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Abstract The voltage-gated sodium channel (Nav) plays a
key role in regulation of neuronal excitability. Aberrant regu-
lation of Nav expression and/or function can result in an
imbalance in neuronal activity which can progress to epilepsy.
Regulation of Nav activity is achieved by coordination of a
multitude of mechanisms including RNA alternative splicing
and translational repression. Understanding of these regulato-
ry mechanisms is complicated by extensive genetic redundan-
cy: the mammalian genome encodes ten Navs. By contrast, the
genome of the fruitfly,Drosophila melanogaster, contains just
one Nav homologue, encoded by paralytic (DmNav). Analysis
of splicing in DmNav shows variants exhibit distinct gating
properties including varying magnitudes of persistent sodium
current (INaP). Splicing by Pasilla, an identified RNA splicing
factor, alters INaP magnitude as part of an activity-dependent
mechanism. Enhanced INaP promotes membrane hyperexcit-
ability that is associated with seizure-like behaviour in
Drosophila. Nova-2, a mammalian Pasilla homologue, has
also been linked to splicing of Navs and, moreover, mouse
gene knockouts display seizure-like behaviour.

Expression level of Navs is also regulated through a mech-
anism of translational repression in both flies and mammals.
The translational repressor Pumilio (Pum) can bind to Nav
transcripts and repress the normal process of translation, thus
regulating sodium current (INa) density in neurons. Pum2-
deficient mice exhibit spontaneous EEG abnormalities.
Taken together, aberrant regulation of Nav function and/or
expression is often epileptogenic. As such, a better under-
standing of regulation of membrane excitability through
RNA alternative splicing and translational repression of
Navs should provide new leads to treat epilepsy.
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Introduction

The regulation of neuronal excitability—primarily the ability
to maintain action potential firing within physiological con-
straints—is an important mechanism for maintenance of neu-
ronal stability [1].Without such regulation, chronic changes in
levels of synaptic excitation have the potential to destabilise
neural circuits leading to an imbalance in neuronal activity.
One consequence of activity imbalance is seizure, which if
recurrent is termed epilepsy [2]. The voltage-gated sodium
channel (Nav) plays a key role in the regulation of neuronal
excitability because its activation results in action potential
firing. It is perhaps, therefore, not surprising that many mech-
anisms that act to stabilise neuronal activity do so through
modifying the activity of this class of ion channel [1, 3–7].

Ten genes (SCN1A-SCN11A), encoding pore-forming α-
subunits, are present in mammals [8]. This relatively high
number is, however, insufficient to support the wide diversity
of Nav kinetics reported in the nervous system. Diversity of
signalling is critically reliant on additional mechanisms such
as alternative splicing, RNA editing, and protein modification
(i.e., phosphorylation) [9–12, 4]. However, whilst the impor-
tance of posttranscriptional and posttranslational modifica-
tions is appreciated for refining activity of channel subtypes,
understanding of the mechanisms that neurons employ to
determine which form of Nav to express remains rudimentary.
In contrast to mammals, the genome of the fruitfly
Drosophila melanogaster contains only one Nav channel ho-
mologue: encoded by paralytic (DmNav) [13, 5]. The lack of
redundancy, coupled with a high degree of structural and
functional homology, makes DmNav an advantageous model
with which to study the role of this ion channel family [14,
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15]. In this review, we use DmNav as a model to summarise
recent findings relating to how neurons generate diversity in
Nav channel activity and to stabilise neuronal circuit function
when faced with changing levels of synaptic excitation.

