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ABSTRACT 

Noise Reduction with Microphone Arrays for Speaker Identification 

Zachary G. Cohen 

 

 The presence of acoustic noise in audio recordings is an ongoing issue that 

plagues many applications. This ambient background noise is difficult to reduce due to its 

unpredictable nature. Many single channel noise reduction techniques exist but are 

limited in that they may distort the desired speech signal due to overlapping spectral 

content of the speech and noise. It is therefore of interest to investigate the use of 

multichannel noise reduction algorithms to further attenuate noise while attempting to 

preserve the speech signal of interest. 

 Specifically, this thesis looks to investigate the use of microphone arrays in 

conjunction with multichannel noise reduction algorithms to aid aiding in speaker 

identification. Recording a speaker in the presence of acoustic background noise 

ultimately limits the performance and confidence of speaker identification algorithms. In 

situations where it is impossible to control the noise environment where the speech 

sample is taken, noise reduction algorithms must be developed and applied to clean the 

speech signal in order to give speaker identification software a chance at a positive 

identification. Due to the limitations of single channel techniques, it is of interest to see if 

spatial information provided by microphone arrays can be exploited to aid in speaker 

identification. 

 This thesis provides an exploration of several time domain multichannel noise 

reduction techniques including delay sum beamforming, multi-channel Wiener filtering, 

and Spatial-Temporal Prediction filtering. Each algorithm is prototyped and filter 

performance is evaluated using various simulations and experiments. A three-

dimensional noise model is developed to simulate and compare the performance of the 

above methods and experimental results of three data collections are presented and 

analyzed. The algorithms are compared and recommendations are given for the use of 

each technique. Finally, ideas for future work are discussed to improve performance and 

implementation of these multichannel algorithms. Possible applications for this 

technology include audio surveillance, identity verification, video chatting, conference 

calling and sound source localization. 
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1. INTRODUCTION 

Techniques for recording and preprocessing audio have many applications in 

communication, surveillance and entertainment. When recording audio, it is important to 

eliminate all unwanted noise before further application specific processing is performed. 

Noise present due to the uncontrollable nature of a recording environment can be 

problematic to reduce as it consists of interfering sources and is statistically non-

stationary. Because the characteristics of the noise change over time, classical single 

channel filtering techniques cannot be used to remove this noise as they will also distort 

the speech signal of interest. Recently, the use of multichannel processing techniques has 

been investigated to see if spatial information provided by microphone arrays can be 

exploited to improve noise reduction. 

 

Figure 1.1 Model of a speech recording environment 

One specific application where the noise environment is particularly hard to control is 

in the area of speaker identification. Speaker identification algorithms today are fairly 

accurate when speech samples are taken in a quiet environment with the speaker talking 

directly into the microphone. However, in applications such as surveillance, the noise 
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environment cannot always be controlled and the speaker will not always speak directly 

into a microphone. This reduction in signal to noise ratio ultimately limits the 

performance and confidence of speaker identification algorithms. It is therefore important 

to investigate the feasibility of deploying microphone arrays in conjunction with 

multichannel noise reduction techniques to aid in speaker identification. In particular, this 

thesis looks to see if these techniques can be effectively applied in different common 

environmental scenarios with surveillance applications in mind. 

1.1 Document Overview 

This document provides a thorough report documenting the progression of this thesis 

from start to finish. This chapter has introduced the problem that this thesis looks to 

address. Chapter 2 then discusses existing narrowband beamforming solutions as well as 

notes possible shortcomings of these approaches. Chapter 3 uses simulation to verify 

theoretical operation of the delay sum beamformer as well as demonstrates its possible 

shortcomings discussed in Chapter 2. Chapter 4 proposes two new adaptive multichannel 

noise reduction algorithms which provide advantages over the delay sum beamformer. 

Chapter 5 implements these new approaches in a Matlab simulation environment to see 

what kind of performance can be expected. Chapter 5 also uses simulations to 

characterize the performance of the speaker identification system used in this thesis. 

Chapter 6 provides the procedure and results of 3 field experiments performed in real 

environments at Lawrence Livermore National Laboratory. Finally, Chapter 7 provides 

an overall comparison of the filtering algorithms, a conclusion and ideas for future work.  
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2. BACKGROUND 

In order to gain insight into the concept of array processing, it was useful to explore 

well known multichannel processing techniques originally developed for narrowband 

applications. It was also of interest to look into speaker identification algorithms and 

what factors limit their performance. 

2.1 Narrowband Beamforming 

The concept of array processing was first developed for applications in radar, 

sonar, seismology and communications [1]. The idea is that by using multiple receivers 

separated in space, you can create what’s known as a “spatially selective” filter. This 

allows systems to receive only signals coming from certain directions and filter out 

interfering signals from other directions. Spatial filtering, or beamforming, is especially 

useful if the interfering signal is the same frequency as the signal of interest. By using 

multiple channels instead of a single channel, endless processing options become possible 

through tweaking array geometries and exploring various channel weighting schemes. 

This extra degree of freedom provided by multiple sensor systems lead to the 

development of many beamforming techniques tailored for different applications. Though 

narrowband techniques are well understood, issues may arise when these techniques are 

applied to broadband signals such as speech. Therefore, additional processing methods 

must be investigated that are broadband in nature. 
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2.1.1 Delay Sum Beamforming 

The first and simplest type of beamformer explored in this thesis is the delay sum 

beamformer. As its name implies, this method works by first delaying the signals 

received at each microphone and then summing these signals to create a single 

“beamformed” output.  

Because sound travels at a fixed speed of 345m/s in air, sound waves arrive at 

each microphone at different times. From this assumption, relative theoretical time delays 

can be calculated for each receiver that corresponds to some known signal direction of 

arrival or “DOA”. If these delays are applied to the received signal at each microphone 

and these time shifted signals are summed together, any signal coming from the desired 

DOA is added coherently while interfering sources and noise are added incoherently 

resulting in noise reduction. Simply put, the delay sum beamformer can be thought of as 

a receiver that can adjust its listening or receiving direction electronically without 

mechanically shifting the array through the use of time delays. 
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Figure 2.1 Plane wave front arriving at linear array [1] 

 To understand this concept analytically, consider a microphone array consisting 

of ‘N’ elements spaced a distance, ‘d’, apart (Figure 2.1). The signal seen at the output of 

microphone ‘n’, yn(k), can be modeled as the superposition of the desired speech signal, 

xn(k), and background noise, vn(k): 

                      (2.1) 

 

Given that it is desired to only receive signals from the direction θ, the relative time 

delays applied to each microphone can be calculated using equation 2.2.  

    
          

 
 (2.2) 
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The microphone number is denoted as ‘n’ (n = 1, 2, 3… N) and ‘c’ is the speed of sound 

in air (assumed to be 345 m/s). Equation 2.2 is derived simply from the array geometry 

and it should be noted that other array geometries may require a different time delay 

equation. 

 Once the received signals are delayed according to the desired “look direction”, 

these time aligned signals, ya,n(k), are added together to form a single channel output, zDS, 

according to equation 2.3. 

 

       
 

 
         

 

   

 

where,  

                  

(2.3) 

This single channel output theoretically recovers the signal in the specified look direction 

while attenuating interfering signals and noise originating from other directions because 

they are added out of phase. It should be noted that the 
 

 
 factor is included in order to 

normalize the gain of the beamformer to unity. 

 To further analyze the delay sum beamformer, it is useful to look at its directional 

response. A directional response shows how signals from all directions contribute to the 

overall output of the spatial filter. The directional response can be thought of like a 

frequency response in traditional signal processing. The directional response of a delay 

sum beamformer can be derived analytically by taking the spatial Fourier Transform of 

equation 2.3 to get 2.4 [1]: 
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(2.4) 

It is seen from 2.4 that the directional response of the delay sum beamformer depends on 

the designed look direction θ, which sets the time delays, and the actual DOA of the 

signal, ψ. The magnitude of the directional response can then be taken (equation 2.5 [1]) 

and plotted versus ψ (Figure 2.2).  

 

                

 
                          

                          
 

(2.5) 
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Figure 2.2  Theoretical directional response of a delay sum beamformer using a linear array. Parameters: f = 2 kHz 
signal frequency, d = .08 cm element spacing, N = 9 receivers, θ = 90 degree look direction, c = 345 m/s 

 After plotting the theoretical directional response, it is important to highlight 

some key aspects. The directional response exhibits a band pass shape with respect to 

direction with the “pass band” being referred to as the “main lobe” while the stop band 

characteristics are referred to as the “side lobes”. Changing the designed look direction or 

delays of the beamformer will change the location of the main lobe while altering the 

channel weighting controls the shape of the main lobe and side lobes. It is also important 

to note that the directional response is plotted for a single frequency sinusoid. Because 

the frequency variable ‘f’ appears in the directional response equation, it is apparent that 

the directional response varies with frequency. This is a key observation and will be 

explored further in the simulation section later in this thesis.  
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The delay sum beamformer is a simple technique that was originally developed 

for narrowband applications such as radar. This beamformer is easy to realize in practice 

but exhibits some weaknesses when applied to broadband signals such as speech. The 

delay sum beamformer’s frequency dependence, among other shortcomings explored 

later, ultimately calls for broadband multichannel noise reduction methods to be 

developed in order to process speech signals. Additionally, implementation of the delay 

sum beamformer also requires “a priori” knowledge such as the relative position of the 

microphones as well as the DOA of the signal of interest [1]. This information is not 

always known or able to be estimated for certain applications making it desirable to 

develop adaptive techniques that can calculate this information implicitly. 

2.1.2 Other Narrowband Beamforming Algorithms 

To further explore the concept of array signal processing, other narrowband 

beamforming techniques were looked at to see if ideas presented for single frequency 

applications could be extended to broadband speech. While the delay sum beamformer 

utilizes time delays and equal channel weighting, other beamforming algorithms utilize 

different channel weighting schemes to control the shape of the directional response. This 

concept can be thought of as analogous to a Finite Impulse Response (FIR) filter in the 

time domain, as each time sample is weighted differently before summing the samples 

together to form the output [1].  

The following section briefly looks at one adaptive beamformer which utilizes 

some optimization criterion to calculate channel weightings. Though beamformer channel 

weighting schemes are abundant and very useful in certain applications, they are 
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ultimately not implemented experimentally in this thesis. The goal of exploring this 

beamformer is to gain insight into multichannel optimum-adaptive filtering that will help 

later when implementing other multichannel noise reduction approaches. 

2.1.2.1 Maximum Signal to Noise Ratio Beamformer 

 The maximum SNR beamformer is an adaptive beamformer that looks to 

maximize the signal to noise ratio at the output of the beamformer using channel 

weighting [1]. This beamformer was looked at to see how information learned about the 

noise can aid in calculating weighting coefficients that will reduce it. 

 The delay sum beamformer presented in 2.1.1 is theoretically able to reduce noise 

based on the assumption that the noise present is equal and uncorrelated at all channels. 

When the noise is correlated, e.g. a directional interfering source in the same frequency 

range, the theoretical noise reduction of 
 

 
 is not always achieved [2]. This is because the 

side lobe characteristics of the delay sum beamformer are fixed and the interfering source 

DOA may lie on a side lobe peak resulting in less attenuation. This scenario motivates the 

development of an approach that adjusts the shape of the side lobes according to the 

interfering source.  

The solution to this problem is found in the maximum SNR approach which 

estimates the direction of the interfering source and places a null in its direction. The 

maximum SNR beamformer is an adaptive approach and achieves this desired operation 

by performing the following steps. Assuming there is time when only the noise or 

interfering source is present, the noise correlation matrix must first be estimated using 

equation 2.6 [1]. 
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   (2.6) 

In the above equation, va(k) = [va,1(k) va,2(k) va,3(k) … va,N(k)]
T
 is a column vector 

containing the k
th

 sample at each microphone and      represents the statistical 

expected value. It is shown in [1] that by maximizing the theoretical SNR, the channel 

weights are found by solving the generalized eigenvector problem of equation 2.7 

   
       

                    (2.7) 

where      is the eigenvector corresponding to the maximum eigenvalue,     , of 

  
       

      . The channel weighting vector     is an Nx1 column vector containing 

the weight for each channel. The signal attenuation vector   is also an Nx1 column vector 

containing the attenuation of the desired signal from its source to the microphones. Since 

  is not always known, it can be set to all ones for simplicity. 

 

Figure 2.3  Theoretical directional response of the Maximum SNR beamformer (solid blue) and delay sum 
beamformer (dashed red) with desired signal at 90

o
 and an interfering source at 60

o
 [1] 
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 Figure 2.3 shows an example application of the maximum SNR beamformer. The 

solid blue line is the maximum SNR weighting response while the dotted red line is the 

delay sum beamformer response. The interfering source is the same 2 kHz sinusoid as the 

desired signal but with a DOA of 60
o
 instead of 90

o
. If just the delay sum beamformer is 

used, the 60
o
 interfering source would fall at the peak of a side lobe which would cause 

this interfering source to pass through the spatial filter with less than optimal attenuation. 

The maximum SNR beamformer is able to estimate the interfering sources DOA from its 

correlation matrix,      , and place a null at 60
o 
to achieve maximum signal to noise 

ratio at the output. 

 The maximum SNR beamformer shows that it is possible to reduce noise by 

adaptively estimating its spatial characteristics using microphone arrays. This adaptability 

is a very attractive feature and will be utilized in the design and implementation of the 

broadband multichannel noise reduction algorithms in Chapter 4. It is important to note 

that in order to calculate the noise statistics, there must be periods of time where there is 

only noise present in the system. 

2.2 Speaker Identification 

 Speaker identification is the process of determining the identity of an individual 

based on the unique characteristics of their speech [3] [4]. The ability to indentify 

someone from their voice alone is powerful and finds many applications in access 

security, surveillance, and other voice operated systems.  

The process of speaker identification or S.I.D. consists of taking a speech sample 

from an unknown speaker and matching it to a known speaker in a database. Samples of 
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speech can either be collected using text dependant or independent methods. Text 

dependant methods require the speaker to read a preselected phrase while text 

independent systems do not. Speech samples from known speakers in the database and 

unknown speech samples are classified and compared using techniques such as Gaussian 

Mixture Models, Vector Quantization and hidden Markov Models [3]. These methods 

extract features from speech that are unique to that individual. These speech features 

derive from anatomical features such as mouth and throat shape as well as “learned 

behavioral patterns” like pitch and style [3].  

Though speaker identification systems have proven robust in controlled 

laboratory experiments, their performance suffers when used in practical application 

environments where the noise cannot always be controlled [5]. It is therefore useful to 

employ noise reduction algorithms to reduce ambient background noise before running 

the S.I.D. system. Specifically, this thesis looks at speaker identification for surveillance 

applications which require taking speech samples in the presence of various ambient 

noise environments without speaker cooperation. Therefore, this thesis proposes the use 

of microphone arrays to collect and process these speech samples in practical 

environments to see if S.I.D. performance can be improved. 
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3. NARROWBAND BEAMFORMING SIMULATIONS 

 

In the previous chapter, narrowband beamforming techniques were introduced 

because they were the first type of array processing algorithms developed and are fairly 

well understood. Initially, one would think that simply replacing an array of receivers 

with an array of microphones and applying a delay sum beamformer would be effective 

for use with speech, but uniform operation may not be guaranteed over a broad frequency 

range. Many issues arise when trying to apply beamforming to broadband signals due to 

the frequency dependant behavior caused by applying time delays. Therefore, this chapter 

looks to verify the operation of the delay sum beamformer as well as explore possible 

shortcomings through Matlab simulations. 

3.1 Delay Sum Beamformer Simulations 

In order to verify single frequency operation of the delay sum beamformer, a three 

dimensional sound source simulator was developed in Matlab. The function “sim_3D.m” 

(Appendix A) simulates the signals received at a microphone array of some geometry 

given a user defined source position and source signal content. This was achieved by 

replicating the source signal for each channel of the array and then adding relative time 

delays derived from the source to microphone distances and the speed of sound (345 

m/s). The delay sum beamformer was then implemented using the Matlab function 

“DS_beamformer.m” which basically corrects the delays applied by the source simulator 

in order to recover the signal at a user defined look direction. Ideally this look direction 

would be the exact location of the sound source. 
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 The first goal of exploring the delay sum beamformer was to verify proper 

operation using the simulator. This was done by simulating the directional response of the 

delay sum or DS beamformer and comparing it with the theoretical directional response 

produced by equation 2.5. In order to mimic a directional response in the simulator, a 

sinusoidal source of some frequency was generated at various positions corresponding to 

different DOA angles in reference to the array. The delay sum beamformer output signal 

power for each source position was then calculated and plotted versus DOA for a fixed 

look direction. Figure 3.1 shows the simulated directional response of a delay sum 

beamformer to a 2 kHz sinusoid with a designed look direction of 90
o
. The microphone 

array used was a 9 element linear array with element spacing of 8 cm. The theoretical 

directional response from equation 2.5 is also plotted (green) for comparison. 

 

Figure 3.1 Simulated (blue) and Theoretical (dashed green) directional responses of the delay sum beamformer to a 
2 kHz signal using a .08cm linear array  
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It is obvious from Figure 3.1that the delays sum beamformer performs as predicted from 

analytical methods. The slight “choppiness” of the simulated plot comes from the 

digitization of the source signal in terms of time sampling. This effect is more noticeable 

when the source DOA is farther from the designed look direction when the change in the 

source position cannot be resolved by the sampling period. A high sampling rate of 40 

kHz was used in this simulation to minimize this effect. 

 Once the correct operation of the delay sum beamformer was verified, it was then 

of interest to explore its shortcomings in order to better understand possible limitations. 

Some of these shortcomings come from the DS beamformer’s frequency dependence 

while other issues stem from the noise field environment. 

3.1.1 Frequency Dependence 

 Because this thesis focuses on the use of multichannel filtering techniques for 

speech applications, it is important to note what problems can occur when the delay sum 

beamformer is used to process broadband signals. Once characterized, these 

shortcomings may provide insights into whether the delay sum beamformer is a valid 

broadband approach. This section explores two frequency dependant issues; spatial 

aliasing and low pass filtering, which are mentioned in [1]. 

 When recalling the fundamentals of digital signal processing, one of the first 

topics presented is the concept of aliasing. Though aliasing is traditionally thought of as 

relating to time sampling, spatial sampling also suffers from a similar phenomenon. A 

plane wave propagating through space varies periodically in amplitude with respect to 

spatial position as well as time. Therefore, in order to accurately sample a signal in space, 
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samples must be taken in fine enough increments to uniquely represent signals with 

different wavelengths. Specifically, the spacing of elements in an array should be less 

than 
 

 
 of the shortest wavelength signal to be received [1]. This can be thought of like the 

Nyquist sampling criterion in the time domain. 

 When using the delay sum beamformer it initially seems desirable to utilize larger 

array spacings as this gives more spatial information and therefore a narrower main lobe 

for more selective directional response characteristics. But, if too large of an array 

spacing is used, higher frequency signals may pass through the spatial filter with no 

attenuation due to the spatial aliasing phenomena. To illustrate this consider a four 

element linear array with element spacing greater than half of a wavelength (Figure 3.2). 

 

Figure 3.2  Illustration of spatial aliasing 
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Assuming the beamformer is designed to receive a signal coming from a DOA of 90
o
, the 

applied time delays,  , at each microphone would be zero according to equation 2.2. 

Because the array spacing is so large, there exists some other DOA where an interfering 

signal can line up in phase with the array elements and add together coherently, 

effectively passing through to the output. Even though it seems like this phenomena 

would only exist for periodic signals, it is an important observation to keep in mind when 

using the delay sum beamformer. 

 The second frequency dependant issue that arises from the delay sum beamformer 

is unwanted low pass filtering from errors in DOA estimation. This issue is important for 

the application of surveillance because the exact location of speakers may not be known. 

If the look direction of the beamformer is slightly off target, the speech signal will be low 

pass filtered which may inhibit speaker identification performance. This unwanted low 

pass filtering occurs because time delaying lower frequency, larger period, signals does 

not shift them enough out of phase to cause destructive interference. Higher frequency 

signals, on the other hand, take less time delay to cause destructive interference. 

 To illustrate this, the steered response of the delay sum beamformer is looked at 

over broad frequency range. The steered response is similar to the directional response 

but instead of keeping the look direction constant while moving the source, the source is 

kept constant while sweeping the beamformer look direction. This type of response can 

be useful for detecting where possible sound sources might be located. Figure 3.3 shows 

an example steered response using a 9 element linear array with an element spacing of 1 

meter. 
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Figure 3.3 Delay sum beamformer frequency dependence 

In the figure above, a sinusoidal source is located at 90
o 
(0 meters in the x direction). To 

obtain the frequency response of the delay sum beamformer, its steered response is swept 

along the horizontal plane while the source signal frequency is varied from 100Hz to 4 

kHz using “DS_freq_resp.m”. For each look direction and signal frequency, the output 

power of the delay sum beamformer is plotted in Figure 3.3. The concept of focusing 

error can be seen at the lower frequencies when the main lobe gets very wide. If the look 

direction of the beamformer is steered off of the actual source DOA just slightly, only the 

low frequency content will be recovered. Figure 3.3 also illustrates the effect of spatial 

aliasing and its affect over frequency. If the source at x = 0 meters is considered an 

interferer and the beamformer is not pointed towards it, it is possible for some of that 

interferer to pass to the output, especially if it contains high frequencies.  
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 It is clear from the above simulations that frequency dependence is a possible 

limiting factor of using the delay sum beamformer with broadband signals such as 

speech. Though these factors may cause non-ideal performance, it is not clear how much 

affect they will have in practice. Intuitively, focusing error should be of most concern 

because of the uncertainty of source DOA estimation in surveillance applications.  

