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ABSTRACT 

EARLY FOREST FIRE DETECTION USING TEXTURE, BLOB THRESHOLD AND MOTION 

ANALYSIS OF PRINCIPAL COMPONENTS  

Georges Moussa 

 

Forest fires constantly threaten ecological systems, infrastructure and human lives. The purpose 

behind this study is minimizing the devastating damage caused by forest fires. Since it is impossible to 

completely avoid their occurrences, it is essential to accomplish a fast and appropriate intervention to 

minimize their destructive consequences. The most traditional method for detecting forest fires is 

human based surveillance through lookout towers. However, this study presents a more modern 

technique. It utilizes land-based real-time multispectral video processing to identify and determine the 

possibility of fire occurring within the camera’s field of view. The temporal, spectral, and spatial 

signatures of the fire are exploited. The methods discussed include: (1) Range filtering followed by 

entropy filtering of the infrared (IR) video data, and (2) Principal Component Analysis of visible 

spectrum video data followed by motion analysis and adaptive intensity threshold. The two schemes 

presented are tailored to detect the fire core, and the smoke plume, respectively. 

Cooled Midwave Infrared (IR) camera is used to capture the heat distribution within the field of 

view. The fire core is then isolated using texture analysis techniques: first, range filtering applied on 

two consecutive IR frames, and then followed by entropy filtering of their absolute difference. 

Since smoke represents the earliest sign of fire, this study also explores multiple techniques for 

detecting smoke plumes in a given scene. The spatial and temporal variance of smoke plume is 

captured using temporal Principal Component Analysis, PCA. The results show that a smoke plume is 

readily segmented via PCA applied on the visible Blue band over 2 seconds sampled every 0.2 
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seconds. The smoke plume exists in the 2
nd

 principal component, and is finally identified, segmented, 

and isolated, using either motion analysis or adaptive intensity threshold. 

Experimental results, obtained in this study, show that the proposed system can detect smoke 

effectively at a distance of approximately 832 meters with a low false-alarm rate and short reaction 

time. Applied, such system would achieve early forest fire detection minimizing fire damage. 

  

Keywords: Image Processing, Principal Component Analysis, PCA, Principal Component, PC, 

Texture Analysis, Motion Analysis, Multispectral, Visible, Cooled Midwave Infrared, Smoke 

Signature, Gaussian Mixture Model. 
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Chapter 1 Introduction 

1.1   Motivation 

Forest fires have always been a natural source of destruction. They cause ecological and 

economical damage, along with risking humans’ lives. The development of an Early Forest Fire 

Detection System can reduce property damage, pollution, and it can also save lives. For timely 

emergency response, it is necessary to detect forest fires in the early stages of combustion [5]. The 

United States spends on average $900 million/year to fight forest fires [12]. These forest fires cause 

$733 million/year in property and crop damage [13]. Eliminating this cost can help reduce both the 

state and national budget deficits. 

1.2   Background 

Conventional point-based smoke sensors detect the presence of smoke particles by ionization or 

photometry [7]. Since smoke particles must be transported from the fire to the detector, such system 

fails to give an early fire warning in the outdoors and open areas; hence, it cannot be used to detect 

forest fires. Wildfire detection was traditionally based on human surveillance from lookout towers at 

an effective vantage point. Modern technology offers more advanced alternatives. Smoke detection 

using surveillance cameras has become more active. They are based on machine vision, image 

processing, and pattern recognition techniques. Developing these algorithms has been a hot topic in 

computer vision over the last decade. Video-based smoke detection systems provide advantages over 

conventional methods, such as fast response, non-contact, and lack of spatial limits [15]. 

Land-based infrared (IR) and/or visible cameras may be installed in a step-stare-mode 

configuration in potential fire-prone areas [2]. The sequences of video frames from each camera may 

then be digitally processed to determine if there is a fire within the cameras’ Field Of View (FOV). A 

group from the University of Nevada, Reno is blending old and new schemes by installing a remote 
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360-degree, solar powered camera that streams video to a public website, where thousands of 

volunteers can check on it, and manually raise an alarm [10]. Similarly, Integral Forest Fire Monitoring 

System, INPAS, is a Croatian land-based system relying on high resolution cameras. It requires 

constant human interaction and real-time meteorological data for processing [2]. 

Satellite solutions can work, but they have their own limitations. They can suffer from 

atmospheric conditions and coarse resolution in space and time, resulting in high false alarm rates. The 

existing land/satellite based detection systems rely on measurement and discrimination of fire plume 

directly from its infrared, and its visible reflectance imagery. These satellite based detection systems 

tend to be relatively expensive, and they are unable to perform 24/7 surveillance of the same 

geographical area. For example, the well-known MODIS algorithm, the subject of many current 

papers, implemented on the TERRA satellite and launched in 1999, has a spatial resolution of 250 m: 

hardly suitable for detecting small forest fires. According to a study on forest fires in Brazil, satellite 

systems are better suited to conservative fire detection algorithms that detect 30-40% of fires, 

accounting for 80-99% of burned biomass. Early detection for tactical response can only effectively be 

done from ground-based systems. In general, more domains and features, if combined judiciously, can 

add robustness to automatic fire detection system. Recent schemes tend to exploit multiple dimensions, 

i.e., temporal, spectral, and spatial, to detect forest fires. Unfortunately, these come at the cost of 

increased sensing system requirements. If an adequate system could be demonstrated to detect smoke 

or heat plume from a single camera, it would reduce cost and complexity, be more easily maintained, 

more light-weight, and more widely accessible [1]. 

Balance between early fire warning and minimum false alarm is essential in fire detection 

systems. In order to reach such balance, better “fire signatures” must be identified and implemented. 

“Fire signatures” are the local environmental conditions that change between non-fire and fire 

conditions. The goal is selecting conditions for sensing that appear as early as possible, and are present 
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at levels sufficiently above those at normal, non-fire conditions, to minimize false alarms [6]. These 

changes of conditions are called fire signatures, such as fire core, heat plume, and smoke plume. In 

video based systems, the fire core represents the source or flames of the fire; the heat plume represents 

the surrounding pixels of the fire core where the air is still hot and can be detected using IR sensors; 

lastly, smoke plume is relatively cold air bursting from the fire, and drifting with the wind [1]. 

 Video smoke detection still has great technical challenges, since its current performance is 

inferior to those of traditional particle-sampling based detectors, in terms of detection rate and false 

alarm rate, mainly due to the variability in smoke density, scene illumination, diverse background, 

interfering objects, and generally because smoke is difficult to model, and most of the common image 

processing methods do not characterize smoke well [7]. 

There are several existing video-based techniques to detect smoke; however, most of them are 

based on near distance smoke. Unfortunately, smoke at far distances exhibits different spatial and 

temporal characteristic than nearby smoke [8], [9]. This demands specific methods explicitly developed 

for smoke detection at far distances, rather than using existing nearby smoke detection methods. 

There are several approaches on automatic detection of forest fires in the literature. Some of the 

approaches are directed towards detection of the flames, using infrared and/or visible-range cameras, 

and some others aim at detecting the smoke [16] [17], [18] [19]. In order to reduce false alarms, 

multiple characteristic of fires are taken into consideration. In the visible spectrum, most existing 

wildfires smoke detection algorithms can be split in two categories: Visual and Dynamic smoke 

characteristic. Visual smoke characteristics represent its morphological and chromatic properties; while 

Dynamic smoke characteristic describe the behavior of propagation of smoke plumes. The most 

prominent visual smoke characteristic is its color; however, since smoke can have a very wide range of 

pixel characteristics, making it difficult to distinguish smoke from image background based solely on 

the color information. In conclusion, the color criterion alone is not enough to develop an accurate 
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smoke detection algorithm [25], [26]. On the other hand, Dynamic smoke characteristics consist of 

features that change over time, such as the shape, expansion, motion, orientation, and/or variations in 

its color. Other frequently used fire detection techniques include energy analysis [27] [28] [29], and 

flicker detection [7] [14] [30] [31] [32]. Both approaches also rely on the temporal behavior of smoke 

and flames. However, the flicker frequency of smoke varies with time; therefore, smoke-flicker 

detection technique results in high false alarms. Some of the techniques that use visible range cameras 

are summarized in Table 1 below. 

