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Abstract Following an approach by Exner et al. (Commun Math Phys 26:531–541,
2014), we establish Lieb–Thirring inequalities for general self-adjoint and second-
degree differential operators with matrix valued potentials acting in one space-
dimension. These include and generalize the magnetic Schrödinger operator. Three
different settings are considered, with functions defined on the whole real line, a semi-
axis and an interval, respectively, leading to different types of bounds.An interpretation
of the result in terms of Schrödinger operators acting on star graphs and graphs with
two vertices is also given.
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Commutation method
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1 Introduction

Let V be a real-valued function and consider the self-adjoint Schrödinger operator

H = −� + V (x) (1.1)

acting on L2(Rd). In addition to describing the spectral properties of H as a detailed
function of the potentialV , it is also of interest to obtain general bounds on themoments

Communicated by Ari Laptev.

O. Mickelin (B)
KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
e-mail: oscarmi@kth.se

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191555126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s13373-015-0067-9&domain=pdf


2 O. Mickelin

of the negative eigenvalues of H , which physically correspond to states bound in the
potential well. If we denote these eigenvalues by {−λi (V )}, bounds can be achieved
through so-called Lieb–Thirring inequalities of the form

∞∑

i=1

λ
γ

i (V ) ≤ Lγ,d

∫

Rd
V

γ+ 1
2− dx, (1.2)

for Lγ,d constants depending only on γ and d. Here, V± = |V |±V
2 denote the positive

and negative parts of V (x), respectively. For the case γ ≥ 3/2, it was shown in [13]
that

Lγ,d = Lcl
γ,d := (4π)−

d
2

�(γ + 1)

�(γ + d
2 + 1)

, (1.3)

and it holds for all γ that Lcl
γ,d ≤ Lγ,d .

The Lieb–Thirring inequalities have been proven to hold if and only if γ ≥ 1/2
for d = 1 [9,20,25], γ > 0 for d = 2 [20], and γ ≥ 0 for d ≥ 3 [4,11,16,20,23].
Achieving estimates for the constants in Eq. (1.2) is also of importance in applications
and is discussed in e.g. [7,8,25]. For the case where V (x) is matrix-valued, see also
the paper in [13].

Originally shown by Lieb and Thirring [20] in order to give an alternative proof of
the stability of matter, these inequalities have also found additional applications. See
[3,14,15,17,22] for examples in physics, including the Navier–Stokes equations, and
other areas of mathematics; Laptev [12], Seiringer [24] also give detailed surveys of
the area and a comprehensive treatment can be found in [19].

This article aims at generalizing the setting of Lieb–Thirring inequalities to more
general operators than the magnetic or non-magnetic Schrödinger operators. More
precisely, take P(x), Q̃(x) as complex-valued n × n-matrix functions and let � be
either [0, 1], R+ or R. We consider all self-adjoint operators of the type

L := − d2

dx2
⊗ I + P(x)

d

dx
⊗ I + Q̃(x) (1.4)

acting on L2(�;Cn), and obtain bounds on themoments of their negative eigenvalues,
{−λn}. Note that this form of the operator includes, but is not restricted to, both the
magnetic and non-magnetic Schrödinger operators. For some symmetric and real-
valued n × n-matrix function A(x), these can be written as

(
i
d

dx
⊗ I + A(x)

)2

= − d2

dx2
⊗ I + 2i A(x)

d

dx
⊗ I + i A′(x) + A2(x), (1.5)

which is of the form in Eq. (1.4). The operator in Eq. (1.4) can therefore be interpreted
as a generalized magnetic Schrödinger operator.

Remark 1 The operator in Eq. (1.4) is similar to the magnetic Schrödinger operator in
Eq. (1.5). When the potential functions are scalar-valued, the magnetic Schrödinger

operator takes the form
(
i d
dx + a(x)

)2
, for some real-valued a(x). This can be reduced
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Lieb–Thirring inequalities for generalized magnetic fields 3

to the non-magnetic Schrödinger operator through a gauge transformation. The main
contribution of this paper lies in generalizing this operator in three different ways:
to also include matrix-valued potential functions as in Eq. (1.5), to the more general
operator in Eq. (1.4), and lastly to settings where the operator acts on functions defined
on subsets of the real line. This last part follows and slightly extends the work in [5].