3.1.2 Spatially Correlated Noise 

Thus far only the delay sum beamformer’s reaction to deterministic signals has 

been investigated. In order to predict possible short comings of the delay sum 

beamformer to a random noise environment, it is important to explore the effect of 

random noise fields on the performance of the delay sum beamformer. Because arrays 

consist of elements separated in space, the noise present is not only a function of time but 

a function of space as well.   In order to simulate this spatially dependant noise, a noise 

model must be developed that takes into account the spatial correlation of the noise. This 

section therefore looks to derive a two dimensional spatially correlated noise model in 

order to see how random noise fields affect the delay sum beamformer. 

To begin the derivation, a signal model is assumed to be a superposition of signal 

and noise at the output of each array element, 

                    . (3.1) 

In order to find an expression for the spatial correlation of the noise, a model for       

must be assumed. For this exercise, the noise is modeled as a sum of infinite plane waves 

with random amplitude,  , and direction,  . 
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                   (3.2) 

Equation 3.2 shows the noise model in integral form where the vector 

               with              
   

 
 and the vector         with   and 

  being the two dimensional Cartesian spatial coordinates. The plane wave DOA,  , is 

assumed to have a uniform distribution from –π to π. 

  In order to find the two dimensional correlation of the noise, the definition of 

correlation in equation 3.3 is used assuming     is a zero mean random process. 

                         
          (3.3) 

The * operator in equation 3.3 denotes the complex conjugate. After substituting 3.2 into 

3.3 and evaluating the expression, the correlation of the noise is found to be 

           
  

 

  
                  (3.4) 

where    is the Bessel function of the first kind,   is Pythagorean distance between two 

points, and   
  is the variance of     . Equation 3.4 enables modeling of the noise 

correlation between two receivers a distance   apart while taking into account the 

difference in time delays applied by the delays sum beamformer,        .  

From equation 3.4 an N x N correlation matrix can be constructed to simulate two 

dimensional spatially correlated noise. This is done with the Matlab function 

“plane_noise_R.m” which generates N channels of Gaussian white noise and correlates 

each noisy channel given a user specified array geometry. In order to see how the delay 

sum beamformer is affected by this spatially correlated noise, the steered response is 
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simulated with different arrays and noise parameters. The script “DS_noise_tests.m” was 

used to apply the delay sum beamformer to see how the noise frequency and array 

spacing affects the beamformed output. 

 

Figure 3.4   Delay sum beamformer steered response to spatially correlated noise 

Figure 3.4 shows the delay sum beamformer’s steered response using a 3 element 

linear array with 1 meter spacing and only spatially correlated noise present. It is seen 

that as the beamformer look direction is swept, the output noise power changes. For some 

low frequency noise, the noise power peaks at 90 degrees because all time delays are zero 

which maximally correlates the noise. For higher frequency noise, the delay sum 

beamformer has the opposite effect. Keep in mind that the correlation also changes with 
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array spacing as well as frequency. This exercise of simulating the delay sum 

beamformer’s reaction to spatially correlated noise highlights possible shortcomings in 

that noise attenuation varies with frequency, look direction and array geometry. This 

means that the beamformer’s performance varies with each scenario and may achieve 

minimal noise reduction for certain look directions, both of which are not desirable in 

practice. 

 At first, the delay sum beamformer looks like a valid technique to reduce noise 

using an array because of its simple implementation and electronically adjustable look 

direction. Though it is possible to completely recover a broadband speech signal using 

this method, some frequency dependant issues may interfere with optimal beamformer 

performance as seen in this simulation section. Effects of spatial aliasing and unwanted 

low pass filtering from look direction focusing error vary with scenario and may cause 

performance degradation in practice. These issues should be kept in mind when 

processing broadband signals with the delay sum beamformer. Finally, a two dimensional 

noise model was simulated and showed that the delay sum beamformer could not 

guarantee consistent noise reduction for all look directions. It is obvious from the analysis 

above that more broadband methods should be explored to see if more robust 

performance can be achieved. The next chapter looks at some adaptive broadband 

multichannel noise reduction techniques which theoretically provide distinct advantages 

over the delay sum beamformer. 
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4. BROADBAND MULTICHANNEL NOISE REDUCTION 

ALGORITHMS 

 

In Chapters 2 and 3 spatially selective filters or beamformers were analyzed and 

simulated as a possible means of noise reduction using microphone arrays. These 

techniques are well known due to their extensive use in practical applications such as 

radar. Because beamformers may not perform ideally in practice, it is useful to explore 

other types of array processing techniques that are broadband in nature due to their time 

domain implementation.  

This chapter looks into some newer methods of microphone array processing to 

determine if a more suitable algorithm is available for surveillance scenarios. The two 

multichannel noise reduction algorithms explored are the Multichannel Wiener filter and 

the Spatio-Temporal Prediction filter found in [1]. Both algorithms exploit the spatial 

information provided by microphone arrays to reduce background noise. The two 

techniques are adaptive and therefore do not need any “a priori” information to use. This 

means that these algorithms don’t require the location of the source or the relative 

positions of the microphones in the array and can adapt to different noise environments. 

These features make the adaptive algorithms ideal for use in surveillance where the sound 

source position is not always known and the noise environment changes.  

4.1 New Problem Description 

 The Multichannel Wiener filter and Spatio-Temporal Prediction (STP) filter 

operate differently than the delay sum beamformer in the previous chapter. Therefore, a 

new signal model and algorithm goal must be presented. These techniques are broadband 
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in nature so they do not rely on time delays to achieve their filtering function. Instead 

these methods use single channel techniques generalized to multiple channels where each 

channel is treated as redundant observation of the same signal. The goal is to somehow 

combine this set of observation signals in such a way that reduces the noise at the output. 

 To illustrate this new concept, consider equation 4.1 where each microphone 

output of the array,   
   , is composed of the desired speech signal to be recovered, 

     , and noise,      , sampled at discrete times  , using an   microphone array. 

                    

           

(4.1) 

The main goal of these multichannel algorithms is to reduce       and recover a best 

estimate of       using N observation signals [1].  In order to achieve this goal, the 

signals are processed in blocks of   samples for later computations required by the 

algorithms. To represent these sample blocks or frames in the signal model, equation 4.1 

is rewritten in vector form: 

                    

                                           

(4.2) 

In equation 4.2, the superscript   represents a vector/matrix transpose making       a 

column vector consisting of the current observed sample,      , in the first entry and the 

previous     samples making up the rest of the vector. Block or filter length,  , is an 

important design parameter and will be varied later in the simulation and experiment 

sections. The speech vector,        and the noise vector,      , that make up the noisy 

speech signal are defined in the same way as       [1].  
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 In order to recover the reference speech signal       from the N observation 

signals, it is assumed that there is some linear transformation that can applied to the 

observation signals at each microphone to best estimate      . This transformation is 

shown and simplified in equation 4.3: 

 

         

 

   

      

↓ 

            

where, 

                   
       

       
              

        
       

       
              

        
       

       
              

                 . 

(4.3) 

In the above equations from [1],   is some  x  filter matrix corresponding to the 

observation signal vector      . The simplified version of equation 4.3 is derived by 

organizing all of the filter matrices into one global filter matrix,  , which is LxNL in 

dimension. The observation signals are also organized into an NLx1 column vector, 

    , containing all L samples of each  observation signal vector concatenated into a 

single vector. The specific goal of these algorithms is to find this global filter matrix   to 

find the best estimate of the speech signal at the reference channel. The Multichannel 

Wiener Filter and STP filter both define criteria to calculate the global filter matrix given 

some optimization parameters. The specific criteria and methods for calculating the 

global filter matrix for each algorithm are described in the next sections. 
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4.2 Multichannel Wiener Filter 

The Wiener filter is a well known classical optimal adaptive filter that was 

originally developed for single channel use. For our purposes, the Wiener Filter is 

generalized to multiple channels to be used in conjunction with microphone arrays. As 

stated in the previous section, the idea behind using multiple channels is that there are 

now multiple observable versions of the speech signal that can be combined in such a 

way to better estimate the desired speech signal than in the single channel case.  

The Wiener Filter achieves its filtering function by utilizing the minimum mean 

squared error criterion. Specifically, the goal is to minimize the error between the 

estimated speech output signal and the desired clean speech signal. This mean squared 

error criterion,     , is written in matrix form in equation 4.4 [1]. 

                         (4.4) 

The error signal,     , is defined as the difference between the actual output of the filter 

and the desired speech signal,           . The “tr” operator represents the matrix trace 

operation. By substituting this error signal relation into 4.4, the mean squared error 

criterion is rewritten in equation 4.5 [1]. 

           
                    

 
             (4.5) 

The NLxNL observation signal correlation matrix,    , is defined as               and 

the NLxL observation-speech signal cross-correlation matrix,     
, is defined as 

         
     . The minimum of the mean square error criterion is found by 

differentiating 4.5 with respect to H and setting it to zero [1]. Solving for H results in 

equation 4.6 [1]: 
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      . (4.6) 

The global filter matrix in this case uses a ‘W’ subscript to specify that it was derived 

from the Wiener filter algorithm. It is important to note that     
cannot be calculated 

because      is unobservable as it is the signal trying to be recovered. In order calculate 

the global filter matrix,     
must be estimated using the fact that the observation signals 

consist of clean speech and noise which are assumed to be uncorrelated. Assuming the 

noise can be observed by itself with no speech present, the cross-correlation matrix can 

be estimated using equation 4.7 [1]. 

     
           

  

                   

                  

(4.7) 

By subtracting the noise correlation matrix,    , from the observation correlation matrix, 

    can be estimated for all channels. The LxNL U matrix is used to select out the 

desired cross-correlation matrix     
. Using the relation in equation 4.7, the Wiener 

global filter matrix can now be calculated in 4.8. 

   
              

   
  

   
 (4.8) 

As stated earlier, the global filter matrix can only be calculated if there are periods where 

there is only noise present allowing the estimation of the noise correlation matrix. Once 

calculated, the global filter matrix is applied to the observation signals using equation 4.3 

to obtain the filtered output.  

Though the Wiener filter seems like a promising approach, the spatial information 

provided by microphone arrays is not fully utilized. This is because it is a single channel 
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approach generalized to multiple channels. The next section derives a newer multichannel 

noise reduction algorithm called the Spatio-Temporal Prediction filter which takes 

advantage of the spatial information provided to calculate the global filter matrix. 

4.3 Spatio-Temporal Prediction Filter 

 The previous section looked at the multichannel Wiener filter which is well 

known adaptive single channel algorithm generalized for use with multiple channels. 

Because the Wiener filter was designed for the single channel case, it may not exploit the 

spatial information provided by microphone arrays [1]. This section therefore derives a 

newer algorithm that was designed with multi-channel processing in mind. In fact, it can 

be shown that the Spatio-Temporal Prediction filter achieves no noise reduction if used in 

the single channel case. 

 The STP algorithm proposed in [6] exploits speech’s predictability in time and 

space to clean the noisy speech signal. The STP filter is similar to the well known 

Linearly Constrained Minimum Variance (LCMV) filter and is implemented in two steps 

[1]. The first step involves calculating “optimal inter-sensor spatial-temporal prediction 

transforms”. The second step then exploits these transforms to calculate the global filter 

matrix [6]. Specifically, the first step of the algorithm begins by assuming there is some 

linear prediction matrix W that can represent the speech signal at any channel using a 

linear combination of the reference speech signal samples: 

          
       

          

(4.9) 
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The prediction matrix for each channel is calculated by minimizing the mean squared 

error caused by the transform as seen in equation 4.10. 

                    
       

 
         

         (4.10) 

By minimizing this function, the equation for each prediction matrix is found in 4.11: 

   
       

     
   (4.11) 

A similar observability problem as the last section is seen in equation 4.11 in that       

is not observable in practice so it must be estimated by subtracting observation and noise 

signal statistics: 

 
  

        
      

       
      

 
  

 (4.12) 

Once they are calculated, all of these LxL prediction matrices are organized into an 

LxNL global prediction matrix W to simplify computations later: 

                  (4.13) 

The first prediction matrix is an identity matrix because channel one is used as a 

reference to predict all the other channels. The fact that we are able to predict the speech 

signal at every channel using one channel is fundamental to the STP filter and will be 

utilized to calculate the global filter matrix. It is also important to point out that the global 

prediction matrix in equation 4.13 only needs to be calculated once if the source does not 

move [1] [6]. 

 Assuming that the global prediction matrix is able to be calculated from the array 

observations, the global filter matrix H can now be calculated. The STP algorithm 

calculates filter weights by theoretically minimizing the noise power with the constraint 
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that the speech is not distorted. The noise power to be minimized is written in equation 

4.14 where the filtered noise component of the output is defined as            . 

                   
        (4.14) 

The speech distortion constraint is written in equation 4.15 so that the application of the 

filter matrix and prediction matrix do not distort the speech signal. 

          . (4.15) 

By minimizing equation 4.14 with respect to 4.15 and using Lagrange multipliers, the 

expression for the global filter matrix is found in equation 4.16 [1] [6]. 

          
           

    (4.16) 

As seen in equation 4.16, calculating the STP filter’s global filter matrix is more 

computationally intensive than the Wiener Filter as three matrix inversions are required 

compared to just one. The trade off here is that the STP filter implements the constraint 

that the speech is not distorted whereas the Wiener Filter causes more speech distortion 

proportionally to the amount of noise reduction achieved [6]. The theoretically minimal 

speech distortion that the STP approach provides is an attractive feature for the speaker 

identification application explored in this thesis. 
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5. SIMULATIONS 

 

5.1 Algorithm Simulation 

 Now that the theory behind these newer multichannel noise reduction algorithms 

has been derived and understood, it is important to test their performance through 

simulation. Specifically, it is of interest to test how well these algorithms improve signal 

to noise ratio in different noise environments. The next few sections outline the filter 

implementation, noise modeling, as well as provide simulation results and interpretations. 

5.1.1 Matlab Implementation 

 In order to test the performance of the algorithms in simulation and experiments, 

both the Multichannel Wiener Filter and Spatio-Temporal Prediction Filter are 

implemented as the Matlab functions “Wiener_filter.m” and “Spatio_Temporal_Filter.m” 

respectively. These functions operate using N channels of noisy speech and N channels of 

a noise sample (no speech present) as inputs. Filter length (L) and sample overlap are also 

entered as filter parameters which control the number of samples in each window as well 

as how much each window overlaps the previous one. Because the filter processes the 

data in blocks of L samples, this parameter can be varied to tune the filter. Figure 5.1 

illustrates the block diagram implementation of the filters in Matlab. 
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Figure 5.1   Matlab implementation block diagram of broadband multichannel filters 

 Though the algorithms differ in their computations, their overall implementation 

is fairly similar. Once the observation and noise only signals are obtained, the algorithms 

first calculate the correlation matrices Ryy and Rvv in blocks of L samples. This is 

achieved by taking the running average of the calculated correlation matrix for each 

frame according to equation 5.1 and 5.2 for the observation and noise signals 

respectively. 

 
   

    
   

 
     

   

 
 (5.1) 

 

 
   

    
   

 
     

   

 
 (5.2) 
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The original NxL observation and noise only signals are organized into NLx1 column 

vectors   and   in order to calculate these correlation matrices with a simple matrix 

multiplication for the current frame m. It is worth noting that equation 5.1 and 5.2 can be 

generalized to the problem of iteratively updating a variable by replacing the  
   

 
  and 

 

 
 

factors with λ and     respectively. Using this scheme, is it possible to adjust the contributions 

of the old value (e.g.    ) and the current value (e.g.    ) to the new value (e.g.    
 ) in 

order to enhance or suppress the contribution of the current frame. Since one could spend 

a long time evaluating the effects of different updating schemes on filter performance, the 

running average method was chosen for simplicity. 

 Once the functions have run through both sets of input signals frame by frame to 

estimate the statistics, the global filter matrices are then calculated. The Wiener global 

filter matrix is calculated according to equation 4.8 while the STP global filter matrix is 

calculated in two steps using equation 4.12 and 4.16. Though it seems like the extra step 

of calculating the prediction matrix in the STP approach seems significant, it is actually 

fairly trivial because all of the information needed for equation 4.12 is embedded in     

and     which must also be calculated for the Wiener Filter.  

 Once the global filter matrix is calculated, the last step is to perform the filtering 

operation. This is done using a simple matrix multiplication of the NLx1 column vector 

of the current frame with the global filter matrix. This multiplication results in an Lx1 

vector which is used to construct the output signal frame by frame. This output signal is 

considered a best estimate of the speech signal at the reference channel (microphone 1 in 

this case). 
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5.1.2 Three Dimensional Noise Modeling 

 In order to verify the operation of these multichannel filtering methods, a noise 

model must be developed to provide a noise input to the adaptive filter functions in 

Matlab. As opposed to Chapter 3, this section will derive a three dimensional noise model 

because these filters are implemented using a three dimensional array.  

After some research, it was found that a model was proposed by Cook et al. in [7] 

using a similar approach as was used to derive the two dimensional noise model in 

Section 3.1.2. The results from [7] provide an equation for spatial correlation for three 

dimensional plane wave noise containing a band of frequency content. This equation was 

simplified and rearranged to give a more implementable relation for the purposes of this 

thesis. 

 
       

     

  

  

 

   

↓ 

      
       

   
 

(5.3) 

Equation 5.3 gives the correlation between two points in space which are a distance r 

apart given noise with a cutoff frequency or bandwidth of        ,    
  

 
. The speed 

of sound, c, is assumed to be 345 m/s in air. The function Si denotes the “Sine Integral” 

which is defined as:         
    

 

 

 
  . This expression for the spatial correlation of the 

noise can now be used to construct noise with these characteristics at each microphone in 
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the array. It is worth noting that      is normalized by    so that        (note: 

        for    ). 

 Noise with the correlation described by equation 5.3 is generated using the Matlab 

function “plane_noise_R_3D.m”. The function first generates N channels of Gaussian 

white noise with user specified duration. This noise is then correlated in time using a 

Butterworth low pass filter of specified order and cut off frequency to establish the noise 

bandwidth. An NxN noise correlation matrix is then calculated according to equation 5.3, 

using the distance between each microphone as values for r. This matrix is then used to 

spatially correlate the low pass filtered noise through simple matrix operations. The 

resulting N channels of noise are now spatio-temporally correlated according to the above 

model. This output noise from this function is then used as the “noise only” input of the 

filtering functions for simulation. 

5.1.3 Simulation Results 

 Now that a model for background noise has been developed in three dimensions, 

it is of interest to verify and evaluate the performance of the Wiener and STP filters in a 

simulation environment. The first set of simulations in this section will look at the ability 

of the filters to reduce noise with different bandwidths generated by the model in the 

previous section. The second set of simulations briefly explores how well the filters are 

able to reduce background noise recorded from a real environment. Filter length, L, will 

be used as the main adjustment parameter for each simulation in order to observe its 

affects. The goal of these simulations is to see what kind of noise reduction can be 

achieved by applying these multichannel filters. 
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 In both simulations, a clean speech sample is simulated at a location in space 

using the Matlab function “sim_3D.m”. These N channels of clean speech are added to 

the appropriate background noise at a relatively low signal to noise ratio. These N 

channels of observation signals seen at each microphone are used as the noisy speech 

input to the filters, while the generated or recorded background noise is applied to the 

noise only input. The filtering functions use these two inputs to adaptively calculate and 

apply the best global filter matrix to the noisy speech input as derived in Chapter 4. The 

filtered single channel output will then be analyzed to see how much noise reduction was 

achieved. 

In order to quantify and compare the performance of the Wiener and STP filters, 

output signal to noise ratio (SNR) will be used as the primary metric. More specifically, 

global SNR will be calculated because local or frame based SNR estimations methods 

may be sensitive to changes in frame length [8]. Due to the nature of this experiment, the 

clean speech signal is not observable at the output so its power cannot be calculated. 

Therefore, output SNR will be estimated under the assumption that the output signal is a 

superposition of filtered speech and residual noise. The output noise power can be 

estimated by applying the global filter matrix to the noise only sample and calculating its 

variance. The output speech signal power can then be estimated by taking the difference 

between the power of the filtered speech output and the filtered noise. Equation 5.4 

analytically illustrates this SNR estimation method. 

 
        

       

         

 
         

          

         

 (5.4) 



38 

 

The Matlab function “BB_metrics.m” estimates this output SNR by calculating the 

variance of the total output and the filtered noise only output. It should be noted that this 

estimation technique assumes that the noise statistics are the same for the noisy speech 

signal and the noise only signal. This is a valid assumption for these simulations because 

the same noise is used to corrupt the speech signal that is also used to estimate noise 

statistics in the filtering functions. Non-stationary noise may prove problematic in the 

experimental portion of this thesis where these filters are applied to real data. Limitations 

of this SNR estimation technique will be discussed more in Chapter 5. 

As mentioned, the first set of simulations looks to evaluate the performance of the 

Wiener and STP filters in the presence of the noise from the model developed in the 

previous section. For each simulation, noise of varying bandwidths are generated and 

added to a clean male and female speech source simulated 40 meters directly in front of 

the array. A relatively low input SNR of 0dB is used so that the speech and noise signals 

are competing when listened to.  

