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ABSTRACT

Noise Reduction with Microphone Arrays for Speaker Identification

Zachary G. Cohen

The presence of acoustic noise in audio recordings is an ongoing issue that
plagues many applications. This ambient background noise is difficult to reduce due to its
unpredictable nature. Many single channel noise reduction techniques exist but are
limited in that they may distort the desired speech signal due to overlapping spectral
content of the speech and noise. It is therefore of interest to investigate the use of
multichannel noise reduction algorithms to further attenuate noise while attempting to
preserve the speech signal of interest.

Specifically, this thesis looks to investigate the use of microphone arrays in
conjunction with multichannel noise reduction algorithms to aid aiding in speaker
identification. Recording a speaker in the presence of acoustic background noise
ultimately limits the performance and confidence of speaker identification algorithms. In
situations where it is impossible to control the noise environment where the speech
sample is taken, noise reduction algorithms must be developed and applied to clean the
speech signal in order to give speaker identification software a chance at a positive
identification. Due to the limitations of single channel techniques, it is of interest to see if
spatial information provided by microphone arrays can be exploited to aid in speaker
identification.

This thesis provides an exploration of several time domain multichannel noise
reduction techniques including delay sum beamforming, multi-channel Wiener filtering,
and Spatial-Temporal Prediction filtering. Each algorithm is prototyped and filter
performance is evaluated using various simulations and experiments. A three-
dimensional noise model is developed to simulate and compare the performance of the
above methods and experimental results of three data collections are presented and
analyzed. The algorithms are compared and recommendations are given for the use of
each technique. Finally, ideas for future work are discussed to improve performance and
implementation of these multichannel algorithms. Possible applications for this
technology include audio surveillance, identity verification, video chatting, conference
calling and sound source localization.
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1. INTRODUCTION

Techniques for recording and preprocessing audio have many applications in
communication, surveillance and entertainment. When recording audio, it is important to
eliminate all unwanted noise before further application specific processing is performed.
Noise present due to the uncontrollable nature of a recording environment can be
problematic to reduce as it consists of interfering sources and is statistically non-
stationary. Because the characteristics of the noise change over time, classical single
channel filtering techniques cannot be used to remove this noise as they will also distort
the speech signal of interest. Recently, the use of multichannel processing techniques has
been investigated to see if spatial information provided by microphone arrays can be

exploited to improve noise reduction.

D),

Noisy Medium

Figure 1.1 Model of a speech recording environment

One specific application where the noise environment is particularly hard to control is
in the area of speaker identification. Speaker identification algorithms today are fairly
accurate when speech samples are taken in a quiet environment with the speaker talking

directly into the microphone. However, in applications such as surveillance, the noise



environment cannot always be controlled and the speaker will not always speak directly
into a microphone. This reduction in signal to noise ratio ultimately limits the
performance and confidence of speaker identification algorithms. It is therefore important
to investigate the feasibility of deploying microphone arrays in conjunction with
multichannel noise reduction techniques to aid in speaker identification. In particular, this
thesis looks to see if these techniques can be effectively applied in different common

environmental scenarios with surveillance applications in mind.

1.1 Document Overview

This document provides a thorough report documenting the progression of this thesis
from start to finish. This chapter has introduced the problem that this thesis looks to
address. Chapter 2 then discusses existing narrowband beamforming solutions as well as
notes possible shortcomings of these approaches. Chapter 3 uses simulation to verify
theoretical operation of the delay sum beamformer as well as demonstrates its possible
shortcomings discussed in Chapter 2. Chapter 4 proposes two new adaptive multichannel
noise reduction algorithms which provide advantages over the delay sum beamformer.
Chapter 5 implements these new approaches in a Matlab simulation environment to see
what kind of performance can be expected. Chapter 5 also uses simulations to
characterize the performance of the speaker identification system used in this thesis.
Chapter 6 provides the procedure and results of 3 field experiments performed in real
environments at Lawrence Livermore National Laboratory. Finally, Chapter 7 provides

an overall comparison of the filtering algorithms, a conclusion and ideas for future work.



2. BACKGROUND

In order to gain insight into the concept of array processing, it was useful to explore
well known multichannel processing techniques originally developed for narrowband
applications. It was also of interest to look into speaker identification algorithms and

what factors limit their performance.

2.1 Narrowband Beamforming

The concept of array processing was first developed for applications in radar,
sonar, seismology and communications [1]. The idea is that by using multiple receivers
separated in space, you can create what’s known as a “spatially selective” filter. This
allows systems to receive only signals coming from certain directions and filter out
interfering signals from other directions. Spatial filtering, or beamforming, is especially
useful if the interfering signal is the same frequency as the signal of interest. By using
multiple channels instead of a single channel, endless processing options become possible
through tweaking array geometries and exploring various channel weighting schemes.
This extra degree of freedom provided by multiple sensor systems lead to the
development of many beamforming techniques tailored for different applications. Though
narrowband techniques are well understood, issues may arise when these techniques are
applied to broadband signals such as speech. Therefore, additional processing methods

must be investigated that are broadband in nature.



2.1.1 Delay Sum Beamforming

The first and simplest type of beamformer explored in this thesis is the delay sum
beamformer. As its name implies, this method works by first delaying the signals
received at each microphone and then summing these signals to create a single
“beamformed” output.