The approach in this article uses the ideas from [2,5] and the commutation method.
Wewill show below that the proper setting for this approach is to have P element-wise
weakly differentiable together with some integrability assumptions on P and Q̃. More
precisely, while studying functions defined on some � ⊆ R

d , we take

P(x)2, P ′(x), Q̃(x) ∈

⎧
⎪⎨

⎪⎩

L1(�;Cn×n) + L∞(�;Cn×n), d = 1,

L1+ε(�;Cn×n) + L∞(�;Cn×n), d = 2,

Ld/2(�;Cn×n) + L∞(�;Cn×n), d ≥ 3,

(1.6)

where ε ∈ R+ := [0,∞) is arbitrary and the integrability is to be interpreted element-
wise. Arguing by approximation, we will in the following assume that P is indeed
element-wise weakly differentiable.Wewill show below that anyL in Eq. (1.4) is then
self-adjoint if and only if P is anti-Hermitian with Q̃∗ = Q̃ − P ′. We will therefore
rewrite Eq. (1.4) on the form

L = − d2

dx2
⊗ I + P(x)

d

dx
⊗ I + P ′(x)

2
− P(x)2

4
+ Q(x), (1.7)

where P is anti-Hermitian, Q = Q̃ − P ′
2 + P2

4 is Hermitian andL acts on some subset
of L2(R;Cn). Note that this is slightly more general than the operator in Eq. (1.5),
since P need not be of the form i A, for A a real n × n-matrix.

We will study the operator in Eq. (1.7) for the three different cases of L acting
on functions defined on the whole real line, a semi-axis and an interval, respectively.
The last two cases will be endowed with Robin boundary conditions at the endpoints.
More precisely, we let L act on

D(L) := L2(R;Cn), (1.8)

D+(L) := {u ∈ L2(R+;Cn) : u′(0) − Su(0) = 0}, P(0) = 0, (1.9)

D[0,1](L) := {u ∈ L2([0, 1];Cn) : (1.10)

u′(0) − S0u(0) = 0 = u′(1) − S1u(1)}, P(0) = P(1) = 0, (1.11)

respectively. Here,S,S0,S1 are n ×n Hermitian matrices encoding Robin boundary
conditions.Note that the conditions that P(0) = 0 inEq. (1.9) and that P(0) = P(1) =
0 in Eq. (1.11) are necessary and sufficient to makeL self-adjoint when acting on these
spaces, as will be shown below. Note also that this is a generalization of the settings
of [2,5], and we extend their results by establishing Lieb–Thirring inequalities on
the moments of the negative eigenvalues of L on these spaces. Setting P = 0 in
Theorems 1, 2 and Corollaries 1, 2 below, we recover the results in [2,5]. The main
results are as follows.
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4 O. Mickelin

Theorem 1 LetL act onD(L) in Eq. (1.8). Let also P(x) be anti-Hermitian, termwise
weakly differentiable and Q(x) Hermitian. If L is bounded from below and Tr(Q2−) ∈
L1(R), then

∞∑

i=1

κiλ
3/2
i ≤ 3

16

∫

R

Tr(Q2−)dx, (1.12)

where κi denotes the multiplicity of the negative eigenvalue −λi . This bound is also
sharp, in the sense that there are P, Q such that the resulting inequality is false if the
constant is replaced by a smaller number.

Theorem 2 Let P(x) be anti-Hermitian, termwise weakly differentiable with P(0) =
0 and Q(x) Hermitian. If L acts on D+(L) in Eq. (1.9), is bounded from below and
if Tr(Q2−) ∈ L1(R+), then

3

4
λ1TrS + 1

2
(2κ1 − n) λ

3/2
1 +

∞∑

i=2

κiλ
3/2
i ≤ 3

16

∫

R+
Tr(Q2−)dx + 1

4
TrS3. (1.13)

Theorem 3 Let P(x) be anti-Hermitian, termwise weakly differentiable with P(0) =
P(1) = 0 and Q(x) Hermitian. If L acts on D[0,1](L) in Eq. (1.11), is bounded from
below and if Tr(Q2−) ∈ L1([0, 1]), then