Alternative splicing generates diversity in Nav channel
activity

Alternative splicing involves the substitution, removal, and/or
inclusion of exonic sequences within a pre-messenger RNA
(mRNA) to produce transcripts encoding related protein iso-
forms [9]. Estimates indicate that ~95 % of human genes are
alternatively spliced [16, 17]. Variant transcripts of DmNav,
first reported by Loughney et al., (1989), were among the first
evidence for the existence of alternative splicing of this family
of gene products. Subsequent studies in Drosophila, Musca,
and cockroach have identified 15 alternatively spliced exons
[18, 19, 14, 20, 15]. Importantly, alternative splicing of
exons is replicated in mammalian Nav channels [21–23].
Spliced exons are conserved across evolutionarily diverged
species, strongly indicative of fundamental physiological
importance.

A recent structure-function study has described the effects
to DmNav channel kinetics of alternative splicing [15]. Of the
15 known splice decisions, two splice events are mutually
exclusive incorporating one of either a pair of exons (C/D and
K/L). Both exon pairs are membrane spanning, contributing to
domains IIS4–5 and IIIS3–4, respectively. The remaining 11
spliced exons (J, 7, 8, I, A, B, E, F, 22, H, 23) are independent
and cytoplasmic. Heterologous expression of DmNav splice
variants in Xenopus oocytes shows that such splicing imparts
specific attributes to channel kinetics. For example, inclusion
of exon F results in a hyperpolarising shift in activation
kinetics, indicative of increased excitability for those neurons
that express F-containing variants. By contrast, inclusion of
exons J and E results in a depolarising shift of activation
voltages which are predicted to reduce neuron excitability.
On the other hand, channels expressing exon H inactivate at
more depolarised voltages, predicted to make neurons more
excitable. Finally, the choice to include mutually exclusive
exons K or L markedly affects the magnitude of the persistent
current (INaP) that arises from incomplete inactivation of the
channel [24, 5, 25]. Inclusion of exon K results in a smaller
INaP relative to that observed from expression of transcripts
that contain exon L, in otherwise identical channels.
Increasing INaP leads to an increased frequency of action
potential firing [26, 5]. Figure 1 summarises the known splic-
ing events ofDmNav, and the effect on channel kinetics and/or
INaP is summarised in Table 1. Of course, the caveat to
heterologous expression is that the nature of the cell mem-
brane of the cell type used may influence the kinetics of
expressed channels compared to expression, in this instance,
in Drosophila neurons [27]. Attempts to express DmNav

variants in Drosophila neurons, using the well-characterised
GAL4/UAS system, has repeatedly failed to produce func-
tional channels, for unknown reasons (Lin and Baines, unpub-
lished observations).

Both embryonic and adult Drosophila CNS expresses a
wide diversity ofDmNav splice forms. However, the profile of
splicing differs between these two stages. This is indicative
that different Nav properties are required at each stage and that
these differences are achieved through splicing. Differences of
spliced exons expressed in these two stages include a greater
usage of exon J (89 %) but not of exon F (10 %) in adults and
vice versa in embryos (10 % exon J and 78 % exon F) [14,
15]. However, the physiological significance of these differ-
ences is not clear. It is interesting to note that DmNav tran-
scripts which lack a majority of common cytoplasmically
located spliced exons result in channels with shifted activation
and inactivation kinetics towards hyperpolarised and
depolarised voltages, respectively, and which also exhibit a
much larger INaP. These properties are predicted to make
neurons highly excitable [15]. Similarly, analysis of splicing
of Nav in other insects shows that it is important for functional
properties of the expressed channel. For example, exclusion of
optional exon B (located at the linker between the domains I
and II, but not equivalent to exon B in Drosophila) in cock-
roach sodium channels (BgNav) potentiates the amplitude of
the fast-activating and inactivating INa transient current (INaT),
which is likely to increase cell excitability (Table 1) [28].
Indeed, an emerging theme is that splicing in of optional exons
primarily reduces channel activity and hence, membrane ex-
citability, in order to suit the requirements of neural signalling.