Because sound travels at a fixed speed of 345m/s in air, sound waves arrive at
each microphone at different times. From this assumption, relative theoretical time delays
can be calculated for each receiver that corresponds to some known signal direction of
arrival or “DOA”. If these delays are applied to the received signal at each microphone
and these time shifted signals are summed together, any signal coming from the desired
DOA is added coherently while interfering sources and noise are added incoherently
resulting in noise reduction. Simply put, the delay sum beamformer can be thought of as
a receiver that can adjust its listening or receiving direction electronically without

mechanically shifting the array through the use of time delays.
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Figure 2.1 Plane wave front arriving at linear array [1]

To understand this concept analytically, consider a microphone array consisting
of ‘N’ elements spaced a distance, ‘d’, apart (Figure 2.1). The signal seen at the output of
microphone ‘n’, yn(K), can be modeled as the superposition of the desired speech signal,

Xn(k), and background noise, vn(k):

yn(k) = xn(k) + vn(k) (2.1)

Given that it is desired to only receive signals from the direction 6, the relative time

delays applied to each microphone can be calculated using equation 2.2.

_(n—1)dcosb
c

(2.2)

Tn



The microphone number is denoted as ‘n’ (n =1, 2, 3... N) and ‘¢’ is the speed of sound
in air (assumed to be 345 m/s). Equation 2.2 is derived simply from the array geometry
and it should be noted that other array geometries may require a different time delay

equation.

Once the received signals are delayed according to the desired “look direction”,
these time aligned signals, yan(k), are added together to form a single channel output, zps,

according to equation 2.3.

1 N
20500 = 3 D Yan(K)

(2.3)
where,

ya,n(k) = Yn(k + 15)
This single channel output theoretically recovers the signal in the specified look direction

while attenuating interfering signals and noise originating from other directions because
they are added out of phase. It should be noted that the % factor is included in order to

normalize the gain of the beamformer to unity.

To further analyze the delay sum beamformer, it is useful to look at its directional
response. A directional response shows how signals from all directions contribute to the
overall output of the spatial filter. The directional response can be thought of like a
frequency response in traditional signal processing. The directional response of a delay
sum beamformer can be derived analytically by taking the spatial Fourier Transform of

equation 2.3 to get 2.4 [1]:



1 N j2rf(n—1)d cosy] j2nf(n—1)d cos®
Sps(@) = N Z [e ¢ ]e ¢
n=1

L (2.4)
N
Sps(@) = % Z g —J2nf(n-1d[cos(y)—cos(6)]/c
n=1

It is seen from 2.4 that the directional response of the delay sum beamformer depends on
the designed look direction 6, which sets the time delays, and the actual DOA of the

signal, y. The magnitude of the directional response can then be taken (equation 2.5 [1])
and plotted versus y (Figure 2.2).

Aps() = |Sps(P)|

_ sin{Nmfd[cos(y) — cos(8)]/c}
~ Nsin{rrfd[cos(y) — cos(B)]/c}

(2.5)
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Figure 2.2 Theoretical directional response of a delay sum beamformer using a linear array. Parameters: f = 2 kHz
signal frequency, d = .08 cm element spacing, N = 9 receivers, 0 = 90 degree look direction, c = 345 m/s

After plotting the theoretical directional response, it is important to highlight
some key aspects. The directional response exhibits a band pass shape with respect to
direction with the “pass band” being referred to as the “main lobe” while the stop band
characteristics are referred to as the “side lobes”. Changing the designed look direction or
delays of the beamformer will change the location of the main lobe while altering the
channel weighting controls the shape of the main lobe and side lobes. It is also important
to note that the directional response is plotted for a single frequency sinusoid. Because
the frequency variable ‘f* appears in the directional response equation, it is apparent that
the directional response varies with frequency. This is a key observation and will be

explored further in the simulation section later in this thesis.



The delay sum beamformer is a simple technique that was originally developed
for narrowband applications such as radar. This beamformer is easy to realize in practice
but exhibits some weaknesses when applied to broadband signals such as speech. The
delay sum beamformer’s frequency dependence, among other shortcomings explored
later, ultimately calls for broadband multichannel noise reduction methods to be
developed in order to process speech signals. Additionally, implementation of the delay
sum beamformer also requires “a priori”” knowledge such as the relative position of the
microphones as well as the DOA of the signal of interest [1]. This information is not
always known or able to be estimated for certain applications making it desirable to

develop adaptive techniques that can calculate this information implicitly.

2.1.2 Other Narrowband Beamforming Algorithms

To further explore the concept of array signal processing, other narrowband
beamforming techniques were looked at to see if ideas presented for single frequency
applications could be extended to broadband speech. While the delay sum beamformer
utilizes time delays and equal channel weighting, other beamforming algorithms utilize
different channel weighting schemes to control the shape of the directional response. This
concept can be thought of as analogous to a Finite Impulse Response (FIR) filter in the
time domain, as each time sample is weighted differently before summing the samples

together to form the output [1].

The following section briefly looks at one adaptive beamformer which utilizes
some optimization criterion to calculate channel weightings. Though beamformer channel

weighting schemes are abundant and very useful in certain applications, they are
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ultimately not implemented experimentally in this thesis. The goal of exploring this
beamformer is to gain insight into multichannel optimum-adaptive filtering that will help

later when implementing other multichannel noise reduction approaches.
2.1.2.1 Maximum Signal to Noise Ratio Beamformer

The maximum SNR beamformer is an adaptive beamformer that looks to
maximize the signal to noise ratio at the output of the beamformer using channel
weighting [1]. This beamformer was looked at to see how information learned about the

noise can aid in calculating weighting coefficients that will reduce it.

The delay sum beamformer presented in 2.1.1 is theoretically able to reduce noise
based on the assumption that the noise present is equal and uncorrelated at all channels.

When the noise is correlated, e.g. a directional interfering source in the same frequency
range, the theoretical noise reduction of% is not always achieved [2]. This is because the

side lobe characteristics of the delay sum beamformer are fixed and the interfering source
DOA may lie on a side lobe peak resulting in less attenuation. This scenario motivates the
development of an approach that adjusts the shape of the side lobes according to the

interfering source.