The array used in this simulation consists of 9 elements arranged vertically in a 3 

by 3 square with each microphone spaced roughly 1 meter apart (Figure 5.2). This is the 

same array geometry as the physical array used for the field experiments in the next 

chapter. In this simulation, both filters are applied to the simulated noisy speech with 

varying filter lengths to observe affects on the output SNR. The Matlab script 

“Wiener_Simulation_test1.m” is used to initialize and run iterations of this simulation 

with different noise bandwidths and filter lengths for both multichannel filters. The 

output SNR results of this set can be seen in Figure 5.3 and Figure 5.4. 
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Figure 5.2  Simulation and Experimental Array Geometry 

 

 

Figure 5.3  STP filter output SNR with varied filter length and simulated noise bandwidth 
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Figure 5.4 Wiener Filter output SNR with varying filter length and simulated noise bandwidth 

It is clear that the output SNR performance of each filter varies significantly with 

noise bandwidth and filter length. The STP filter achieves a high output SNR for lower 

noise bandwidths and levels off around 10dB for higher bandwidths. This lower SNR 

may be contributed to the increased amount of frequency overlap of the speech and noise 

as the bandwidth increases. At lower noise bandwidths, the STP filter also exhibits more 

sporadic performance when the filter length is varied. The Wiener Filter, on the other 

hand, performs more predictably over filter length but has a significantly lower output 

SNR potential of 7-11.5 dB when considering all cases. From this simulation it is seen 

that both approaches achieve reasonable SNR gains with the STP filter showing the most 

potential for noise reduction. 



41 

 

The second set of simulations uses noise recorded in a real indoor environment to 

see how the performance of the multichannel filters changes with respect to the first 

simulation set. The noise used is a 1 minute recording of background noise inside an 

empty auditorium at Lawrence Livermore National Laboratory. The recording was 

performed using a physical microphone array with the same geometry as the previous 

simulation. The experimental set up and equipment will be discussed in more detail in the 

next chapter. The recorded background noise is added to the same clean speech source as 

before with an SNR of -3dB. Both filters are again applied to this noisy speech signal 

with varying filter lengths using the Matlab scripts “Wiener_Test3_filt_length_max 

overlap.m” and “STP_Test3_filt_length_max_overlap.m” for each filter respectively. The 

resulting output SNR performance can be seen in Figure 5.5. 
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Figure 5.5   Output SNR of broadband filters using a simulated speaker in the presence of real indoor noise 

Figure 5.5 exhibits similar trends to the previous simulation that are worth noting. 

First, the STP filter achieves higher output SNR at lower filter lengths and also exhibits 

similar seemingly unpredictable SNR trends as the first simulation. The Wiener filter also 

follows a similar pattern as the first simulation showing initially increasing SNR which 

levels off after a filter length of around 10 samples. The lower output SNR of both filters 

may be caused by the lower input SNR used in this simulation. Overall, the STP filter has 

consistently higher output SNR but tweaking its filter length does not guarantee a 

predictable increase or decrease in SNR as opposed to the Wiener filter. 
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 Through the use of simulation in this section, it is clear that both filters are able to 

achieve noise reduction with different performance characteristics. The STP filter shows 

promise for greater output SNR while the Wiener filter exhibits a more predictable 

performance as the length of the filter is varied. The similarities between the two sets of 

simulations suggests that the generated noise is a reasonable model for real acoustic 

background noise in a three dimensional space. In the next chapter, these multichannel 

filtering algorithms will be put to the test using real field data recorded in various 

environments. It will be interesting to see how the performance of these filters in real life 

scenarios compares to what was observed in simulation.  

5.2 Speaker Identification Simulation 

In order to equate the results from the above simulations to speaker identification 

performance, this section explores the affect of SNR on SID confidence. The speaker 

identification software used in this thesis is the Advanced ID plug-in for the Rome Audio 

Processing Tool (RAPT-R). RAPT-R is an all purpose audio processing tool developed 

by the Air Force Research Laboratory for government and military use.  

The Advanced ID plug-in enables target identification as well as cross verification 

using a variety of algorithms. The RAPT-R recommended SID system, Open-Set SID 

2010, will be utilized to evaluate the performance of the noise reduction algorithms 

presented in this thesis. The Open Set SID system utilizes the Super Vector Classifier 

with “a set of feature extractors including GSV Linear Predictive Coding Coefficients 

(LPCC), Mel Frequency Cepstral Coefficients (MFCC), and Perceptual Linear Prediction 
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(PLP)” [9]. The goal of this system is to match an unknown speaker from an audio 

recording to a member of a target group of known speakers or “suspects”. 

In order to quantify confidence, or how well the unknown speaker matches a known 

speaker from the target group, the SID system assigns a numerical score to each member 

of the target group corresponding to how closely they match the unknown speaker. A 

more useful metric was developed for this thesis in order to better quantify SID in terms 

of overall confidence as well as score differentiation between speakers. This “SID 

discrimination metric” or SID score is calculated by simply taking the individual score of 

the actual speaker in the “unknown” recording and subtracting the next highest speaker 

score from it. For example, if the actual speaker in the recording scores a 1.5 and the 

highest scored speaker from the rest of the target group receives a 1.0, the SID 

discrimination metric is calculated to be 0.5. This calculated metric is shown in equation 

5.5 and will herein be referred to as the “SID score” or “SID metric” not to be confused 

with the “confidence score” given to each member of the target group by the RAPT-R 

program. 

 

                                                                 (5.5) 

 

The SID metric in equation 5.5 is useful because it takes into account the relative 

confidence scores of other targets rather than just the absolute confidence score of the 

actual speaker. This differential approach makes it so that a high SID score is calculated 

if the actual speaker receives a much higher confidence score than the other targets, while 
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a low SID score is calculated if the actual speaker has a similar score to other targets. A 

negative score is calculated if the SID system identifies the wrong target as the unknown 

speaker. This case corresponds to the actual speaker receiving a lower confidence score 

than another target. The SID metric developed here will be used in this simulation section 

as well as in the next chapter to compare the performance of the different noise reduction 

algorithms. 

In order to test the SID system with various speaker input cases, Lawrence Livermore 

Lab employees were used to compile a database of 13 speakers. Both male and female 

speakers were used in the dataset including individuals with slight accents. Each speaker 

in the database was recorded in a low noise, office room environment using a computer 

microphone. Speakers are recorded uttering multiple phrases taken from TIMIT prompts. 

These phrases are used because they are “phonetically diverse” and were developed for 

use with speaker recognition research [10]. A list of these phrases can be found in 

Appendix A. Speakers in the database are labeled alphabetically from ‘A’ to ‘M’ due to 

privacy restrictions. 

Before testing the SID system with different inputs, various setup steps must be 

performed to calibrate the system. A Universal Background Model or UBM must first be 

generated using as many speakers as possible in order to train the system on the channel 

characteristics, speaker/population mix (male or female) and environment of the speech 

recordings [9]. The Advanced ID manual emphasizes that speakers used to create a UBM 

should never be used as targets to be matched on. The UBM for simulation and later 

experiments was created using 8 of the 13 speakers available in the Lawrence Livermore 

National Laboratory speaker database designed for this research. Next, a target group is 
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constructed using the remaining 5 speakers in the database. Speaker identification can 

then be performed by running an “unknown” speaker wav file against all of the speakers 

in the target group using Open Set SID 2010. The output of the system is a set of 5 

confidence scores corresponding to how closely each speaker in the target group matches 

the unknown speaker. From these scores, the SID discrimination metric is calculated by 

hand using equation 5.5. The steps used to perform speaker identification are outlined in 

Figure 5.6. 

  

Figure 5.6  Algorithm for running speaker identification system 

With the UBM and target group set up, it is important to see how corruption of the 

speech signal with noise and distortion affects SID scoring. To examine the influence of 
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noise, the clean speech sample for each of the speakers in the target group is corrupted 

with different levels of additive Gaussian white noise. These noisy speech signals are 

then passed through the SID system and scored. The SID results of this simulation are 

shown in Figure 5.7 using various input SNR levels for each speaker. The average score 

over all speakers is also plotted versus input SNR in Figure 5.8. 

When looking at SID scoring, it is important to note that any score above 0 is a 

positive identification while anything below 0 is a negative identification, meaning the 

SID system identified the wrong individual. Within the positive scoring area, any score 

from 0-0.5 is considered a “weak positive”, 0.5-1.0 is a “moderate positive” and scores 

above 1.0 are “strong positives” indicating a highly confident identification. A moderate 

positive should be considered fairly sufficient while a weak positive should be interpreted 

with caution. 
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Figure 5.7  SID score vs. SNR for the 5 speakers in the target group 

 

Figure 5.8  Average target group SID score vs. SNR 
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 As seen in the figures above, SID score does seem correlated with SNR but trends 

do fluctuate between speakers. When all speaker scores are averaged for each noise level, 

it is clear that SID score does increase with SNR. From Figure 5.8, it seems that about a 

10 dB SNR is needed to achieve a positive identification. It is important to keep in mind 

that the effect of SNR does vary from speaker to speaker so the trend may not always 

hold for every individual case. Though SNR seems like a good performance predictor for 

speaker identification, it is not the whole story. 

 Distortion of the speech signal caused by filtering may also cause performance 

limitations in speaker identification scoring. Signal corruption via distortion is simulated 

by taking the clean speech samples and applying band pass filters of varying bandwidths 

to them. The lower the bandwidth of the filter, the more “speech distortion” is applied by 

altering the frequency content of the speech. Figure 5.9 plots SID score versus the 

bandwidth of the band pass filter applied to each clean speech signal. 
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Figure 5.9   SID score vs. speech signal bandwidth for the 5 target group speakers 

 

Figure 5.10  Average SID score vs. speech signal bandwidth of the target group 
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average. Like the SNR simulation, this trend varies from speaker to speaker. For 

example, speaker ‘I’ is directly affected by this simulated speech distortion while speaker 

‘D’ is barely affected and maintains a strong positive score. This speaker variation may 

be due to the differences in the location of the strongest frequency content for each 

speaker relative to the location of the center frequency of the band pass filter. Overall, 

speech distortion does seem to affect SID scoring but does not have as drastic of an effect 

as SNR. 

The effect of speech distortion is explored here because the noise reduction 

algorithms are not perfect and may distort the speech signal while reducing noise. 

Therefore, it is important to know its effect on SID scoring if distortion does occur. Due 

to the adaptive nature of the noise reduction algorithms, it is difficult to estimate their 

effect on frequency content for each speaker case. In the experiments in the next chapter, 

speech distortion measurement was attempted using theoretical approaches from [1], but 

did not result in reasonable values. Because only experimental output SNR measurements 

will be available for comparison, the findings of this speech distortion simulation should 

just be kept in mind when analyzing the results of experiments in the next chapter. 

Through various simulations in this chapter, the use of multichannel noise reduction 

algorithms has proven to be a reasonable approach to aid in speaker identification. 

Section 5.1 verified that noise reduction is possible using multichannel techniques for 

different types of noise, including noise recorded in a real environment. It was seen that 

the STP filter had the highest output SNR potential, while the Wiener Filter performed 

more predictably as the length of the filter was varied. Section 5.2 demonstrated the 

connection between SNR and SID scoring for the white noise case. Finally, the effect of 
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speech distortion on SID performance was investigated and should be noted as a potential 

performance inhibitor. The next chapter looks to put the multichannel filters to the test in 

real environments to see if they can indeed enable speaker identification in practice. 
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6. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Thus far, this thesis has presented three multichannel noise reduction techniques with 

the goal of aiding speaker identification algorithms. The delay sum beamformer, 

multichannel Wiener filter and Spatio-Temporal Prediction filter were all derived and 

their performance was investigated using simulation. Now that the proper operation of 

each approach has been verified and potential shortcomings have been noted, this thesis 

will conclude by applying these filters to multichannel speaker data from real 

environments. 

The results of three data collections will be presented in this chapter as a final 

performance test of these multichannel noise reduction techniques. Of the three data 

collections, one was performed indoors while the other two were performed outdoors to 

create a more “challenging” noise environment. During each experiment a nine element 

microphone array is used to record up to five speakers in various locations. Output SNR 

and ultimately SID scoring will be used as metrics to judge the performance of each 

filter. The overall goal is to compare the filters and see if one approach is optimal under 

certain conditions [11]. The next section describes the experimental set up and procedure 

in greater detail. 

6.1 Experimental Set Up and Procedure 

Since the goal of this thesis is to see if a speaker identification system can be 

improved with multichannel pre-processing for practical surveillance applications, it is 

important for these experiments to mimic real scenarios while still controlling as many 

variables as possible. Each experiment uses speech recordings of individuals played back 
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through computer speakers on a mobile cart. The “speech source” or cart location is 

varied and differs for each data collection. Using recordings rather than live speakers 

allows for consistent control of speaker volume, position and speech content for each 

trial. Different numbers of speakers, source locations and trials are used for each data 

collection and are specified in their respective sections below. Each experiment also uses 

different methods to sample background noise for the adaptive filters. While each 

experiment differs slightly in procedure, they all follow a similar outline and use the 

same equipment. 

In order to properly record and store speech data from experiments, a microphone 

array and data acquisition system (DAQ) is utilized. Figure 6.1 shows the array, 

constructed at LLNL for this research, which consists of nine elements arranged in a 3x3 

pattern with each microphone spaced roughly 1 meter apart. The custom array frame 

enables mounting of nine Brüel & Kjær 4958 20 kHz Precision Array Microphones on 

adjustable microphone holders (Figure 6.2). These microphones feed to the Abacus DAQ 

made by Data Physics which streams the data to a Panasonic Toughbook computer via 

Ethernet (Figure 6.3). The nine channels of data are converted to Matlab (.mat) format for 

post-processing back in the lab. After applying the filtering techniques presented in this 

thesis, output metrics such as output SNR and SID score are calculated using Matlab and 

RAPT-R respectively. From there, the performance of the algorithms will be compared 

and analyzed. 
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Figure 6.1 Microphone array used for experimental data collections [11] 

 

 

Figure 6.2 Array microphones and specifications [11] 
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Figure 6.3 ABACUS Data Acquisition System and specifications [11] 

6.2 Data Collections  

In this section, the three data collections performed at Lawrence Livermore Lab are 

outlined and the results analyzed. Each data collection has a different motivation as well 

slight procedural nuances which are described in each sub section. In general, several 

speakers are recorded at various locations using the microphone array. Back in the lab, 

the filters are applied to each multichannel speech recording and the output SNR is 

calculated. Next, the single channel output of each speech recording is subjected to 

speaker identification using the Advanced SID program in the RAPT-R software. The 

SID score is then calculated manually for every speaker. The results are plotted and 

analyzed and conclusions are derived. The goal of these experiments is to see if these 

multichannel filters can, in fact, enable positive, more confident identifications than the 

raw recordings. 
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6.2.1 Outdoors 5/10/2011 

6.2.1.1 Motivation and Procedure 

The first data collection was recorded on May 10, 2011 in an outdoor 

environment at Lawrence Livermore National Laboratory. The location of the collect was 

on the North West corner of the LLNL campus near the corner of Vasco and Patterson 

Pass Road. The proximity to these busy streets provided a realistic traffic noise 

environment. It is important to note that this collect was not performed for the purposes 

of this thesis but for a related project. The data from this experiment was used for this 

thesis to provide preliminary results to get an idea of what to expect out of the filters and 

speaker identification system. 

Two speaker sources were used in this collect, one male and one female. The 

position of the speech sources was varied straight out in front of the array at distances of 

10 ft., 25 ft., 50 ft. and 100 ft. using computer speakers mounted on a mobile equipment 

cart. The array and source positions are plotted in Figure 6.4. At each position, both 

speech samples are played back at a moderate volume. Speakers ‘D’ (male) and ‘I’ 

(female) are used in this experiment. A one minute sample recording of the noise 

environment was taken at the beginning of the experiment for later analysis and use in the 

adaptive filtering algorithms. Noise sources in this environment include wind, trees 

rustling, traffic, airplanes, generators and birds chirping. The output SNR and SID 

scoring results are provided in the next section. 
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Figure 6.4 Microphone (blue) and speech source positions (red) for outdoor 5/10/2011 experiment [11] 

6.2.1.2 Results  

Plotted below are the results from the outdoor data collection performed on 

5/10/11. Output SNR is plotted first versus filter length for each speaker using the Wiener 

and Spatio-Temporal Prediction Filter. Speaker cases where output SNR was not 

measureable are not included in the plots. The output SNR plots are included to examine 

any correlation between SNR and SID score. A table of calculated input SNRs and delay 

sum beamformer output SNRs is also provided below. Any cases where SNR was unable 

to be estimated are marked as “N/A” and are omitted from the figures below. 

Table 6.1 Input SNR and delay sum output SNR for each speaker and distance case from 5/10/11 

Distance from 

array (ft) 

Male Speaker Female Speaker 

 Measured Input 

SNR (dB) 

Delay Sum Output 

SNR (dB) 

Measured Input 

SNR (dB) 

Delay Sum 

Output SNR (dB) 

10 -4.5942 -1.549 -17.258 N/A 

25 N/A N/A -4.266 -4.038 

50 -1.7698 -2.660 -7.525 -8.564 

100 .1444 0.440 N/A -9.615 
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Figure 6.5  Wiener output SNR vs. filter length for Outdoor 5/10/11 female data 

 

Figure 6.6  STP filter output SNR vs. filter length for Outdoor 5/10/11 female data 



60 

 

In the figures above, it is seen that the output SNR of the Wiener Filter for the 

female speaker was not measureable for all cases except at 25 feet. For the 25 ft. case, the 

output SNR increases with filter length but starts to drop off after 20 samples. This is in 

contrast to the simulation in the previous chapter where the output SNR stayed fairly 

stable for longer filters. The Spatio-Temporal Prediction filter on the other hand, shows 

more promise. All cases for the female speaker produced measureable output SNR and 

are larger in magnitude than the Wiener filter for all filter lengths. Like in simulation, 

there does not seem to be an extractable trend for the STP filter as the filter length is 

varied. For output SNR, it seems that a lower filter length is better for the 10, 50 and 100 

feet cases while a longer filter length is better for the 25 ft. case. At this point, it is useful 

to examine the results of the male speaker and note any similarities or differences to the 

female case. 
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Figure 6.7 Wiener filter output SNR vs. filter length for Outdoor 5/10/11 male data 

 

Figure 6.8  STP filter output SNR vs. filter length for Outdoor 5/10/11 male data 
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For the male speaker case, the Wiener Filter still has difficulties while the STP 

filter achieves even better output SNR performance. This time, all cases produced 

measureable output SNR except the 25 ft. case for the Wiener Filter. For each case, 

output SNR decreases almost linearly with filter length. This result greatly contrasts with 

earlier simulations where output SNR increased and then leveled off as filter length 

increased. The STP filter again achieves much higher output SNR than the Wiener Filter 

but varies in performance between cases. For the 50 and 100 ft. cases, output SNR 

increases almost linearly with filter length while the 10 and 25 ft cases perform best at 

lower filter lengths. At this point, it seems that the performance trends of these filters is 

highly dependent on speaker and position cases. 

The second set of plots below show the speaker identification scores achieved by 

each filtering approach for each speaker and position. For the adaptive filters, the 

maximum SID scores achieved for all filter lengths used are plotted. Because the delay 

sum beamformer does not have an “adjustable parameter” like filter length, its one and 

only SID score is plotted for each position. For comparison, the score achieved by the 

raw data from a single microphone in the array (microphone 1) is also plotted. 
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Figure 6.9  Female SID score vs. distance position for Outdoor 5/10/11 data 

 

Figure 6.10  Male SID score vs. distance position for Outdoor 5/10/11 data 

In figures above, it is seen that all multichannel processing techniques have the 
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-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

0 5 10 15 20 25 30 35 

SI
D

 S
co

re
 

Distance (m) 

Female SID vs. Distance 
Single Mic Female SID 

DS Female SID 

Max Weiner SID Female 

Max STP Score Female 

-0.5 

0 

0.5 

1 

1.5 

2 

2.5 

0 5 10 15 20 25 30 35 

SI
D

 S
co

re
 

Distance (m) 

Male SID vs. Distance 

Single Mic Male SID 

DS Male SID 

Max Weiner SID male 

Max STP SID male 



64 

 

to consistently achieve the highest SID scores out of all the multichannel filters. Despite 

its difficulties with output SNR, the Wiener filter follows a similar trend to the STP filter 

but with a slightly lower score. Finally, the Delay Sum beamformer actually registers 

slightly higher scores than the STP filter for some cases but is inconsistent, registering 

lower scores than the single microphone for other cases. For both male and female 

speakers, all three methods can enable positive scores up to 100 feet.  

 

6.2.1.3 Analysis 

The results of this experiment showed promise for multichannel filtering 

technique’s ability to aid in speaker identification but also brought complicated problems 

to the surface. Much time and energy was spent trying to determine why output SNR was 

so hard to estimate for the Wiener Filter and why its output SNR trend differed so greatly 

from simulation. Cases where SNR was hard to estimate correspond to negative 

calculated SNR values. Negative SNR obviously does not exist and is an artifact of the 

SNR estimation technique. From equation 5.4 a negative SNR can be calculated if the 

estimated output noise power is greater than the actual total speech and noise power. 

Because the noise sample was taken at the beginning of the experiment and is not 

necessarily the exact noise in the noisy speech recording, difficulties measuring SNR can 

occur.  Because of this observation, it was theorized that the Wiener Filter SNR 

degradation could be a result of the changing noise environment and estimation method 

used in this experiment as well as the high noise power relative to the recorded speech. 

