij = 
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the effect of the Treatment x Period interaction; Sk(j) = the effect of the k 
th Survey within 

the j th Period; and TSik(j) = the effect of the Treatment x Survey within Period interaction.  

The main effects and interaction terms were not relevant to identifying thresholds of 

visitor use that might result in impacts. Therefore, the hypothesis that there was no 

significant difference in mean deltas between periods was tested using a set of pre-

planned comparisons between periods for each treatment using a significance level of 

95%. Test power was calculated based on the main period effect, in order to determine 

the power of the data to detect a difference among periods, if one was present. A test 

power of 80% was used to determine which data sets were capable of detecting a 

difference among periods.  

The multivariate technique of non-metric multidimensional scaling (MDS) was used to 

examine patterns of variation in the treatments over time, relative to the average control 

abundances, separately for algae and invertebrates. This technique analyzed delta values, 

as used in the BACI ANOVA, for the algal and invertebrate taxa that occurred in at least 

6 of the 21 surveys, regardless of occurrence with respect to treatment type. Delta values 

were used to reduce variation caused by seasonal abundance changes and to focus on 

differences among surveys between periods. Since the deltas used in the analysis had 

both positive and negative values, the mean character difference, or Czekanowski 

distance (Legendre and Legendre 1998), was computed using the average of the delta 

values from the four plots for each of the survey-treatment combinations. The MDS 

analysis was done using PRIMER Version 6 (Clarke and Gorley 2001).  

Observational Field Study 
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Our observational field study (ground-truth study) was completed on three bench rock 

platforms in MDO State Park differing in the amount of visitor traffic (Figure 1). One 

bench area was Hazard Reef, which was also an area used to calculate visitor traffic 

levels to test in our experiment. The other areas (Hazard-Mid, Hazard-Far) were located 

as far as 1 km down coast from Hazard Reef where visitor traffic was largely absent. All 

three areas were characterized by a high abundance of S. compressa and other species 

similar to our experimental site. The purpose of sampling Hazard Reef was to describe 

species abundances exposed to long-term continuous levels of visitor traffic, and in 

sampling the Hazard-Mid and Hazard-Far study areas, to determine if differences in 

species abundances could be detected among areas with high and low levels of visitors 

that might be due to the differences in foot traffic. The changes in species and relative 

magnitude of change were also compared with the changes detected in our BACI 

experiment.  

Stratified random sampling was used in each area. A transect line was deployed parallel 

to the shoreline on each bench platform and through the middle of the rockweed zone. 

The transect line was divided into 20 m segments, and three random 1 m2 quadrats were 

sampled in each segment. The three bench areas differed in shoreline length, such that 

Hazard Reef, Hazard-Mid, and Hazard–Far had 8, 9, and 16 transect segments, 

respectively.  

Algal cover and invertebrate densities were sampled using the same methods used in the 

field experiment. The species/taxa that were sampled were only those that significantly 

declined in the experiment and which were present in the field study: S. compressa, 
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Hesperophycus californicus, M. papillatus, E. muricata, and the invertebrate groups 

Lottiidae (limpets) and Polyplacophora (chitons). 

The abundance of each taxon was compared across areas using ANOVA (GLM 

procedure in MiniTab Ver. 16). ‘Sites’ (Hazard Reef, Hazard-Mid, and Hazard-Far) were 

the main factor and the 20 m sample segments were random factors nested within sites. 

Similar to the field experiment, the level of probability in determining significance for the 

observational field study was 95%. When a significant difference was detected among 

areas, Tukey pairwise comparison tests were used a posteriori to determine which areas 

were significantly different from each other. Data were transformed when appropriate to 

comply with the assumptions of ANOVA. S. compressa, H. californicus, E. muricata, 

and M. papillatus were log transformed (log base e). Combined algae were not 

transformed. Lottidae and polyplacophorans were square root transformed. 

RESULTS 

Visitor Surveys 

The levels of visitor traffic tested in our field experiment were from visitor counts 

extrapolated over a year based on the estimated period of accessible tides (Table 1). 

Hazard Canyon and Corallina Cove had estimates of annual visitor traffic of 1.9 and 1.6 

person hrs m-2 year-1, respectively. Our observed levels were bracketed by the cumulative 

amount of visitor exposure levels that we applied in 10 treatments in the heavy and low 

exposure treatments (3.3 and 0.4 person hrs m-2, respectively) (Figure 2).  