The solution to this problem is found in the maximum SNR approach which
estimates the direction of the interfering source and places a null in its direction. The
maximum SNR beamformer is an adaptive approach and achieves this desired operation
by performing the following steps. Assuming there is time when only the noise or
interfering source is present, the noise correlation matrix must first be estimated using

equation 2.6 [1].
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Rvava = E[va(k)va(k)T] (2.6)

In the above equation, Va(k) = [Va1(K) Va2(K) Vas(k) ... van(K)]" is a column vector
containing the k™ sample at each microphone and E[--- ] represents the statistical
expected value. It is shown in [1] that by maximizing the theoretical SNR, the channel

weights are found by solving the generalized eigenvector problem of equation 2.7

05*(Ruyr, )@@ Rpax = Amaxchmas (27)
where hy, 4, is the eigenvector corresponding to the maximum eigenvalue, A4, of
0s?(Ry,v, ")aa’. The channel weighting Vector Rypq.is an Nx1 column vector containing
the weight for each channel. The signal attenuation vector a is also an Nx1 column vector
containing the attenuation of the desired signal from its source to the microphones. Since

a is not always known, it can be set to all ones for simplicity.

180°

Figure 2.3 Theoretical directional response of the Maximum SNR beamformer (solid blue) and delay sum
beamformer (dashed red) with desired signal at 90° and an interfering source at 60° [1]
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Figure 2.3 shows an example application of the maximum SNR beamformer. The
solid blue line is the maximum SNR weighting response while the dotted red line is the
delay sum beamformer response. The interfering source is the same 2 kHz sinusoid as the
desired signal but with a DOA of 60° instead of 90°. If just the delay sum beamformer is
used, the 60° interfering source would fall at the peak of a side lobe which would cause
this interfering source to pass through the spatial filter with less than optimal attenuation.
The maximum SNR beamformer is able to estimate the interfering sources DOA from its

correlation matrix, Ry, ,,, and place a null at 60°to achieve maximum signal to noise

ratio at the output.

The maximum SNR beamformer shows that it is possible to reduce noise by
adaptively estimating its spatial characteristics using microphone arrays. This adaptability
is a very attractive feature and will be utilized in the design and implementation of the
broadband multichannel noise reduction algorithms in Chapter 4. It is important to note
that in order to calculate the noise statistics, there must be periods of time where there is

only noise present in the system.
2.2 Speaker ldentification

Speaker identification is the process of determining the identity of an individual
based on the unique characteristics of their speech [3] [4]. The ability to indentify
someone from their voice alone is powerful and finds many applications in access

security, surveillance, and other voice operated systems.

The process of speaker identification or S.1.D. consists of taking a speech sample

from an unknown speaker and matching it to a known speaker in a database. Samples of
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speech can either be collected using text dependant or independent methods. Text
dependant methods require the speaker to read a preselected phrase while text
independent systems do not. Speech samples from known speakers in the database and
unknown speech samples are classified and compared using techniques such as Gaussian
Mixture Models, Vector Quantization and hidden Markov Models [3]. These methods
extract features from speech that are unique to that individual. These speech features
derive from anatomical features such as mouth and throat shape as well as “learned

behavioral patterns” like pitch and style [3].

Though speaker identification systems have proven robust in controlled
laboratory experiments, their performance suffers when used in practical application
environments where the noise cannot always be controlled [5]. It is therefore useful to
employ noise reduction algorithms to reduce ambient background noise before running
the S.1.D. system. Specifically, this thesis looks at speaker identification for surveillance
applications which require taking speech samples in the presence of various ambient
noise environments without speaker cooperation. Therefore, this thesis proposes the use
of microphone arrays to collect and process these speech samples in practical

environments to see if S.1.D. performance can be improved.
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3. NARROWBAND BEAMFORMING SIMULATIONS

In the previous chapter, narrowband beamforming techniques were introduced
because they were the first type of array processing algorithms developed and are fairly
well understood. Initially, one would think that simply replacing an array of receivers
with an array of microphones and applying a delay sum beamformer would be effective
for use with speech, but uniform operation may not be guaranteed over a broad frequency
range. Many issues arise when trying to apply beamforming to broadband signals due to
the frequency dependant behavior caused by applying time delays. Therefore, this chapter
looks to verify the operation of the delay sum beamformer as well as explore possible

shortcomings through Matlab simulations.

3.1 Delay Sum Beamformer Simulations

In order to verify single frequency operation of the delay sum beamformer, a three
dimensional sound source simulator was developed in Matlab. The function “sim_3D.m”
(Appendix A) simulates the signals received at a microphone array of some geometry
given a user defined source position and source signal content. This was achieved by
replicating the source signal for each channel of the array and then adding relative time
delays derived from the source to microphone distances and the speed of sound (345
m/s). The delay sum beamformer was then implemented using the Matlab function
“DS_beamformer.m” which basically corrects the delays applied by the source simulator
in order to recover the signal at a user defined look direction. Ideally this look direction

would be the exact location of the sound source.
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The first goal of exploring the delay sum beamformer was to verify proper
operation using the simulator. This was done by simulating the directional response of the
delay sum or DS beamformer and comparing it with the theoretical directional response
produced by equation 2.5. In order to mimic a directional response in the simulator, a
sinusoidal source of some frequency was generated at various positions corresponding to
different DOA angles in reference to the array. The delay sum beamformer output signal
power for each source position was then calculated and plotted versus DOA for a fixed
look direction. Figure 3.1 shows the simulated directional response of a delay sum
beamformer to a 2 kHz sinusoid with a designed look direction of 90°. The microphone
array used was a 9 element linear array with element spacing of 8 cm. The theoretical

directional response from equation 2.5 is also plotted (green) for comparison.

Simulated Directional Response
g T T I a— T T
4,

Simulated
Theoretical

0+ } i .