3

4
λ1Tr (S0 − S1) +

∞∑

i=2

κiλ
3/2
i ≤ 3

16

∫ 1

0
Tr(Q2−)dx + 1

4
Tr

(
S3

0 − S3
1

)
. (1.14)

Remark 2 The same techniques used to prove Theorems 1–3 can be used to obtain
Lieb–Thirring bounds also when L acts on functions defined on unions of intervals
and semi-axes. Each interval will then give a contribution of the form in Eq. (1.14)
and each semi-axis contributes like in Eq. (1.13).

These bounds can be extended to higher moments using an Aizenman–Lieb argument
from [1]. We can then conclude the following corollary.

Corollary 1 Let L act on D(L) in Eq. (1.8) and take γ ≥ 3/2. Let P(x) be anti-
Hermitian, termwise weakly differentiable and Q(x) Hermitian. If L is bounded from

below and Tr(Q
γ+ 1

2− ) ∈ L1(R), then

∞∑

i=1

κiλ
γ

i ≤ Lγ,1

∫

R

Tr(Q
γ+ 1

2− )dx . (1.15)

These bounds are also sharp.

In the case of the semi-axis, we can use the same techniques to obtain bounds on
higher moments, in case TrS3 ≤ 0. The bound in Theorem 2 then becomes

3

4
λ1TrS + 1

2
(2κ1 − n) λ

3/2
1 +

∞∑

i=2

κiλ
3/2
i ≤ 3

16

∫

R+
Tr(Q2−)dx, (1.16)
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Lieb–Thirring inequalities for generalized magnetic fields 5

which allows for the Aizenman–Lieb treatment. We obtain the following corollary.

Corollary 2 Take γ ≥ 3/2 and assume that TrS3 ≤ 0. Let P(x) be anti-Hermitian,
termwise weakly differentiable with P(0) = 0 and Q(x) Hermitian. If L acts on

D+(L) in Eq. (1.9), is bounded from below and if Tr(Q
γ+ 1

2− ) ∈ L1(R+), then

3

4

B(γ − 3/2, 2)

B(γ − 3/2, 5/2)
λ

γ−1/2
1 TrS + 1

2
(2κ1 − n) λ

γ
1 +

∞∑

i=2

κiλ
γ

i (1.17)

≤ Lγ,1

∫ ∞

0
Tr

(
Qγ+1/2

−
)
dx, (1.18)

where B(p, q) denotes the Beta function

B(p, q) =
∫ 1

0
(1 − t)q−1t p−1dt. (1.19)

Analogously, in the setting of the interval, we assume Tr
(
S3

0 − S3
1

) ≤ 0 in order
to prove the following.

Corollary 3 Take γ ≥ 3/2 and assume that Tr
(
S3

0 − S3
1

) ≤ 0. Let P(x) be
anti-Hermitian, termwise weakly differentiable with P(0) = P(1) = 0 and Q(x)

Hermitian. If L acts on D[0,1](L) in Eq. (1.11), is bounded from below and if

Tr

(
Q

γ+ 1
2−
)

∈ L1(R+), then

3

4

B(γ − 3/2, 2)

B(γ − 3/2, 5/2)
λ

γ−1/2
1 Tr (S0 − S1) +

∞∑

i=2

κiλ
γ

i ≤ Lγ,1

∫ 1

0
Tr

(
Qγ+1/2

−
)
dx .

(1.20)

We next turn to an application of the results. We have the following.

Theorem 4 If P and Q are diagonal matrices, then L acting on D+(L) can be
interpreted as a Schrödinger operator acting on a star graph with n semi-infinite
edges and a matching condition at the common vertex. Its negative spectrum satisfies
Eqs. (1.13) and (1.17). L acting on D[0,1](L) can similarly be seen as a Schrödinger
operator on a graph with two vertices, n edges between these and separate matching
conditions at both vertices. The negative eigenvalues of L satisfy Eqs. (1.14) and
(1.20).