Experiment 
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Algae and Seagrass 

We sampled over 30 algal taxa and one seagrass species in the experimental treatment 

and control plots. All plots remained characterized by the rockweed S. compressa, Fucus 

distichus, and H. californicus, and the red algae E. muricata and M. papillatus. All of 

these species remained thoroughout the experiment, but with shifting abundances over 

time. These five algal species accounted for over 90% of the total non-crustose algal 

cover throughout the experiment. Excluding crustose algae, no single algal species was 

greater than 40% cover on average in the plots. Species rank order of abundance 

remained largely unchanged over time.  

Statistically significant declines in algal cover, primarily in the heavy exposure treatment 

plots, were detected between the pre-treatment and treatment periods, relative to controls, 

in S. compressa, E. muricata, and M. papillatus (Figure 3, Table 2). The decline in cover, 

relative to controls, for each of these species was less than 10% cover. A significant 

decline in total algal cover (all non-crustose species combined) of approximately 20%, 

relative to controls, was detected in the heavy exposure treatment (Figure 4 and Table 2).  

Statistically significant changes, relative to controls, that were smaller in magnitude and 

involved fewer species were detected in the moderate and low exposure treatments 

(Figure 3). The low exposure treatment had mixed results with both increases and 

decreases in algal cover, relative to controls, and had species changes that were opposite 

in direction to the changes in the same species in the other treatments.  

The MDS configuration of the Czekanowski distances among the average differences 

from the control plots for the three treatments shows considerable variation among 
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surveys before and during the treatment exposures, particularly in the low and moderate 

treatment exposures (Figure 5). The large variation in the array of survey scores for the 

low and moderate treatments in the MDS plot indicates the absence of a defined shift in 

algal community composition over time in those treatment plots. In contrast, the later 

surveys for the heavy visitor exposure treatment show a greater difference from the 

earlier surveys, indicating a shift in algal community composition and abundance from 

the heavier visitor exposures.  

Invertebrates 

The two most abundant motile invertebrate taxa in the study of the 70 that were 

enumerated were black turban snails (Chlorostoma funebralis, formerly Tegula 

funebralis) followed by limpets as a group (Lottiidae). Several hundred C. funebralis and 

up to 50 Lottiidae in a 1 m2 quadrat were common occurrences. Aggregating anemones 

(Anthopleura elegantissima) were also very common in the quadrats. The acorn barnacle 

(C. fissus) was the most common sessile invertebrate species sampled. Mussels (Mytilus 

spp.), however, which tend to be locally abundant on outer coastal rocky shores, were not 

very common in our study plots. 

Compared to the algae, the invertebrates had more variable changes both within and 

among the treatments (Table 2, Figure 6). The greater variation in invertebrate 

abundances is reflected in the lower test power for all of the taxa analyzed (Table 2). The 

acorn barnacle (C. fissus) in the heavy exposure treatment was the only invertebrate with 

a statistically significant increase in abundance. 
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Unlike the algae, the MDS analysis of the deltas for the invertebrates did not indicate any 

gradient in changes from the high to low treatment levels that would be indicative of foot 

traffic effects (Figure 7). All treatment level scores were highly variable over time with 

many of the surveys in the pre-treatment and treatment periods being more similar to 

each other than surveys more closely linked in time.  

Observational Ground-Truth Field Study 

The results showed that algal abundances were generally lowest at Hazard Reef, 

compared to Hazard-Mid and Hazard-Far, but the differences among individual species 

and areas were not consistent, and not statistically significant for most taxa (Figure 8 and 

Table 3). A statistically significant difference, however, was detected for combined algal 

cover between Hazard Reef and Hazard-Far. Combined algal percent cover was 

approximately 15% lower at Hazard Reef as compared to the less accessed sites. 

Combined algal cover at Hazard-Mid was not significantly different from the other two 

areas. The results for Lottiidae and Polyplacophora (chitons) were mixed and not similar 

between the two taxa (Figure 8 and Table 3).  

DISCUSSION 

Resource management of rocky shores is complicated in areas such as National Parks, 

State Parks, National Marine Sanctuaries, and marine protected areas where the goal of 

maintaining natural resources needs to be balanced with the goal of allowing for and 

providing coastal access in many cases. Our study in San Luis Obispo County, central 

California, was done to provide California State Park managers with information on the 

effects caused by current levels of visitor access to rocky intertidal shoreline areas in 
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State Parks in San Luis Obispo County. We collected this information to also help in 

planning for new coastal State Parks that are not presently open to public access.  