E] Ui W MYHMM p Wﬂ%mﬁhq FW‘W I“‘\: f’ﬁ%‘r\ [wa\ﬂﬂ WWW WW_ NE
L “{ L 1 ' ' N ,

AIREERN
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|
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Figure 3.1 Simulated (blue) and Theoretical (dashed green) directional responses of the delay sum beamformer to a
2 kHz signal using a .08cm linear array
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It is obvious from Figure 3.1that the delays sum beamformer performs as predicted from
analytical methods. The slight “choppiness” of the simulated plot comes from the
digitization of the source signal in terms of time sampling. This effect is more noticeable
when the source DOA is farther from the designed look direction when the change in the
source position cannot be resolved by the sampling period. A high sampling rate of 40

kHz was used in this simulation to minimize this effect.

Once the correct operation of the delay sum beamformer was verified, it was then
of interest to explore its shortcomings in order to better understand possible limitations.
Some of these shortcomings come from the DS beamformer’s frequency dependence

while other issues stem from the noise field environment.

3.1.1 Frequency Dependence

Because this thesis focuses on the use of multichannel filtering techniques for
speech applications, it is important to note what problems can occur when the delay sum
beamformer is used to process broadband signals. Once characterized, these
shortcomings may provide insights into whether the delay sum beamformer is a valid
broadband approach. This section explores two frequency dependant issues; spatial

aliasing and low pass filtering, which are mentioned in [1].

When recalling the fundamentals of digital signal processing, one of the first
topics presented is the concept of aliasing. Though aliasing is traditionally thought of as
relating to time sampling, spatial sampling also suffers from a similar phenomenon. A
plane wave propagating through space varies periodically in amplitude with respect to

spatial position as well as time. Therefore, in order to accurately sample a signal in space,
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samples must be taken in fine enough increments to uniquely represent signals with

different wavelengths. Specifically, the spacing of elements in an array should be less
than '% of the shortest wavelength signal to be received [1]. This can be thought of like the

Nyquist sampling criterion in the time domain.

When using the delay sum beamformer it initially seems desirable to utilize larger
array spacings as this gives more spatial information and therefore a narrower main lobe
for more selective directional response characteristics. But, if too large of an array
spacing is used, higher frequency signals may pass through the spatial filter with no
attenuation due to the spatial aliasing phenomena. To illustrate this consider a four

element linear array with element spacing greater than half of a wavelength (Figure 3.2).

Source Signal

/ Interferer
A
/ /

Figure 3.2 lllustration of spatial aliasing
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Assuming the beamformer is designed to receive a signal coming from a DOA of 90°, the
applied time delays,t,,, at each microphone would be zero according to equation 2.2.
Because the array spacing is so large, there exists some other DOA where an interfering
signal can line up in phase with the array elements and add together coherently,
effectively passing through to the output. Even though it seems like this phenomena
would only exist for periodic signals, it is an important observation to keep in mind when

using the delay sum beamformer.

The second frequency dependant issue that arises from the delay sum beamformer
is unwanted low pass filtering from errors in DOA estimation. This issue is important for
the application of surveillance because the exact location of speakers may not be known.
If the look direction of the beamformer is slightly off target, the speech signal will be low
pass filtered which may inhibit speaker identification performance. This unwanted low
pass filtering occurs because time delaying lower frequency, larger period, signals does
not shift them enough out of phase to cause destructive interference. Higher frequency

signals, on the other hand, take less time delay to cause destructive interference.

To illustrate this, the steered response of the delay sum beamformer is looked at
over broad frequency range. The steered response is similar to the directional response
but instead of keeping the look direction constant while moving the source, the source is
kept constant while sweeping the beamformer look direction. This type of response can
be useful for detecting where possible sound sources might be located. Figure 3.3 shows
an example steered response using a 9 element linear array with an element spacing of 1

meter.
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Figure 3.3 Delay sum beamformer frequency dependence

In the figure above, a sinusoidal source is located at 90° (0 meters in the x direction). To
obtain the frequency response of the delay sum beamformer, its steered response is swept
along the horizontal plane while the source signal frequency is varied from 100Hz to 4
kHz using “DS_freq_resp.m”. For each look direction and signal frequency, the output
power of the delay sum beamformer is plotted in Figure 3.3. The concept of focusing
error can be seen at the lower frequencies when the main lobe gets very wide. If the look
direction of the beamformer is steered off of the actual source DOA just slightly, only the
low frequency content will be recovered. Figure 3.3 also illustrates the effect of spatial
aliasing and its affect over frequency. If the source at x = 0 meters is considered an
interferer and the beamformer is not pointed towards it, it is possible for some of that

interferer to pass to the output, especially if it contains high frequencies.



20

It is clear from the above simulations that frequency dependence is a possible
limiting factor of using the delay sum beamformer with broadband signals such as
speech. Though these factors may cause non-ideal performance, it is not clear how much
affect they will have in practice. Intuitively, focusing error should be of most concern

because of the uncertainty of source DOA estimation in surveillance applications.

3.1.2 Spatially Correlated Noise

Thus far only the delay sum beamformer’s reaction to deterministic signals has
been investigated. In order to predict possible short comings of the delay sum
beamformer to a random noise environment, it is important to explore the effect of
random noise fields on the performance of the delay sum beamformer. Because arrays
consist of elements separated in space, the noise present is not only a function of time but
a function of space as well. In order to simulate this spatially dependant noise, a noise
model must be developed that takes into account the spatial correlation of the noise. This
section therefore looks to derive a two dimensional spatially correlated noise model in

order to see how random noise fields affect the delay sum beamformer.