Splicing in intracellular coding regions of mammalian Navs
can also result in changes to channel activity. For example, the
human Nav1.3 (SCN3A) alternative spliced exon 12, which
encodes an intracellular loop between domains I and II, results
in the generation of multiple isoforms. By using multiple
splice donor sites in exon 12, four different variants are
produced: 12v1, 12v2, 12v3, and 12v4. The variant 12v4,
when compared to 12v2, seemingly increases membrane ex-
citability by shifting activation kinetics of the expressed INa.
By contrast, inactivation kinetics showed a shift toward
hyperpolarising potentials for 12v1 over 12v3, indicative that
expressing 12v1 might be expected to decrease membrane
excitability (Table 1) [29, 30]. Taken together, Nav gating
properties can be determined by the inclusion of exons to alter
membrane excitability. However, details of how inclusion of
specific spliced exons change gating of the affected channels
remains to be determined. A possible mechanism for altering
channel kinetics is the phosphorylation state of the channel
[30, 31]. Analysis of the amino acid sequence of human
Nav1.3 splice variants revealed the presence of two additional
phosphorylation sites (protein kinase C on Ser631⁄632 and
casein kinase II on Ser646) in 12v3 and 12v4 that are absent
from other variants [30]. Changing membrane excitability
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Fig. 1 Schematic of the predicted topology of the voltage-gated sodium
channel showing approximate locations of Drosophila spliced exons.
Cytoplasmic DmNav exons J, 7, 8, I, A, B, E, F, 22, H, 23 are optional,
while exons C/D and K/L are mutually exclusive. DmNav exon 8 is
conserved in human Navs as mutually exclusive spliced exons 5A and
5N (6A and 6N in hNav1.2 and hNav1.3 due to different exon numbering
in the consensus gene sequence), and identical residues are shown in
black boxes. Exon 5A and 5N of hNav1.1 differ by 3 amino acids, shown
in grey boxes in the 5N sequence. Mutually exclusive DmNav spliced
exon L and cockroach BgNav exon G1 are identical and are conserved in

human: exon 18A of hNav1.1 and hNav1.6. DmNav exons K and L differ
by 16/41 residues (shown in grey boxes in the exon K sequence). Inclu-
sion of BgNav exon G3 and hNav1.6 exon 18N generated a truncated
channel. Exon 12 of hNav1.3 is located in the intracellular loop between
domains I and II. By using different splice donor sites in exon 12, four
spliced variants, 12v1, 12v2, 12v3, and 12v4 can be generated. The
amino acid sequences are obtained as follows: DmNav 8, K, and L [15];
hNav 5A and 5N [61]; hNav1.6 18A and 18N [23]; BgNavG1, G2, and G3
[20]; hNav1.3 12v1, 12v2, 12v3, and 12v4 [30]

Table 1 Summary of spliced Nav
exons that are known to affect
channel kinetics. Predicted influ-
ence on neuron excitability due to
splicing are stated, increased (↑),
decreased (↓), or complex (?)

Specific changes observed to
channel kinetics are as follows:
depolarising (→) or
hyperpolarising (←) shifts in ac-
tivation (act) or inactivation
(inact) and/or increased (↑) or de-
creased (↓) transient (INaT) or
persistent sodium current (INaP)
amplitude

Channel Exon Expression system Predicted effect on cell excitability (by changing) References

DmNav J, E Xenopus oocytes ↓ (act →) [15]

DmNav F Xenopus oocytes ↑ (act ←) [15]

DmNav H Xenopus oocytes ↑ (inact →) [15]

DmNav K Xenopus oocytes ↓ (INaP amplitude ↓) [15]

DmNav L Xenopus oocytes ↑ (INaP amplitude ↑) [15]

hNav1.1 5A HEK293T ↑ (INaP amplitude ↑, inact →) [61]

hNav1.1 5N HEK293T ↓ (INaP amplitude ↓, inact ←) [61]

hNav1.3 12v1 Xenopus oocytes ↓ (inact ←) [30]

hNav1.3 12v2 Xenopus oocytes ↓ (act →) [30]

hNav1.3 12v3 Xenopus oocytes ↑ (inact →) [30]

hNav1.3 12v4 Xenopus oocytes ↑ (act ←) [30]

BgNav B Xenopus oocytes ↑ (INaT amplitude ↑) [28]

BgNav G1 Xenopus oocytes ? (INaT amplitude ↓, act ←, inact →) [20]

BgNav G2 Xenopus oocytes ? (INaT amplitude ↑, act →, inact ←) [20]
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through phosphorylation in the I-II linker of Nav may influ-
ence current amplitude without significantly affecting gating
properties [11, 32–36].