Table 1: Comparison between Different Video Based Smoke Detection Methods 

 Color Space 

Detection 

Shape 

Analysis 

Motion 

Detection 

Texture 

Analysis 

Smoke 

Behavior 

Analysis 

Contour 

Analysis 

Smoke 

Detection 

Fire 

Detection 

[20] No Yes Yes No No Yes Yes No 

[21] RGB/HSI Yes Yes No Yes No Yes No 

[22] RGB/YUV Yes Yes Yes Yes Yes Yes No 

[23] No Yes Yes Yes Yes Yes Yes No 

[24] No No Yes No Yes No Yes No 

Proposed 

Technique 

RGB No Yes Yes Yes No Yes Yes 

 

RGB: color space made from Red, Green, and Blue light that are added together in various 

combinations to reproduce a various colors. 

HSI: color space that consists of Hue, Saturation, and Intensity; it is mostly used in computer 

vision applications. 

YUV: color space that takes into account human perception. 

1.3   Proposed Early Forest Fire Detection 

A land-based real-time multispectral video processing is proposed to identify, and determine 

the possibility of fire occurring within a constant camera’s field of view. The temporal, spectral, and 

spatial signatures of the fire are exploited. The methods discussed include: (1) Range filtering followed 

by entropy filtering of the infrared video data, and (2) Temporal Principal Component Analysis of 



5 
 

visible spectrum video data, followed by motion analysis and adaptive intensity threshold. The two 

schemes presented are tailored to detect the fire core, and the smoke plume, respectively.  

The development of Early Forest Fire Detection System provides an automated first alert to 

forest fire, by digitally detecting smoke plume identified using its temporal and spatial signature, in 

order to reduce damage caused by forest fire. Figure 1 below illustrates the block diagram of the 

proposed technique. 

 

Figure 1: Proposed Early Forest Fire Detection System 

1.4   Thesis Outline 

The thesis is structured as follows: Chapter 2 focuses on the data acquisition and preprocessing stage 

of all the recorded videos. Chapter 3 introduces a method for detecting the fire core. Chapter 4 presents 

the preprocessing stage of the visible data. Chapter 5 illustrates Principal Component Analysis method 

to segment smoke plumes. Chapter 6 conveys two techniques for separating foreground from 

background on the second Principal Component. Chapter 7 offers a modification on Principal 

Component Analysis discussed in Chapter 5. Finally, Chapter 8 delivers final results and concludes the 

thesis by providing an overall summary of the results.  
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Chapter 2 Data Acquisition and Preprocessing 

2.1   Data Acquisition 

A controlled fire test was performed for the purpose of collecting temporal and multi-spectral 

smoke plumes and heat plumes data. Four different sensors were used: Visible, cooled mid-wave 

infrared, cooled long-wave infrared, and uncooled long-wave infrared. The sensors’ specifications are 

summarized in the table below. The fire test generated over 300 Gigabytes of raw video. The fuels 

were incrementally added to simulate a growing fire, starting with a small amount of smoke plume that 

progressively increased covering a larger volume within the sensor’s field of view. 

Table 2: Camera/Sensor Specifications 

Sensor Visible Cooled MWIR Cooled LWIR Uncooled LWIR 

Resolution 1086 x 873 640 x 480 640 x 480 640 x 480 

Bit Depth 8-bit 14-bit 14-bit 14-bit 

FPS 10 30 30 30 

 

2.2   Preprocessing 

Since the four sensors did not have the same specifications, it was necessary to preprocess all 

the frames before any multi-spectral analysis. The mismatch in the resolution between the sensors 

resulted in different field of view for each sensor. This issue was solved by using image registration of 

all sensors to the visible frame, with resolution of 1086 x 876 along with multiple spatial control points 

(recognizable features within the field of view). Also, only the visible sensor was time stamped, a 

similar method was used to temporally align all the sensors. For more information on the fire test 

location, distance between the fire and the sensors, fuels that were burned, data format, time alignment, 

and field of view matching, please see [1],[3],[4]. 

Note that only the visible and Cooled MWIR frames were used in this study. 
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Chapter 3 Fire Core Detection using Texture Analysis on Cooled 
Midwave IR Frames 

3.1   Introduction 

Cooled MidWave IR cameras measure heat intensities within the camera’s field of view, also 

known as thermal imaging. Such sensor can be used to identify hot spots and objects. For example, it 

can be used to detect fires; however, as seen in Figure 2 below, during the day, roof tops and buildings, 

can have the same range in pixel intensity values, due to pixel saturation. Therefore, intensity threshold 

and median averaging methods alone cannot isolate the fire location. Thus, this can cause high false 

fire detection rate. For this reason, instead of exclusively relying on pixel intensity values, it is 

important to investigate the image texture and its contents. Texture analysis can be helpful when 

objects in an image are more characterized by their texture than by intensity, and traditional threshold 

techniques cannot be as effective. Texture analysis uses the following methods: Range filtering, 

Standard Deviation filtering, and Entropy filtering. All these functions operate in a similar technique: 

they define a neighborhood around the pixel of interest, then calculate the statistics for that 

neighborhood, and finally use that value as the value of the pixel of interest in the output image. For 

pixels on the borders, these functions use symmetric padding. In symmetric padding, the values of 

padding pixels are a mirror reflection of the border pixels in the original image [1]. 

 
Figure 2: Original Midwave IR Image “Oats” Frame 2500 
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3.2   Range Filtering: 

Range filtering is a method used in texture segmentation of images. It locates the boundaries 

and edges of objects within the field of view. This is done by examining the range in intensity values 

within a desired kernel size, and replacing the middle pixel by range intensity value of the 

neighborhood pixels.  Within the desired kernel, the maximum and minimum intensity values are 

determined, and then the image’s pixel overlaying the middle pixel of the kernel is replaced by the 

difference between the maximum and minimum intensity values. Figure 3 shows the output image after 

range filtering of Figure 2. As shown below, this method revealed the edges and texture of the image 

contents. Additionally, it highlights the fire location and increases the size of the heat plume. The 

kernel dimension used in this example is 3x3. The following example shows how to determine the 

pixel values in a Range filtered output image. 

Table 3: Range Filtering Sample Calculation Method 
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Table 4: Range Filtering Sample Calculation Results 

Original Image Range Filtered Image 

[
 
 
 
 
 
         
            
             
         
         
             ]

 
 
 
 
 

 

[
 
 
 
 
 
                
                  
                  
                 
                  
                ]

 
 
 
 
 

 

  

 

 

 
Figure 3: Output Image of Range Filter Applied to the Original Midwave IR Image 
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3.3   Standard Deviation Filtering: 

Standard deviation filtering follows a similar approach to range filtering; however, the pixel of 

interest intensity value is replaced by the local standard deviation of the pixels within the kernel 

dimensions. This method also highlights edges and areas with high changes in intensity values. It 

indicates the degree of variability of pixel values in that region, whereas locations with high intensities 

can indicate fire locations, and a passing vehicle or flying bird, which can possibly misleadingly trigger 

a fire detection alarm. It is also noted that using this method, the heat plume burst forth from the fire 

flames. In Figure 4, the kernel used has dimensions of 3x3. The following example shows how to 

determine the pixel values in a Standard Deviation filtered output image. 

Table 5: Standard Deviation Filtering Sample Calculation Results 

Original Image Standard Deviation Filtered Image 

[
 
 
 
 
 
        
            
           
       
              
             ]

 
 
 
 
 

 

[
 
 
 
 
 
              
               
               
              
               
               ]
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Table 6: Standard Deviation Filtering Sample Calculation Method 

 

 

Figure 4: Output Image of Standard Deviation Filter Applied to the Original Midwave IR Image 
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3.4   Entropy Filtering: 

Entropy filtering operates similarly to the previous two methods, first by defining a 

kernel/neighborhood around the pixel of interest and calculating the entropy at that pixel. Entropy is a 

statistical measure of randomness that can be used to characterize the texture of the neighborhood 

pixels. It is defined as: 

 

                                                                       ∑      ( )                                          

 

Where h is the neighborhood’s histogram counts, also calculated as: 

 

                                            
                            

                         
                                             

 

Once calculated, the intensity value is then assigned to the output pixel of interest. Entropy filtering 

consists of measuring the randomness of intensity values within a neighborhood, and then outputs 

either a logical 1 for locations with randomness, or a logical 0 for location without randomness. 