To begin the derivation, a signal model is assumed to be a superposition of signal

and noise at the output of each array element,

yn(k) = xn(k) + vn(k)- (3.1)
In order to find an expression for the spatial correlation of the noise, a model for v,, (k)
must be assumed. For this exercise, the noise is modeled as a sum of infinite plane waves

with random amplitude, A, and direction, 6.
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Equation 3.2 shows the noise model in integral form where the vector
k = k(cos 0, sin 0) with k = wavenumber = ? and the vector p = (x, y) with x and

y being the two dimensional Cartesian spatial coordinates. The plane wave DOA, 9, is

assumed to have a uniform distribution from —x to =.

In order to find the two dimensional correlation of the noise, the definition of

correlation in equation 3.3 is used assuming A(6)is a zero mean random process.

Corr (vn) = E[Un(ﬁ, tl) ’ vn*(ﬁ' tz)] (3.3)
The * operator in equation 3.3 denotes the complex conjugate. After substituting 3.2 into

3.3 and evaluating the expression, the correlation of the noise is found to be

2
Corr () = % Jo(er) cos(ty — t1) (3.4)

where J, is the Bessel function of the first kind, r is Pythagorean distance between two
points, and g2 is the variance of A(8). Equation 3.4 enables modeling of the noise
correlation between two receivers a distance r apart while taking into account the

difference in time delays applied by the delays sum beamformer, (t, — t;).

From equation 3.4 an N x N correlation matrix can be constructed to simulate two
dimensional spatially correlated noise. This is done with the Matlab function
“plane_noise R.m” which generates N channels of Gaussian white noise and correlates
each noisy channel given a user specified array geometry. In order to see how the delay

sum beamformer is affected by this spatially correlated noise, the steered response is
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simulated with different arrays and noise parameters. The script “DS_noise_tests.m” was
used to apply the delay sum beamformer to see how the noise frequency and array

spacing affects the beamformed output.

Delay Surm Beamformer Steered Response
Moise Only with Varied Frequencies

- T T T T T T

Gain (dB)

7 | | | | | | | |

0 20 40 =in} a0 100 120 140 160
Bearfarmer Look Direction {degrees)

Figure 3.4 Delay sum beamformer steered response to spatially correlated noise

Figure 3.4 shows the delay sum beamformer’s steered response using a 3 element
linear array with 1 meter spacing and only spatially correlated noise present. It is seen
that as the beamformer look direction is swept, the output noise power changes. For some
low frequency noise, the noise power peaks at 90 degrees because all time delays are zero
which maximally correlates the noise. For higher frequency noise, the delay sum

beamformer has the opposite effect. Keep in mind that the correlation also changes with

180
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array spacing as well as frequency. This exercise of simulating the delay sum
beamformer’s reaction to spatially correlated noise highlights possible shortcomings in
that noise attenuation varies with frequency, look direction and array geometry. This
means that the beamformer’s performance varies with each scenario and may achieve
minimal noise reduction for certain look directions, both of which are not desirable in

practice.

At first, the delay sum beamformer looks like a valid technique to reduce noise
using an array because of its simple implementation and electronically adjustable look
direction. Though it is possible to completely recover a broadband speech signal using
this method, some frequency dependant issues may interfere with optimal beamformer
performance as seen in this simulation section. Effects of spatial aliasing and unwanted
low pass filtering from look direction focusing error vary with scenario and may cause
performance degradation in practice. These issues should be kept in mind when
processing broadband signals with the delay sum beamformer. Finally, a two dimensional
noise model was simulated and showed that the delay sum beamformer could not
guarantee consistent noise reduction for all look directions. It is obvious from the analysis
above that more broadband methods should be explored to see if more robust
performance can be achieved. The next chapter looks at some adaptive broadband
multichannel noise reduction techniques which theoretically provide distinct advantages

over the delay sum beamformer.
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4. BROADBAND MULTICHANNEL NOISE REDUCTION
ALGORITHMS

In Chapters 2 and 3 spatially selective filters or beamformers were analyzed and
simulated as a possible means of noise reduction using microphone arrays. These
techniques are well known due to their extensive use in practical applications such as
radar. Because beamformers may not perform ideally in practice, it is useful to explore
other types of array processing techniques that are broadband in nature due to their time

domain implementation.

This chapter looks into some newer methods of microphone array processing to
determine if a more suitable algorithm is available for surveillance scenarios. The two
multichannel noise reduction algorithms explored are the Multichannel Wiener filter and
the Spatio-Temporal Prediction filter found in [1]. Both algorithms exploit the spatial
information provided by microphone arrays to reduce background noise. The two
techniques are adaptive and therefore do not need any “a priori” information to use. This
means that these algorithms don’t require the location of the source or the relative
positions of the microphones in the array and can adapt to different noise environments.
These features make the adaptive algorithms ideal for use in surveillance where the sound

source position is not always known and the noise environment changes.

4.1 New Problem Description

The Multichannel Wiener filter and Spatio-Temporal Prediction (STP) filter
operate differently than the delay sum beamformer in the previous chapter. Therefore, a

new signal model and algorithm goal must be presented. These techniques are broadband
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in nature so they do not rely on time delays to achieve their filtering function. Instead
these methods use single channel techniques generalized to multiple channels where each
channel is treated as redundant observation of the same signal. The goal is to somehow

combine this set of observation signals in such a way that reduces the noise at the output.

To illustrate this new concept, consider equation 4.1 where each microphone

output of the array, y, (k), is composed of the desired speech signal to be recovered,

x,,(k), and noise, v, (k), sampled at discrete times k, using an N microphone array.