Persistent Na current and membrane excitability

The persistent Na current (INaP) has been identified to play
critical roles in regulating membrane excitability [37].
Moreover, numerous point mutations in human Navs, identi-
fied in patients with epilepsy, potentiate this component of the
voltage-gated Na current (INa) [26]. Interestingly, INaP is also a
primary target of some clinically used antiepileptic drugs,
including phenytoin, valproic acid, and lamotrigine. [38–40].
It is significant, therefore, that the magnitude of this current
can be altered through alternative splicing. However, our
understanding of the molecular machinery that regulates splic-
ing of Navs is poor. This is unfortunate because a fuller
understanding may offer new leads for antiepileptic drug
design.

In early behavioural screens of Drosophila, different
single-gene mutations were identified that induce a seizure-
like phenotype when flies are exposed to strong sensory
stimuli. Following a mechanical shock, such as vortexing or
harsh-tapping of the culture vial, bang-sensitive (bs) mutant
flies exhibit a stereotyped sequence of seizure-like spasms,
followed by a period of paralysis, and then a second recovery
seizure-like phase that precedes a more complete recovery
(Fig. 2) [41, 42]. Despite the evolutionary distance, the resem-
blance in epileptiform activity between fly and humans and
the response to clinical antiepileptic drugs make bs mutants an
accepted model for studying epilepsy [42–49]. One such bs
mutant—slamdance (sda)—which has a deficiency of amino-
peptidase N, exhibits increased seizure-like activity in

response to electrical stimulation in the larval stage. Detailed
electrophysiology shows that INaP is significantly increased in
central motoneurons in this mutant [48]. A molecular analysis
reveals that splicing of DmNav is similarly altered in the sda
mutation to favour inclusion of exon L at the expense of exon
K [25]. As previously described (see above), inclusion of exon
L results in channels that, when expressed inXenopus oocytes,
exhibit a larger INaP [15]. Seizure-like behaviour, in response
to electric shock, along with the increased INaP and increased
inclusion of L isoform are all reversed by feeding larvae with
antiepileptic drugs (AEDs) including phenytoin (Phy) and
gabapentin (Gbp) [25, 48]. Thus, a better understanding of
how INaP is regulated, particularly through splicing, may be
beneficial for epilepsy therapy.

Activity-dependent alternative splicing regulation of INaP
expression

Seizures can be induced in both mammals and flies through
ingestion of proconvulsants such as picrotoxin (PTx) [50, 46].
PTx elicits seizure through antagonism of the GABAA

receptor-suppressing synaptic inhibition [51, 52].
Remarkably, we showed that enhancement of synaptic activity
in wild-type larvae, through ingestion of PTx, is sufficient to
increase inclusion of exon L in DmNav, increasing INaP as a
consequence and inducing a bang-sensitive phenotype.
Conversely, seizure activity can be rescued via enhancing
synaptic inhibition in sda through ingestion of GABA [25].
Both manipulations suggest that the ‘decision’ to splice either
exon L or K is dictated by neuronal activity: i.e. activity-
dependent. Increasing synaptic excitatory input results in
greater inclusion of exon L, which in turn increases INaP and
membrane excitability [25]. Increased excitability would be