Finally, it was noted that the pixel intensities around the fire plume location are considered random. 

Note that, in Figure 5, the kernel used has dimensions of 9x9 around the pixel of interest. The 

following example shows how to determine the pixel values in Entropy filtered output image. 
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Table 7: Entropy Filtering Sample Calculation Method 
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Table 8: Entropy Filtering Sample Calculation Results 

Original Image Entropy Filtered Image 
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Figure 5: Output Image of an Entropy Filter Applied to the Original Midwave IR Image 
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3.5   Absolute Difference: 

Absolute difference method is the simplest technique to detect variations between two frames 

temporally separated from each other. This method consists of calculating the absolute difference of 

pixels’ intensity values for two frames temporally separated. For the purpose of early forest fire 

detection, a Cooled Midwave IR sensor can be used to detect the thermal distribution across a site. 

Such sensor detects with a frequency of 30 frames per second; then, the absolute difference image is 

produced using two frames 1/30 of a second apart. Figure 6 shows an original Midwave IR on the left, 

and the absolute difference image on the right. The difference image reveals the fire location; however, 

it contains static noise across the entire image, and it exposes any moving object within the sensor’s 

field of view; this includes a moving vehicle, a flying bird, foliage, and any other moving objects. For 

example, let I1 and I2 be the images, of size m x n, at frames one and two, respectively. Where: 
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Then, the absolute difference image, Idiff is given by 

 

                                                        |     |  |     |                                            

      |[
       
   
       

]  [

       
   
       

]| 

      [
|       |  |       |

   
|       |  |       |

]  



16 
 

 
Figure 6: Original Midwave IR Image on the left, and Absolute Difference Image on the right 

3.6   Combination of Multiple Filter Types: 

After understanding how each filter affects the original image, different filtering combinations 

and orders were investigated. The best results were achieved using the following filter combination: 

First, applying range filtering to two temporally consecutive frames, then applying the absolute 

difference between the two output frames, and finally applying entropy filtering to the absolute 

difference. The final output results are shown in Figure 7 below. Without any threshold or adjusting 

any parameters, the final output exclusively reveals the fire core location. This method suppresses 

noise and moving objects, increasing the accuracy of the system’s performance. However, additional 

tests and experiments must be performed for different types of fire and test conditions, such as time, 

location, weather, rain, and wind. In summary, the filter combination is as shown below. 

Let I1 and I2 be two consecutive Midwave IR frames, then: 

                             *|             (  )               (  )|+             

 
Figure 7: Midwave IR Frame 2500 on the Left, and Output Image showing Fire Plume Location Frame 2500 on the Right 
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Chapter 4 Visible Preprocessing 

Visible sensors consist of three channels: Red, Green, and Blue. Each visible frame is 

composed of M x N x 3, a three dimensional matrix where M x N is the number of pixels within the 

camera’s field of view, while the third dimension of the matrix is designated for each visible band: 

Red, Green, and Blue. The combination of the three bands forms a colored image. The visible camera 

used in the fire test has a resolution of 1086 x 873 (M x N). 

 Figure 8 below shows a sample colored image recorded in the fire test. For the purpose of 

determining which band best reveals the smoke plumes and its characteristics, the three dimensional 

colored image was split into its individual bands. Then, a video of each band was generated, and it was 

determined visually that the Red band shows the least smoke plume activities, the Green band shows 

some smoke plume activities, and the Blue band shows the most smoke plume activities. For this 

reason, only the Blue band data was considered in this study. Figure 9 shows the Red, Green and Blue 

bands, respectively. 

 

Figure 8: RGB Visible “Capture 13” Frame 8003 
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Figure 9: Red, Green, and Blue Band of Frame 8003, Respectively 

Since the smoke plume covers relatively a small area of the camera’s field of view, the frames 

were cropped to a smaller dimension covering the region of interest. This region is the enclosed area of 

the red rectangle in Figure 10 below. It includes a high smoke plume activity area, a walking 

pedestrian region, and two regions with high vehicle activities. The main purpose for cropping the 

original frames is to reduce computation time and storage requirements, which in result facilitates 

faster prototyping. Figure 11 shows the cropped colored image, and Figure 12 is the Blue band of the 

cropped image which includes the characteristics of smoke plume and field of view used in the rest of 

this study. 

 
Figure 10: RGB Visible “Capture 13” Frame 8003 with Small FOV around BBQ Pit 

RGB Bands
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Figure 11: RGB Visible “Capture 13” Frame 8003 with Small FOV around BBQ Pit, 
Region 1: Smoke Plume 

Region 2: Vehicle Movements 
Region 3: Pedestrians 

 
Figure 12: Blue Band Visible “Capture 13” Frame 8003 with Small FOV around BBQ Pit 
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Chapter 5 Principal Component Analysis 

 

5.1   Principal Component Analysis (PCA) Introduction 

Principal Component Analysis is a mathematical method invented by Karl Pearson in 1901. It 

uses orthogonal transformation to reduce multi-dimensional data into lower dimensions presented in 

Principal Components (PC). This transformation converts the original data of possibly correlated 

variables into a set of values of linearly uncorrelated variables. PCA is a method of identifying patterns 

in data, and it reveals their similarities and differences. The greatest variance by any projection of the 

data corresponds to the first principal component, PC1; the 2nd greatest variance corresponds to PC2, 

and so on. Principal component transform is also known as Karhunen–Loève transform (KLT). PCA is 

a useful statistical technique that has found application in fields such as “Change Detection”, image 

and bandwidth compression, face recognition, and many other digital image processing purposes. It is 

a common technique for finding patterns in data of high dimension. In this paper Principal Component 

Analysis and Principal Component Transform are used as a change detection technique in order to 

segment the smoke plume within the Blue band of the visible frames. Since the movement is over time, 

this technique can be referred to as a multi-temporal PCA [33], [34], [35]. 

 

 

5.2   Principal Component Analysis Theory/Procedure 

Principal Component Analysis simply is a method that maps data in input space, X, to data in 

Principal Component space, Y, using Principal Component Transform H. This simple relation is 

shown below: 
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                                                                        (     )                                                     

Where X and Y are the input and output matrices of dimensions (M, N), and H is the Transform matrix 

of dimensions (N, N). Please note that in temporally separated data, N represents the number of 

instances included in each PCA computation. For example, if temporal PCA is being performed on 5 

instances of time at once, then N = 5. Additionally, M is the size of the input data of the 5 instances 

reshaped into a vector. M is described more in the next paragraph. The character 
T
 represents the 

transpose of the matrix. 

 

Principal Component Analysis consists of the following steps: 

 

1) Data collection (images): 

In image processing, PCA is used as a change detection technique between temporally separated 

frames, of dimensions (m, n), with the same field of view. Let F1 be the frame at time t = 1, and F2 

be the frame at time t = 2, and so on such that FN be the frame at time t = N. 

Where: 
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In this study, the original data are nine temporally separated Blue band of the visible frame (single 

band) shown in Figure 14. The visible sensor detects frames at a rate of 10 Hz; that is 10 frames per 

second; however, since smoke changes insignificantly at this rate, only every other frame is used for 

PCA. Since a total of 9 frames is used per PCA computation, these frames were as follows for the first 

computation: F1, F3, F5, F7, F9, F11, F13, F15, and F17; then the first frame, F1 is dropped from the left 

side, and an additional frame, F19, is added on the right end side for the second PCA computation; and 

so on. Therefore, each PCA computation requires           
     

         
             of real time 

data, while the update rate is only           
     

         
            . The required real time data 

and the update rate values were adjusted accordingly in order to optimize and produce the best results.  