We focused our study on the effects of foot traffic (trampling) on rocky shores, as all 

activities to the shore involve walking, and there are generally no limitations on how 

many people are allowed in areas with public access. We further restricted our study to 

the rockweed community, as rockweed are susceptible to trampling effects, they are 

common in the upper mid-intertidal in San Luis Obispo County, and the upper mid-

intertidal is the zone where rocky shore visitors tend to spend most of their time (Clowes 

and Coleman 2000, Tenera 2003, 2004).  

The results from our field experiment are consistent with previous experiments that found 

rockweed communities to be negatively affected by foot traffic (Murray and Gibson 

1979, Brosnan et al. 1996, Fletcher and Frid 1996, Denis 2002). While it is clear from 

these studies that intertidal communities are negatively affected by trampling, it is less 

clear on how much impact actually occurs from foot traffic at popular shoreline areas. 

Results from many trampling experiments fall short of describing the actual magnitude of 

impact, particularly when uncertainties exist on whether the trampling levels used in the 

experiments were a good representation of normal foot traffic in those areas.   

We altered our study approach from previous studies in an attempt to provide a more 

realistic assessment of impacts from foot traffic. First of all we used data from visitor 

surveys to determine the appropriate levels of treatment used in our field experiment. We 

also applied our foot traffic as time spent in test plots, which was consistent with the data 

we collected in the visitor surveys, rather than subjecting plots to set numbers of 
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footsteps. We also used larger plots to encompass more heterogeneous habitat so that the 

experiment was more representative of the general habitat and not of small, selected, pure 

stands of species. Again this was consistent with observations from our visitor surveys 

and other surveys (Tenera 2004, 2005) showing that people move actively around the 

intertidal. Finally, we verified the results of the field experiment using a field study 

comparing areas with varying levels of visitor traffic that was similar to the areas studied 

in the field experiment. We felt that an approach that provided consistent results from 

several studies would have a greater chance of being used in managing public access to 

similar rocky intertidal areas at local State Parks.  

The most important aspect of our study was ensuring that the treatment levels used in the 

field experiment were representative of the levels of visitor traffic to equivalent rocky 

intertidal areas in MDO State Park. Specifically, we hoped to bracket the levels of 

exposure observed in our visitor surveys. To do this, we determined the area with 

colonized rock in the two rocky intertidal areas at MDO State Park, counted the numbers 

of people in those areas over a given time period, and estimated the number of hours 

those zones are exposed for access in a year period. From this, we determined that we 

needed to repeat our treatment applications at least 10 times, in order to ensure that the 

treatment applications bracketed the cumulative amount of visitor exposure we estimated 

occurs per square meter in a year period in the study areas at MDO State Park (Figure 2). 

This ensured that the results of the field experiment would be representative of the visitor 

traffic at MDO State Park.  
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One of the issues addressed in the treatment levels used in our field experiment was how 

the results can be used to describe actual impacts. In this study, the treatments were based 

on the same units of measurement used in our visitor surveys. Past studies have focused 

treatment levels on the numbers of footsteps applied per unit area which when 

standardized for comparison show that many of the treatments represent extreme levels of 

trampling, which not surprisingly lead to large impacts (Figure 9). For example, 

assuming that a footprint represents an area of 0.03 m2 and assuming footsteps were 

distributed evenly in the test plots each visit, the same spot on the ground (footprint) in 

the Brosnan and Crumrine (1994) study, was contacted close to 2,500 times. The 

footsteps were applied monthly for 12 months. Test plots have also been as small as 0.09 

m2 (Brown and Taylor 1999, Huff 2006), which focused the footsteps in an area 

equivalent to three footprints side-by-side. In general, the studies do not provide sound 

reasoning on the selection of the various treatment levels. While there are locations on 

the shoreline that receive high levels of trampling such as the base of a stairway to the 

shore, we feel it is difficult to use results from these experiments to manage access, 

especially because people tend to avoid walking over slippery algae and stepping on 

invertebrates (Bally and Griffiths 1989). We have seen that people will tend to step on 

bare rocks whenever possible for safer footing, and will go around densely covered areas 

to avoid slipping and falling. These observations indicate that treatments based on 