2 Auxiliary results

In this section, we will establish auxiliary results needed for the proofs of the main
propositions.Wewill follow the commutation method approach used in [2,5], suitably
generalized to our setting. First, we record the conditions on P and Q̃ needed to make
L in Eq. (1.4) self-adjoint.
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6 O. Mickelin

Lemma 1 Let P in Eq. (1.4) be termwise weakly differentiable. L acting on D(L)

is then symmetric if and only if P∗ = −P and Q̃∗ = Q̃ − P ′ almost everywhere.
Moreover, L acting on D+(L) is symmetric if and only if additionally P(0) = 0 and
L acting on D[0,1](L) is symmetric if and only if also P(0) = P(1) = 0.

Proof Starting with the case of D(L), we take u, v ∈ D(L), integrate by parts and
obtain

〈Lu, v〉L2(R;Cn) =
∫

R

−v∗u′′ + v∗ Pu′ + v∗ Q̃u dx (2.1)

=
∫

R

−v′′∗u − v′∗ Pu + v∗(Q̃ − P ′)u dx, (2.2)

〈u,Lv〉L2(R;Cn) =
∫

R

−v′′∗u + v′∗ P∗u + v∗ Q̃∗u dx, (2.3)

so L is symmetric if and only if

0 = 〈Lu, v〉L2(R;Cn) −〈u,Lv〉L2(R;Cn) =
∫

R

v′∗(P + P∗)u +v∗(Q̃ − P ′ − Q̃∗)u dx,

(2.4)
for allu, v ∈ D(L). Let now ei be the i th Euclideanbasis vector, andfixany [a, b] ⊆ R,
ε ∈ R. By setting v = ei on [a − 2ε, b + 2ε], v = 0 outside [a − 3ε, b + 3ε], we can
let un be a smooth approximation to 1[a,b]e j , with support contained in [a − ε, b + ε].
This means that v′∗(P + P∗)u = 0 in all of R and that

0 =
∫

R

v∗(Q̃ − P ′ − Q̃∗)un dx →
∫ b

a

(
Q̃ − P ′ − Q̃∗)

i j dx = 0, (2.5)

as n → ∞, by Lebesgue’s dominated convergence theorem. Since b was arbitrary, it
follows that

(
Q̃ − P ′ − Q̃∗)

i j = 0 a.e. in [a, b] ([6], Theorem2.14.2), so Q̃∗ = Q̃−P ′

a.e., since a, i, j were arbitrary. As for the other term in Eq. (2.4), taking v′ = ei and
un as above implies that also P∗ = −P .

For L acting on D+(L) and u, v ∈ D+(L), the partial integration also produces
the two boundary terms

(
v′(0) − Sv(0)

)∗
u(0) + v∗(0)P(0)u(0) = v∗(0)P(0)u(0). (2.6)

If we take u(0) = 0 momentarily, the same argument as in the previous case shows that
Q̃∗ = Q̃ − P ′ and P∗ = −P in (0,∞). It follows that

v∗(0)P(0)u(0) = 0, (2.7)

precisely when L is symmetric. Since u(0), v(0) are a priori arbitrary, this is the case
if and only if P(0) = 0.

An analogous argument applied to L acting on D[0,1](L) concludes the proof. �
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Lieb–Thirring inequalities for generalized magnetic fields 7

Note that, after possibly identifying L with its Friedrichs extension, we could
replace the word “symmetric” in Lemma 1 by “self-adjoint”.

For the remainder of this section, we will assume that P is smooth and that both
P and Q are compactly supported. By approximation, we can then pass to more
general P, Q in appropriate limits [10]. The first step in the argument is to consider a
generalized gauge transformation. We let 
 be the matrix fundamental solution to


 ′ = 1

2
P
, 
(0) = I. (2.8)

Note that 
 exists globally and is uniquely defined, since P was assumed to be
continuous.

Lemma 2 
(x) has the following properties.

(i) 
(x) is invertible for all x in its domain of definition.
(ii) 
(x) is unitary for all x in its domain of definition.
(iii) 
−1(x)Q(x)
(x) is Hermitian for all x in the domain of definition of 
.
(iv) 
(x) and 
−1(x) are bounded in norm.