This procedure is described in the following diagram shown in Figure 13 below. 

 

 

Figure 13: Frame Shifts per PCA Computation 
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Digital images consist of pixel locations and an intensity value at that location; pixel locations 

are identified by the intersection of rows and columns. However, spatial relation of pixels does not 

have any effect on PCA transformation matrix since the main purpose of PCA, in this case, is to extract 

temporal information (change detection). For this reason, and as mentioned earlier, the frames 

described above must first be reshaped into a vector with the correct dimensions. For each frame, the 

rows and columns are grouped together to form a vector of dimensions  (   )  (     ); but since 

9 frames are considered for each PCA computation, the reshaped vector forms the input data vector X 

of dimension (   )  (     ). The reshape procedure is described in the equations below. 
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Figure 14: 9 Consecutive Blue Band “Capture 13” Starting Frame 8003 used in One PCA Computation 

 

9 Consecutive Blue Band Frames
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2) Mean subtraction: 

The data set must have zero mean in all dimensions since the Principal Coefficients are sensitive to 

scale. Therefore, for PCA to work properly, the input data X must be normalized to its Z scores. Z 

score normalization delivers both zero means and unity variance to the input data X. This is done 

by subtracting the data by each column’s mean   , and then dividing by the column’s standard 

deviation   . Please note that C represents a specific column in X while R represents a specific row 

in X. This is done for each of the data dimensions. 
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3) Covariance matrix calculation: 

The covariance matrix of the data set is simply calculated as follows: 

 

                                             (     )  
 

 
              

                           

 

   (     )   (

       
   
       

) 

 

4) Eigenvectors and Eigenvalues of the covariance matrix calculation: 

The Eigenvectors, Vi, and the Eigenvalues, λi, of the Covariance matrix,     (     ) , are 

calculated. The Eigenvectors are arranged in a decreasing order of associated Eigenvalues.  This 

step is done to extract lines that characterize the data. Please note that the subscript i represents a 

specific Eigenvector, and i can be anywhere from [1, N]. 

 

                                                              ,               -                                               

 

                                                               (
    
   
    

)                                                  

 

Please note that the λ diagonal matrix above is the covariance matrix in Principal Component 

space. Additionally, the zero values in λ ensure that the dimensions in Principal Component space 

have zero correlation, or no correlation, with each other. 
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5) Choosing components and forming a feature vector: 

This step allows the possibility of both dimension reductions and data compression. The feature 

vector consists of the desired Eigenvectors (matrix of vectors). Excluding Eigenvectors from the 

feature vector will result in decreasing the dimensions of the final output data. This step is what 

makes a compression via PCA lossy. Small Eigenvalues can be excluded since they represent little 

information. However, in this study, all Eigenvectors are used to ensure that all the original 

information and input data are considered in PCA. Therefore, Principal Component Transform 

matrix consists of all the Eigenvectors calculated in step 4 above. 

 

                                                                                   (
  
 
  

)                                                   

 

 

6) Deriving the new data set: 

The new data set, also known as the Principal Components, is calculated as shown in the following 

equations. The mean subtracted data (step 2) is multiplied by the feature vector (step5).  
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Y, dimensions M x N, is the uncorrelated pixel vectors forming the Principal Components. There 

are N Principal Components in Y. In order to view each Principal Component, the order of pixels 

must be restored and reshaped to fit the original dimensions of m x n. Recall that       and in 

this study N = 9, so there are 9 Principal Components:                  .  
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The procedure described above is referred to as non-adaptive Principal Component Analysis. 

The Principal Components of the sample images presented in step 1 Figure 14 above are displayed 

along with their histograms in Figures 15 and 16, respectively. 
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Figure 15: Non Adaptive Principal Components, Before Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003, Displaying Only 
Positive Intensity Values; From Left to Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

Non Adaptive Principle Components
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Figure 16: Histogram for Non Adaptive Principal Components, Before Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003, 
Displaying Only Positive Intensity Values; From Left to Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

7) Scaling to Full Dynamic Range 

Scaling to full dynamic range is a form of intensity mapping. It enhances features in an image by 

adjusting its contrast. It is mostly used when pixels intensity values lay within a small range, and 

when the data spans both positive and negative values, in which case negative data cannot be 

plotted or displayed. In result, scaling to full dynamic range enhances the information content in an 

image making it more observable to human viewers. 

By examining the histograms shown in Figure 16 above, it is evident that the data is condensed to a 

small range of the data type; therefore, and in order to display better visual results for the Principal 
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Components, the data can be scaled across the entire dynamic range, that is 0 to 1 in type 

DOUBLE data, or 0 to 255 in type UINT8 data. In this study both types were used, so some 

histograms display a data range between 0 to 1, while others display a data range between 0 and 

255. 

In order to scale data Z to full dynamic range, first, one must determine the minimum and 

maximum values in the input data; let these two values be min and max, respectively. Then, one 

must also know the full dynamic range, and let that range be [a, b]. Finally, in order to linearly 

scale the input data from their minimum and maximum values to their full dynamic range [a, b], 

the following linear transformation equation must be used: 

                                                        
     

(        )
 (   )                                     
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The table below shows a sample calculation of a random 6x6 UINT8 image and the result of 

scaling the intensities to the full dynamic range [0 255], and its effect on the histogram. 

Table 9: Full Dynamic Range Scaling Example 

Original Image Scaled Image (Full Dynamic Range) 

[
 
 
 
 
 
               
                
                
              
               
               ]

 
 
 
 
 

 

[
 
 
 
 
 
               
                
                 
                 
                 
                 ]

 
 
 
 
 

 

  

  

Scaling the Principal Components’ Data to their full dynamic range produces clearer results.  As 

shown in Figure 17 below, the first Principal Component image, PC1, captures the common features in 

the nine temporally separated images shown in Figure 14 above, such as buildings, roads, towers, and 

any other stable objects. PC2 and few of the lower order Principal Components reveal features that 

changed over time, such as smoke plumes, moving vehicles, some foliage movements, and/or 

pedestrians. The higher order Principal Components such as 7
th

, 8
th

, and 9
th

 are responsible for minor 

information and can be neglected for the purpose of Change Detection. 
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By examining the lower order Principal Components, more specifically PC2 and PC3, it is evident that 

PCA effectively captures the growing smoke plume, which is a decent indicative of a fire, because of 

its unique temporal variation. Therefore this unique temporal variation can be considered to be the 

signature of the smoke plume. 

 

The following section of this study discusses another form of PCA, known as Adaptive PCA. It is 

studied for the purpose of identifying which method, Adaptive PCA or Non-Adaptive PCA, produces 

better results in highlighting and capturing the features that change temporally within the input frames. 

In other words, whichever PCA method better segments the smoke plume will be the candidate in the 

final design of an Early Forest Fire Detection System. 
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Figure 17: Non Adaptive Principal Components, After Full Dynamic Range Scaling,  Visible “Capture 13” Frame 8003; From Left to 
Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

Non Adaptive Principle Components
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Figure 18: Histogram for Non Adaptive Principal Components, After Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003; 
From Left to Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

 

 

 

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250

0

5000

10000

0 50 100 150 200 250

0

5000

10000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

0

2000

4000

6000

8000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

0

2000

4000

6000

8000

10000

0 50 100 150 200 250



36 
 

5.3   Adaptive Principal Component Analysis (PCA) 

Non-Adaptive or so called normal Principal Component Analysis is the procedure described in the 

section above. PCA input data are the image frames with the full dimensions. Each image is reshaped 

into the correct format as described in the PCA procedure above. However, in Adaptive PCA, the 

original frames are broken into smaller blocks, or sub-images, and each sub-block becomes the input 

data of a normal PCA procedure. The size of sub-blocks can be adjusted depending on the field of view 

and the focal depth of the camera. In this study, the sub-blocks have a size of 150 x 150 pixels, while 

the full frame size used is 650 x 650 pixels. In this case, the case where the size of the full frame is not 

an integer multiple of the sub-block size, the border pixels are still treated with a similar fashion 

however their dimensions are different than the desired sub-block dimensions. The following diagram 

represents the described sub-blocks procedure. 