Yn(k) = xn(k) + Vn(k)

n=123,..N

(4.1)

The main goal of these multichannel algorithms is to reduce v4 (k) and recover a best
estimate of x4 (k) using N observation signals [1]. In order to achieve this goal, the
signals are processed in blocks of L samples for later computations required by the
algorithms. To represent these sample blocks or frames in the signal model, equation 4.1

is rewritten in vector form:

yn(k) = xn(k) + vn(k)

yn(k) = [yn(k) Yn(k - 1) Yn(k - 2) yn(k -L+ 1)]T

(4.2)

In equation 4.2, the superscript T represents a vector/matrix transpose making y,, (k) a
column vector consisting of the current observed sample, y,, (k), in the first entry and the
previous L — 1 samples making up the rest of the vector. Block or filter length, L, is an
important design parameter and will be varied later in the simulation and experiment
sections. The speech vector, x,,(k), and the noise vector, v,,(k), that make up the noisy

speech signal are defined in the same way as y,, (k) [1].
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In order to recover the reference speech signal x; (k) from the N observation
signals, it is assumed that there is some linear transformation that can applied to the
observation signals at each microphone to best estimate x; (k). This transformation is

shown and simplified in equation 4.3:

N (4.3)
200 = ) Hyyn(k)
n=1

l
z(k) = Hy(k)

where,
y(k) = x(k) + v(k) = [y," (k) y2" (k) y3" (k) ... yn(O]"
x(k) = [x," (k) 2,7 (k) 257 (k) .. 2y (F)]"
v(k) = [v," (k) v, (k) v3" (k) .. vy (R)]"
H= [H,H,H;.. Hyl.

In the above equations from [1], H,,is some LXL filter matrix corresponding to the
observation signal vector, y,, (k). The simplified version of equation 4.3 is derived by
organizing all of the filter matrices into one global filter matrix, H, which is LXNL in
dimension. The observation signals are also organized into an NLx1 column vector,
y(k), containing all L samples of each observation signal vector concatenated into a
single vector. The specific goal of these algorithms is to find this global filter matrix H to
find the best estimate of the speech signal at the reference channel. The Multichannel
Wiener Filter and STP filter both define criteria to calculate the global filter matrix given
some optimization parameters. The specific criteria and methods for calculating the

global filter matrix for each algorithm are described in the next sections.
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4.2 Multichannel Wiener Filter

The Wiener filter is a well known classical optimal adaptive filter that was
originally developed for single channel use. For our purposes, the Wiener Filter is
generalized to multiple channels to be used in conjunction with microphone arrays. As
stated in the previous section, the idea behind using multiple channels is that there are
now multiple observable versions of the speech signal that can be combined in such a

way to better estimate the desired speech signal than in the single channel case.

The Wiener Filter achieves its filtering function by utilizing the minimum mean
squared error criterion. Specifically, the goal is to minimize the error between the
estimated speech output signal and the desired clean speech signal. This mean squared

error criterion, J(H), is written in matrix form in equation 4.4 [1].

J(H) = tr{E[e(k) e" (k)]} (4.4)
The error signal, e(k), is defined as the difference between the actual output of the filter
and the desired speech signal, z(k) — x; (k). The “tr” operator represents the matrix trace
operation. By substituting this error signal relation into 4.4, the mean squared error

criterion is rewritten in equation 4.5 [1].

J(H) = E[x](k) x1(k)] + tr[HR,,H"] — 2tr[HR,,,] (4.5)

The NLXNL observation signal correlation matrix, R, is defined as E[y(k) yT (k)] and

yy:

the NLxL observation-speech signal cross-correlation matrix, R is defined as

yxi!
E[y(k) xI'(k)]. The minimum of the mean square error criterion is found by
differentiating 4.5 with respect to H and setting it to zero [1]. Solving for H results in

equation 4.6 [1]:
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Hj, = RyJR,, . (4.6)
The global filter matrix in this case uses a “W’ subscript to specify that it was derived
from the Wiener filter algorithm. It is important to note that R, cannot be calculated
because x, (k)is unobservable as it is the signal trying to be recovered. In order calculate
the global filter matrix, R, must be estimated using the fact that the observation signals
consist of clean speech and noise which are assumed to be uncorrelated. Assuming the
noise can be observed by itself with no speech present, the cross-correlation matrix can

be estimated using equation 4.7 [1].

Ry, = (Ryy —Ry,)U"
R,, = E[v(k) v" (k)] 4.7)
U= [Tx.00xs - Opx]

By subtracting the noise correlation matrix, R,,,, from the observation correlation matrix,

R, can be estimated for all channels. The LXNL U matrix is used to select out the
desired cross-correlation matrix R, . Using the relation in equation 4.7, the Wiener

global filter matrix can now be calculated in 4.8.

HY, = (Inpene — RyR, ) U” (4.8)
As stated earlier, the global filter matrix can only be calculated if there are periods where
there is only noise present allowing the estimation of the noise correlation matrix. Once
calculated, the global filter matrix is applied to the observation signals using equation 4.3

to obtain the filtered output.

Though the Wiener filter seems like a promising approach, the spatial information

provided by microphone arrays is not fully utilized. This is because it is a single channel
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approach generalized to multiple channels. The next section derives a newer multichannel
noise reduction algorithm called the Spatio-Temporal Prediction filter which takes

advantage of the spatial information provided to calculate the global filter matrix.
4.3 Spatio-Temporal Prediction Filter

The previous section looked at the multichannel Wiener filter which is well
known adaptive single channel algorithm generalized for use with multiple channels.
Because the Wiener filter was designed for the single channel case, it may not exploit the
spatial information provided by microphone arrays [1]. This section therefore derives a
newer algorithm that was designed with multi-channel processing in mind. In fact, it can
be shown that the Spatio-Temporal Prediction filter achieves no noise reduction if used in

the single channel case.