The relatively high noise power gives little room for error when using this SNR 

estimation technique. 
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Despite the low or even un-measureable output SNR of the Wiener Filter, 

reasonable SID scores were still achieved. This shows that high output SNR does not 

always equate to higher SID score though it does seem to give the SID system a better 

chance. The SID score vs. SNR simulation in Section 5.2 shows similar results in that 

some speakers register positive identifications even for low SNRs. This simulation also 

showed that low SNRs can cause unpredictable SID scoring so it is still important to 

attempt to achieve a high output SNR. 

Overall, the STP filter shows the most promise in both SID and SNR 

performance. The Wiener Filter seems sensitive to changing noise and the noise 

estimation technique used while the STP filter is more robust to these variations. The 

delay sum beamformer should not be totally disregarded as it achieves comparable SID 

scores even with consistently low SNRs but is “hit or miss” for some distance cases. 

More experiments should be performed to address some of the issues seen in this data 

collect. 

6.2.2 Indoors: Building 123 

6.2.2.1 Motivation and Procedure 

In order to address the noise related performance concerns from the first outdoor 

collection, the second experiment was performed indoors. The lower, more controlled 

noise environment of the building 123 auditorium at LLNL was used to combat changing 

noise statistics and provide more “headroom” for SNR estimation. By controlling the 

acoustic environment, better filter performance will hopefully be achieved and 

comparisons can be made between the outdoor and indoor environments.  
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Figure 6.11  Indoor B123 experiment setup 

For this experiment, the same two speakers, ‘D’ and ‘I’, are played back at 

various positions in the auditorium. The auditorium allows for a greater variety of source 

positions in both the vertical and horizontal directions. Figure 6.12 shows the microphone 

and source positions in the auditorium. A one minute noise sample is taken at the 

beginning of the experiment just like the outdoor data collection. Noise sources in this 

experiment include the building’s HVAC system and the data acquisition system’s fan. 

This type of noise is more stationary and should eliminate performance variations due to 

changing noise. It is important to note that while the recordings from this collect were 

used for this thesis, this specific experiment was designed for a different, but related 

project at LLNL. 
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Figure 6.12  Microphone (blue) and speech source (red) positions for indoor B123 experiment [11] 

 

6.2.2.2 Results  

As done in the previous experiment, output SNR is measured and plotted for both 

speakers for each position case. The input SNR and delay sum beamformer output SNR 

are included in the table below for comparison. Un-measureable, negative, output SNRs 

are labeled as “N/A” in the table and are not included in the plots. 

Table 6.2 Input SNR and delay sum output SNR for each speaker and distance case from B123 

Position Male Speaker Female Speaker 

 Measured Input 

SNR (dB) 

Delay Sum Output 

SNR (dB) 

Measured Input 

SNR (dB) 

Delay Sum 

Output SNR (dB) 

A1 -3.393 -1.8006 -3.614 -3.15 

A2 N/A N/A N/A N/A 

A3 -12.815 N/A -10.11 N/A 

B1 -19 N/A -22.0761 N/A 

C1 -8.526 N/A N/A N/A 
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Figure 6.13  Wiener Filter output SNR vs. filter length for indoor B123 female speaker data 

 

Figure 6.14  STP Filter output SNR vs. filter length for indoor B123 female speaker data 
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Figure 6.15  Wiener Filter output SNR vs. filter length for indoor B123 male speaker data 

 

Figure 6.16  STP Filter output SNR vs. filter length for indoor B123 male speaker data 
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Output SNR for both filters in this experiment was greatly improved in magnitude 

and measurability. The Wiener filter output SNR was measureable for three out of five 

cases for the female speaker and all five cases for the male speaker. However, for each 

case the output SNR decreases monotonically as the Wiener filter length was increased. 

The STP filter achieves greater output SNR for both speakers with maximum SNRs of 

11.82 dB for the female and 17.1 dB for the male speaker at the closest position, “a1”. In 

general, the STP output SNR seems to increase or stay about the same as filter length is 

increased. 

 

Figure 6.17  Female speaker SID score vs. distance position considering maximum scores achieved by adaptive 
filters  
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Figure 6.18  Female speaker SID score vs. distance position considering average scores achieved by adaptive filters 

 

Figure 6.19  Male speaker SID score vs. distance position considering maximum scores achieved by adaptive filters 
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Figure 6.20  Male speaker SID score vs. distance position considering average scores achieved by adaptive filters 

When looking at SID scoring for each approach, the adaptive filters maintain 

moderate to strong positives for each case. For the female speaker, the max SID scores 

are comparable for the adaptive filters, staying above a score of 1 for the most part. When 

all of the SID scores are averaged over all of the filter lengths used, the STP filter 

maintains higher SID scores for both speakers. For the female speaker, both adaptive 

filters show a similar trend but the STP filter maintains a strong to moderate score while 

the Wiener filter does not. With respect to the average scores of the adaptive filters, the 

delay sum beamformer registers a comparable score for the middle three female cases but 

registers a negative score for the longest distance case, “c1”. The delay sum beamformer 

is below the average STP score for all cases but also seems to “mirror” the Wiener filter. 
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6.2.2.3 Analysis 

Overall, the data from the indoor data collection provides more interpretable 

results than the outdoor experiment. From the SNR results, it is clearly seen that the STP 

filter performs best for all cases as the filter length is varied. The STP output SNR tends 

to increase over filter length but is also sporadic for some cases and can rise or drop 

sharply especially for the longer distance cases. Despite this, the output SNR seems to 

level off and become more predictable for longer filter lengths. The Wiener filter, on the 

other hand, still seems to have issues as there is a relatively sharp drop off in output SNR 

as filter length increases for all cases. This trend is the same for the outdoor data collect 

with the exception of one case. Despite this, the indoor noise environment caused more 

cases to result in reasonable SNR values than in the previous outdoor experiment. These 

observations suggest that the noise sampling method may cause the Wiener filter 

performance issues as the decreasing SNR trend continues even with the indoor noise 

environment. 

As with the previous outdoor experiment, the multichannel noise reduction 

techniques allow for higher SID scoring. For both male and female speaker cases, both 

adaptive filters were able to achieve consistently strong maximum scores for every source 

position. The difference between the two is seen when the SID scores provided by all of 

the different filter lengths are averaged for each position. After this averaging is 

performed, the Wiener filter scores fall to moderate to weak positives while the STP filter 

maintains strong to moderate positives in Figure 6.18 and Figure 6.20. This result may be 

due to the low output SNR of the Wiener filter which causes sporadic SID scoring as seen 

in the Section 5.2 SNR SID simulation. Though the Wiener filter can enable positive 
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scores comparable to the STP filter, it also registers some lower scores that bring its 

average score down. 

From this indoor experiment, more results and trends were able to be extracted 

from the data than in the previous collect. Observing these trends has allowed for 

generalizations on SNR and SID performance to be hypothesized. Heavy speaker 

dependence is still observed in this experiment which inhibits complete generalization of 

performance to all cases. If this dependence can be removed, performance prediction may 

be possible which will help when making recommendations for using these filters in 

practice. To accomplish this, the third and final experiment is designed for the purposes 

of this thesis with the results from the past two data collections in mind. 

6.2.3 Outdoors 11/17/2011 

6.2.3.1 Motivation and Procedure  

Thus far, this thesis has presented and developed 3 multichannel noise reduction 

techniques and has proven their potential to aid in speaker identification. The previous 

two data collections demonstrated the usefulness of these algorithms in a post processing 

scenario by enabling identification of two different speakers in two different 

environments. These experiments showed capable results but it is unclear how much 

these results can be generalized for predicting performance in real applications. Because 

this system could be applied to infinite scenarios (speakers, positions, environments) this 

final experiment must incorporate as many conditions as possible to get a good idea of 

which filtering approach is best. 
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As opposed to the previous two experiments, data collection was designed 

specifically to obtain results that will enable more generalizations to be made about the 

use of these multichannel filters. Instead of just a male and female speaker, all five 

speakers in the target group will be used as speech sources. Averaging the results over 

more speakers will give better insight into the general performance of the filters by 

attempting to remove the speaker dependence of the output SNR and SID. For this 

experiment, each speaker source will be played back at seven different distances with 

finer spacing increments. In order to address the concerns about noise sampling, a new 

noise recording will be taken every time the source position moves. The noise sample 

taken at each source position will be used to filter the speech signals at that 

corresponding location. This method will hopefully reduce the effects of changing noise 

over the course of the experiment which can take up to 3 hours. Finally, the same outdoor 

environment as the first experiment is chosen for this last data collection. This outdoor 

location provides more realistic background noise that mimics practical application 

environments. 

For this experiment, the microphone array is deployed at the North West corner of 

LLNL as seen in Figure 6.21. Each of the five speakers are played back at distances of 

10ft, 20 ft, 30 ft, 40 ft, 50 ft, 75ft and 100ft. As mentioned, an additional 30 second noise 

sample is taken after the source position is moved, before the speakers are played back. 

The noise sample corresponding to each distance is used as the “noise only” input to the 

filtering functions during post processing. After filtering, SNR and SID are averaged over 

all five speakers to extract and analyze performance trends. 
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Figure 6.21  Outdoor 11/17/11 experiment set up 

 

Figure 6.22  Microphone (blue) and speech source (red) positions for outdoor 11/17/11 data collection 
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6.2.3.2 Results 

Below are the plots for output SNR and SID scores. A table including the input 

SNR and delay sum output SNR is included for comparison. Again, cases where output 

SNR is unable to be estimated are marked as “N/A” in the table and are omitted from the 

plots as well. 

Table 6.3 Average input SNR and delay sum output SNR for each distance case from 11/17/11 

Distance from array (ft) Average Input SNR (dB) Average Delay Sum output SNR (dB) 

10 3.156 8.227 

20 5.881 5.831 

30 -0.821 -1.967 

40 -1.531 2.503 

50 -1.778 -2.134 

75 -0.974 -2.111 

100 -4.716 -4.056 
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Figure 6.23  Average Wiener Filter Output SNR vs. filter length for all target group speakers 

 

Figure 6.24  Average STP Filter Output SNR vs. filter length for all target group speakers 
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The output SNR results for the two adaptive filters are shown in the above 

figures. These plots depict the average output SNR over all five speakers for each filter 

length used. Filters of length 2 to 70 samples are used in this experiment to see how even 

longer filters affect SNR. From Figure 6.23 it is seen that the Wiener filter exhibits 

similar SNR trends to the simulations in Chapter 5 for 50 ft, 75 ft and 100 ft cases but 

still has issues with decreasing SNR for the other cases. For the 20 ft case, the Wiener 

filter registers the highest SNR of 9.21dB for a filter length of 15, but subsequently 

decreases for longer filters. For all cases, the Wiener filter does not seem to benefit from 

longer filter lengths and in general achieves the best output SNR for filter lengths of 10-

30. The STP filter, on the other hand, maintains or increases its output SNR with filter 

length and achieves much larger absolute SNRs for each case when compared to the 

Wiener filter. The STP filter produces a maximum SNR of 27.44 dB for the 10 ft case 

with a filter length of 15 samples. Though the STP filter does not seem to benefit from 

the longest filter length of 70 samples, it still achieves its best output SNR results for 

filter lengths of around 20-50 in general. 
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Figure 6.25   SID score vs. distance position considering the maximum score achieved by the adaptive filters when 
using a certain filter length. 

 

Figure 6.26  SID score vs. distance position considering the average score over all filter lengths and speakers 
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Similarly to SNR, the SID results above are obtained by averaging SID scores 

over all speakers for each filter length used. For each distance case the maximum and 

average SID score of all the filter lengths are plotted in the figures above. In general, it is 

seen that SID score decreases with distance. When looking at the maximum SID score, 

all three multichannel filters enable higher SID scores with the STP filter registering 

higher scores below 50 ft while the Wiener filter registers higher scores at the longer 

distances. The delay sum beamformer produces comparable SID scores to both adaptive 

filters. When the SID scores are averaged over all speakers as well as filter lengths for 

each distance, both of adaptive filters scores drop. In general, the STP filter keeps higher 

scores than the Wiener filter but decreases almost linearly with distance. The Wiener 

filter even drops below the single microphone score for some distances. All three 

approaches enable a positive identification at 100 ft when the single microphone causes a 

negative identification. 

6.2.3.3 Analysis 

Through the use of five speakers, the results of this experiment allow the 

performance of the three multichannel noise reduction techniques to be better compared 

and generalized. Also, the new method of noise sampling produced better adaptive filter 

output SNR than in the previous two experiments. The Wiener filter produced flatter 

output SNR trends similar to what was seen in simulation for the three longest distances. 

Because some distance cases still suffer from decreasing output SNR even after speaker 

averaging, it is clear that Wiener performance degradation is not speaker dependant. 

From further exploration, it seems as though the Wiener filter is highly sensitive to noise 

sampling procedures. Though taking more noise samples throughout the experiment 
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helped with some cases, other position cases still produce decreasing SNR trends. Taking 

noise samples before every speaker is played back may further improve performance as 

these noise samples would be more representative of the actual noise in the speech 

recording. The STP filter SNR performance also seemed to be improved by taking more 

noise samples. The STP filter produces a maximum output SNR of 27.44 dB, highest of 

all the experiments. By averaging over all five speakers, it is seen that the STP filter 

performs better at medium to high filter lengths of 20-50. The output SNR also increases 

or stays about the same as filter length is increases, making filter length a good predictor 

of output signal to noise ratio for the STP approach. From this experiment, it is clear that 

the Spatio-Temporal Prediction filter provides the best output SNR while the Wiener 

filter achieves modest SNR that may decrease with filter length due to its sensitivity to 

noise estimation. 

By averaging SID scores over all speakers for each position, new trends are 

observed. The most surprising result is that the delay sum beamformer is comparable to 

the adaptive filters when considering their maximum SID score achieved for all filter 

lengths. When the SID scores of the adaptive filters are averaged over all speakers and 

filter lengths used, their SID scores drop below the delay sum beamformer for the most 

part. This shows that even though the delay sum beamformer has proven unreliable in the 

past two experiments, it can be comparable to the adaptive techniques on average. 

Another explanation for this boost in delay sum beamformer performance could be 

contributed to more accurate source position measurements in this experiment.  

When comparing the adaptive filters, the STP filter registers higher maximum 

SID scores for distances below 50 ft while the Wiener filter can achieve higher maximum 
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scores for the longer distances. When the SID scores are averaged over all speakers and 

filter lengths, the Wiener filter actually scores lower than the single microphone for 

distances less than 40 ft. For the longer distance source positions, the fully averaged 

Wiener filter SID scores are comparable to the STP filter but maintains a higher positive 

score at 100 ft. This sporadic behavior could be caused by the low output SNRs of the 

Wiener filter. It is also plausible that both adaptive filters could cause speech distortion 

which might explain why their average scores are below the delay sum beamformer in 

Figure 6.26. It is also important to remember that the delay sum beamformer does not 

have a “filter length” and is therefore only averaged over all speakers for both Figure 

6.25 and Figure 6.26. 

The results of this experiment showed that with precise source location the delay 

sum beamformer can perform similarly if not better than the adaptive approaches in terms 

of SID. Though the delay sum beamformer produces relatively low output SNRs of 8.23 

dB at 10 ft and -4.06 dB at 100 ft, it is not prone to speech distortion if the exact source 

position is known. The adaptive filters are more likely to distort speech due to their 

estimative nature which could cause a drop in SID performance. Overall, this experiment 

has shown that the delay sum beamformer should not be discounted as a viable 

multichannel noise reduction technique even though the Spatio-Temporal Prediction 

approach achieves the highest output SNR. This outcome greatly contrasts the past two 

experiments where the delay sum beamformer was inconsistent in SID performance. It is 

evident that the use of more speakers and positions is the best way to further evaluate 

these approaches. 
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6.3 Additional Observations 

In order to verify assumptions and test hypotheses related to the performance of 

multichannel filters presented in this thesis, supplementary exploration is necessary. 

From earlier simulations and data collects certain questions arose such as: 

 “Do the noise statistics actually vary over time?”  

“How does the number of microphones used affect filter performance?” 

 “Does the delay sum beamformer achieve the same noise reduction for all look 

directions?” 

These questions were saved and compiled in this final section to better understand 

aspects of multichannel noise reduction which may not have been fully explored or 

explained earlier in this thesis. Hopefully these brief explorations will help clear up any 

lingering curiosities before the conclusion of this thesis.   

After performing the three experiments in Section 6.2 along with further exploration, 

it is apparent that changing noise may inhibit the performance of the adaptive filters. If 

the noise sample used to calculate noise statistics differs from the actual background 

noise present in the noisy speech recording, the filter may not achieve as much noise 

reduction and may even add noise. In the first two experiments, only a single 60 second 

sample recording of noise was taken in order to provide an estimate of the background 

noise for post processing and analysis. This noise sampling method may be insufficient if 

the noise changes over the course of the experiment and may cause undesirable results. 

The third experiment aimed to reduce the affect of changing noise by taking more noise 
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samples over the course of the experiment. It is from this data that we can actually test 

the hypothesis that background noise changes over time and would therefore affect filter 

performance. In Figure 6.27, the noise power for each 30 second noise sample is 

calculated and plotted against the time it was taken. From Figure 6.27, it is apparent that 

the noise power changes over the course of the data collection. Because the power 

changes over time, it can also be inferred that the frequency content of the noise changes 

as well. This result further cements the idea that more noise samples taken over an 

experiment would result in more accurate noise estimation during filtering, leading to 

better noise reduction. The overall solution to this problem would be a real-time 

implementation of these adaptive filters using a voice activity detector (VAD) to re-

sample the noise during every interval where no speech is present. 
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Figure 6.27  Noise power vs. the time that the noise sample was taken during the 11/17/11 data collection 

Another area of multichannel noise reduction that was not emphasized but is worth 

noting is the number of array elements used in the system. In general, one would assume 

that more receivers produce better performance due to the added spatial information. This 

is especially true for delay sum beamforming where noise is theoretically reduced 

proportionally to the number of receivers, assuming white noise [1]. This generalization 

does not hold true for the two adaptive filters. Figure 6.28 and Figure 6.29 show how the 

output SNR vs. filter length trend changes for the Wiener and STP filters as the number 

of microphones is varied. For this exploration, the closest female speaker data from the 

indoor data collection at position “a1” is used as an example.  
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Figure 6.28  Wiener filter output SNR vs. filter length with varying number of microphones 

 

Figure 6.29  STP filter output SNR vs. filter length with varying number of microphones 
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From the above results it is apparent that the number of microphones greatly affects 

the output SNR performance of both of the adaptive filters. For the Wiener filter, it seems 

that adding too many microphones may cause a decrease in output SNR. In Figure 6.28 it 

is seen that using the bottom three microphones produces a stable output SNR trend 

(similar to earlier simulations) but adding a 4
th

 microphone completely changes the 

output SNR trend. Recalling that the array in the field utilized a 3x3 element pattern, 

adding this 4
th

 microphone to the system changes the microphone configuration from a 

2D linear array to a 3D array pattern. Adding this second row to the array causes such a 

significant rise in SNR because it adds another spatial dimension and therefore more 

spatial information. The downside of adding the extra spatial dimension is that it may 

cause output SNR to decrease with filter length. It is seen that this affect gets worse as 

more microphones are added. From this exploration it is evident that the Wiener filter is 

optimal for smaller 3D arrays with small to medium filter lengths. 

When looking at the results of the STP filter, almost the opposite trend is observed. 

As more microphones are added, output SNR is increased. As with the Wiener filter, 

adding the 4
th

 microphone creates a drastic increase in output SNR and also changes how 

SNR varies with filter length. For the STP filter though, the output SNR trend is 

improved so that SNR increases with filter length. It is also worth noting that unlike the 

Wiener filter, the STP filter cannot achieve any noise reduction with a single microphone. 

This makes sense as the STP algorithm requires a prediction matrix to relate each channel 

which becomes an identity matrix for the single channel case. In general, it seems that the 

Spatio-Temporal Prediction filter performs better with more array elements as well as 
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longer filters. This intuitive performance predictability makes the STP filter an attractive 

approach. 

In the final exploration of this section, the question of the delay sum beamformer’s 

dependence on look direction and noise environment is investigated. It was seen through 

simulation in Section 3.1.2 that spatially correlated noise can cause the delay sum 

beamformer to not achieve uniform noise reduction for all look directions.  Because of 

this observation, it was of interest to see if a similar effect occurs with the real data 

obtained in the above experiments. Figure 6.30 and Figure 6.31 plot the steered response 

of the delay sum beamformer using only the sampled background noise as the input. 

These results prove that the delay sum beamformer does not achieve uniform noise 

reduction in all directions. For certain directions the spatially correlated nature of the 

background noise may cause peaks in noise power due to the applied time delays of the 

beamformer. This effect may cause problems in practical applications if the desired 

speech source happens to be located at or near the position of the peak noise power. 

Depending on the noise, a situation like this may cause the delay sum beamformer to 

achieve minimal noise reduction. 
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Figure 6.30  Delay sum beamformer output noise power vs. look direction for outdoor 5/10/11 data 

 

Figure 6.31   Delay sum beamformer output noise power vs. look direction for indoor B123 data 
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Though this section may have produced more questions than answers, these findings 

provide valuable insights into optimal filter implementation for practical applications. To 

summarize, real acoustic noise changes over time requiring frequent noise sampling, the 

number of microphones and relative spatial positions affect adaptive filter performance 

and the delay sum beamformer does not achieve the same noise reduction over all 

directions. Though each of the ideas were only briefly explored, it is conceivable that 

more extensive research could be done in these areas to better understand multichannel 

noise reduction. 
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7. SUMMARY OF FINDINGS 

In the final chapter of this thesis, the work performed and the knowledge gained from 

this project will be summarized. First, a comparison of the three multichannel noise 

reduction approaches is given along with recommendations for implementation. Next an 

overall conclusion of the project highlights key “take aways” and lessons learned. 