 

Figure 19: Adaptive PCA Sub-Block Procedure  
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Figure 20: Adaptive Principal Components, Before Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003, Displaying Only 

Positive Intensity Values; From Left to Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

Adaptive Principle Components
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Figure 21: Histogram for Adaptive Principal Components, Before Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003, 

Displaying Only Positive Intensity Values; From Left to Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

Again, the Principal Components’ histograms produced from the Adaptive PCA procedure show that 

the data does not cover the entire dynamic range. Therefore, Principal Components’ data must undergo 

the same scaling procedure described in the Non-Adaptive PCA case. The final results of Adaptive 

Principal Components and their histograms are presented in Figures 22 and 23, respectively. 
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Figure 22: Adaptive Principal Components, After Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003; From Left to Right, 
and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 

Adaptive Principle Components
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Figure 23: Histogram for Adaptive Principal Components, After Full Dynamic Range Scaling, Visible “Capture 13” Frame 8003; From 
Left to Right, and Top to Bottom, PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8, and PC9 
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5.4   Comparing Adaptive to Non-Adaptive Principal Component (PC2) 

 

 
Figure 24: Non Adaptive PC2 Frame 8000 

 
Figure 25: Adaptive PC2 Frame 8000 

As shown in Figures 24 and 25 above, both adaptive and non-adaptive PCA methods segment 

and capture the temporal features within the original frames, including: the smoke plume, a passing 

vehicle, a pedestrian, and the border lines of initially thought to be stable objects, such as buildings, 

poles, and shrubbery borders. The reason behind the existence of these border lines in PC2 is due to 

Jitter. Jitter is a source of noise formed from physical vibrations of the sensing device, which can be 

caused by wind. Since the sensing device is going through some minimal vibrations, the sensor’s field 

of view in return vibrates, and therefore the current recorded frame’s field of view is slightly a shifted 

version of the previous frame’s field of view. For this reason PC2 captures the edges of non-moving 

objects. Please note that this effect can be minimized by adding an additional procedure in the 

preprocessing stage. In order to reduce the effect of Jitter, the original frames must first go through a 

video stabilizer process before applying Principal Component Analysis. 

By examining the differences in PC2 obtained from the two PCA methods, it is evident that the 

adaptive approach shows more details, in the second Principal Component PC2, than the non-adaptive 
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approach. Hence, the brighter vehicle shape and the darker smoke plume shape in the adaptive PC2. 

On the down side, in the adaptive case, since each Principal Component’s sub-block is individually 

scaled to its full dynamic range, which in return causes the edges of the sub-blocks to show up making 

it more difficult to identify and isolate the smoke signals. 

In conclusion, Principal Component Analysis works well as change/movement detection 

technique. But instead of examining all the Principal Components (9 PCs in this study), we can just 

examine the 2
nd

 Principal Component, PC2, since it will always capture the most temporal change. 

Doing so will decrease the required computational time, and it results in a quicker smoke detection.  As 

shown above, two PCA techniques were experimented: Adaptive and Non-Adaptive PCA. Adaptive 

PCA introduced the blocking edge effect, which is an additional source of image pollution and noise, 

since it makes it more difficult to extract the smoke plume. For this reason, in the rest of this study, 

only Non-Adaptive PCA method, more specifically Non-Adaptive PC2, is considered the better 

candidate for change detection and segmenting a larger smoke plume, compared to a simple absolute 

difference method, shown in Figure 26 below. The following chapter introduces two methods that are 

used to identify smoke plumes in PC2 rather than all the other non-smoke signals present in PC2 such 

as vehicles, pedestrians and building edges due to camera jitter. 

 

Figure 26: Original Visible Frame, Absolute Difference of Two Consecutive Visible Frames, and Scaled PC2 of Blue Band, from Left to 
Right, Respectively 
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As stated earlier in this study, Blue band showed the most smoke activity compared to both Red 

and Green bands. This conclusion was based on a simple visual examination and comparison of a 

video showing all three bands, Red, Green, and Blue bands, side by side, respectively. In order to 

confirm this conclusion, a more reliable method was considered. Instead of simply examining the three 

visible bands in their original form, temporal principal component analysis was performed on each 

band simultaneously and side by side for the purpose of identifying which band best reveals the smoke 

plume. Figures 27 and 28 below show the temporal 2
nd

 Principal Component, PC2, of each visible 

band at two distinct instances of time. By examining these results, it is more evident that the Blue band 

shows the most smoke activity and can be a reliable band to segment smoke plumes.  

 

Figure 27: Temporal PC2 of Red, Green, and Blue Bands, From Left to Right, Respectively, at some instant of time 

 

Figure 28: Temporal PC2 of Red, Green, and Blue Bands, From Left to Right, Respectively, at another instant of time 
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Chapter 6 Segmenting Foreground and Background  

6.1   Introduction 

The previous chapter presented a method to amplify the smoke signal that is 

captured using a visible camera. The amplification technique used is temporal Princip al 

Component Analysis; it was performed on a single visible band: Blue band. The results 

showed that the second Principal Component, PC2, captured an amplified smoke signal 

compared to what was originally captured in the visible domain.  However, PCA cannot 

be used alone to determine if smoke is detected and therefore raise the flag. For this 

reason, more analysis must be performed in order to find a true indicator of smoke, or so 

called smoke signature.  

This chapter will discuss two methods for separating foreground from background 

in consecutive (temporal) PC2’s obtained in the previous chapter. The smoke signal and 

any moving objects will determine the foreground of the 2
nd

 Principal Component, while 

most of the other pixels will form the background. The first technique to do so is by 

representing each pixel as Gaussian Mixture Models; while the second technique is 

simply threshold and median filtering.  

6.2   Tracking Objects Using Gaussian Mixture Models 

6.2.1 Introduction 

There are numerous approaches used for real-time moving object detection, such as background 

subtraction, frame difference and optical flow. However, background subtraction is the most 

commonly used technique. It is based on calculating a reference image as the background. The 

Gaussian Mixture Model proposed in [36] is an effective technique in modeling a background scene 
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with repetitive motions. Modeling the background as Gaussian mixtures is more coherent and stable 

algorithm compared to others. Its principle is to model the values of a particular pixel as a mixture of 

Gaussians, each Gaussian component in the mixture has a weight. During the algorithm process, both 

the mean value and covariance of the Gaussian distributions get updated for each pixel which causes it 

to adapt to new inputs [37].  Adaptive GMM cannot overcome sudden illumination changes in the 

scene since the algorithm cannot update the background in time; however, this technique has become a 

successful solution for motion detection in the outdoors, since it incorporates illumination with slow 

variations as they occur during the day [37].  

This analysis is performed on the assumption that the scene under observation is recorded using 

a fixed camera producing a fixed field of view without any jitter. The goal is to detect moving objects 

in the video scene. Therefore, if this method is to be applied on the original visible video sequence, the 

result will be a detection of anything moving within the camera’s field of view, including walking 

pedestrians, moving vehicles, smoke plumes, and other moving objects. However, since this technique 

is being applied on the second Principal Component, PC2, ideally, only smoke plumes will be detected 

rather than all the other objects stated above. The reason behind this analogy is the fact that when 

Principal Component Analysis is performed, moving cars might be present in at most two or three 

frames per PCA computation, depending on the cars’ moving speed. Hence, the cars will show up as 

flashing objects in few of PC2 frames, but they do not continuously and temporally move between 

consecutive frames. For this reason, when watching PC2 temporal frames sequence, cars will show up 

randomly in some frame, then disappear for the following few frames, and finally reappear in another 

location. Since the cars aren’t continuously present in consecutive frames, Gaussian Mixture Model 

tracking technique won’t detect cars. On the other hand, since smoke plumes are continuously moving 

throughout the video sequence, PC2 will as a result capture a growing and temporally moving smoke 

plume, making it feasible to be detected and tracked using Gaussian Mixture Model technique. 
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6.2.2 Theory 

The probability that a certain pixel in a specific frame has a value It at time t is given by the following 

relation: 

                                  (  )   ∑       (            
 )                                       

 

    

 

Where  (            
 ) is the Gaussian probability density function described by Equation 21 below. 
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(    )

 

                                           

K represents the number of available Gaussian distributions. This value is limited by the available 

memory and the computational power. But in this study 3 ≤ K ≤ 5 is used. 

      represents the weight parameter of the k
th

 Gaussian component in the mixture at time t. 

      is the mean of the k
th

 Gaussian component in the mixture in a certain frame at time t. 

    
  is the covariance of the k

th
 Gaussian component in the mixture in a certain frame at time t. 