Normal phenotype

Vortexing

Seizure-like
spasms

Recovery 
seizure

Paralysis

Normal
but refractory

Fig. 2 Drosophila bang-sensitive
mutant behaviour. Brief vortexing
(~10 s) of the culture vial,
containing bang-sensitive mutant
flies, induces a stereotyped
sequence of seizure-like spasms,
followed by a period of paralysis,
and then a recovery seizure-like
phase that precedes a normal but
refractory phase followed
ultimately by a complete recovery
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predicted to further increase inclusion of exon L up to a
maximum of 100 % (which is observed in sda and other bs
mutants). Such a self-reinforcing cycle provides a plausible,
although untested, explanation of the clinical observation in
which untreated seizures beget seizures, i.e. paroxysmal ac-
tivity has the potential to promote susceptibility to further
seizures [53, 54].

Splicing of Nav transcripts in response to activity provides
an important mechanism for inducing changes in excitability.
Because of the complexity of the mammalian CNS, with its
larger number of expressed Navs, the extent of splicing and
its functional consequences are not well understood.
However, the high degree of homology between DmNav
and its mammalian counterparts allows us to use the former
to guide future studies in mammals. Drosophila exon K/L
(located in homology domain III S3-4) is conserved in the
homologous domain III from insect to mammal [20, 18, 23],
although the outcome of splicing differs. Splicing at this
location in cockroach produces three mutually exclusive
transcripts that contain spliced exons G1, G2, or G3. G3
contains a stop codon and generates a nonfunctional channel,
whereas G1 and G2 result in channels that differ in peak INaT
amplitude, gating properties (Table 1) and sensitivity to del-
tamethrin, a pyrethroid insecticide [20]. In mammals, this
same region is also spliced in Nav1.1 and Nav1.6—resulting
in the inclusion of exons 18A or 18N [21–23]. Exon 18A
predominates in adult brain and 18N in embryo and
nonneuronal tissues. Similar to the cockroach exon G3,
mammalian exon 18N contains a stop codon and generates
a truncated channel. These truncated Nav channels that con-
tain only the first two domains, express mainly in
nonneuronal tissues, and are hypothesised to be a ‘fail-safe’
mechanism to prevent the expression of functional Navs in
nonexcitable cells [55, 23, 21, 22].

A second splicing event in mammalian Navs is noteworthy
because it occurs at the equivalent S3-4 region of homologous
domain I. Similar to DmNav, splicing at exon 5 in Nav1.1 is
mutually exclusive with the choice of either exons 5A or 5N
(again for adult and neonatal). Alternative splicing in this
region is also observed in Nav1.2, 1.3, 1.6 and Nav1.7 in both
human and mouse [56–60]. In human Nav1.1, three amino
acids differ between exon 5A and 5N; however, the channels
exhibit distinct gating properties. Heterologous expression of
human Nav1.1-5N, in HEK293T cells, produces channels
which exhibit more rapid inactivation and reduced INaP com-
pared to Nav1.1-5A. Whilst much needs to be learnt about this
splice event, these results suggest that splicing at this location
is sufficient to confer changes in neuronal excitability
(Table 1) [61]. Intriguingly, inclusion of neonatal exon 6N is
increased in both Nav1.2 and Nav1.3 following electrical or
kainate-induced seizure in adult rat hippocampus [62, 63],
perhaps indicative that splicing may similarly be activity-
regulated in mammals, as it is in the fly.

Pasilla/Nova, critical factors involved in activity-dependent
alternative splicing