Finally, ideas for future work are provided to inspire continued research in the area of 

multichannel noise reduction with microphone arrays. 

 

7.1 Algorithm Comparison 

In this thesis, three multichannel noise reduction algorithms were presented, 

implemented and tested using simulation and experiments. Specifically of interest in this 

project is determining which approach works best for speaker identification and under 

what circumstances. This section will therefore provide a final comparison of the delay 

sum beamformer, Wiener Filter and Spatio-Temporal Prediction filter as well as 

recommendations for implementation in real applications. 

From this thesis, it is apparent that the delay sum beamformer is a simple and 

capable approach with some drawbacks. Theoretically, the delay sum beamformer can 

achieve complete signal recovery without distortion and achieve low to moderate noise 

reduction. Caution must be used with this approach as noise reduction can be inconsistent 

depending on the look direction of the beamformer due to the spatial correlation of the 

noise. Also, when using the delay sum beamformer, the exact position of the speech 

source and relative microphone positions must be known to avoid distorting the speech. 

Despite these potential drawbacks, the delay sum beamformer performed extremely well 
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compared to the two adaptive filters in the final outdoor experiment in terms of SID 

scoring. The delay sum beamformer has proved to be a valid approach and would be a 

good choice for applications where processing resources are limited and moderate to low 

noise reduction is sufficient. Again, accurate source and microphone positions must be 

known to assure optimal performance. 

The Wiener filter showed promise in simulation but came up short in the practical 

experiments. The Wiener filter may be more attractive than the delay sum beamformer 

because it is adaptive but it does not always guarantee better performance as seen in 

Chapter 6. The Wiener filter performance seems sensitive to implementation parameters 

such as noise sampling, filter length and number of microphones, causing varied 

performance. Overall, the Wiener filter should be used when an adaptive filter with 

moderate noise reduction is desired but should only be used with a small number of 

microphones and smaller filter lengths to avoid unexpected output SNR degradation.  

Finally, the Spatio-Temporal Prediction filter consistently achieved the best noise 

reduction and showed the most potential for enabling higher SID scores. This adaptive 

filter allows for deployment in any noise environment and does not require the 

microphone or speaker positions to be known. This attractive feature paired with its 

excellent experimental noise reduction, robustness to changing noise and overall solid 

SID performance for all experiments makes the STP filter the most recommended choice. 

The STP filter should be deployed where maximum noise reduction is desired and 

computational resources are abundant. Due to its predictable performance, the STP filter 

should be implemented with as many microphones as possible using longer filter lengths. 
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7.2 Conclusion  

Through the work of this thesis, microphone array processing techniques have 

proven viable for implementation at the front end of speaker identification systems. The 

main highlight of this work is that all three algorithms enabled a positive identification at 

100 ft where the raw data produced a negative score. Though the results were not as 

“clean” as expected, much was learned about each of the three noise reduction algorithms 

and their implementation advantages and drawbacks. While the adaptive filters do not 

need to know microphone and speaker positions, their performance is highly dependent 

on noise sampling, number of microphones and filter length. If tuned correctly these 

parameters can optimize the performance of the adaptive filters but if set improperly can 

cause performance degradation. The proper parameters found for each filter shows that 

each one is specialized for certain situations given application specifications and 

resources available. 

Another key point learned is that SID scoring is not deterministic but stochastic in 

nature. While improving SNR gives a better chance of achieving a higher SID score, it is 

not always guaranteed. Speech distortion may cause a reduction in SID scoring even if a 

large SNR is achieved through filtering. In general, dealing with audio and speech is not 

an exact science. If a certain experiment is performed once, the same results cannot 

always be expected consistently. There are just too many variables that are hard to 

control for. When dealing with real speech and noise there are no limit to the combination 

of inputs to the system, making it difficult to generalize results. This is why it is 

important to run as many experiments and test cases as possible in order to extract 

general trends.  
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Throughout this thesis, the Spatio-Temporal Prediction Filter has proven to be the 

best algorithm considering all simulations and experiments. Though the STP filter is most 

recommended, the Wiener filter and delay sum beamformer are still valid approaches 

especially if application resources are constrained. In engineering, there is not always a 

clear cut result; there are always performance, design and application tradeoffs that have 

to be balanced to achieve the best solution possible. 

 

7.3 Future Work 

Through the progression of this thesis, many new ideas for future work have 

arisen that are outside the scope of this project. Some of the following ideas could be 

used to build on this project or are simply curiosities that warrant further research.  

One project that would be worth looking into is actually implementing the two 

adaptive filters in real time using a voice activity detector. This approach would better 

estimate the noise because the system would update noise statistics in every non-speech 

interval. Care should be taken in order to make sure the desired speech signal is never 

classified as a noise interval by the VAD. If this occurs, the speech might end up being 

reduced along with noise. 

If one was to build on this project in the future, use of a larger speaker database is 

recommended in order to have more test speakers for use in experiments. Having a larger 

speaker database would allow training of a more solid Universal Background Model for 

the SID system as well as having more speakers left over to use in experiments (UBM 

speakers cannot be used in experiments for Open Set SID 2010). This methodology 
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would allow more test cases to average over in order to generalize results for better 

comparisons.  For further evaluation and comparison, use of other speaker identification 

programs is also recommended. 

Other areas of future work include testing the filters in an anechoic chamber to 

control the noise environment, implementing frequency domain multichannel filtering 

methods, exploring the effect of statistical estimations such as “forgetting factor” as well 

as using subjective human listening tests to provide another comparison metric. While 

multichannel signal processing has been around for awhile, there is still much research to 

be done for use with broadband speech signals. Overall, multichannel noise reduction for 

speaker identification has powerful potential and will continue being developed for 

applications from video chatting to top secret surveillance.  
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APPENDIX A: TIMIT PROMPTS 

 

She had your dark suit in greasy wash water all year.  

Don't ask me to carry an oily rag like that.  

This was easy for us.  

Jane may earn more money by working hard.  

She is thinner than I am.  

Bright sunshine shimmers on the ocean.  

Nothing is as offensive as innocence.  

Why yell or worry over silly items?  

Where were you while we were away?  

Are your grades higher or lower than Nancy's?  

He will allow a rare lie.  

Will Robin wear a yellow lily?  

Swing your arm as high as you can.  

Before Thursday's exam, review every formula.  

The museum hires musicians every evening.  

A roll of wire lay near the wall.  

Carl lives in a lively home.  

Alimony harms a divorced man's wealth.  

Aluminum silverware can often be flimsy.  

She wore warm, fleecy, woolen overalls.  
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APPENDIX B: MATLAB CODE 

 

Array_Geometry.m 

%% .08m Spaced 10 Sensor 2D Linear Array (book) 
prec = [ -.36 0 0 ; 
-.28 0 0 ; 
-.20 0 0 ; 
-.12 0 0 ; 
-.04 0 0 ; 
.04 0 0 ; 
.12 0 0 ; 
.20 0 0 ; 
.28 0 0 ; 
.36 0 0 ]; 

  
%% 1m Spaced 2D linear array 

  
prec = [ -4.5 0 0 ; 
-3.5 0 0 ; 
-2.5 0 0 ; 
-1.5 0 0 ; 
-.5 0 0 ; 
.5 0 0 ; 
1.5 0 0 ; 
2.5 0 0 ; 
3.5 0 0 ; 
4.5 0 0 ]; 

  
%% Experimental 3D Array setup 
prec = [ .956   0   .445; 
         0      0   .458; 
         -.915  0   .445; 
         .956   0   1.368; 
         0      0   1.358; 
         -.915  0   1.278; 
         .956   0   2.139; 
         0      0   2.133; 
         -.915  0   2.075]; 
%% .01m spaced linear array 
prec = [ -.045 0 0 ; 
-.035 0 0 ; 
-.025 0 0 ; 
-.015 0 0 ; 
-.005 0 0 ; 
.005 0 0 ; 
.015 0 0 ; 
.025 0 0 ; 
.035 0 0 ; 
.045 0 0 ]; 

  
%% .05m Spaced linear array 
prec = [ -.225 0 0 ; 
-.175 0 0 ; 
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-.125 0 0 ; 
-.075 0 0 ; 
-.025 0 0 ; 
.025 0 0 ; 
.075 0 0 ; 
.125 0 0 ; 
.175 0 0 ; 
.225 0 0 ]; 

  
%% .02m spaced linear array 
prec = [ -.09 0 0 ; 
-.07 0 0 ; 
-.05 0 0 ; 
-.03 0 0 ; 
-.01 0 0 ; 
.01 0 0 ; 
.03 0 0 ; 
.05 0 0 ; 
.07 0 0 ; 
.09 0 0 ]; 

  
%% .015m spaced lin array 
prec = [ -.0675 0 0 ; 
-.0525 0 0 ; 
-.0375 0 0 ; 
-.0225 0 0 ; 
-.0075 0 0 ; 
.0075 0 0 ; 
.0225 0 0 ; 
.0375 0 0 ; 
.0525 0 0 ; 
.0675 0 0 ]; 

  
%% .012m Spaced Linear Array 
prec = [ -.054 0 0 ; 
-.042 0 0 ; 
-.030 0 0 ; 
-.018 0 0 ; 
-.006 0 0 ; 
.006 0 0 ; 
.018 0 0 ; 
.030 0 0 ; 
.042 0 0 ; 
.054 0 0 ]; 

  
%% 1m Spacing 3 Sensor linear array 

  
prec = [-1 0 0 ; 
        0 0 0; 
        1 0 0]; 
%% .8m Spaced 3 Sensor linear array 
prec = [-.8 0 0 ; 
        0 0 0; 
        .8 0 0]; 
%% .5 Spaced 3 Sensor linear array 
prec = [-.5 0 0 ; 
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        0 0 0; 
        .5 0 0]; 
 %% .3 Spaced 3 Sensor linear array 
prec = [-.3 0 0 ; 
        0 0 0; 
        .3 0 0]; 
%% .2 Spaced 3 Sensor linear array 
prec = [-.2 0 0 ; 
        0 0 0; 
        .2 0 0]; 
%% .7 Spaced 3 Sensor linear array 
prec = [-.7 0 0 ; 
        0 0 0; 
        .7 0 0]; 
%% .6 Spaced 3 Sensor linear array 
prec = [-.6 0 0 ; 
        0 0 0; 
        .6 0 0]; 

     

Array_preprocess.m 

function [] = Array_preprocess(datadir,datafile,FSout,fcutoff) 
% function [] = Array_preprocess(datadir,datafile,Fsout,fcutoff) 
% This function preprocesses the array data, by downsampling and high 

pass 
% filtering. Inputs are: 
%      datadir: data directory 
%      datafile: data file (including .mat extension) 
%      FSout: final sampling frequency 
%      fcutoff: cutoff frequency for detrending (high pass filter) 
% Output file name is input file name with _PP appended. 

  
    dfheader = datafile(1:(end-4)); 
    outfile = [dfheader '_PP.mat']; 

     
    load(fullfile(datadir,datafile)); 
    FSin = 1/hDelta; 
    ndet = 2*round(.5*FSin/fcutoff); 

     
    [TimeDatadt,~] = detrend_filt(TimeData,ndet); 
    TimeDataPP = fractional_downsample(TimeDatadt,FSin,FSout); 
    [nt,~] = size(TimeDataPP); 
    time = (0:(nt-1))'/FSout; 
    FS = FSout; 

     
    save(fullfile(datadir,outfile),'time','FS','TimeDataPP'); 

     
end 

 

BB_Filter_Metrics.m 

function [ z_v_filt, SNR_in, SNR_out, SSNR_out, nr_factor, sd_factor, 

P_out, P_out_n, P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src, noise, 

L,overlap, H, z_k ) 
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%Calculates broadband filter performance metrics given noisy speech and 
%noise only mic array outputs. 
%   src = N rows/channels of noise+speech signal with any length 
%   noise = N rows/channels of noise only signal with any length 
%   L = length of frame 
%   overlap = # of sample overlap of frame 
%   H = calculated filter matrix 
%   z_k = single channel beamformed filter output (1x..) 

  
N = size(src,1); % Calculate number of mics in array 

  

  

  
for i = 1:L-overlap:length(noise) 

     
    if(L+i-1 <= length(noise)) %if current block will exceed length of 

input array, break loop 

     
    v_L = noise(:,i:L+i-1)'; % Take a block of L samples at starting at 

current index i 

     
    %Organize NxL matrix containing sample blocks into NLx1 matrix 
    v_k = v_L(:); 

     
    z_v_filt(i:i+L-1,1) = H*v_k; 
    end 
end 

  
P_out_n_SEG = 0; 
P_out_SEG = 0; 
m = 0; 
n = 0; 
for i = 1:L-overlap:max(length(noise),length(src)) 

     
    if(L+i-1 <= length(z_v_filt)) %if current block will exceed length 

of input array, break for loop 
        m = m+1; 
        P_out_n_SEG = ((m-1)/m)*P_out_n_SEG + var(z_v_filt(i:L+i-

1))./m;  
    end 

     
    if(L+i-1 <= length(z_k)) 
        n = n+1; 
        P_out_SEG = ((n-1)/n)*P_out_SEG + var(z_k(i:L+i-1))./n;  
    end 

     
end 
SSNR_out = (P_out_SEG - P_out_n_SEG)./P_out_n_SEG; 

  
P_out = var(z_k); 
P_out_n = var(z_v_filt); 
P_sig1 = var(src(1,:)) - var(noise(1,:)); 

  
SNR_in = P_sig1./var(noise(1,:)); 
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SNR_out = (P_out./P_out_n)-1; 

  
nr_factor = var(noise(1,:))./P_out_n; 

  

  

  
P_out_sig1 = P_out - P_out_n; 

  
sd_factor = abs(P_out_sig1 - P_sig1)./P_sig1; 

  
end 

 

dir_response.m 

function [ dir_resp, tau_scan ] = dir_response( look_dir, W, prec, f, 

x_scan ) 
%[ dir_resp, tau_scan ] = dir_response( look_dir, W, prec, f, x_scan ) 
%   Creates beamplot directional response for an arbitrary array 

geometry 
if length(look_dir) == 1 
    look_angle = look_dir.*(pi/180); 
else 
    look_angle = atan(look_dir(2)/look_dir(1)); 
end 

     
c = 345; 
N = size(prec, 1); % number of microphones 

  
for i=1:N 
    d(i) = sqrt( (prec(i,1)-look_dir(1))^2 + (prec(i,2)-look_dir(2))^2 

+ (prec(i,3)-look_dir(3))^2); 
end 

  
%calc time delay between source and receivers 
td = d./c; 
% Calc the minimum delay corresponding to the closet microphone to the 

source 
td_min = min(td); % Calc the minimum delay corresponding to the closet 

microphone to the source 

  
tau = td - td_min; 

  
for k = 1:length(x_scan) 
    for l = 1:N 
    d_scan(k,l) = sqrt(sum((prec(l,:) - [x_scan(k) look_dir(2) 

look_dir(3)]).^2)); 
    end 
    d_min_scan = min( d_scan(k,:)); 
    tau_scan(k,:) = (d_scan(k,:) - d_min_scan)./c; 
end 
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for k = 1:length(x_scan) 
    for l = 1:N 
        dir_resp_W(k,l) = (1./N)*W(l).*(exp(-j*2*pi*f.*(tau_scan(k,l)- 

tau(l)))); 
    end 
end 

  
dir_resp = sum(dir_resp_W, 2); 

  
figure() 
plot(x_scan, 10.*log10(abs(dir_resp))) 

  

     
end 

  

 

DS_beamformer.m 

function [ ya, z, pout ] = DS_beamformer( x, Fs, look_dir, W, prec ) 
%[ ya, z, pout ] = DS_beamformer( x, Fs, look_dir, W, prec ) 
%   x = actual samples at each time step (NxL matrix) N = # of 

receivers L 
%       = # of samples. Each column corresponds to one sample time. 
%   Fs = sample rate 
%   look_dir = coordinates [x y z] for beamformer to focus on 
%   W = channel weighting vector 1xN (# of mics) ex: [1 2 1] 
%   prec = 3D coordinate postions of each microphone [x y z] 

  
%   ya = delayed/aligned samples corresponding to beamformer look 

direction 
%   z = summed output of all delayed/aligned samples [1xL vector] 
%   pout = output power of z for designated look direction 
%    

  
%   generate time series 

  
L = size(x,2); % # of samples L 

  
n = (0:(L-1)); %sample index #  

  
Ts = 1./Fs; %sampling period 

  
t_tx = n.*Ts; % create source time series starting at t = 0  

  
c = 345; 
N = size(prec, 1);  %calculate number of receivers 

  
%calc distance between look point and current receiver 
for i=1:N 
d(i) = sqrt( (prec(i,1)-look_dir(1))^2 + (prec(i,2)-look_dir(2))^2 + 

(prec(i,3)-look_dir(3))^2); 
end 
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%calc time delay between source and receivers 
td = d./c 
% Calc the minimum delay corresponding to the closet microphone to the 

source 
td_min = min(td)  

  
tau = td - td_min; % convert to time delay rewlative to closest mic 

  
k = round(tau./Ts) % convert relative time delay to equivalent sample 

delay  
k_max  = max(k); 

  
%align samples according to specified BF look direction 
for i = 1:N 
    ya(i,:) = W(i) .* x(i, ((k(i)+1):(L- k_max + k(i)))); 
end 

  
%sum all aligned samples to calculate output of beamformer 
z = sum(ya)./N; 

  
pout = var(z) % calculate output power of signal 

  
end 

  

 

DS_freq_response.m 

function [ beam_pwr ] = DS_freq_response( f_sweep, x_scan, Fs, psrc, 

prec, W ) 
%[ beam_pwr ] = DS_freq_response( f_sweep, x_scan, Fs, psrc, prec, W ) 
%   Detailed explanation goes here 

  
L = length(f_sweep); 

  

  
 for i = 1:L % generate sinusoid at each frequency of f_sweep 
    sine = sine_gen(1, f_sweep(i), Fs, 3); 

     
    % simulate each sinusoid with mic array  
    [x, ~, ~] = sim_3D( sine, Fs, psrc, prec, 0); 

     
    %scan all x axis values on a line and look at BF output power 
    for j = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x, Fs, [x_scan(j) psrc(2) 

psrc(3)], W, prec); 
     beam_pwr(i,j) = pout_scan; %beampower matrix dependant on x 

position and frequency 
    end  
 end 

  
 figure() 

  
 mesh(x_scan, f_sweep, beam_pwr./.5) 
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 title('Beamformer Frequency Response') 
 xlabel('x direction (m)') 
 ylabel('frequency (Hz)') 
 zlabel('Gain') 

  
 figure() 

  
 title('Broadband Directional Response') 
 plot(x_scan, sum(beam_pwr./.5)./length(f_sweep)) 

  
 xlabel('x direction (m)') 
 ylabel('Gain') 

  
end 

 

DS_lin_dir_response.m 

function [ P_sig, P_ds ] = DS_lin_dir_response( look_dir, sweep_angles, 

N, d ,f, var_n ) 
%Plots 2D directional response beampattern of an equispaced linear 

array with 
%equal weights (DS beamformer) 
%   [ P_sig, P_ds ] = lin_dir_response( look_dir, sweep_angles, c, N, d 

,f, var_n ) 
% look_dir = look direction /steered direciton of beamformer (degrees) 
% sweep_angles = directions evaluated for beampattern response 1xL 

(degrees) 
% N = # of receivers 
% d = distance between each microphone 
% f = signal frequency 
% var_n = noise variance for noise field model 
% P_sig = signal power for each sweep angle  
% P_ds = signal + noise for each sweep angle 

  

  
c = 345; 
k = (2*pi*f/c); 
theta = look_dir*(pi/180); % beamformer look direction  
psi = sweep_angles*(pi/180); %beamformer directional response sweep 

angles 

  
% calculate directional signal power from derived formula 
P_sig = abs(sin(pi*f*N*d.*(cos(psi)-

cos(theta))./c)./(N*sin(pi*f*d.*(cos(psi)-cos(theta))./c))).^2; 

  
% calculate noise field correlation matrix 
for m = 1:N 
    for n =1:N 
        d_mn = d*abs(m-n); 
        R_mn(m,n) = (var_n/(2*pi))* besselj(0,k*d_mn); 
    end 
end 
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%Calculate noise power 
P_n = (1/N)^2 * sum(sum(R_mn)); 

  
%Add signal and noise power together to get total DS beamformer power 
P_ds = P_sig + P_n; 

  
figure() 
plot(psi.*(180/pi), 10.*log10(P_ds),psi.*(180/pi), 10.*log10(P_sig)) 
title('Delay Sum Beamformer Directional Response w/ Added Noise') 
xlabel('direction (degrees)') 
ylabel('Gain (dB)') 
legend ('Signal + Correlated Noise','Signal','Location', 'South') 

  
end 

  

 

DS_metrics.m 

function [ SNR_out, nr_factor, sd_factor, SNR_in, P_out, P_out_n, 

P_out_sig1, P_sig1, z_DS, z_n ] = DS_metrics( src, noise, psrc, prec,FS 

) 
%Calculates output metrics for DS beamformer run on source and noise 
%   only signals with known look direction 
%    
%Run DS Beamformer on src and noise 
[ ~, z_DS, pout ] = DS_beamformer( src, FS, psrc, ones(1,9), prec ); 
[ ~, z_n, pout_n ] = DS_beamformer( noise, FS, psrc, ones(1,9), prec ); 