 

Figure 29: Pixels Intensities are modeled by a Mixture of Gaussian Distributions 
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In real-time computation, all new pixels intensity values, It, are individually checked against the K 

existing Gaussian distributions, and a match is determined for every pixel that has an intensity value 

within 2.5 standard deviation of any of the available Gaussian distributions. 

If no match is found for the current pixel value, the mean value,      , of the least probable distribution 

is updated and replaced by the current pixel value. Additionally, this new Gaussian distribution will 

initially have high variance, and low prior weight     . The prior weights,      , of the K Gaussian 

distributions are updated at time t according to the following relation: 

                                        (   )     (   )                                               

Where   is the learning rate, and 

     {
                                            
                                         

                                                          

Then      is renormalized, and finally, the mean and standard deviation of the unmatched distributions 

remain unchanged, while the respective values for the matching distribution are updated according to 

the following relations: 

                                          (    )                                                          
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The Gaussian distributions are ordered based on the ratio of 
 
 ⁄ . The first N distributions accounting 

for a proportion T of the observed data are defined as background, N. 
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6.2.3 Results 

As expected, Gaussian Mixture Model separated foreground from background in PC2. It 

was able to extract and capture most of the smoke plume that was originally segmented in PC2. 

On the down side, it is noted that the extracted smoke plume is smaller than the segmented area 

in PC2. More precisely, Gaussian Mixture Model was able to capture big smoke plumes as they 

were bursting from the fire source and drifting with the air; however, as smoke plumes got 

farther and farther from the fire source, Gaussian Mixture Model technique failed to capture the 

smaller smoke plumes. This behavior can be seen in Figures 30 and 31 below. In Figure 30, 

human eyes can perceive some of the smoke plumes that drifted from the fire location, towards 

the top left of the image, but GMM was not able to distinguish and capture them as part of the 

foreground. Additionally, there are some minor Salt and Pepper type noise introduced in GMM 

background and foreground separation, but can easily be removed using a simple 10x10 median 

filter. 

Another issue that was noticed is the fact that when there is no obvious temporal 

movement between two consecutive PC2 frames, meaning smoke plume is stationary, GMM 

fails to extract the entire smoke plume. Additionally, when PC2 background changes intensity 

between two consecutive frames, GMM does not overcome this issue since its algorithm cannot 

update the background in time, due to sudden illumination variations as described earlier in this 

chapter. This behavior is noticeable in Figures 32 through 35 below. Figures 32 and 34 present a 

case where the background of PC2 varies in intensity between two consecutive frames; as seen 

below, Figure 34 has a slightly brighter background than Figure 32. In result, GMM algorithm 

cannot update its background in time, and the extracted foreground in Figure 35 does not 

represent the smoke plume. 
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Figure 30: Temporal Blue Band PC2 Frame 7911 “Oats1” 

 
Figure 31: Mask Produced Using GMM Frame 7911 “Oats1”  

 
Figure 32: Temporal Blue Band PC2 Frame 7831 “Oats1” 

 
Figure 33: Mask Produced Using GMM Frame 7831 “Oats1” 

 
Figure 34: Temporal Blue Band PC2 Frame 7832 “Oats1” 

 
Figure 35: Mask Produced Using GMM Frame 7832 “Oats1” 
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6.3   Threshold and Median Filtering 

6.3.1 Introduction 

In the area of computer vision, blob detection refers to graphic modules that are designed 

to detect points and/or regions in the image that differ in properties, like brightness or color, 

compared to the surrounding. There are two main classes of blob detectors: (1) differential 

methods based on derivative expressions, and (2) methods based on local extrema in the intensity 

landscape. This section will only discuss second class methods, such as intensity threshold. 

6.3.2 Method 

Figure 36 displays a sample temporal blue band PC2 showing the smoke plume, a 

passing vehicle, and the background. The goal is to extract the entire smoke plume in this image. 

MATLAB’s Contrast/Threshold tool allows the option of manually adjusting the histogram 

window of an image. Figure 37 shows the histogram with full dynamic range of Figure 36.  

 
Figure 36: Temporal Blue Band PC2 Frame 

7890 “Oats1” 

 
Figure 37: Histogram of the above Image using MATLAB 

Contrast/Threshold Tool 
As seen above, the smoke plume is made out of darker pixels and brighter pixels 

compared to the background of the image. In order to extract the entire smoke plume, two 

threshold cases must occur: one that extracts the dark pixels, and another that extracts the bright 

pixels. The following figures display the results along with the respective threshold window.  
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Figure 38: Segmenting the Dark Smoke 

Plume Pixels 

 
Figure 39: Histogram Showing the Threshold Window that Segments the 

Dark Smoke Plume Pixels 

 
Figure 40: Segmenting the Bright Smoke 

Plume Pixels 

 
Figure 41: Histogram Showing the Threshold Window that Segments the 

Bright Smoke Plume Pixels 
 

The next step is to combine both extracted plumes into one single image. But since the polarity 

of the two extracted plumes are opposite of each other, the polarity of one of them must first be 

inverted. This was done on Figure 38 and is displayed in Figure 42 below. After doing so, both 

extracted smoke plumes can be added together in order to form a single image, shown in Figure 

43. 
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Figure 42: Invert the Polarity of Figure 38 

 

 
Figure 43: Add Both Windows of the Segmented Smoke 

Plume to Produce the Full Smoke Plume (Figure42+Figure40) 

6.3.3 Results 

For the image displayed in Figure 36 above, the smoke plume was extracted using a 

simple threshold technique. However, when the same exact threshold windows were used 

throughout the entire frame sequence, the results weren’t adequate. Figure 44 shows a sample 

frame using a constant threshold window obtained in the previous section. The green shapes 

represent the mask obtained using constant threshold level, and then superimposed on both PC2 

and RGB images. Therefore, using constant threshold level does not produce adequate results of 

extracting the smoke plume. 

 
Figure 44: Superimposed Mask using Threshold over both Respective PC2 and RGB Image 
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Solving this issue can be done by finding a method that dynamically adjusts the threshold 

window, and therefore adapts to every frame. It was noted that in each PC2 frame, the highest 

count in the histogram belongs to the pixels forming the background of the image. So in order to 

adaptively adjust the threshold window, another algorithm was written. The algorithm computes 

the intensity value, IT of the highest histogram counts in each frame; then, it assigns a window at 

±10 around IT. Therefore the threshold window per frame follows the following relation: 

                                                                                                                                    

Where IF represents all of the pixels intensities within the specified window. 

Finally, a size 10x10 median filter is applied on the image in order to remove salt and pepper 

noise. Figure 45 displays a sample result of the adaptive threshold technique. After running this 

algorithm throughout the entire frame sequence, the results are similar to the case displayed in 

Figure 45. Most of the smoke plume is correctly extracted in each frame, but there are still some 

missing blobs, for example near the fire source in Figure 45 below. Additionally, the cars are 

also extracted along with other minor small blobs. 

The instantaneous total segmented area per frame is measured and plotted for the entire 

video. In order to smooth out the curve, a 20 frames moving average was implemented and 

applied on the instantaneous curve. These results are displayed in Figure 46 below. 
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Figure 45: Superimposed Mask using Adaptive Threshold over both Respective PC2 and RGB Image 

 

 

  
Figure 46: On the Left, Instantaneous Total Segmented Area per frame using Adaptive Threshold Technique; On the Right, 20 

Frames Moving Average of Total Segmented Area per Frame, using Adaptive Threshold Technique 
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Chapter 7 Principal Component Analysis Modification  

7.1   Introduction 

In the previous chapter, it was difficult to completely isolate and extract the smoke plume 

in all of the video frames. This issue was determined to be caused by the sudden change in 

background intensity values between consecutive PC2 frames. Figures 47 and 48 illustrate two 

consecutive PC2 frames and their respective histograms. The background in Figure 47 has a 

brighter intensity color compared to the one in Figure 48. This seen assumption is confirmed by 

analyzing the histogram of each of the two images. The first histogram, shown in Figure 47, 

spans the range between 130 and 200 on a [0 255] scale, while the second histogram, shown in 

Figure 48 spans the range between 60 and 150 on the same scale as the previous case. This 

behavior raised the question: why is the background changing in PC2 and how can it be fixed? 