repeatedly stepping in the same location on pure stands of algae or other organisms 

probably overestimate the actual impacts from the equivalent number of steps taken by 

the average person visiting the intertidal. Finally, we feel that managed access mainly 

looks to regulate numbers of visitors and frequency of visits, not numbers of footsteps.  
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Consistent with this approach our observations of people in the intertidal resulted in the 

use larger plots of more heterogeneous habitat that included bare rock. This was so our 

visitors had more options on where to walk and stand that more closely simulated the 

behavior we observed in our visitor surveys. As a result of the larger plots we did not 

confine our volunteers to a specific area and had them perform activities that would result 

in movement through the plots. The scripted activities were intended to simulate how a 

person, family, or school would behave when exploring the intertidal zone. 

Consequently, the treatment time was spent not only walking about, but also squatting, 

kneeling, and standing still, on areas of colonized rock and on bare rock. Although our 

treatment plots were exposed to much fewer footsteps than largely all other studies of 

trampling effects (Figure 9), we were still able to detect impacts. 

Having relatively large plots containing more heterogeneous habitat was also important 

in that none of our plots started with close to 100% coverage, as was the case in other 

studies (Povey and Keough 1991, Keough and Quinn 1998, Schiel and Taylor 1999, 

Smith and Murray 2005, Denis 2002). Due to plot size, the average abundance of any 

given algal species in our plots at the beginning of the study was no greater than about 

40% cover, and the plots had exposed bare rock areas between the algal patches. 

Consequently, species abundances could increase, decrease, or remain unchanged over 

time. In contrast, experiments that begin with near-full coverage of the test species can 

only decline in abundance, as all footsteps have to occur on the test species. 

The design of the field experiment was unique in its use of a BACI design which is 

typically used for observational studies that have an unreplicated treatment such as a 
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thermal discharge (Schroeter et al. 1993, Steinbeck et al 2005). BACI designs have not 

generally been used for field experiments where replication of treatments is generally 

possible. The use of a BACI design is an effective approach for dealing with repeated 

sampling that may result in autocorrelated data that are not independent (Stewart-Oaten 

and Bence 2001). The BACI design is also effective at controlling for natural variation 

since the data analyzed are the differences between the experimental and control plots 

which effectively controls for the natural variation in the study area. The potential for 

differences among plots was decreased by eliminating plots prior to the treatment period 

that were not exhibiting the same overall patterns of species changes as other plots. This 

is a practice that has large benefits in its potential to reduce variation among experimental 

plots but is rarely included in the original design of a study. Our use of a BACI design in 

this study shows that it is more widely adaptable than its prior use in observational 

impact assessments (Stewart Oaten, et al. 1986, Schroeter et al. 1993, Stewart-Oaten and 

Bence 2001, Steinbeck et al. 2005).  

We are confident that the field experiment detected changes resulting from foot traffic 

and not from other causes, based on the pattern of treatment responses, particularly in the 

algae. The fewest statistically significant changes were detected in the lowest exposure 

treatment, more changes were detected in the moderate treatment, and the largest number 

of changes were detected in the heavy exposure treatment. The ability to detect a gradient 

of responses and differences in the magnitude of effects were largely the result of the 

BACI design that controlled natural variation resulting in high statistical power to both 

detect impacts and conclude that the lack of significant changes at the lower treatment 

levels was not an artifact of a poor design or highly variable results. These help 
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substantiate that the experiment detected changes due to the foot traffic exposures. The 

MDS results for the algae also indicate the changes in the experiment were due to the foot 

traffic exposures over other causes, as the greatest differences in algal composition and 

abundance between the pre-treatment and treatment periods occurred in the heavy 

exposure treatment. 

The changes detected in the experiment were largely confined to the algae, with the 

changes in the individual species being less than about 10% cover. These small levels of 

change support the use of controlled field experiments as the preferred approach for 

assessing the effects of trampling (Bally and Griffiths 1989, Povey and Keough 1991, 

Brosnan and Crumrine 1994, Keough and Quinn 1998, Brown and Taylor 1999, Schiel 

and Taylor 1999, Clowes 2002, Denis 2002, Smith and Murray 2005, Huff 2006). It is 

unlikely that the low levels of change in our study could have been detected in a purely 

observational comparison study where natural variation can easily mask differences 

between areas with different levels of visitor exposure (Tenera 2003, 2004; Van De 

Werfhorst and Pearse 2007).  