Proof Each column vector ci of 
(x) satisfies

c′
i = 1

2
Pci , ci = ei , (2.9)

where ei denotes the i th Euclidean basis vector. If 
(x0) were not invertible, then
{ci (x0)}n

i=1 would be linearly dependent. By the uniqueness of solutions to Eq. (2.9),
it follows that ci would be linearly dependent for all x , so setting x = 0 implies that
{ei }n

i=1 would be. This is a contradiction, establishing the invertibility of 
.
For the second property, we will use the fact that P∗ = −P . Taking the adjoint of

Eq. (2.8), we then obtain


∗′ = −1

2

∗ P, 
∗(0) = I. (2.10)

Moreover, differentiation yields

d

dx

−1 = −
−1
 ′
−1 = −1

2

−1P, 
−1(0) = I, (2.11)

so we have

d

dx

(

−1 − 
∗) = −1

2

(

−1 − 
∗) P,

(

−1(0) − 
∗(0)

)
= 0. (2.12)

By the uniqueness of solutions to linear differential equations, we must then have

−1(x) = 
∗(x) for all x where 
 is defined. Note next that

(

−1Q


)∗ = 
∗Q∗

∗−1 = 
−1Q
, since Q is Hermitian and 
 unitary.
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8 O. Mickelin

Lastly, the compact support of P together with Eq. (2.8) imply that 
 is constant
outside some compact interval [a, b], on which the norm of 
 assumes a maximum.
Since also

‖
−1(x)‖ = ‖
∗(x)‖ = ‖
(x)‖, (2.13)

both 
 and 
−1 have bounded norm. This establishes the last property and concludes
the proof. �
The reason for considering
 is that it simplifies the original problem, as seen from the
following result. We remark that it is similar to the Liouville normal form of operators
in Sturm–Liouville theory [21].

Lemma 3 L acting on the spaces in Eqs. (1.8), (1.9), (1.11) has the same eigenvalues
as the operator

H := − d2

dx2
⊗ I + 
−1(x)Q(x)
(x), (2.14)

acting on the spaces

D(H) := L2(R;Cn), (2.15)

D+(H) := {̃u ∈ L2(R+;Cn) : ũ′(0) − Sũ(0) = 0}, (2.16)

D[0,1](H) := {̃u ∈ L2([0, 1];Cn) : (2.17)

ũ′(0) − S0ũ(0) = 0 = ũ′(1) − 
(1)−1S1
(1)̃u(1)}, (2.18)

respectively.

Proof We can write u(x) = 
(x )̃u(x) and then compute

Lu = 

(
−ũ′′ + 
−1 [−2
 ′ + P


]
ũ′ + 
−1 [−
 ′′ + P
 ′ + Q̃


]
ũ
)

(2.19)

= 

(
−ũ′′ + 
−1Q
ũ

)
, (2.20)

meaning thatLu = λu is equivalent toHũ = λũ. Next, the boundedness of
 and
−1

imply that u ∈ L2 is equivalent to ũ ∈ L2, for all three settings under consideration.
This establishes Eq. (2.15) so it only remains to verify the boundary conditions forH
in Eqs. (2.16, 2.18). In the case of the semi-axis, we have

u(0) = 
(0)̃u(0) = I · ũ(0) = ũ(0), (2.21)

u′(0) = 
 ′(0)̃u(0) + 
(0)̃u′(0) = 1

2
P(0)
(0)̃u(0) + I · ũ′(0) = ũ′(0), (2.22)

since we insisted on P(0) = 0 in this setting. This establishes Eq. (2.16).
Lastly, we use P(0) = P(1) = 0 in the setting of the interval to obtain

u′(0) = ũ′(0), u(0) = ũ(0), (2.23)

u′(1) = 
(1)̃u′(1), u(1) = 
(1)̃u(1). (2.24)
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Lieb–Thirring inequalities for generalized magnetic fields 9

This is precisely the Robin boundary condition in Eq. (2.18), which concludes the
proof. �

This result will be sufficient to prove Theorems 1 and 2, so we will in the following
only study the operator H acting on D[0,1](H) in Eq. (2.18). Using the boundedness
of 
, and the assumptions in Eq. (1.6), we can show that H is bounded from below
precisely as in [18, Sec. 11.3]. The min–max principle then applies, and H has a
ground state φ1 with finite energy −λ1. Estimating only the negative eigenvalues, we
will assume that −λ1 < 0. We next consider the corresponding matrix fundamental
solution

−M ′′
1 (x) + 
(x)−1Q(x)
(x)M1(x) = −λ1M1(x), (2.25)

M ′
1(0) − S0M1(0) = 0, (2.26)

M ′
1(1) − 
(1)−1S1
(1)M1(1) = 0. (2.27)

The following result is standard [2,5] and will be needed in the remainder of the
argument.

Lemma 4 Take φ1(x) as the ground state of H, i.e.

−φ′′
1 (x) + 
(x)−1Q(x)
(x)φ1(x) = −λ1φ1(x), (2.28)

φ′
1(0) − S0φ1(0) = 0, (2.29)

φ′
1(1) − 
(1)−1S1
(1)φ1(1) = 0. (2.30)

If (φ1(0), φ′
1(0)) is non-trivial, then φ1(x) is non-zero for all x ∈ [0, 1] and the ground

state has multiplicity at most n.

Proof Assume first that there is an x0 < 1 with φ1(x0) = 0. We can then form

φ̃(x) =
{
0, x ≥ x0
φ1(x), x < x0,

(2.31)

which is weakly differentiable everywhere, so φ̃ ∈ H1([0, 1];Cn) since φ1 is. We
have

〈Hφ̃, φ̃〉L2([0,1];Cn) =
∫ 1

0
|φ̃′|2dx + 〈
−1Q
φ̃, φ̃〉L2([0,1];Cn)

=
∫ x0

0
|φ′

1|2 + φ∗
1


−1Q
φ1dx = −λ1

∫ x0

0
|φ1|2dx

= −λ〈φ̃, φ̃〉L2([0,1];Cn),

so the min–max principle implies that φ̃(x) is a solution of Eq. (2.28). Since this is
a second order ordinary differential equation and φ̃(x) = 0 = φ̃′(x) for x > x0, we
must then have φ̃ = 0 on the whole interval [0, 1], contradicting the assumption that

123



10 O. Mickelin

(φ1(0), φ′
1(0)) �= 0. Next, the case x0 = 1 implies that φ′

1(x0) = φ1(x0) = 0, after
using the Robin boundary conditions. This derives a contradiction just as in the case
x0 < 0, which concludes the proof of the first part of the lemma.

For the second part, note that if there were n + 1 ground state solutions, then these
would be linearly dependent when evaluated at a point. By the preceding argument,
they would then have to be linearly dependent for all x in [0, 1], meaning that the
ground state is of multiplicity at most n. �
By Lemma 4, M1(x) will then be invertible for any x ∈ [0, 1], and we can therefore
form F = M ′

1M−1
1 , which will be used below.

Lemma 5 F(x) has the following properties.

(i) F(x) satisfies the Ricatti equation F2 + F ′ = 
−1(x)Q(x)
(x) + λ1.
(ii) F(0) = S0, and F(1) = 
−1(1)S1
(1).
(iii) F is Hermitian for all x in [0, 1].
Proof We can calculate

F ′ = M ′′
1 M−1

1 − M ′
1M−1M ′

1M−1
1 =

(

−1Q
M1 + λ1M1

)
M−1

1 − F2

= 
−1Q
 + λ1 − F2,

showing the Ricatti equation. The second part is shown by using the Robin boundary
condition. We have

M ′
1(0) − S0M1(0) = 0, (2.32)

so the invertibility of M(0) results in

F(0) = M ′
1(0)M−1

1 (0) = S0. (2.33)

F(1) is evaluated analogously.
The third property is obtained by differentiating a Wronskian expression and using

the fact that 
−1Q
 is Hermitian, as shown in Lemma 2. We have

d

dx

(
M∗

1 M ′
1 − M∗′

1 M1

)
= M∗

1

(

−1Q
 −

[

−1Q


]∗)
M1 = 0,

so M∗
1 M ′

1 − M∗′
1 M1 = M∗

1 F M1 − M∗
1 F∗M1 = C , for C ∈ C

n×n constant. Next,
for x = 0, we have F(0) = S0, which is Hermitian. This means that C = 0, which
results in