For this reason, a further investigation was performed on how PC2 is being generated.  

Another issue is the appearance of building edges, tree lines, and other non-moving 

objects in PC2. Theoretically, none of these constant objects should appear in PC2; however, 

since the camera went through small vibrations due to wind, jitter was introduced to the video 

footage. This behavior was explained earlier in this study, and a solution was suggested by 

applying a video stabilizer before computing Principal Component Analysis. But as an 

alternative, one can just blur the original captured images, and then apply Principal Component 

Analysis. 

Finally, earlier in this study, it was proven that the Blue band captures the most smoke 

signal if used exclusively in temporal Principal Component Analysis. But, this decision was 

made before considering spectral PCA. Therefore, in this chapter a spectral PCA is performed to 

explore the possibility of segmenting a better and larger smoke signal. 
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 In summary, this chapter analyzes three issues: (1) the blurring process of the original 

images, (2) the modification process of Principal Component Analysis to eliminate sudden 

intensity changes of PC2 background, and (3) reconsider the exclusive use of the Blue band. 

   

 
Figure 47: PC2 Frame 7888 “Oats1” on the left, and its Histogram on the Right 

 

 
Figure 48: PC2 Frame 7890 “Oats1” on the left, and its Histogram on the Right 

 

 

0

5000

10000

15000

0 50 100 150 200 250

0

5000

10000

15000

0 50 100 150 200 250



57 
 

7.2   Blur Theory 

7.2.1 Gaussian Blur Mask 

Gaussian filter is a windowed filter of linear class. It operates in a similar fashion to range 

filtering, entropy filtering, and standard deviation filtering discussed in Chapter 3 of this study. It 

assigns a 2D neighborhood, and then calculates the pixel of interest intensity value according to 

the Gaussian distribution. Two dimensional Gaussian distribution is given by the following 

expression: 

                                                  (   )   
 

    
 
 
     

                                               

Where   and   are the pixel location, and   is the standard deviation. 

 
Figure 49: Gaussian Distribution Kernel Standard Deviation 1.0 

 
Figure 50: Blue Band Frame  7888 “Capture 13” “Oats1” 

 
Figure 51: Gaussian Blur applied to Blue Band Frame  7888 

“Capture 13” “Oats1” 
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7.2.2 Median Filter Applied to Gaussian Blurred Image 

In order to further blur the image, the same median filter, described in section 6.3.2 of this 

thesis was used. In this case, a size 10x10 median filter was applied on the Gaussian blurred 

image, shown in Figure 51. Finally, the output blurred image is presented in Figure 53 below. 

Since the image is blurred, the jitter that is introduced due to camera vibrations should be less 

than before; however, and on the down side, the smoke plume is also blurred, and it will be 

difficult to get its exact shape, especially on its borders and edges. Because the shape of smoke is 

not considered in this study and since the size of the smoke plume was not affected, this 

procedure can be applied. 

 

 
Figure 52: Blue Band Frame  7888 “Capture 13” “Oats1” 

 
Figure 53: Final Blurred Blue Band Frame 7888 “Capture 13” 

“Oats1” 
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7.3   Modification of PC Image to Enhance Smoke Plume Detection  

After a full investigation of each step in the process of PCA described in Chapter 5 of this 

study, it was determined that the step that introduced the background intensity variations issue 

between consecutive PC2 frames is caused by the scaling to full dynamic range, described in step 

7 of section 5.2 of this study. 

PC2 captures most of the pixels that change within the original 9 frames that are 

considered in each PCA computation. However, some pixels that varied are represented as a 

positive value, and others are represented as negative values. This differentiation between the 

two types of changes affected the minimum value existent in PC2. Recall, that scaling to full 

dynamic range requires knowing both minimum and maximum values in PC2. These values are 

then linearly mapped to the full dynamic range [0 255]. The minimum value in PC2 is mapped to 

0; the maximum value in PC2 is mapped to 255; and the other pixel intensities are linearly 

mapped accordingly in between [0 255]. Since the minimum value per PC2 frame is affected by 

the negative change, the background intensity shifts accordingly, causing the background to look 

like it is flashing between consecutive frames. This issue can be solved by calculating the 

absolute change, instead of having both positive and negative changes. This can be done by 

taking the absolute value of all PC2 pixels before mapping them to the full dynamic range. 

Again, the same temporal PCA procedure is applied except this time the absolute value of the 

Principal Components is calculated before scaling to the full dynamic range. 
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Figure 54: Absolute PC2 Blue  Band Frame 7908 “Capture 13” 

 
Figure 55: Histogram for the Image displayed on the left 

 

 

The figure above is an example of what PC2 looks like after applying the modification on 

PCA. It was noted that throughout the entire frames’ sequence, the background intensity values 

remained constant and no obvious flashing occurred. Note that no blurring was performed on the 

input frames before PCA in the case described above, and that’s why PC2 has the random salt 

and pepper noise along with the tree lines and buildings. 

The following images below display PC2 obtained using the modified version of PCA 

applied on blurred original images. In the top row, the original frames were first blurred using a 

Gaussian Blur filter with unity standard deviation, then blurred using a median filter of size 3x3. 

Similarly in the second row, but the only alteration is a bigger size median filter. The median 

filter used is of size 10x10. 

In both cases, the background remains constant. But it is noted that as the size of the 

median filter is increased from 3x3 to 10x10, the smoke plume signal becomes larger and more 

separable from the background. This adjustment should ease the separation between the 

foreground and background step, in order to extract the smoke plume from the rest of the image. 
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Therefore, absolute Blue band PC2 obtained using the 10x10 median filtered original images 

creates the best candidate for segmenting the largest and clearest smoke plume. For this reason, 

this method will be considered in the final Early Forest Fire System design. 

 

 
Figure 56: Absolute PC2 Blue Band Median Blur size 3x3 

Frame 7980 

 
Figure 57: Histogram For the Image displayed on the left 

 
Figure 58: Absolute PC2 Blue Band Median Blur size 10x10 

Frame 7980 

 
Figure 59: Histogram For the Image displayed on the left 
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7.4   Spectral-Temporal Principal Component Analysis 

 

Up until now, only temporal analysis on single band is considered.  Earlier in this study, it 

was proven that the Blue band captures the most smoke signal if used exclusively in temporal 

Principal Component Analysis. This section considers spectral-temporal PCA applied on RGB 

bands. 

 

The only difference between the single band temporal PCA applied earlier and this 

spectral-temporal PCA is the original input images. Previously, the nine images in each PCA 

computation were nine Blue band frames, at nine instances of time. In this section, nine images 

are still deliberated, but only three instances of time were considered; each instance offers three 

bands: Red, Green, and Blue. Therefore, when combined, they form nine original frames as 

follow: IR1, IG1, IB1, IR2, IG2, IB2, IR3, IG3, and IB3. Where I1= (IR1; IG1; IB1) represents an RGB 

image at instance 1. 

 

Figure 60 displays a case of all nine Principal Components produced using spectral-

temporal PCA described above. It is noted that the smoke plume is mostly segmented in the 4
th

 

Principal Component, PC4, but also the 5
th

 Principal Component, PC5, segments smaller smoke 

signal. The results do not appear to be better than the single Blue band temporal PCA applied 

earlier. Even if they were slightly better, considering all three bands triples the computational 

time. Again, the decision of solely using the single Blue band in this analysis holds. 
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Figure 60: Spectral-Temporal Principal Component Analysis, Using RGB; From Left to Right, and Top to Bottom, PC1, PC2, 

PC3, PC4, PC5, PC6, PC7, PC8, and PC9 
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Chapter 8 Conclusion 

8.1   Final Results for Extracting Smoke Plumes 

 

In the previous chapter, better segmentation of smoke plume was obtained using the 

modified PCA technique, along with solving the background flashing and intensity varying issue. 