A screen of RNA-binding proteins in Drosophila first identi-
fied Pasilla (Ps) to be sufficient to regulate splicing of mutu-
ally exclusive exons K and L inDmNav [64]. The inclusion of
exon K is significantly increased to 50 % in a ps loss-of-
function mutant indicating that the presence of Ps is necessary
for the inclusion of exon L [15]. Loss of one copy of ps is also
sufficient to rescue the bs-associated seizure behaviour of sda
mutants and, moreover, to also prevent PTx-induced seizure in
WT background (Fig. 3) [25]. These data suggest that Ps is
required for the underlying activity-dependent splicing mech-
anism. Ps, which contains a K-homology (KH) RNA-binding
domain [65, 66], encodes the Drosophila homologue of the
human neuro-oncological ventral antigen 1 and 2 (Nova-1 and
Nova-2, respectively) proteins [67, 68]. Nova-1 and Nova-2
are expressed to high levels in brain, however, in largely
nonoverlapping patterns [69–71]. By recognising YCAY-
motifs, located either in introns or 3’UTRs of target
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Fig. 3 Pasilla is required for activity-dependent inclusion of exon L of
DmNav. Prolonged mean recovery time to electroshock of third instar
larvae (i.e. increased severity of seizure) is observed in both slamdance
(sda) mutants and picrotoxin (PTx)-fed WT flies. Analysis of splicing of
DmNav in whole CNS of such larvae shows that inclusion of exon L
increased to ~100 %. In sda, loss of one copy of pasilla (sda+/−, ps+/−) is
sufficient to decrease the inclusion of exon L and to rescue seizure-like
behaviour. Similarly, removal of one copy of ps in WT larvae (ps+/−)
diminishes PTx-induced seizure, as well as inclusion of exon L. Data are
taken from [25]
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transcripts, Nova1/2 regulate neuronal alternative splicing and
also mediate transportation of some target transcripts between
the nucleus and cytoplasm [68, 72, 73]. Splicing in at least 17
ion channel genes, including Navs, is predicated to be regu-
lated by Nova-2 [74, 75]. Significantly, overexpression of
Nova-2 in HEK293 cells results in an increase in the
Nav1.1-5N splice variant [75]. In support of this, Nova-2
and Nav1.1-5N transcript abundance are upregulated in tem-
poral neocortical tissue of mesial temporal lobe epilepsy pa-
tients. [75]. The relationship between Nova expression and
epilepsy has been further examined by EEG recordings in
Nova-2+/− heterozygous mice (Nova-2−/− mice die within 2–
3 weeks of birth). Perturbing Nova steady-state levels in
Nova-2+/− heterozygous mice gives rise to cortical hyperex-
citability and also to spontaneous generalised seizure dis-
charge [73]. Moreover, Nova localization shifts from primar-
ily nuclear to cytoplasmic within 2–4 h after pilocarpine-
induced seizure [73]. Taken together, these findings strongly
implicate perturbation of Nova-2 function contributes to
epileptogenesis. The corollary would be that manipulation of
Nova activity might be antiepileptic. The conservation of
function between Ps and Nova offers the exciting opportunity
to utilise Drosophila to rapidly identify molecules that might
influence Nova function.

Sodium channel expression and homeostasis

Control of neuron excitability is known to be achieved at the
genomic level through transcriptional regulation of Nav chan-
nel genes [1, 3, 76, 6]. In Drosophila CNS, the regulation of
the voltage-gated sodium current (INa) can be achieved
through activity-dependent alteration of DmNav mRNA level
[77, 4, 5, 78]. Removal of excitatory synaptic inputs to moto-
neurons, achieved by expressing tetanus toxin light chain in
all central neurons, significantly increased DmNav transcript
abundance and also the magnitude of INa in motoneurons. On
the other hand, enhanced excitatory synaptic release, achieved
by increasing cAMP level in the CNS, decreased both mRNA
level and INa [77, 5]. This homeostatic mechanism is ideally
suited to allow membrane excitability to track the degree of
synaptic excitation to which a neuron is exposed (i.e. neuronal
homeostasis).