The STP algorithm proposed in [6] exploits speech’s predictability in time and
space to clean the noisy speech signal. The STP filter is similar to the well known
Linearly Constrained Minimum Variance (LCMV) filter and is implemented in two steps
[1]. The first step involves calculating “optimal inter-sensor spatial-temporal prediction
transforms”. The second step then exploits these transforms to calculate the global filter
matrix [6]. Specifically, the first step of the algorithm begins by assuming there is some
linear prediction matrix W that can represent the speech signal at any channel using a

linear combination of the reference speech signal samples:
xn (k) = Wy (k)

(4.9)
n=123..N
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The prediction matrix for each channel is calculated by minimizing the mean squared

error caused by the transform as seen in equation 4.10.

Jw W) = E {[xa(0) = Whiey (0] [0 () — Whay ()]} (4.10)

By minimizing this function, the equation for each prediction matrix is found in 4.11:

W£ = Rxnle;llxl (411)
A similar observability problem as the last section is seen in equation 4.11 in that x; (k)
is not observable in practice so it must be estimated by subtracting observation and noise

signal statistics:

w3 = (Rynyl - Rvnvl) (Ry1y1 - Rvm)_l (4.12)

Once they are calculated, all of these LxL prediction matrices are organized into an

LXNL global prediction matrix W to simplify computations later:

W= [T, W,W;5..Wy] (4.13)
The first prediction matrix is an identity matrix because channel one is used as a
reference to predict all the other channels. The fact that we are able to predict the speech
signal at every channel using one channel is fundamental to the STP filter and will be
utilized to calculate the global filter matrix. It is also important to point out that the global
prediction matrix in equation 4.13 only needs to be calculated once if the source does not

move [1] [6].

Assuming that the global prediction matrix is able to be calculated from the array
observations, the global filter matrix H can now be calculated. The STP algorithm

calculates filter weights by theoretically minimizing the noise power with the constraint
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that the speech is not distorted. The noise power to be minimized is written in equation

4.14 where the filtered noise component of the output is defined as e, (k) = Hv (k).

Jo(H) = tr{E[e,(kK)ej (K)]} (4.14)
The speech distortion constraint is written in equation 4.15 so that the application of the

filter matrix and prediction matrix do not distort the speech signal.

I, =HWT. (4.15)
By minimizing equation 4.14 with respect to 4.15 and using Lagrange multipliers, the

expression for the global filter matrix is found in equation 4.16 [1] [6].

Hgr = (WRIWT)"1WR;}! (4.16)
As seen in equation 4.16, calculating the STP filter’s global filter matrix is more
computationally intensive than the Wiener Filter as three matrix inversions are required
compared to just one. The trade off here is that the STP filter implements the constraint
that the speech is not distorted whereas the Wiener Filter causes more speech distortion
proportionally to the amount of noise reduction achieved [6]. The theoretically minimal
speech distortion that the STP approach provides is an attractive feature for the speaker

identification application explored in this thesis.
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5. SIMULATIONS

5.1 Algorithm Simulation

Now that the theory behind these newer multichannel noise reduction algorithms
has been derived and understood, it is important to test their performance through
simulation. Specifically, it is of interest to test how well these algorithms improve signal
to noise ratio in different noise environments. The next few sections outline the filter

implementation, noise modeling, as well as provide simulation results and interpretations.

5.1.1 Matlab Implementation

In order to test the performance of the algorithms in simulation and experiments,
both the Multichannel Wiener Filter and Spatio-Temporal Prediction Filter are
implemented as the Matlab functions “Wiener _filter.m” and “Spatio_Temporal Filter.m”
respectively. These functions operate using N channels of noisy speech and N channels of
a noise sample (no speech present) as inputs. Filter length (L) and sample overlap are also
entered as filter parameters which control the number of samples in each window as well
as how much each window overlaps the previous one. Because the filter processes the
data in blocks of L samples, this parameter can be varied to tune the filter. Figure 5.1

illustrates the block diagram implementation of the filters in Matlab.



33

‘N’ channel ‘N’ channel
Speech + Noise recording Noise ONLY recording
.Urz(‘z") Vr:“")
n=12,....N, n=12,...,N,

.L > |

£ T

wv

Estimate R, and R,, Filter Length Estimate R, and R,, 8

- Statistics in frames of ‘L' |<— and —>  Statistics in frames of ‘U’ =

o samples Overlap samples Q

= T T ~
[ , .

“ Calculate global filter Calculate optimal 3

q:" matrix H,, prediction filter W '8

2 I ) S

3 Apply filtering operation Calculate global filter o

z,, (k) = Hy, y(k) matrix Hgp o

J =

e . o

Apply filtering operation o

267 (k) = Hgr y(K) S

Figure 5.1 Matlab implementation block diagram of broadband multichannel filters

Though the algorithms differ in their computations, their overall implementation
is fairly similar. Once the observation and noise only signals are obtained, the algorithms
first calculate the correlation matrices Ryy and Ryy in blocks of L samples. This is
achieved by taking the running average of the calculated correlation matrix for each
frame according to equation 5.1 and 5.2 for the observation and noise signals

respectively.

,_(m-—1 yy
R = (—) Ryy + 7 (51)

, 4%
R = () R+ 2
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The original NxL observation and noise only signals are organized into NLx1 column
vectors y and v in order to calculate these correlation matrices with a simple matrix

multiplication for the current frame m. It is worth noting that equation 5.1 and 5.2 can be

generalized to the problem of iteratively updating a variable by replacing the (”%1) and%
factors with A and 1 — A respectively. Using this scheme, is it possible to adjust the contributions
of the old value (e.g. R,,) and the current value (e.g. yy") to the new value (e.g. R,,") in

order to enhance or suppress the contribution of the current frame. Since one could spend

a long time evaluating the effects of different updating schemes on filter performance, the

running average method was chosen for simplicity.