0 = M∗
1 M ′

1 − M∗′
1 M1 = M∗

1 F M1 − M∗
1 F∗M1, (2.34)

for all x in [0, 1], i.e. F∗ = F . This finishes the proof. �

3 Proofs of the main results

Proof of Theorem 1 By the min–max principle, {−λi } will all increase in magnitude
if we put the positive part of Q to 0. Since the integral in Lemma 1 is invariant under
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this change, it suffices to prove the theorem for Q ≤ 0, which will be assumed in the
following. By Lemmas 2 and 3, the eigenvalues ofL are precisely those of the operator
H in Eqs. (2.14)–(2.15), which has a Hermitian potential part. We can therefore apply
the Lieb–Thirring inequalities from [13] to conclude that

∞∑

i=1

κiλ
3/2
i ≤ 3

16

∫

R

Tr

[(

−1Q


)2
−

]
dx ≤ 3

16

∫

R

Tr

[(

−1Q


)2]
dx (3.1)

= 3

16

∫

R

Tr
(

Q2
)
dx = 3

16

∫

R

Tr
(

Q2−
)
dx . (3.2)

Here, the second to last equality used Tr
[(


−1Q

)2] = Tr

(

−1Q2


) =
Tr

(
Q2

−1

) = Tr
(
Q2

)
and the last equality used Q2 = (Q−)2, since Q ≤ 0.

It only remains to prove the sharpness of the bound. This follows from the sharpness
of the original Lieb–Thirring inequalities after setting P = 0. The theorem is then
proved. �

Proof of Theorem 2 Analogously to the previous proof, we can without loss of gen-
erality assume that Q ≤ 0 and use the results from [5] to conclude that

3

4
λ1TrS+ 1

2
(2κ1−n) λ

3/2
1 +

∞∑

i=2

κiλ
3/2
i ≤ 3

16

∫

R

Tr

[(

−1Q


)2
−

]
dx + 1

4
TrS3

(3.3)

≤ 3

16

∫

R

Tr

[(

−1Q


)2]
dx + 1

4
TrS3 = 3

16

∫

R

Tr
(

Q2
)
dx + 1

4
TrS3 (3.4)

= 3

16

∫

R

Tr
(

Q2−
)
dx + 1

4
TrS3, (3.5)

which is the desired result. �

Proof of Theorem 3 This proof uses the commutation method and shares structure
with the proofs in [2,5]. We recall from the preceding proofs that we can without loss
of generality assume Q ≤ 0 and that we aim to bound the negative eigenvalues {−λi }
of H. Take now T := d

dx ⊗ I − F . We can calculate

T ∗T u = −u′′ + (F − F∗)u′ + (
F∗′ + F F∗) u (3.6)

= −u′′ +
(

−1Q
 + λ1

)
u = Hu + λ1u. (3.7)

T T ∗u = −u′′ + (F − F∗)u′ + (
F∗F − F ′) u = Hu + λ1u − 2F ′u, (3.8)

where we used the Ricatti equation and the Hermiticity of F from Lemma 5. Note
now that any eigenfunction ψ of T T ∗ can be written as T φ, for φ an eigenfunction of
T ∗T . Since φ satisfies the Robin boundary conditions in Eq. (2.18), ψ will satisfy
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12 O. Mickelin

ψ(0) = T φ(0) = φ′(0) − F(0)φ(0) = φ′(0) − S0φ(0) = 0, (3.9)

ψ(1) = T φ(1) = φ′(1) − F(1)φ(1) = φ′(1) − 
−1(1)S1
(1)φ(1) = 0, (3.10)

where we used Lemma 5. The eigenvectors of TT∗ therefore satisfy Dirichlet boundary
conditions at x = 0. Note also that TT∗ and T ∗T have the same spectrum, with the zero
eigenvalue excluded from the spectrum of TT∗. To see this, assume that TT∗ψ = 0.
This means that

〈TT∗ψ,ψ〉L2([0,1];Cn) = 〈T ∗ψ, T ∗ψ〉L2([0,1];Cn) = 0, (3.11)

so T ∗ψ = 0 and ψ ′(x) = −F(x)ψ(x). This in particular implies that ψ ′(0) =
−F(0)ψ(0) = 0, sinceψ satisfies Dirichlet boundary conditions. We therefore obtain
ψ ′(0) = ψ(0) = 0 so ψ(x) = 0 for all x , since ψ is an eigenfunction of the second
order differential operator in Eq. (3.8).