Mammalian neurons (e.g. rat) exhibit the same type of
activity-dependent homeostasis of membrane excitability [3].
Deprivation of synaptic excitation in cortical neuron cultures,
achieved by chronically blocking glutamatergic signalling,
resulted in increased Nav1.6 mRNA expression, INa, and
membrane excitability [79]. The underling mechanism of this
homeostatic regulation, in both flies and mammals, requires
the protein Pumilio (Pum) [79, 80, 5, 78]. Pumilio is a
member of the Pum and FBF (PuF) RNA-binding protein
family [81, 82] and is evolutionarily conserved in many
species including yeast (Saccharomyces cerevisiae),

C. elegans, Drosophila, Anopheles, zebrafish, Xenopus,
mouse, and human [82, 83].

In the fly CNS, activity-dependent increase in Pum level
results in the translational repression of DmNav transcripts,
reducing INa and membrane excitability [5, 78]. This mecha-
nism is dynamic, such that decreasing levels of synaptic
excitation results in decreased Pum level, increased DmNav
transcript abundance, and potentiation of membrane excitabil-
ity. In rat cortical neurons, the level of Pum was similarly
observed to be activity-dependent, mirroring the mechanism
observed in the fly [79, 84]. Pum is able to repress translation
through binding a specific motif—termed Nanos response
element (NRE) [85]—present in both DmNav and rat Nav1.6
transcripts [79, 78]. Once Pum is bound to a transcript, cofac-
tors Nanos [86] and brain tumour [86] are recruited to form a
quaternary RNA-protein complex that causes transcript
deadenylation [87] and consequently repression of translation.
An 8-nucleotide core motif UGUA(A/U/C)AUA [88] of the
NRE is sufficient for the binding of Pum toDmNav transcripts
[78], and this motif exists in about 10 % of all Drosophila
transcripts [88]. Notably, those 10 % of transcripts were only
interrogated for NREs present in the 3’UTR region; however,
Pum binds to the NRE located in the 3’ end of the open
reading frame (ORF) in both DmNav and rat Nav1.6 [79,
78]. Therefore, there might be many more Pum targets yet to
be identified.

In a genome-wide screening of transcripts associated with
the RNA-binding region of Pum, more than 1,000 distinct
mRNAs were identified [88]. This suggests that Pum is
broadly involved in posttranscriptional regulation of many
genes. Indeed, in addition to regulating translation of Navs,
Pum has also been implicated to regulate dendritogenesis [89,
90], expression of glutamate receptors [91], and aspects of
memory and learning in higher brain centres [92]. Behaviour
training of long-term memory (LTM) produced by spaced
training (ten training sessions with a 15-min rest interval
between each session), compared to anaesthesia-resistant
memory (ARM) produced by massed training (ten training
sessions without rest intervals), resulted in pum mRNA up-
regulation. Pum mutant flies also showed defects in LTM
formation. [92]. Pum regulates NMJ morphology via nega-
tive regulation of the translational factor eIF-4E expression
by directly binding to an NRE in the 3’UTR of the eIF-4E
transcript [90]. Pum loss-of-function mutants show enhanced
expression of eIF-4E and upregulated GluRIIA expression
and increased frequency of spontaneous neurotransmitter re-
lease [91]. Thus, Pum is seemingly central to many aspects of
CNS function, not least of which is homeostatic control of
neuronal excitability. In this regard, it is significant that in
mouse, Pum2 deficiency leads to spontaneous EEG abnor-
malities and lower seizure thresholds to the proconvulsant
pentylenetetrazole [93]. Similar to Pum, the Nav1.6 transcript
is upregulated in CELF4 (CUGBP, ELAV-like family

62 Mol Neurobiol (2015) 51:57–67



member 4) deficient mice [94]. CELF4 is similarly a brain-
specific neuronal RNA-binding protein and binds to the
3’UTR of Nav1.6. Because mammalian Nav1.6 is the primary
determinant of action potential initiation and main contributor
of INaP in excitatory neurons, upregulated Nav1.6 mRNA
results in increasing neuronal excitabil i ty [95].
Consequently, CELF4 deficient mice exhibit both convulsive
and nonconvulsive (absence-like) seizures and also have a
lower seizure threshold [94, 96]. These findings demonstrate
that understanding the regulation of INa or INaP via RNA-
binding proteins is a potentially important approach for epi-
lepsy therapy.