Our experiment also detected a decrease of approximately 20%, relative to controls, in 

total algal cover (all non-crustose species combined). This was roughly equivalent to the 

difference (15% cover) in total algal cover detected in our field study between Hazard 

Reef and the other two study areas. The consistent results between the field experiment 

and observational study implies that the differences between areas along the Hazards 

Canyon shoreline were most likely the result of visitor traffic. One explanation on why 

we did not see larger differences between high and low use areas in our Hazards Canyon 
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shoreline study and in our experiment is that impacts related to visitor traffic in our locale 

are probably not extraordinarily large, in comparison to areas with large numbers of 

visitors, such as southern California.  

Currently, there is little guidance, no standard protocols, and few criteria to help resource 

managers decide what are significant levels of impacts and when intervention measures 

are needed to minimize or reverse impacts (Liddle 1975, Milazzo et al. 2002). As such, 

resource managers often have to acknowledge that impacts are probably occurring with 

unknown consequences, but have to accept them to allow continued shoreline access 

(Underwood and Kennelly 1990). Similarly, allowing shore access to continue is often 

the priority until it can be demonstrated that access should not be allowed to continue. 

Unfortunately, many decisions on balancing resource protection with continued shore 

access are largely based on professional judgment, taking into account social perceptions, 

values, benefits, and politics which are not quantitative (Liddle 1975, Hirst 1984, 

Underwood and Kennelly 1990, Keough and Quinn 1998, Endter-Wada et al. 1998, 

Tenera 2003). Management decisions should be based on strong quantitative information 

and direct evidence as much as possible, in order to minimize speculation and help 

support the often difficult trade-offs (Underwood and Kennelly 1990).  

Our findings appear to provide support that the present levels of visitor access in the 

rocky intertidal areas of MDO State Park do not result in impacts that exceed normal 

levels of natural disturbance as total algal cover was only reduced by approximately 15% 

near the main access at Hazard Canyon in MDO State Park, and we found no barren 
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zones or worn pathways in the intertidal zone near access points. We are continuing to 

monitor the treatment plots at the site of the field experiment for recovery.  
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Table 1. Summary of visitor counts in MDO State Park. 

 

 

 Location 
Mean number 
people hour-1 

Number of 
surveys 

Rock 
area (m2) 

Total hours 
year-1 of tides to 

access shores 

Total days year-1 
of tides to access 

shores 
Person hours m-2 

year-1 in rock zone 

Hazard Canyon 3.9 14 1,960 945 275 1.9 

Corallina Cove 1.9 14 1,154 945 275 1.6 
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Table 2. BACI ANOVA results for algal and invertebrate data sets showing 

transformations and options used in the analysis, overall test power to detect a statistical 

difference between periods at α=0.05, and test statistics and probabilities of planned test 

comparisons between periods for each treatment. Results with a test power of less than 80 

percent and significant p-values at α=0.05 are underlined.  