    
%Calculate metrics 
    P_in = var(src(1,:)); 
    P_n = var(noise(1,:)); 
    P_sig1 = P_in-P_n; 
    SNR_in = P_sig1./P_n; 

     
    P_out = pout; 
    P_out_n = pout_n; 
    P_out_sig1 = pout-pout_n; 

     

     

     
    SNR_out = (pout-pout_n)./pout_n; 
    nr_factor = var(noise(1,:))./P_out_n; 
    sd_factor = abs(P_out_sig1 - P_sig1)./P_sig1; 

    

  
end 

  

 

DS_metrics_sweep.m 

%%% DS metrics Sweep 

  
Gain = 1; 
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% set path where all preprocessed test cases are located 
datadir = fullfile('Outdoor_Perimeter_11172011'); 

  
% set path where all noise only recording are found 
datadir_noise = fullfile('Outdoor_Perimeter_11172011','Noise'); 

  
% set path where array measurments are found 
datadir_src = fullfile('Outdoor_Perimeter_11172011','Array 

Measurements'); 
load(fullfile(datadir_src,'Array_Meas_11_17')) 

  
% Load file containing the list of the names of all of the case files 
load(fullfile(datadir,'DataList.mat')) 

  
for i = 1:length(datalist) 
    current_case = datalist(i).name; %extract the name of the current 

case 
    display(['Processing ' current_case]) 

     
    load(fullfile(datadir,current_case)) %load the data from the 

current case 

     
    src = Gain.*TimeDataPP; %amplify signal 
    clear TimeDataPP 
    clear time 

     
    noise_header = current_case(1:end-8);  
    load(fullfile(datadir_noise, [noise_header 'noise_PP.mat'])) %load 

noise that corresponds to the current case 

     
    noise = Gain.*TimeDataPP; %amplify noise signal 
    clear TimeDataPP 
    clear time 

     
    if i == 1 
        src_pos = psrc(1,:); 
    end 
    if i ==6 
        src_pos = psrc(2,:); 
    end 
    if i == 11 
        src_pos = psrc(3,:); 
    end 
    if i == 16 
        src_pos = psrc(4,:); 
    end 
    if i == 21 
        src_pos = psrc(5,:); 
    end 
    if i == 26 
        src_pos = psrc(6,:); 
    end 
    if i == 31 
        src_pos = psrc(7,:); 
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    end 

     
    [ SNR_out, nr_factor, sd_factor, SNR_in, ~, ~, ~, ~, z_DS, z_n ] = 

DS_metrics( src', noise', src_pos, prec,FS ); 

    
    save(fullfile('DS Beamformer', ['DS_' current_case(1:end-7)] 

),'SNR_in','SNR_out','nr_factor','sd_factor','z_DS','z_n','FS','src','n

oise','Gain','current_case','src_pos'); 
    wavwrite((1./max(abs(z_DS))).*z_DS, fullfile('BF out 

wavs',[current_case(1:end-7) '_DSBF'])) 
    clear SNR_in SNR_out nr_factor sd_factor z_DS z_n current_case src 

noise FS 
end 

 

 

DS_noise_tests.m 

%% Noise Analysis for DS Beamformer Script 

  
c = 345; % speed of sound m/s 
N = 9; % # of receivers 
d = .08; % distance between receivers in linear array 
f = 100:4000; %frequency for beamplot Hz 
var_n = 1; % noise variance 
theta = 90*(pi/180); % beamformer look direction  
psi = (0:.99:180)*(pi/180); %beamformer directional response sweep 

angles 

  
for i = 1:length(f) 
k = (2*pi*f(i)/c) 

  
% calculate directional signal power from derived formula 
P_sig = abs(sin(pi*f(i)*N*d.*(cos(psi)-

cos(theta))./c)./(N*sin(pi*f(i)*d.*(cos(psi)-cos(theta))./c))).^2; 

  
%calculate noise correlation matrix      samples     var  L 
%[ noise_corr, R_corr ] = Spacial_noise_R( 1000, prec, var_n,  10); 

  
for m = 1:N 
    for n =1:N 
        d_mn = d*abs(m-n); 
        R_mn(m,n) = (var_n/(2*pi))* besselj(0,k*d_mn); 
    end 
end 

  
R_un = var_n.* eye(N); 

  
%Calculate noise power 
P_n = (1/N)^2 * sum(sum(R_mn)); 
P_n_un = (1/N)^2 * sum(sum(R_un)); 

  
%Add signal and noise power together to get total DS beamformer power 
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P_ds(i,:) = P_sig + P_n; 
P_ds_un(i,:) = P_sig + P_n_un; 

  
% figure() 
% plot(psi.*(180/pi), 10.*log10(P_ds),psi.*(180/pi), 

10.*log10(P_sig),psi.*(180/pi), 10.*log10(P_ds_un)) 
% title('Delay Sum Bemaformer Directional Response w/ Added Noise') 
% xlabel('direction (degrees)') 
% ylabel('Gain (dB)') 
% legend ('Signal + Correlated Noise','Signal', 'Signal + Uncorrelated 

Noise','Location', 'South') 

  
end 

  
figure() 
 mesh(psi*(180/pi),f,10*log10(P_ds)); 
 title('new noise model') 
 xlabel('Direction (degrees)') 
 ylabel('frequency (Hz)') 
 zlabel('gain (dB)') 

  
 figure() 
 mesh(psi*(180/pi),f,10*log10(P_ds_un)); 
 title('white noise') 
 xlabel('Direction (degrees)') 
 ylabel('frequency (Hz)') 
 zlabel('gain (dB)') 

  

 

DS_Simulation1_noiseBW.m 

%%% DS Simulation Test 1 %% 
%%% varying noise BW to be compared with wiener and ST approach. 

  
prec = [ .956   0   .445; 
         0      0   .458; 
         -.915  0   .445; 
         .956   0   1.368; 
         0      0   1.358; 
         -.915  0   1.278; 
         .956   0   2.139; 
         0      0   2.133; 
         -.915  0   2.075]; 

  
psrc = [0 40 0]; 
[ src, ~, src_pwr ] = sim_3D( bftest0, FS, psrc, prec ); 
fc = [ 50 100 200 300 500 800 1000 2000 3000 ]; 

  
pout = zeros(1,length(fc)); 
pout_n = zeros(1,length(fc)); 
SNR_out = zeros(1,length(fc)); 
for i = 1:length(fc) 
    current_fc = fc(i) 
    [ noise_corr, R_vv ] = plane_noise_R_3D( prec, src_pwr, 

length(src), fc(i),7,FS ); 
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    x = src+noise_corr; 
    [ ~, z, pout ] = DS_beamformer( x, FS, psrc, ones(1,9), prec ); 
    [ ~, z_n, pout_n ] = DS_beamformer( noise_corr, FS, psrc, 

ones(1,9), prec ); 
    pout_all(i) = pout; 
    pout_n_all(i) = pout_n; 
    SNR_out(i) = (pout-pout_n)./pout_n; 

     
end 

 

DS_Simulation2_B123_noise_bftest0.m 

%%% DS Simulation Test 2 %% 
%%% Simulation With bftest0 src + B123 noise (recorded) 

  
%Inititalize 
FS = 8000; 
prec = [ .956   0   .445; 
         0      0   .458; 
         -.915  0   .445; 
         .956   0   1.368; 
         0      0   1.358; 
         -.915  0   1.278; 
         .956   0   2.139; 
         0      0   2.133; 
         -.915  0   2.075]; 

  
psrc = [0 10 0]; 
[ x1, ~, src_pwr ] = sim_3D( bftest0, FS, psrc, prec ); 

  
src = .5.*x1+noise(1:length(x1),:)'; 

  
%Run DS Beamformer on src and noise 
[ ~, z, pout ] = DS_beamformer( src, FS, psrc, ones(1,9), prec ); 
[ ~, z_n, pout_n ] = DS_beamformer( noise', FS, psrc, ones(1,9), prec 

); 

    
%Calculate metrics 
    P_out = pout; 
    P_out_n = pout_n; 
    P_out_sig1 = pout-pout_n; 
    P_sig1 = var(src(1,:))-var(noise(:,1)); 
    SNR_in = (var(src(1,:))-var(noise(:,1)))./var(noise(:,1)); 

     
    SNR_out = (pout-pout_n)./pout_n; 
    nr_factor = var(noise(:,1))./P_out_n; 
    sd_factor = abs(P_out_sig1 - P_sig1)./P_sig1; 

     

     

fractional_downsample.m 

Code credit: Dave Chambers, LLNL 
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function yout = fractional_downsample(yin,Fsin,Fsout,tol) 
% function yout = fractional_downsample(yin,Fsin,Fsout,tol) 
% This function combines decimate and resample to downsample yin from 

Fsin 
% to Fsout. Inputs are: 
%     yin: input signal  
%     Fsin: sample rate for yin (Hz) 
%     Fsout: desired output sample rate (Hz) 
%     tol: tolerance for rational approximation to Fsin/Fsout 

(optional) 

  
    if nargin < 4 
        tol = .001; 
    end 
    [~,ncol] = size(yin); 
%    yin = yin(:); 
%    ny = length(yin); 
    nd = floor(Fsin/Fsout); 
    [p,q] = rat(nd*Fsout/Fsin,tol); 

     
    if nd>0 
        ydec = decimate(yin(:,1),nd); 
    else 
        ydec = yin(:,1); 
    end 
    yout1 = resample(ydec,p,q); 
    nyout = length(yout1); 
    if ncol>1 
        yout = zeros(nyout,ncol); 
        yout(:,1) = yout1; 
        for j=2:ncol 
            if nd>0 
                ydec = decimate(yin(:,j),nd); 
            else 
                ydec = yin(:,j); 
            end 
            yout1 = resample(ydec,p,q); 
            yout(:,j) = yout1; 
        end 
    else 
        yout = yout1; 
    end 

     
end 

 

Init_3D_SIM.m 

 
%% Initialize Sournce and receiver locations 
clear variables 
%% 
psrc = [0 40 0]; 
pnoise = [0 10 1]; 
prec = [ .956   0   .445; 
         0      0   .458; 
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         -.915  0   .445; 
         .956   0   1.368; 
         0      0   1.358; 
         -.915  0   1.278; 
         .956   0   2.139; 
         0      0   2.133; 
         -.915  0   2.075]; 
W = [1 1 1 1 1 1 1 1 1]; 
x_scan = linspace(-20,20,300);   

  

  
 %% load sounds 
 load('handel'); 
 handel = y; 
 bftest0 = wavread('bftest0'); 
 bftest1 = wavread('bftest1'); 
 sine = sine_gen(1, 2000, 40000, 1);                          %var 

%gausian width 
 [ noise_corr, R_corr ] = Spacial_noise_R( length(x1), prec, .1,  1.5); 

  
 %% Execute Simulation 

  
 %% Single source 
 [ x1, ~, src_pwr ] = sim_3D( bftest0, Fs, psrc, prec ); 

  
 %% Dual Sources 
 %src 1 
 [ x1, ~, src_pwr ] = sim_3D( bftest0, Fs, psrc, prec ); 

  
 %src2 
 [ x2, ~, src_pwr2 ] = sim_3D( handel, Fs, pnoise, prec ); 

  
 min_L = min([size(x1,2) size(x2,2)]); 

  
 x1 = x1(:,1:min_L); 
 x2 = x2(:,1:min_L); 
 x = x1+x2; 

  
 %% Plot 
 x_scan = linspace(-10,10,300);               % y_plane z_plane 

weighting vector 
 [beam_pwr] = x_beam_plot( noise, Fs, prec, x_scan, psrc(2), psrc(3), 

W); 

  
 %% Run DS beamformer focused on each source 

  
 [ ~, z_DS, ~ ] = DS_beamformer( x, Fs, psrc, W, prec ); 

  
 [ ~, z_SNR, ~ ] = DS_beamformer( x, Fs, psrc2, h_max', prec ); 

  
 sound(x(1,:)) 
 sound(z_DS) 
 sound(z_SNR) 
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 %% Run Freq Resp 
 f_sweep = linspace(80, 3000, 20); 
 x_scan = linspace(-10, 10, 300); 
 [ beam_pwr ] = DS_freq_response( f_sweep, x_scan, Fs, psrc, prec, 

h_max'); 

  

 

Init_SIM_script.m 

%% Load Hallelujah 
load handel 

  
%% Initialize Source Location 
psrc = [0 20] 

  
%% Initialize Receiver Locations 
p1= [-2.5 0] 
p2= [-1.5 0] 
p3 = [-.5 0] 
p4 = [.5 0] 
p5 = [1.5 0] 
p6 = [2.5 0] 

  
%% Run Simulator 
xy_sim_6( y, Fs, psrc, p1, p2, p3, p4, p5, p6 ); 

 

lin_dir_response.m 

function [ P_bf, z ] = lin_dir_response( look_dir, sweep_angles, f, W, 

N  ) 
%Computes and plots the 2D directional repsonse of a linear array with 

equal 
%spacing amnd user defined channel weightings W. 
%  
%NOTE: some code used courtesy of Brian D. Jeffs 
% Associate Professor 
% Dept. of Electrical and Computer Engineering 
% Brigham Young University 
% March 2008 
% 
%[ output_args ] = lin_dir_response( look_dir, sweep_angles, f, W, N  ) 
%  
% N =  % no. of array elements 
% f = frequency (Hz) 
c = 345; 

  
d = c/f/2; % element spacing 
look_dir = look_dir*(pi/180); 
d_s = exp(j*2*pi*f*d/c*cos(look_dir)*[0:N-1]).'; 
R_s = d_s*d_s'; 

  
% compute steering vector samples for beam resp. plot 
psi = sweep_angles.'*pi/180; 
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D_b = exp(j*2*pi*f*d/c*cos(psi)*[0:N-1]).'; 

  
% conventional windowed beamformer case 
h = d_s.*W; 
z = h'*D_b./sum(abs(W)); % beam response after weighting 
P_bf = abs(z).^2; 

  
figure() 
plot(sweep_angles,10*log10(P_bf)) 
title( 'Directional Response for Weighted Beamformer') 
xlabel('direction (degrees)') 
ylabel( 'Gain (dB)') 
end 

  

 

max_SNR.m 

function [h_max, SNR_max, SNR_DS, SNR_mSNR, z_src ] = max_SNR( psrc, 

prec, src, noise_corr, Fs, x_scan) 
% %[h_max, SNR_max, SNR_DS, SNR_mSNR ] = max_SNR( psrc, prec, src, 

noise_corr, Fs, x_scan) 
%     psrc = source position [x y z] 
%     prec = receiver positions Nx3 [x y z] 
%     src = source sound 1xL 
%     noise_corr = NxL matrix of spatially correlated noise located at 

x = 0 
%     Fs = sampling rate 
%     x_scan = x position samples for output plots 
%      
%     h_max = Nx1 array of calculated weights for each receiver channel 
%     SNR_max = eigenvalue corresponding to h_max eigen vector 
%     SNR_DS = signal to noise ratio of unity weighted DS beamformer at 
%       source look direction 
%     SNR_mSNR = signal to noise ratio of Max SNR algorithm using h_max 

as 
%       DS weights 

  
N = size(prec,1); 

  
a (1:N) = 1; 
aat = a'*a; 
W(1:N) = 1; 

  
%src simulation 
[ x1, ~, ~ ] = sim_3D( src, Fs, psrc, prec ); 

  
%[ noise, ~, ~ ] = DS_beamformer( noise_corr, Fs, -1.*pnoise, W, prec 

); 

  
%superposition source and noise signals 
%force matrices to be same length 
min_L = min([size(x1,2) size(noise_corr,2)]);  

  
x1 = x1(:,1:min_L); 
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x2 = noise_corr(:,1:min_L); 

  
x = x1+x2; 

  
% align/delay noise source samples in direction of the source 
[ va, ~, ~ ] = DS_beamformer( noise_corr, Fs, psrc, W, prec ); 

  
%STAT CALCS 
% Find Eigenvector that corresponds to max eigenvalue of constraint eqn 
R_vv = corr( va');    
R_vv_inv = inv(R_vv); 
A = var(src).*R_vv_inv*aat; %Matrix for eigenvalue calc.... A*x = SNR*x 
[h_max, SNR_max] = eigs(A,1) 

  
% Evaluate DS response 
%calculate received power from the source as a function of position 
for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x1, Fs, [x_scan(i) psrc(2) 

psrc(3)], W, prec ); 
     beam_pwr_sDS(i) = pout_scan; 
end 

  
%calculate received power from the noise as a function of position 
for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x2, Fs, [x_scan(i) psrc(2) 

psrc(3)], W, prec ); 
     beam_pwr_nDS(i) = pout_scan; 
end 

  
%calculate total received power from at the output of the beamformer 
for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x, Fs, [x_scan(i) psrc(2) 

psrc(3)], W, prec ); 
     beam_pwr_DS(i) = pout_scan; 
end 

  
% Calculate DS SNR 
[ ~, ~, pout_sDS ] = DS_beamformer( x1, Fs, psrc, W, prec ); 
[ ~, ~, pout_nDS ] = DS_beamformer( x2, Fs, psrc, W, prec ); 

  
SNR_DS = 10.*log10(pout_sDS./pout_nDS); 

  
% Evaluate Max SNR response 

  
for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x1, Fs, [x_scan(i) psrc(2) 

psrc(3)], h_max', prec ); 
     beam_pwr_sSNR(i) = pout_scan; 
end 

  
for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x2, Fs, [x_scan(i) psrc(2) 

psrc(3)], h_max', prec ); 
     beam_pwr_nSNR(i) = pout_scan; 
end 
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for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x, Fs, [x_scan(i) psrc(2) 

psrc(3)], h_max', prec ); 
     beam_pwr_SNR(i) = pout_scan; 
end 

  
%Calc actual Max SNR SNR 
[ ~, z_src, pout_sSNR ] = DS_beamformer( x1, Fs, psrc, h_max', prec ); 
[ ~, z_noise, pout_nSNR ] = DS_beamformer( x2, Fs, psrc, h_max', prec 

); 

  
SNR_mSNR = 10.*log10(pout_sSNR./pout_nSNR); 

  
% Plot DS response 

  
figure() 
plot(x_scan, beam_pwr_sDS, x_scan, beam_pwr_nDS, 'r') 
title('DS Source and Noise directional response')  
xlabel('x location (m)') 
ylabel('Beam power (W)') 

  
% figure() 
% plot(x_scan, beam_pwr_DS) 
% title('DS total output directional response')  
% xlabel('x location (m)') 
% ylabel('Beam power (W)') 

  
%Plot Max SNR response 

  
figure() 
plot(x_scan, beam_pwr_sSNR, x_scan, beam_pwr_nSNR, 'r') 
title('Max SNR Source and Noise directional response')  
xlabel('x location (m)') 
ylabel('Beam power (W)') 

  

  
% figure() 
% plot(x_scan, beam_pwr_SNR) 
% title('Max SNR total output directional response') 
% xlabel('x location (m)') 
% ylabel('Beam power (W)') 

  
% figure() 
% plot(x_scan, (beam_pwr_nSNR./beam_pwr_nDS)) 
% title('Noise Gain Directional Response') 
% xlabel('x position (m)') 
% ylabel('noise gain') 

  
figure() 
subplot(2,1,1) 
plot(0:1/Fs:(length(src)-1)*(1/Fs),src) 
title('Original Source Signal') 
xlabel('time (s)') 
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ylabel('Amplitude') 

  
subplot(2,1,2) 
plot(0:1/Fs:(length(z_src)-1)*(1/Fs), z_src) 
title('Source Signal After Beamforming') 
xlabel('time (s)') 
ylabel('Amplitude') 

  
end 

 

plane_noise_R.m 

function [ R_vv ] = plane_noise_R( prec, look_dir, var_n, f ) 
%Builds a NxN correlation matrix for random directional plane wave 

noise 
%model. 
%   prec = receiver postions [x1 y1 z1; ... xN yN zN] 
%   look_dir = point/ direction that the beamformer is looking [x y z] 
%   var_n = noise variance scale factor for correlation coeficients 
%   f = operating frequency of  beamformer 

  
% Calculate constants  
N = size(prec,1); % number of mics 
c = 345; %speed of sound 
k = 2*pi*f/c; %wave number 

  
%calculate distances between receivers and put into NxN matrix 
for m = 1:N 
    for n = 1:N 
        d_mn(m,n) = sqrt( sum((prec(m,:) - prec(n,:)).^2) ); 
    end 
end 

  
%calculate distances from each mic to look direction [x y z] 
for i = 1:N 
    d(i) = sqrt( sum((look_dir - prec(i,:)).^2)); 
end 

  
%convert distances to each mic into relative time delays for each mic 
td = (d-min(d))./c; 

  
% calculate noise field correlation matrix 
for m = 1:N 
    for n =1:N 
        R_vv(m,n) = var_n* 

besselj(0,k.*d_mn(m,n)).*cos(2*pi*f*abs((td(n)-td(m)))); 
    end 
end 

  
end 

  

 

plane_noise_R_3D.m 
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function [ noise_corr, R_vv ] = plane_noise_R_3D( prec, var_n, length, 

fc,order,Fs ) 
%Creates spatially correlated low pass filtered (correlated in time) 

noise 
%   prec = receiver postions [x1 y1 z1; ... xN yN zN] 
%   var_n = variance of the noise 
%   length = # oof samples of the created noise 
%   fc = upper cutoff frequency of the desired noise (Hz) 

  
% Calculate constants  
N = size(prec,1); % number of mics 
c = 345; %speed of sound 
kc = 2*pi*fc/c; %wave number of upper cutoff frequency 