This procedure therefore reduces the problem of describing the eigenvalues of
Eq. (1.4) to bounding the spectrum of

T T ∗u =
(

− d2

dx2
⊗ I + 
−1Q
 − 2F ′

)
u, u(0) = u(1) = 0, (3.12)

for u in L2([0, 1];Cn). To approach this, we now extend Q and F ′ by zero to the
whole real axis and therefore have F(x) = F(1), for all x ≥ 1 and F(y) = F(0), for
all y ≤ 0. Note that this results in a self-adjoint operator on the whole real line. We
can then use the result in Theorem 1 to obtain

∞∑

i=2

κiλ
3/2
i ≤ 3

16

∫ 1

0
Tr

[(

−1Q
 − 2F ′)2

−

]
dx (3.13)

≤ 3

16

∫ 1

0
Tr

[(

−1Q
 − 2F ′)2

]
dx . (3.14)

This last term can be calculated using the Ricatti equation in Lemma 5. We have

∫ 1

0
Tr

[(

−1Q
 − 2F ′)2

]
dx =

∫ 1

0
Tr

(

−1Q2
 + 4

[
F ′(F ′ − 
−1Q
)

])
dx

(3.15)

=
∫ 1

0
Tr

(
Q2+4

[
F ′(λ1−F2)

])
dx =

∫ 1

0
Tr

(
Q2

)
dx+4Tr

([
λ1F − 1

3
F3

]1

0

)

(3.16)

=
∫ 1

0
Tr

(
Q2

)
dx+4λ1Tr

(

−1(1)S1
(1)−S0

)
− 4

3
Tr

(

−1(1)S3

1
(1)−S3
0

)
.

(3.17)
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Inserting this into Eq. (3.13) finally results in

∞∑

i=2

κiλ
3/2
i ≤ 3

16

∫ 1

0
Tr

(
Q2−

)
dx + 3

4
λ1Tr (S1 − S0) − 1

4
Tr

(
S3

1 − S3
0

)
, (3.18)

which concludes the proof. �
Proof of Corollaries 1–3 The corollaries can all be proven using standard Aizenman–
Lieb arguments from [1]. We will only carry through the details for Corollary 3. Let

B(p, q) =
∫ 1

0
(1 − t)q−1 t p−1dt (3.19)

denote the Beta function and take γ ≥ 3/2. If the negative eigenvalues of L with
potential Q are written as {−λn(Q)}, then

3

4
B(γ − 3/2, 2)λγ−1/2

1 (Q)Tr (S0 − S1) + B(γ − 3/2, 5/2)
∞∑

i=2

κiλ
γ

i (Q) (3.20)

=
∫ ∞

0

[
3

4
Tr (S0 − S1) (λ1(Q) − t)+ +

∞∑

i=2

κi (λi (Q) − t)3/2+

]
tγ−5/2dt

(3.21)

=
∫ ∞

0

[
3

4
Tr (S0 − S1) λ1(Q + t) +

∞∑

i=2

κiλi (Q + t)3/2
]

tγ−5/2dt (3.22)

≤ L3/2,1

∫ ∞

0

∫ 1

0
Tr

[
(Q + t)2−

]
tγ−5/2dxdt (3.23)

= L3/2,1B(γ − 3/2, 3)
∫ ∞

0

∫ 1

0
Tr

(
Qγ+1/2

−
)
dx, (3.24)

which finishes the proof after noting that Lγ,1 = L3/2,1
B(γ−3/2,3)

B(γ−3/2,5/2) [12]. �
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