Taxon or Data 
Analyzed 

Transfor-
mation 

Auto-
regressiv
e Error 

Structure 

Adjusted d.f. 
in  

F-Tests 
Period 
Power 

Low Treatment 
Period Contrast 

p-value 

Mid Treatment 
Period Contrast 

p-value 

High Treatment 
Period Contrast  

p-value 

Algae        

articulated corallines Arcsin (%) No  N 0.27 0.25 0.39 0.01 

Endocladia muricata log(x+1.0) No  N 0.92 0.35 0.01 <0.01 

Fucus distichus log(x+0.5) No  N 0.98 0.06 0.02 <0.01 

Gelidium 

pusillum/coulteri Arcsin (%) No  N 0.08 0.76 0.64 0.68 

Hesperophycus 

californicus log(x+1.0) AR(1) N 0.62 <0.01 0.33 0.70 

Mastocarpus papillatus log(x+0.5) No  N >.99 <0.01 <0.01 <0.01 

Rockweeds (combined) none AR(1) N 0.87 0.38 0.49 <0.01 

Silvetia compressa Arcsin (%) AR(1) N 0.80 0.32 0.53 <0.01 

Total Algal Cover Arcsin (%) No  N 0.79 0.06 0.14 <0.01 

Invertebrates        

Acanthinucella spp. 
log(x+0.01

) No  N 0.05 0.33 0.90 0.32 

Anthopleura 

elegantissima log(x+0.5) No  N 0.13 0.90 0.17 0.31 

Chlorostoma funebralis none No  Y 0.15 0.79 0.75 0.03 

Chthamalus fissus 
cover Arcsin (%) No  N 0.07 0.22 0.64 0.01 

Cyanoplax hartwegii √(x+1) No  N 0.47 0.91 0.25 0.01 

Littorina spp. log(x+0.5) No  N 0.58 0.09 0.09 0.04 

Lottia asmi log(x+1.0) No  N 0.05 0.17 0.59 0.20 

Lottidae log(x+0.1) No  N 0.35 0.49 <0.01 0.18 

Mytilus spp. cover 
log(x+0.01

) No  N 0.08 0.58 0.60 0.21 

Ocinebrina spp. log(x+1.0) No  N 0.05 0.95 0.75 0.56 

Pagurus spp. log(x+0.1) No  N 0.06 0.18 0.45 0.13 

Invertebrate Species 
Richness log(x+1.0) No  Y 0.08 0.52 0.84 0.10 
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Table 3. F-statistics and p-values of the 
differences in species abundance among 
Hazard Reef, Hazard-Mid and Hazard-Far 
sampling areas. Degrees of freedom for ‘Site’ 
is 2, for ‘Segment (Site)’ is 30, and ‘Error’ is 
66. Significant p-values at α=0.05 are 
underlined. 

  Mean Square F P 

Total Algal Cover 
Site 1846.00 6.61 <0.01 
Segment (Site) 279.40 0.95 0.55 
Error 294.80     

Silvetia compressa 
Site 1.99 0.82 0.45 
Segment (Site) 2.43 1.94 0.01 
Error 1.25     

Rockweeds (Silvetia and Hesperophycus combined) 
Site 2.30 1.10 0.35 
Segment (Site) 2.09 2.09 <0.01 
Error 1.00     

Endocladia muricata 
Site 5.33 4.48 0.02 
Segment (Site) 1.19 1.10 0.37 
Error 1.08     

Mastocarpus papillatus 
Site 0.36 0.74 4.84 
Segment (Site) 0.48 1.21 0.26 
Error 0.40     

Lottidae (limpets) 
Site 84.68 13.16 <0.01 
Segment (Site) 6.43 0.69 0.87 
Error 9.38     

Polyplacaphora (chitons) 
Site 1.35 2.15 0.13 
Segment (Site) 0.63 1.95 0.01 
Error 0.32     
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Figure 1. Study locations: a) California State Park coastal shores in San Luis Obispo 

County, California; b) visitor count areas, field sampling transects, and field experiment 

location; c) Hazard Canyon field sampling transects. 

 

Figure 2. Levels of visitor exposure observed at MDO State Park and levels tested 

experimentally. Exposure levels are standardized to m2 for comparison purposes. The 

exposure levels tested bracketed what we estimate occurs at MDO State Park in a year 

period.  

 

Figure 3. Changes, relative to controls, in the percent cover of algae and seagrass in the 

treatment plots between the pre-treatment and treatment periods. Histogram bars that are 

on the left side of the zero center line represent decreases in cover, relative to controls, 

and histogram bars that are on the right side of the zero center line represent increases in 

cover, relative to controls. Changes that were statistically significant, relative to controls, 

are indicated with an asterisk.  

 

Figure 4. Changes over time, relative to controls, in total non-crustose algal cover. 

 

Figure 5. Non-metric multidimensional scaling of Czekanowski distances among average 

algal delta values (plot value – average of control plots) of the three exposure treatments, 

relative to controls. The survey number is printed above each symbol: circles = low 

exposure treatment; down triangles = medium exposure treatment; and squares = heavy 

exposure treatment. The open symbols represent the surveys prior to application of the 
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treatments and filled symbols after treatment application. Lines are used to show the time 

sequence among surveys. 

 

Figure 6. Changes, relative to controls, in the density and cover of invertebrates in the 

treatment plots between pre-treatment and treatment periods. Histogram bars that are on 

the left side of the zero center line represent decreases in cover, relative to controls, and 

histogram bars that are on the right side of the zero center line represent increases in 

cover, relative to controls. Changes that were statistically significant, relative to controls, 

are indicated with an asterisk  

 

Figure 7. Non-metric multidimensional scaling of Czekanowski distances among average 

invertebrate delta values (plot value – average of control plots) of the three exposure 

treatments, relative to controls. The survey is printed above each symbol: circles = low 

exposure treatment; down triangles = medium exposure treatment; and squares = heavy 

exposure treatment. The open symbols represent the surveys prior to application of the 

treatments and filled symbols after treatment application. Lines are used to show the time 

sequence among surveys. 