  
%Correlate random white noise in time by low pass filtering 
[B_lp,A_lp] = butter(order, (2/Fs)*fc); 

  
noise =  randn(N,length); 
noise_lp = (filtfilt(B_lp, A_lp ,noise'))'; 

  

  
%calculate distances between receivers and put into NxN matrix 
d_mn = zeros(N,N); 
for m = 1:N 
    for n = 1:N 
        d_mn(m,n) = sqrt( sum((prec(m,:) - prec(n,:)).^2) ); 
    end 
end 

  
% calculate noise field correlation matrix 
R_vv = zeros(N,N); 
for m = 1:N 
    for n =1:N 
        if d_mn(m,n) == 0 
            R_vv(m,n) = 1; 
        else 
            R_vv(m,n) = sinint(kc.*d_mn(m,n))./(kc*d_mn(m,n)); 
        end 
    end 
end 

  
% Spatially Correlate the noise using R_vv 
norm = mean(var(noise_lp')); 
noise_corr = sqrt((1/norm)).*sqrt(var_n).*sqrtm(R_vv)*noise_lp; 
end 

  

Preprocess_data.m 

Code credit: Dave Chambers, LLNL 

 
% Preprocess_data_11172011 
% Preprocessing script for array data for outdoor 11/17/2011 data 

collect 
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datadir = fullfile('Outdoor_Perimeter_11172011','Noise'); 
load(fullfile(datadir,'DataList.mat')) 
ndata = length(datalist); 
for j=1:ndata 
    datafile = datalist(j).name; 
    disp(['Processing ' datafile]) 
    Array_preprocess(datadir,datafile,8000,150); 
end 
clear j datafile ndata 

 

receiver.m 

function [ t_tx, t_rx, snd_rx ] = receiver( snd_tx, Fs, d, c, a) 
%[ t_tx, t_rx, snd_rx ] = receiver( snd_tx, Fs, d, c) 
%   sound = amplitude samples of sound file from wave (-1 : 1) 
%   Fs = sampling rate of source sound (samples/second) 
%   d = distance between source and receiver (m) 
%   c = speed of sound wave (345 m/s) 
%   a = attenuation facor 0:1 
%   t_tx = transmitted time series (s) 
%   t_rx = received signal time series 
%   td = time delay from source to receiver 

  
%   generate time series 

  
N = length(snd_tx); % of samples N 

  
n = (0:(N-1)); %sample index #  

  
Ts = 1./Fs %sampling period 

  
t_tx = n.*Ts;  

  
%   aquire received signal 

  
td = d./c; %time delay from source to receiver 

  
t_rx = t_tx + td %calc received signal time series 

  
snd_rx = a.*snd_tx; % account for attenuation 

  
figure (1)  
title('source to receiver time delay') 

  
subplot(2,1,1) 
plot (t_tx, snd_tx) 
xlabel('time [sec]') 
ylabel('Amplitude') 
title('Source Signal') 

  
subplot(2,1,2) 
plot(t_rx, snd_rx) 
xlabel('time [sec]') 
ylabel('Amplitude') 



122 

 

title('received signal') 

  
end 

  

 

rect_polar.m 

function [ xy ] = rect_polar( r, angle_sweep ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  
theta = angle_sweep*(pi/180); 

  
x = r*cos(theta); 
y = r*sin(theta); 

  
xy = [x; y]'; 

  
end 

  

 

semilogx_spectrum.m 

function [ f, Y_f ] = semilogx_spectrum( y_t,FS ) 
%Plots the Spectrum of y_t with same number of points as y_t 
%   Detailed explanation goes here 

  
f = FS*(0:1./(length(y_t)):1-(1./length(y_t))); 
Y_f = abs(fft(y_t))./length(y_t); 
semilogx(f,Y_f); 
end 

  

 

 

sim_3D.m 

function [ x, ya_sim, src_pwr ] = sim_3D( snd_tx, Fs, psrc, prec, 

dist_atten) 
%[ x, ya_sim, src_pwr ] = sim_3D( snd_tx, Fs, psrc, prec, dist_atten) 
%  Calculates outputs of a microphone array with one source in 3D 
%   snd_tx = samples of source signal (Lx1) 
%   Fs = Sampling rate or sound source 
%   psrc = source position [x y z] 
%   prec = microphone positions Nx3 matrix: row = source #, columns = x 

y z 
%   dist_atten = accounts for 1/r attenuation due to source to array 
%       distance. Leave empty if no attenuation is desired. Enter '1' 

if 
%       attenuation is desired 
%    
%   x = received sound samples at each corresponding mic (each row is a 

different receiver  
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%       each column corresponds to sample times) 
%   ya_sim = simulated aligned output values after added noise (if any) 
%   src_pwr = calculates the power of the source signal 
if nargin == 4 
    dist_atten = 0; 
end 

  
%   generate time series 

  
L = length(snd_tx); % # of samples in source signal 

  
n = (0:(L-1)); %sample index #  

  
Ts = 1/Fs; %sampling period 

  
t_tx = n.*Ts; % create source time series starting at t = 0  

  
%Calculate source power 
src_pwr = var(snd_tx); 

  
%Calc source -> receiver distances 
c = 345; 
N = size(prec, 1); % number of microphones 

  
for i=1:N 
    d(i) = sqrt( (prec(i,1)-psrc(1))^2 + (prec(i,2)-psrc(2))^2 + 

(prec(i,3)-psrc(3))^2); 
end 

  
if(min(d) < 1) 
    error('Source cannot be closer than one meter to the array!') 
end 

  
% Calculate attenuation factor 
a = 1./d; 
if(~dist_atten) 
a(:) = 1; 
end 

  
%calc time delay between source and receivers 
td = d./c; 

  
% Calc the minimum delay corresponding to the closet microphone to the 

source 
td_min = min(td); % Calc the minimum delay corresponding to the closet 

microphone to the source 

  
%calculate time series for each receiver where t = 0 is when the source 

signal first  
% hits the closest mic to the source 
for i = 1:N 
    t(i,:) = td(i) + t_tx - td_min; 
end 
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%shift data to correspond with time indicies 
%data starts when source signal first hits the closest microphone 
%removes preceding '0's due to initial source to receiver delay 
for i = 1:N 
    x(i, round((t(i,:)/Ts) +1)) = a(i).*snd_tx; 
end 

  
K = length(x); 
t_rec = (0:Ts:(K-1)*Ts); 

  
%add noise here 
% y = x + n 
y = x; 

  
%align array of signals corresponding to the source look direction 
for i = 1:N 
    ya_sim(i,:) = y(i,round((t(i,:)/Ts) +1)); 
end 

  
%Plot locations of source and receivers 
% figure (1) 
%  
% hold on 
% grid on 
%  
% title('Source and Receiver Loacations') 
%  
% s = scatter3(psrc(1),psrc(2), psrc(3), 'g', 'filled'); 
% r = scatter3(prec(:,1),prec(:,2),prec(:,3), 'b', 'filled'); 

view(30,20); 
%  
% xlabel('x-direction (m)') 
% ylabel('y-direction (m)') 
% zlabel('z-direction (m)') 
% legend([s r], 'Source', 'Receivers') 
% hold off 
%  
% %plot received signals for each mic 
% figure (2) 
% hold on 
% title('Received Signals') 
%  
% for i = 1:N 
% ax(i) = subplot(N,1,i); 
% plot(t_rec,x(i,:)) 
% label = ['Receiver ' num2str(i)]; 
% ylabel(label) 
% end 
%  
% linkaxes(ax, 'xy') 
% hold off 
 end 

 

sim_dir_resp.m 
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function [ P_out,P_sig, P_out_n, P_in_n, src_pwr ] = sim_dir_resp( src, 

Fs, look_dir, prec, W, angle_sweep, var_n, f ) 
%Plots the actual simulated directional resopnse of an input signal 
%(preferreably a sinusoid) by varying the actual sourec location while 
%keeping the beamformer looking in a specified direction. 
%   src = source signal of any length 
%   Fs = sampling rate of source signal (samples/sec) 
%   look_dir = beamformer look point [x y z] beamformer focuses on 
%   prec = postion of receivers [x1 y1 z1; ...xN yN zN]  
%   W = weighting of each channel. Must be length N 
%   angle_sweep = direction points (degrees) to be tested and plotted 

for the directcional 
%       response 
% 
%   P_out = output power array for every x_scan point 
%   P_sig = signal power at output of beamformer 
%   P_out_n = noise pwer at the output of the beamformer 
%   P_in_n = input noise power at the receivers 
%   src_power = orignal source power to be compared with the output of 

the 
%       beamformer 

  
%Calculate number of sensors in array 
N = size(prec,1); 

  
%Calculates distance of look point to origin  
r = sqrt(look_dir(1).^2 + look_dir(2).^2); 

  
%Converts sweep angles to rectangular coordinates for simulator 
xy = rect_polar(r, angle_sweep); 

  
%Calculate noise correlation matrix based on time delays and receiver 
%positions and frequency 
[ R_vv ] = plane_noise_R( prec, look_dir, var_n, f ); 

  

  
for i = 1:length(angle_sweep) 
    %simulate source from each angle in angle sweep 
    [ x, ~, src_pwr ] = sim_3D( src, Fs, [xy(i,1) xy(i,2) look_dir(3)], 

prec); 

     
    %Beamform source signal for designed beamformer look direction (not 
    %actual source location) 
    [ ya, z_sig, P_sig(i) ] = DS_beamformer( x, Fs, look_dir, W, prec 

); 

     
    %generate random noise corresponding to R_vv correlation matrix 
    L = size(ya,2); 
    va = sqrtm(R_vv)*randn(N,L); 

     
    %Weight and sum noise with same weights used to beamform the signal 
    %NOTE: noise does not need to be delayed due to the correlation 

matrix 
    %taking that into account 
    z_n = (W'*va)./N;  
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    %Superposition source and noise signals after beamforming 
    z = z_sig + z_n; 

     
    % Calculate input noise power 
    P_in_n(i) = mean(var(va')); 
    %Caluclate output noise power after weighting 
    P_out_n(i) = var(z_n); 
    %Calculate total output power of noise and signal combined 
    P_out(i) = var(z); 
end 

  
figure() 
plot(angle_sweep, 10.*log10(P_out./src_pwr),'b', 

angle_sweep,10.*log10(P_sig./src_pwr),'r', 

angle_sweep,10.*log10(P_out_n./P_in_n),'g' ) 
title('Simulated Directional Response') 
xlabel('direction (degrees)') 
ylabel('Gain (dB)') 
end 

 

sim_steered_resp.m 

function [ P_sig, P_out_n, P_in_n, P_out, src_pwr] = sim_steered_resp( 

src, Fs, psrc, angle_sweep, prec, var_n, f, max_snr_weights ) 
%Sweeps beamformer look direction at each angle of angle sweep and 
%calculates the signal, noise and total power at the output of the 
%beamformer. 
%   src = source signal of any length 
%   Fs = sampling rate of source signal (samples/sec) 
%   look_dir = beamformer look point [x y z] beamformer focuses on 
%   prec = postion of receivers [x1 y1 z1; ...xN yN zN]  
%   angle_sweep = direction points (degrees) to be tested and plotted 

for the directional 
%       response 
%   max_snr_weights-> if = to'1' then max_snr weights will be 

calculated 
%   and applied. If not = '1', regular DS weights will be used (1/N) 
% 
%   P_out = output power array for every angle_sweep point 
%   P_sig = signal power at output of beamformer 
%   P_out_n = noise power at the output of the beamformer 
%   P_in_n = input noise power at the receivers 
%   src_power = orignal source power to be compared with the output of 

the 
%       beamformer 

  
%Calculate number of sensors in array 
N = size(prec,1); 

  
%Calculates distance of look point to origin  
r = sqrt(psrc(1).^2 + psrc(2).^2); 

  
%Converts sweep angles to rectangular coordinates for simulator 
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xy = rect_polar(r, angle_sweep); 

  
%simulate source at actual source location 
[ x, ~, src_pwr ] = sim_3D( src, Fs, psrc, prec); 

  
for i = 1:length(angle_sweep) 
    %Calculate noise correlation matrix based on time delays (look 

angle) and receiver 
    %positions and frequency 
    [ R_vv ] = plane_noise_R( prec, [xy(i,1) xy(i,2) psrc(3)], var_n, f 

); 
    R_vv_sum(i) = sum(sum(R_vv)); 

     
    %Beamform source signal at every look direction in angle sweep  
    [ ya, ~, ~ ] = DS_beamformer( x, Fs, [xy(i,1) xy(i,2) psrc(3)], 

ones(N,1), prec ); 
    L = size(ya,2);  

    
    %generate random noise corresponding to R_vv correlation matrix 
    va = sqrtm(R_vv)*randn(N,L); 

     
    %Calculate maximum SNR algorithm coeffiecients  
    if max_snr_weights == 1 && var_n ~= 0 
    [h_max, ~] = eigs(src_pwr.*inv(R_vv)*ones(N),1); 
    W = N.*h_max./sum(h_max); 

     
    else W = ones(N,1); % Use delays sum weights  
    end 

     
    %Weight and sum signal and noise with same weights 
    %NOTE: noise does not need to be delayed due to the correlation 

matrix 
    %taking that into account 
    z_sig = (W'*ya)./N; 
    z_n = (W'*va)./N;  

     
    %Superposition source and noise signals after beamforming 
    z = z_sig + z_n; 

     
    %Calculate output signal power 
    P_sig(i) = var(z_sig); 
    % Calculate input noise power 
    P_in_n(i) = mean(var(va')); 
    %Caluclate output noise power after weighting 
    P_out_n(i) = var(z_n); 
    %Calculate total output power of noise and signal combined 
    P_out(i) = var(z); 
end 

  
figure() 
plot(angle_sweep, 10.*log10(P_out./src_pwr),'b', 

angle_sweep,10.*log10(P_sig./src_pwr),'r', 

angle_sweep,10.*log10(P_out_n./P_in_n),'g' ) 
title('Simulated Steered Response') 
xlabel('Beamformer Look Direction (degrees)') 
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ylabel('Gain (dB)') 
end 

  

  

sine_gen.m 

function [ sine ] = sine_gen( amp, freq, Fs, length_t ) 
%[ sine ] = sine_gen( amp, freq, Fs, length_t ) 
%   Detailed explanation goes here 

  
t = 0:1/Fs:length_t; 
sine = amp.*sin(2.* pi.*freq.*t); 

  
end 

  

 

Single_Mic_Wavwrite.m 

%%% Single Mic wav file extractor 

  
Gain = 1; 

  
% set path where all preprocessed test cases are located 
datadir = fullfile('Outdoor_Perimeter_11172011'); 

  
% Load file containing the list of the names of all of the case files 
load(fullfile(datadir,'DataList.mat')) 

  
for i = 1:length(datalist) 
    current_case = datalist(i).name; %extract the name of the current 

case 
    display(['Processing ' current_case]) 

     
    load(fullfile(datadir,current_case)) %load the data from the 

current case 

     
    src = Gain.*TimeDataPP(:,1); %amplify signal 
    clear TimeDataPP 
    clear time 

     
    wavwrite((1./max(abs(src))).*src, fullfile('BF out wavs', 

current_case(1:end-7))) 
    clear current_case src FS 
end 

 

 

sinint.m 

function y = sinint(x) 
% function y = sinint(x) 
% This function evaluates the sine integral function using the identity 
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%  Si(x) = (1/2*i) (expint(i*x)-expint(-i*x)) + pi/2 
% For x<0.001, use polynomial approximation Si(x)~x - x^3/18 

  
    indr = find(abs(x)>=.001); 
    inds = find(abs(x)<.001); 
    y = zeros(size(x)); 
    c = sqrt(1/18); 
    if ~isempty(indr) 
        y(indr) = pi/2+ (expint(1i*x(indr))-expint(-

1i*x(indr)))/(2*1i); 
    end 
    if ~isempty(inds) 
        y(inds) = x(inds).*(1-c*x(inds)).*(1+c*x(inds)); 
    end 

     
end 

  

Spacial_noise_R.m 

function [ noise_corr, R_corr ] = Spacial_noise_R( n_samples, prec, 

n_var,  L) 
%[ noise_corr, R_corr ] = Spacial_noise_R( n_samples, prec, n_var,  L) 
%   calculates N channels of spatially correlated noise according to: 
%   R_corr(i,j) = exp(-mag(prec(i)-prec(j))^2/L^2) 
%    
%   n_samples = # of columns of spatially correlated noise 
%   prec =receiver positions N x3 [x y z] 
%   n_var = nosie variance 
%   L = gaussian decay factor 

  
N = size(prec,1); 

  
for i = 1:N 
    for j = 1:N 
        d_rec = sqrt(sum((prec(i,:)-prec(j,:)).^2)); 
        R_corr(i,j) = exp(-(d_rec.^2)./(L.^2)); 
    end 
end 

  
noise_corr = sqrt(n_var).*sqrtm(R_corr)*randn(N, n_samples); 

  
end 

 

Spatio_Temporal_Filter.m 

function [ z_ST, W_o,H_ST, R_vv, SSNR_in ] = Spatio_Temporal_Filter( y, 

v_only,L,overlap ) 
%Applies a multichannel Spatio-Temporal Prediction algorithm to a 
%multichannel signal given signal+noise samples and noise only samples. 
%   y = signal +noise array (N channels x ..) 
%   v_only = noise only array (N channels x...) 
%   L = frame size of filter; 
%   overlap = number of sample overlap between frames 
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%Verify that the sample overlap does not exceed block length  
if(overlap>L) 
    error('Sample block "L" must be larger than sample overlap') 
end 
N = size(y,1); % Calculate number of mics in array 

  
%Initialize 
R_vv = zeros(N*L,N*L); % Initialize noise correlation matrix NLxNL 
R_yy = zeros(N*L,N*L); % Initialize signal + noise correlation matrix 
m = 0;%intialize noise correlation matrix calculation counter for 

averaging later 
n = 0;% intialize signal+noise correlation matrix calculation counter 

for averaging later 
P_in_n_SEG = 0; % initialize average noise power of each frame 
P_in_SEG = 0; 

  

  
%Calculate statistics for each block 
for i = 1:L-overlap:max(length(v_only),length(y)) %initialize index to 

start at beginning of each block of length L taking sample overlap into 

account 

     
        % Calculate noise statistics 
    if(L+i-1 <= length(v_only)) %if current block will exceed length of 

input array, break for loop 

     
        v = v_only(:,i:L+i-1)'; % Take a block of L samples at starting 

at current index i 

     
        %Organize NxL matrix containing sample blocks into NLx1 matrix 

     
        v_L = v(:); 

      
        %Calculate current correlation matrix for N blocks of L samples 
        m = m+1; % number of times correlation matrix is calculated 

     
        %Average correlation matrix over time 
        R_vv = ((m-1)/m)*R_vv + (v_L * v_L')./m;  
        %R_vv = lambda*R_vv + (v_L * v_L').*(1-lambda); 
        P_in_n_SEG = ((m-1)/m)*P_in_n_SEG + mean(var(v))./m;  
    end 

     
    % Calculate source + noise statistics 
    if(L+i-1 <= length(y)) 

     
        y_L = y(:,i:L+i-1)'; % Take a block of L samples at starting at 

current index i 

     
        %Organize NxL matrix containing sample blocks into NLx1 matrix 

     
        y_k = y_L(:); 

     
        n = n+1; 
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        R_yy = ((n-1)/n)*R_yy + (y_k*y_k')./n;  
        %R_yy = lambda*R_yy + (y_k*y_k').*(1-lambda);   
        P_in_SEG = ((n-1)/n)*P_in_SEG + mean(var(y_L))./n;  
    end        
end 

  
SSNR_in = (P_in_SEG-P_in_n_SEG)./P_in_n_SEG; 

  

  

  
%Calculate the optimal spatio-temporal prediction matrix W_o 

  
W_o = ((R_yy(:,1:L)-R_vv(:,1:L))/(R_yy(1:L,1:L)-R_vv(1:L,1:L)))'; 

  
H_ST = inv(W_o*inv(R_vv)*W_o')*W_o*inv(R_vv); 

  
for i = 1:L-overlap:length(y) 
    if(L+i-1 > length(y)) %if current block will exceed length of input 

array data, break for loop 
        break 
    end 
    y_L = y(:,i:L+i-1)'; % Take a block of L samples at starting at 

current index i 

     
    %Organize NxL matrix containing sample blocks into NLx1 matrix 

     
    y_k = y_L(:); 

     
    %perform filtering operation using matrix multiply 
    z_ST(i:i+L-1,1) = H_ST*y_k; 

     
end 

  
end 

  

 

ST_Test1_filt_length_0_overlap.m 

%% ST Filter Test 3- Varying filter lengths with 0 overlap 

  
L = [2     3     4     5     6     7     8    10    16    20    24    

28    30    32]; 
overlap = L -L; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
z_ST_all = zeros(max(length(noise),length(src)),length(L)); 
for i = 1:length(L) 
    L_current = L(i) 
    [ z_ST, ~,H_ST, ~ ] = Spatio_Temporal_Filter( src', noise', L(i), 

overlap(i)  ); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src', noise', 

L(i),overlap(i), H_ST, z_ST ); 
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    SNR_in_all(i) = SNR_in; 
    SNR_out_all(i) = SNR_out; 
    nr_factor_all(i) = nr_factor; 
    sd_factor_all(i) = sd_factor; 
    P_out_all(i) = P_out; 
    P_out_n_all(i) = P_out_n; 
    P_sig1_all(i) = P_sig1; 
    P_out_sig1_all(i) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_ST_all(1:length(z_ST),i) = z_ST; 
end 