Summary and outlook

Voltage-gated sodium channels are important determinants for
controlling membrane excitability. Regulation of Nav activity
is achieved, at least in part, by coordination of RNA alterna-
tive splicing and translational repression of Nav transcripts
(Fig. 4). When one considers additional mechanisms of regu-
lation of Nav channel activity, including RNA editing [28],
phosphorylation [33, 32, 11, 4], trafficking [97, 98], and
degradation [98–100], it becomes clear that these channels
are subject to both considerable and diverse regulation con-
sistent with the high level of channel diversity observable in
the multitude of neuron types in the human brain. The
utilisation of model systems, including Drosophila, offers
the significant opportunity to rapidly progress understanding
in these and related areas.

A particular area where Drosophila is already making a
contribution to understanding epilepsy is through modelling
human Nav point mutations. Avariety of techniques now exist
to allow such mutations to be ‘knocked-in’ to DmNav. Sun
et al. [101] recently reported a Nav1.1 (K1270T) knock-in that
recapitulates a mutation associated with genetic epilepsy with

febrile seizures plus (GEFS+). Electrophysiological analysis
shows this to be a gain-of-function mutation that results in a
hyperpolarizing shift in the deactivation potential for INaP.
This approach not only serves to validate the genetic basis of
human disease, but also provides a sensitised genetic back-
ground for high-throughput, low cost, screens to identify
novel compounds that have antiepileptic properties.
Identification of novel targets, such as splicing regulators,
can also be quickly developed as the basis of screens with
the potential advantage of identifying antiepileptic com-
pounds which interact with nontraditional targets. By far the
most common targets of currently usedAEDs are ion channels
and, whilst these offer effective therapeutic targets, there
might bemuch to be gained from identifying additional targets
which would facilitate combinatorial therapy. Combinations
of AEDs are showing promise for the treatment of intractable
epilepsy [102].

Use of Drosophila (and other simple model systems) also
offers the prospect of exploring the mechanistic basis of
epileptogenesis from understanding how small seizures
may lead to larger seizures to providing novel approaches
to prevent epilepsy from progressing, even when an
epilepsy-associated mutation is present. For example, we
recently reported that the presence of phenytoin, during
embryogenesis when the CNS first forms neural circuits,
prevents the normal seizure phenotype characteristic of the
Drosophila sda mutant [48]. The inference from this study is
that early intervention may be beneficial in blocking
epileptogenesis by preventing activity-dependent feedback
mechanisms that we spotlight in this review. The finding
of conservation of regulatory mechanisms between insects
such as Drosophila and mammals validates the use of sim-
pler model organisms to provide better understanding of Nav
regulation in humans with an obvious benefit of novel
therapies for epilepsy.

Neuronal
activity

RNA alternative
splicing

Translational
repression

Channel kinetics

INaP
(Nova/Pasilla)

INa
(Pumilio, CELF4)

Membrane
excitability

Seizure

Fig. 4 Membrane excitability is regulated by activity-dependent RNA
alternative splicing and translational repression of voltage-gated sodium
channel transcripts. Control of membrane excitability through Nav activ-
ity is achieved by regulation of channel kinetics, current density (INa), and
magnitude of persistent Na current (INaP). RNA alternative splicing
results in splice variants which exhibit different channel gating properties
including activation and inactivation kinetics and INaP. Splicing is

regulated, in part, by Pasilla in Drosophila and in humans by its homo-
logue, Nova. In Drosophila, increased synaptic excitation results in
increased INaP, which in turn feeds back to further increase synaptic
excitation. This self-reinforcing cycle likely further increases INaP (dashed
line) leading to seizure. Current density of Nav can be regulated through a
mechanism of translational repression of Nav transcripts via Pumilio and
possibly CELF4
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