 

Figure 8. The abundance of species sampled in the Montaña de Oro field observational 

study: a) algae; b) invertebrates. The letters above bars within a group indicate the results 

of a posteriori Tukey pairwise comparison tests (p<0.05). Within a group, abundances 

with different letters are significantly different from each other. Otherwise abundances 

within a group are not significantly different from each other. 
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Figure 9. Comparison of foot traffic levels (footsteps) tested in various trampling 

experiments and the present experiment. Data are standardized to 1 m2 to compare 

studies. Data are also portrayed as the number of times the same footprint space was 

stepped on based on a footprint being 0.03 m2 in area and that the investigators 

distributed the footsteps evenly in the test plots during each treatment.  
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Appendix 2 

 

The significant relationship between the number of parked cars and intertidal 

visitor density at Hazard Reef indicated that it may be possible to size parking areas such 

that they accommodate a maximum number of cars to allow a target visitor density 

leading to acceptable impact levels set by resource managers.  Further controlled 

manipulation of parking lot size should be conducted in order to determine a causal 

relationship between the number of parking spaces and the intertidal visitor density.  A 

ratio of parking spaces to visitor density could then be estimated and the following 

calculation could be conducted to determine the maximum number of spaces leading to 

the desired density of annual visitors.  To appropriately size a parking lot, managers 

should determine the area of the rocky intertidal they are allowing access to, calculate the 

ratio of the area of their reef  relative to Hazard Reef (1,960 m2 at +0.61 m MLLW), and 

multiply by the target annual visitor density.  Because the target annual visitor density 

would be related to the number of cars in the parking lot, it would be necessary to 

determine the target visitor density based on the number of cars parked in a parking area 

leading to a specific density of annual visitors. The number of cars parked in a lot will be 

used in an equation as a proxy for the annual density of visitors.  Resource managers can 

reference the results of Appendix 1 to determine the target annual visitor density leading 

to acceptable impacts.  As mentioned above, an experiment would be needed to 

determine the relationship between the number of cars parked in a parking lot and the 

annual intertidal visitor density, which would produce a figure similar Figure A 2.1.  For 

this hypothetical example, I will assume an experiment had been conducted and a 

significant causal relationship was detected between the numbers of cars parked in a lot 
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and the annual density of visitors (Fig. A 2.1).  The calculation to determine an 

appropriately sized parking lot is described by the following equation: 

 

Ps = (An/Ah) Pt 

 

Where Ps is the desired parking lot size for a new area, An is the size of a new area, Ah is 

the size of the CRKA at Hazard Reef, and Pt is the parking lot size that corresponds to the 

target annaul visitor density (i.e., impact level).  

For example, if there was a newly opened rocky intertidal habitat with an area of 

2,500 m2 (+0.61 m MLLW) and managers wanted to allow fewer than 3.3 people m-2 yr-1, 

which corresponds to 13.75 parking spaces in my hypothetical example (Pt) (Fig A 2.1), 

with a 95% confidence interval they would solve: 

 

Ps = (2,500 m2 / 1,960 m2) 13.75  

 

Ps = 17.6 cars    

Thus the parking lot should hold no more than 17 cars to keep visitor densities below 3.3 

people m-2 yr-1 with a 95% confidence interval at an intertidal site where intertidal 

exploration is the primary goal of visitors. 
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Figure A 2.1. An exponential model of parking lot size to predict annual intertidal visitor density at Hazard 
Reef.  High experimental visitor density (3.3 people m-2 yr-1) was expected to occur (95% confidence) with 
a parking area of 13.75 cars. The mean line, 95% confidence interval, and 75% confidence interval were 
plotted to display the range of expected annual visitor densities with varying degrees of accuracy.  NOTE: 

the annual visitor density was predicted by extrapolating beyond the parking lot car count values 

from our dataset.  This was done to provide an example of how car counts could be used to predict 

annual visitor density.  Before using parking areas to control the annual density of intertidal visitors 

using this method, researchers should obtain additional car count data. 

 

 