 

ST_Test2_overlap.m 

%% ST Filter Test 2- Varying sample overlaps with L =  10 filter 
tic; 
L(1:10) = 10; 
overlap = 0:9; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
z_ST_all = zeros(max(length(noise),length(src)),length(L)); 
for i = 1:length(L) 
    current_overlap = overlap(i) 
    [ z_ST, ~,H_ST, ~ ] = Spatio_Temporal_Filter( src', noise', L(i), 

overlap(i)  ); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src', noise', 

L(i),overlap(i), H_ST, z_ST ); 

     
    SNR_in_all(i) = SNR_in; 
    SNR_out_all(i) = SNR_out; 
    nr_factor_all(i) = nr_factor; 
    sd_factor_all(i) = sd_factor; 
    P_out_all(i) = P_out; 
    P_out_n_all(i) = P_out_n; 
    P_sig1_all(i) = P_sig1; 
    P_out_sig1_all(i) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_ST_all(1:length(z_ST),i) = z_ST; 
end 
toc; 

 

ST_Test3_filt_length_max_overlap.m 

%% ST Filter Test 3- Varying filter lengths with max overlap 
tic 
L = [2     3     4     5     6     7     8    10    16    20    24    

28    30    32]; 
%L = [40 70 100 ]; % extended version 
overlap = L-1; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
z_ST_all = zeros(max(length(noise),length(src)),length(L)); 
for i = 1:length(L) 
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    L_current = L(i) 
    [ z_ST, ~,H_ST, ~, SSNR_in] = Spatio_Temporal_Filter( src', noise', 

L(i), overlap(i)  ); 
    [ z_v_filt, SNR_in, SNR_out, SSNR_out, nr_factor, sd_factor, P_out, 

P_out_n, P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src', noise', 

L(i),overlap(i), H_ST, z_ST ); 

     
    SSNR_in_all(i) = SSNR_in; 
    SSNR_out_all(i) = SSNR_out_all; 
    SNR_in_all(i) = SNR_in; 
    SNR_out_all(i) = SNR_out; 
    nr_factor_all(i) = nr_factor; 
    sd_factor_all(i) = sd_factor; 
    P_out_all(i) = P_out; 
    P_out_n_all(i) = P_out_n; 
    P_sig1_all(i) = P_sig1; 
    P_out_sig1_all(i) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_ST_all(1:length(z_ST),i) = z_ST; 
end 
toc 

 

STP_Test4_N.m 

%% STP Filter Test 4- Varying Mic #s 
tic 
N = 1:9; 
L = [2 3 4 5 6 7 8 10 16 20 24 28 32] ; 
overlap = L-1; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(N)); 
z_ST_all = zeros(max(length(noise),length(src)),length(N)); 
for i = 1:length(N) 
    current_receiver_num = N(i) 

     
    for j= 1:length(L) 
    [ z_ST, ~,H_ST, ~ ] = Spatio_Temporal_Filter( src(:,1:N(i))', 

noise(:,1:N(i))', L(j), overlap(j)  ); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src(:,1:N(i))', 

noise(:,1:N(i))', L(j),overlap(j), H_ST, z_ST ); 

     
    SNR_in_all(i,j) = SNR_in; 
    SNR_out_all(i,j) = SNR_out; 
    nr_factor_all(i,j) = nr_factor; 
    sd_factor_all(i,j) = sd_factor; 
    P_out_all(i,j) = P_out; 
    P_out_n_all(i,j) = P_out_n; 
    P_sig1_all(i,j) = P_sig1; 
    P_out_sig1_all(i,j) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_ST_all(1:length(z_ST),i) = z_ST; 
    end 
end 
toc 
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Test3_case_sweep.m 

%%% Algorithm Test 3 Case script  
% Opens and executes each case from the 11/17/2011 outdoor data collect 
% using the Spatio Temporal Predictions and Wiener Filters. 
%                                    
%Set Up: 
% 1. Preprocess all cases using "Array_Preprocess" function 
% 2. Put all preprocessed cases in their own folder "datadir"(change 

code to match) 
% 3. Put all noise only files in a separate subfolder "datadir_noise" 

(change code to match) 
% 4. Create "DataList.mat" file using datalist = dir (make sure only 

case 
%    files are in the current folder) 
% 5. Save "DataList.mat" in the folder with all of the cases to be 

tested 
% 6. Make sure all noise file are in this format: 10ft_noise.mat 
% 7. Make sure all case files are in this format: 10ft_B.mat 
% 8. Verify location wher output wavs will be saved  

  
L = [ 2 6 10 20 30 40 70]; % set filter lengths to be used in sweeps 
overlap = L-1; 
Gain = 1000; % Set signal gain before filtering 

  
% set path where all preprocessed test cases are located 
datadir = fullfile('Array_data','Outdoor_Perimeter_11172011'); %%% <---

-- 2 

  
% set path where all noise only recording are found 
datadir_noise = 

fullfile('Array_data','Outdoor_Perimeter_11172011','Noise'); %%% <----- 

3 

  
% Load file containing the list of the names of all of the case files 
load(fullfile(datadir,'DataList.mat')) 

  

  
for i = 1:length(datalist) 

     
    current_case = datalist(i).name; %extract the name of the current 

case 
    display(['Processing ' current_case]) 

     
    load(fullfile(datadir,current_case)) %load the data from the 

current case 

     
    src = Gain.*TimeDataPP; %amplify signal 
    clear TimeDataPP 
    clear time 

     
    noise_header = current_case(1:end-8);  
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    load(fullfile(datadir_noise, [noise_header 'noise_PP.mat'])) %load 

noise that corresponds to the current case 

     
    noise = Gain.*TimeDataPP; %amplify noise signal 
    clear TimeDataPP 
    clear time 

     
    %Run STP Sweep 
    z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
    z_ST_all = zeros(max(length(noise),length(src)),length(L)); 
    for j = 1:length(L) 
        L_current = L(j) 
        [ z_ST, ~,H_ST, ~, SSNR_in] = Spatio_Temporal_Filter( src', 

noise', L(j), overlap(j)  ); 
        [ z_v_filt, SNR_in, SNR_out, SSNR_out, nr_factor, sd_factor, ~, 

~, ~, ~ ] = BB_Filter_Metrics( src', noise', L(j),overlap(j), H_ST, 

z_ST ); 

     
        SSNR_in_all(j) = SSNR_in; 
        SSNR_out_all(j) = SSNR_out; 
        SNR_in_all(j) = SNR_in; 
        SNR_out_all(j) = SNR_out; 
        nr_factor_all(j) = nr_factor; 
        sd_factor_all(j) = sd_factor; 
        z_v_filt_all(1:length(z_v_filt),j) = z_v_filt; 
        z_ST_all(1:length(z_ST),j) = z_ST; 
    end 

     
    %save output metrics to appropriate Test 3 folder 
    save(fullfile('Spatio-Temporal 

Prediction','ST_Test3_L_max_overlap', ['ST_Test3_vars_' 

current_case(1:end-7)] 

),'SSNR_in_all','SSNR_out_all','SNR_in_all','SNR_out_all','nr_factor_al

l','sd_factor_all','z_v_filt_all','z_ST_all','FS','src','noise','Gain',

'current_case','L','overlap'); 
    clear SSNR_in_all SSNR_out_all SNR_in_all SNR_out_all nr_factor_all 

sd_factor_all z_v_filt_all z_ST z_v_filt SSNR_in SSNR_out H_ST SNR_in 

SNR_out nr_factor sd_factor j 

     

     
    % Run Wiener Filter Sweep 
    z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
    z_W_all = zeros(max(length(noise),length(src)),length(L)); 
    for j = 1:length(L) 
        L_current = L(j) 
        [z_W, ~, ~, H_W, SSNR_in] = Weiner_filter( src', noise', L(j), 

overlap(j)  ); 
        [ z_v_filt, SNR_in, SNR_out, SSNR_out, nr_factor, sd_factor, 

P_out, P_out_n, P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src', noise', 

L(j),overlap(j), H_W, z_W ); 

     

     
        SSNR_in_all(j) = SSNR_in; 
        SSNR_out_all(j) = SSNR_out; 
        SNR_in_all(j) = SNR_in; 
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        SNR_out_all(j) = SNR_out; 
        nr_factor_all(j) = nr_factor; 
        sd_factor_all(j) = sd_factor; 
        z_v_filt_all(1:length(z_v_filt),j) = z_v_filt; 
        z_W_all(1:length(z_W),j) = z_W; 
    end 

     
    %save output metrics to appropriate Test 3 folder 
    save(fullfile('Weiner Filter','Weiner_Test3', ['Weiner_Test3_vars_' 

current_case(1:end-7)] 

),'SSNR_in_all','SSNR_out_all','SNR_in_all','SNR_out_all','nr_factor_al

l','sd_factor_all','z_v_filt_all','z_W_all','FS','src','noise','Gain','

current_case','L','overlap'); 
    clear SSNR_in_all SSNR_out_all SNR_in_all SNR_out_all nr_factor_all 

sd_factor_all z_v_filt_all z_W z_v_filt SSNR_in SSNR_out H_W SNR_in 

SNR_out nr_factor sd_factor j 

     
    %write all filtered output signals to wav files in the appropriate 

folder 
    for j = 1:length(L) 
        wavwrite((1./(max(abs(z_ST_all(:,j))))).*z_ST_all(:,j),FS, 

fullfile('BF out wavs', [current_case(1:end-7) '_STBF_L' 

num2str(L(j))])) 
        wavwrite((1./(max(abs(z_W_all(:,j))))).*z_W_all(:,j),FS, 

fullfile('BF out wavs', [current_case(1:end-7) '_WBF_L' 

num2str(L(j))])) 
    end  
    clear current_case 
end 

 

Weiner_filter.m 

function [z_W, R_vv, R_yy, H_W, SSNR_in] = Weiner_filter( y, v_only, L, 

overlap  ) 
%Applies a multi channel weiner filter noise reduction algorithm to a 

multi 
%channel input given a noise only segment and a signal + noise segment 
%   y = NxP matrix to be beamformed. Rows correspond to each mic 

channel and columns 
%       correspond to sample numbers. N = # of mics, P = length of data 
%       NOTE: y is not time shifted or aligned. Raw data from mics  
%   v_only = NxQ matrix of each channel of noise recording with no 

speech 
%       present. Does not need to be same length as y_k. Used to 

calculate 
%       Rvv 
%   Fs = sampling rate of data 
%   L = filter length to be used in algorithm 
%   overlap = sample overlap for each length L frame 

  

  
if(overlap>L) 
    error('Sample block "L" must be larger than sample overlap') 
end 
N = size(y,1); % Calculate number of mics in array 
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% Calculate "U" matrix for future H_w calculations  
U = zeros(L,N*L); 
U(1:L,1:L) = eye(L,L); % U = [I(LxL) 0(LXL)... 0(LXL)] (LXNL matrix) 

       

  
%%% Initialize Variables 
R_vv = zeros(N*L,N*L); % Intialize noise correlation matrix NLxNL 
m = 0; % intialize noise correlation matrix calculation counter for 

averaging later 
P_in_n_SEG =0; 
R_yy = zeros(N*L,N*L); 
n = 0; 
P_in_SEG =0; 

  

  
%%% Estimate statistics by breaking inputs into frames of samples 
for i = 1:L-overlap:max(length(v_only),length(y)) %initialize index to 

start at beginning of each block of length L taking sample overlap into 

account 

     
    %%%% Calculate R_vv from v_only %%%% 
    if(L+i-1 <= length(v_only)) 
    v = v_only(:,i:L+i-1)'; % Take a block of L samples at starting at 

current index i 

     
    %Organize NxL matrix containing sample blocks into NLx1 matrix 

     
    v_L = v(:); 

     

     
    %Calculate current correlation matrix for N blocks of L samples 
    m = m+1; % number of times correlation matrix is calculated 

     
    %Average correlation matrix over time 
    R_vv = ((m-1)/m)*R_vv + (v_L * v_L')./m;  
    %R_vv = lambda*R_vv + (v_L * v_L').*(1-lambda); 
    P_in_n_SEG = ((m-1)/m)*P_in_n_SEG + mean(var(v))./m;  
    end 

     
    %%%% Calculate R_yy for each L sample block of (signal + noise) 

data %%%% 
    if(L+i-1 <= length(y)) 
    y_L = y(:,i:L+i-1)'; % Take a block of L samples at starting at 

current index i 

     
    %Organize NxL matrix containing sample blocks into NLx1 matrix 
    y_k = y_L(:); 

     
    n = n+1; 
    R_yy = ((n-1)/n)*R_yy + (y_k*y_k')./n;  
    %R_yy = lambda*R_yy + (y_k*y_k').*(1-lambda); 
    P_in_SEG = ((n-1)/n)*P_in_SEG + mean(var(y_L))./n;  
    end 
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end 

  
SSNR_in = (P_in_SEG-P_in_n_SEG)./P_in_n_SEG; 

      

  
%%%% Calculate Filter matrix H_w and execute filtering operation %%%% 
H_W = ((eye(N*L,N*L) - (R_yy\R_vv))*U')'; 

  

  
for i = 1:L-overlap:length(y) 
    if(L+i-1 > length(y)) %if current block will exceed length of input 

array data, break for loop 
        break 
    end 
    y_L = y(:,i:L+i-1)'; % Take a block of L samples at starting at 

current index i 

     
    %Organize NxL matrix containing sample blocks into NLx1 matrix 

     
    y_k = y_L(:); 

     
    z_W(i:i+L-1,1) = H_W*y_k; 

     
end 

  
end 

  

 

Weiner_Simulation_test1.m 

%%% Weiner Simulation test 1 %%% 
% varying noise cutoff frequencies with spacial correlation 
% with block lengths also varied 
prec = [ .956   0   .445; 
         0      0   .458; 
         -.915  0   .445; 
         .956   0   1.368; 
         0      0   1.358; 
         -.915  0   1.278; 
         .956   0   2.139; 
         0      0   2.133; 
         -.915  0   2.075]; 

  
psrc = [0 40 0]; 
[ src, ~, src_pwr ] = sim_3D( bftest0, FS, psrc, prec ); 

  
L = [2     3     4     5     6     7     8    10    16    20    24    

28    30    32]; 
overlap = L - 1; 
fc = [ 50 100 200 300 500 800 1000 2000 3000 ]; 
for h = 1:length(fc) 
    current_fc = fc(h) 
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    [ noise_corr, R_vv ] = plane_noise_R_3D( prec, src_pwr, 

length(src), fc(h),7,FS ); 
    y = src+noise_corr; 

     
    for i = 1:length(L) 
    L_current = L(i) 
    [z_W, ~, ~, H_W] = Weiner_filter( y, noise_corr, L(i), overlap(i)  

); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( y, noise_corr, 

L(i),overlap(i), H_W, z_W ); 

     
    SNR_in_all(h,i) = SNR_in; 
    SNR_out_all(h,i) = SNR_out; 
    nr_factor_all(h,i) = nr_factor; 
    sd_factor_all(h,i) = sd_factor; 
    P_out_all(h,i) = P_out; 
    P_out_n_all(h,i) = P_out_n; 
    P_sig1_all(h,i) = P_sig1; 
    P_out_sig1_all(h,i) = P_out_sig1; 

     
    end 
end 

 

Weiner_Test1_Filt_length.m 

%% Weiner Filter Test 1- Varying filter lengths with 0 overlap 

  
L = [2     3     4     5     6     7     8    10    16    20    24    

28    30    32]; 
overlap = 0; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
z_W_all = zeros(max(length(noise),length(src)),length(L)); 
for i = 1:length(L) 
    L_current = L(i) 
    [z_W, ~, ~, H_W] = Weiner_filter( src, noise', L(i), overlap(i)  ); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src, noise', L(i),overlap(i), 

H_W, z_W ); 

     
    SNR_in_all(i) = SNR_in; 
    SNR_out_all(i) = SNR_out; 
    nr_factor_all(i) = nr_factor; 
    sd_factor_all(i) = sd_factor; 
    P_out_all(i) = P_out; 
    P_out_n_all(i) = P_out_n; 
    P_sig1_all(i) = P_sig1; 
    P_out_sig1_all(i) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_W_all(1:length(z_W),i) = z_W; 
end 

 

Weiner_Test2_overlap.m 
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%% Weiner Filter Test 2- Varying sample overlaps with L =  10 filter 

  
L(1:10) = 10; 
overlap = 0:9; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
z_W_all = zeros(max(length(noise),length(src)),length(L)); 
for i = 1:length(L) 
    current_overlap = overlap(i) 
    [z_W, ~, ~, H_W] = Weiner_filter( src', noise', L(i), overlap(i)  

); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src', noise', 

L(i),overlap(i), H_W, z_W ); 

     
    SNR_in_all(i) = SNR_in; 
    SNR_out_all(i) = SNR_out; 
    nr_factor_all(i) = nr_factor; 
    sd_factor_all(i) = sd_factor; 
    P_out_all(i) = P_out; 
    P_out_n_all(i) = P_out_n; 
    P_sig1_all(i) = P_sig1; 
    P_out_sig1_all(i) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_W_all(1:length(z_W),i) = z_W; 
end 

 

Weiner_Test3_filt_length_max_overlap.m 

%% Weiner Filter Test 3- Varying filter lengths with max overlap 
tic 

  
L = [2     3     4     5     6     7     8    10   16  20 24 28 30 32 

]; 
overlap = L-1; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(L)); 
z_W_all = zeros(max(length(noise),length(src)),length(L)); 
for i = 1:length(L) 
    L_current = L(i) 
    [z_W, ~, ~, H_W, SSNR_in] = Weiner_filter( src', noise', L(i), 

overlap(i)  ); 
    [ z_v_filt, SNR_in, SNR_out, SSNR_out, nr_factor, sd_factor, P_out, 

P_out_n, P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src', noise', 

L(i),overlap(i), H_W, z_W ); 

     

     
    SSNR_in_all(i) = SSNR_in; 
    SSNR_out_all(i) = SSNR_out; 
    SNR_in_all(i) = SNR_in; 
    SNR_out_all(i) = SNR_out; 
    nr_factor_all(i) = nr_factor; 
    sd_factor_all(i) = sd_factor; 
    P_out_all(i) = P_out; 
    P_out_n_all(i) = P_out_n; 
    P_sig1_all(i) = P_sig1; 
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    P_out_sig1_all(i) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_W_all(1:length(z_W),i) = z_W; 
end 
toc 

 

Weiner_Test4_N.m 

%% Weiner Filter Test 4- Varying Mic #s 

  
N = 1:9; 
L = [2 3 4 5 6 7 8 10 16 20 24 28 32] ; 
overlap = L-1; 
z_v_filt_all = zeros(max(length(noise),length(src)),length(N)); 
z_W_all = zeros(max(length(noise),length(src)),length(N)); 
for i = 1:length(N) 
    current_receiver_num = N(i) 

     
    for j= 1:length(L) 

     
    [z_W, ~, ~, H_W] = Weiner_filter( src(:,1:N(i))', noise(:,1:N(i))', 

L(j), overlap(j)  ); 
    [ z_v_filt, SNR_in, SNR_out, nr_factor, sd_factor, P_out, P_out_n, 

P_sig1, P_out_sig1 ] = BB_Filter_Metrics( src(:,1:N(i))', 

noise(:,1:N(i))', L(j),overlap(j), H_W, z_W ); 

     
    SNR_in_all(i,j) = SNR_in; 
    SNR_out_all(i,j) = SNR_out; 
    nr_factor_all(i,j) = nr_factor; 
    sd_factor_all(i,j) = sd_factor; 
    P_out_all(i,j) = P_out; 
    P_out_n_all(i,j) = P_out_n; 
    P_sig1_all(i,j) = P_sig1; 
    P_out_sig1_all(i,j) = P_out_sig1; 
    z_v_filt_all(1:length(z_v_filt),i) = z_v_filt; 
    z_W_all(1:length(z_W),i) = z_W; 
    end 
end 

 

x_beam_plot.m 

function [ beam_pwr ] = x_beam_plot( x, Fs, prec, x_scan, y_plane, 

z_plane, W) 
%[ beam_pwr ] = x_beam_plot( x, Fs, prec, x_scan, y_plane, z_plane, W) 
%   x = raw (un-aligned) data from mic array (NxL) 
%   Fs = sampling rate of source signal 
%   prec = postion of receivers [x1 y1 z1;x2 y2 z2...] 
%   x_scan = array of points used to scan the x axis 
%   y_scan = defines the y plane for the x direction sweep 
%   z_scan = defines the z plane for the x direction sweep 
%   W = weighting vector for each mic channel 

  
%   beam_pwr = vector of calculated signal power at each x_scan point 



142 

 

%   src_pwr = calculated source power over all inoput samples 

  

  

  

  
 %% Find Max power point 
 for i = 1:length(x_scan)                          %look direction 
     [ ~, ~, pout_scan ] = DS_beamformer( x, Fs, [x_scan(i) y_plane 

z_plane], W, prec ); 
     beam_pwr(i) = pout_scan; 
 end 

  
 %% Plot Beam Power vs X axis  
 figure () 

  
 subplot(2,1,1) 
 plot(x_scan, beam_pwr); 
 xlabel('x position (m)') 
 ylabel('beam power (W)') 

  
 subplot(2,1,2) 
 plot(x_scan, 10.*log10(beam_pwr)) 
 xlabel('x position (m)') 
 ylabel('beam power (dB)') 

  

  
end 

         

 

 

 

 