Once the functions have run through both sets of input signals frame by frame to
estimate the statistics, the global filter matrices are then calculated. The Wiener global
filter matrix is calculated according to equation 4.8 while the STP global filter matrix is
calculated in two steps using equation 4.12 and 4.16. Though it seems like the extra step
of calculating the prediction matrix in the STP approach seems significant, it is actually

fairly trivial because all of the information needed for equation 4.12 is embedded in R,

and R,,,, which must also be calculated for the Wiener Filter.

Once the global filter matrix is calculated, the last step is to perform the filtering
operation. This is done using a simple matrix multiplication of the NLx1 column vector
of the current frame with the global filter matrix. This multiplication results in an Lx1
vector which is used to construct the output signal frame by frame. This output signal is
considered a best estimate of the speech signal at the reference channel (microphone 1 in

this case).
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5.1.2 Three Dimensional Noise Modeling

In order to verify the operation of these multichannel filtering methods, a noise
model must be developed to provide a noise input to the adaptive filter functions in
Matlab. As opposed to Chapter 3, this section will derive a three dimensional noise model

because these filters are implemented using a three dimensional array.

After some research, it was found that a model was proposed by Cook et al. in [7]
using a similar approach as was used to derive the two dimensional noise model in
Section 3.1.2. The results from [7] provide an equation for spatial correlation for three
dimensional plane wave noise containing a band of frequency content. This equation was
simplified and rearranged to give a more implementable relation for the purposes of this

thesis.

R(r) = f“’c sinkrd
) = 0 kr @
! (53)
R = Sil({k;r)

Equation 5.3 gives the correlation between two points in space which are a distance r

_ W

apart given noise with a cutoff frequency or bandwidth of w, = 2nf,, k. = CC. The speed

of sound, c, is assumed to be 345 m/s in air. The function Si denotes the “Sine Integral”

zsinu

which is defined as: Si(z) = [ du. This expression for the spatial correlation of the

0 u

noise can now be used to construct noise with these characteristics at each microphone in
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the array. It is worth noting that R(r) is normalized by k. so that R(0) = 1 (note:

Si(z) = zfor z < 1).

Noise with the correlation described by equation 5.3 is generated using the Matlab
function “plane noise R _3D.m”. The function first generates N channels of Gaussian
white noise with user specified duration. This noise is then correlated in time using a
Butterworth low pass filter of specified order and cut off frequency to establish the noise
bandwidth. An NxN noise correlation matrix is then calculated according to equation 5.3,
using the distance between each microphone as values for r. This matrix is then used to
spatially correlate the low pass filtered noise through simple matrix operations. The
resulting N channels of noise are now spatio-temporally correlated according to the above
model. This output noise from this function is then used as the “noise only” input of the

filtering functions for simulation.

5.1.3 Simulation Results

Now that a model for background noise has been developed in three dimensions,
it is of interest to verify and evaluate the performance of the Wiener and STP filters in a
simulation environment. The first set of simulations in this section will look at the ability
of the filters to reduce noise with different bandwidths generated by the model in the
previous section. The second set of simulations briefly explores how well the filters are
able to reduce background noise recorded from a real environment. Filter length, L, will
be used as the main adjustment parameter for each simulation in order to observe its
affects. The goal of these simulations is to see what kind of noise reduction can be

achieved by applying these multichannel filters.
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In both simulations, a clean speech sample is simulated at a location in space
using the Matlab function “sim_3D.m”. These N channels of clean speech are added to
the appropriate background noise at a relatively low signal to noise ratio. These N
channels of observation signals seen at each microphone are used as the noisy speech
input to the filters, while the generated or recorded background noise is applied to the
noise only input. The filtering functions use these two inputs to adaptively calculate and
apply the best global filter matrix to the noisy speech input as derived in Chapter 4. The
filtered single channel output will then be analyzed to see how much noise reduction was

achieved.

In order to quantify and compare the performance of the Wiener and STP filters,
output signal to noise ratio (SNR) will be used as the primary metric. More specifically,
global SNR will be calculated because local or frame based SNR estimations methods
may be sensitive to changes in frame length [8]. Due to the nature of this experiment, the
clean speech signal is not observable at the output so its power cannot be calculated.
Therefore, output SNR will be estimated under the assumption that the output signal is a
superposition of filtered speech and residual noise. The output noise power can be
estimated by applying the global filter matrix to the noise only sample and calculating its
variance. The output speech signal power can then be estimated by taking the difference
between the power of the filtered speech output and the filtered noise. Equation 5.4

analytically illustrates this SNR estimation method.

PSigout _ Ptotalout - PnOiSEOut

SNR,,; = (5.4)

Pnoise out Pnoise out
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The Matlab function “BB_metrics.m” estimates this output SNR by calculating the
variance of the total output and the filtered noise only output. It should be noted that this
estimation technique assumes that the noise statistics are the same for the noisy speech
signal and the noise only signal. This is a valid assumption for these simulations because
the same noise is used to corrupt the speech signal that is also used to estimate noise
statistics in the filtering functions. Non-stationary noise may prove problematic in the
experimental portion of this thesis where these filters are applied to real data. Limitations

of this SNR estimation technique will be discussed more in Chapter 5.

As mentioned, the first set of simulations looks to evaluate the performance of the
Wiener and STP filters in the presence of the noise from the model developed in the
previous section. For each simulation, noise of varying bandwidths are generated and
added to a clean male and female speech source simulated 40 meters directly in front of
the array. A relatively low input SNR of 0dB is used so that the speech and noise signals

are competing when listened to.

The array used in this simulation consists of 9 elements arranged vertically ina 3
by 3 square with each microphone spaced roughly 1 meter apart (Figure 5.2). This is the
same array geometry as the physical array used for the field experiments in the next
chapter. In this simulation, both filters are applied to the simulated noisy sp