The following two sections present the results of applying the two techniques described in 

Chapter 6 for extracting the smoke plume from PC2; however, this time the two techniques will 

be applied on the modified version of PC2, also referred to as Absolute Blurred PC2. 

 

8.1.1 Gaussian Mixture Model Results  

Applying the same Gaussian Mixture Model algorithm, used earlier in this study, to the 

Absolute Blurred PC2 frame sequence produces an improved version of the results obtained 

earlier. Larger smoke plume is extracted compared to the earlier method, throughout the video. 

However, the Absolute Blurred PC2 continues showing a larger smoke plume than the one being 

extracted via Gaussian Mixture Model. Additionally, it was also noted that the background 

flashing issue was solved. Therefore, throughout the entire video, the algorithm was able to 

update the background in time, since there is no sudden change in the illumination. 

Additionally, it is noted that the pixels above the fire source are not get detected. The 

explanation for this behavior is the fact that Gaussian Mixture Model detects pixels of moving 

objects only; however, the pixels at the fire source are always present in the same location, with 

the same intensity, which makes them look stationary. For this reason, these pixels are not 

detected using Gaussian Mixture Model method. 
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Figure 61: Absolute Blue Band PC2 of Frame 7901 “Oats1” 

 
Figure 62: GMM Mask of the Image on the Left 

 
Figure 63: Absolute Blue Band PC2 of Frame 7977 “Oats1” 

 
Figure 64: GMM Mask of the Image on the Left 
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8.1.2 Adaptive Threshold and Median Filtering Results 

Similarly, applying the same adaptive threshold technique, described in section 6.3 of this 

study, produces results similar to the ones displayed in Figures 69 and 71. The smoke plume is 

fully extracted using this technique; however, other pixels are captured as well, such as the tree 

line, moving cars, building edges, and other random pixels. Obtaining a better and cleaner image 

is possible by applying a 10x10 median filter. Figures 70 and 72 display the final smoke plume 

mask. 

 
Figure 65: Adaptive Threshold of Figure 61 

 
Figure 66: 10x10 Median Filter of Image on the Left 

 
Figure 67: Adaptive Threshold of Figure 63 

 
Figure 68: 10x10 Median Filter of Image on the Left 

 



67 
 

Then superimposing the final Mask onto the respective Absolute Blurred PC2 and the respective 

RGB colored image produces the following images. 

 
Figure 69: Mask in Figure 66 Superimposed onto Figure 61 

 
Figure 70: Mask in Figure 66 Superimposed onto the 

respective RGB Captured Image 
Running this algorithm throughout the entire video produced promising results; however, 

it had some minor anomalies. In order to reduce the false alarm rate, the total segmented area in 

green is recorded and plotted per frame. Then, a 20 frames moving average filter was 

implemented in order to smooth the curve and reduce the effects of the minor glitches. Finally, 

the alarm sensitivity can be controlled by setting a threshold line. If the moving average total 

segmented blob area crosses the threshold, an alarm is set, denoting the presence of fire. On one 

hand, if a car is segmented, it is most likely going to be present in few frames at most, and 

therefore its presence won’t have major effects, since it will be averaged with the previous 20 

frames. On the other hand, if smoke is increasing throughout the frame sequence, the area of the 

segmented blob will add up and increase until it crosses the threshold line, before triggering the 

alarm. The following plot displays the final results throughout the entire frame sequence. This 

plot proves that this improved method detects larger smoke plume than the earlier technique. In 

this case, the moving average plot reaches a higher maximum value than the one in Figure 46. 
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Figure 71: Total Area of Segmented Blobs using Adaptive Threshold and Median Filtering of Absolute Temporal Blurred PC2 

per Frame 

8.2   Future Work 

The two schemes presented were tailored to detect the fire core, and the smoke, respectively. 

Collectively they represent a promising land-based early forest fire detection system that can help 

reduce the fire damage significantly.  The proposed system is still in the testing and development 

stages. Ongoing and future work include: (1) varying fire fuel type and intensity, (2) 

experimenting with other types of IR cameras, (3) varying the distance from the camera to the fire 

site, (4) varying the composition of the features which form the fire background in the field of 

view, (5) performing test at night time, (6) performance optimization in terms of higher probability 

of detection and a lower false alarm rate, (7) assessing computation complexity and 

implementation cost [1].  
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Appendix A: MATLAB Functions and Scripts 

%% Matlab Function ----------------------------------------------------------

% 
% Function : scaledata.m 
% Author : Georges Moussa 
% Date : 07/02/12 

 
function dataout = scaledata(datain,minval,maxval) 
% 
% function to linearly scale the values of a matrix between a user specified 

% minimum and a user specified maximum 

  
dataout = datain - min(datain(:)); 
dataout = (dataout/range(dataout(:)))*(maxval-minval); 
dataout = dataout + minval; 

  
end 

 

 

%% Matlab Function ----------------------------------------------------------

% 
% Function : PCA_1.m 
% Author : Georges Moussa 
% Date : 07/05/12 

  
function [ PC ] = PCA_1( input_images ) 
%PCA_1 performs principal component analysis on input images and outputs 
%the principal components (PC). please determine the desired PC output 
%   input_images : is a vector consisting of all Single Band input images 
%                  for principal component analysis  

  
% Read in 9 consecutive Frames but only Extract Blue Color Band 
I_1 = input_images(:,:,1); 
I_2 = input_images(:,:,2); 
I_3 = input_images(:,:,3); 
I_4 = input_images(:,:,4); 
I_5 = input_images(:,:,5); 
I_6 = input_images(:,:,6); 
I_7 = input_images(:,:,7); 
I_8 = input_images(:,:,8); 
I_9 = input_images(:,:,9); 

  
% Reshape to the correct format 
[M N K] = size(input_images); 
I = zeros(M,N,K); 
I(:,:,1)=I_1; 
I(:,:,2)=I_2; 
I(:,:,3)=I_3; 
I(:,:,4)=I_4; 
I(:,:,5)=I_5; 
I(:,:,6)=I_6; 
I(:,:,7)=I_7; 
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I(:,:,8)=I_8; 
I(:,:,9)=I_9; 

  
% Reshape into vector 
I_vec  = reshape(I,M*N,K); 

  
% Get the transformation matrix 
[fprincompT fPCT ev] = fPCA(I_vec); 

  
% Transformation matrix 
T = fPCT; 

  
% Calculate the Principal Components 
PCvec = PCT(I_vec,T); 

  
% Reshape back to an image size and shape 
PC = reshape(PCvec,M,N,K); 

  
% Individual Principal Components 
PC1 = (PC(:,:,1)); 
PC2 = (PC(:,:,2)); 
PC3 = (PC(:,:,3)); 
PC4 = (PC(:,:,4)); 
PC5 = (PC(:,:,5)); 
PC6 = (PC(:,:,6)); 
PC7 = (PC(:,:,7)); 
PC8 = (PC(:,:,8)); 
PC9 = (PC(:,:,9)); 

  
end 

 
 

%% Matlab Script ---------------------------------------------------------% 
% Script : tracking.m 
% Author : Georges Moussa 
% Date : 08/03/12 
% 
% Description : it tracks moving object in a video using Gaussian Mixtture 
% Models 

  
%% Tracking Objects Using Gaussian Mixture Models 

  
% Create a System object to read video from avi file. 
filename = 'PC2.avi'; 
hvfr = vision.VideoFileReader(filename, ... 
                              'ImageColorSpace', 'RGB'); 

  
% Create color space converter System object to convert the image from RGB 
% to intensity format. 
hcsc = vision.ColorSpaceConverter('Conversion', 'RGB to intensity'); 

  
% Create a System object to detect foreground using Gaussian mixture 
% models. 
hof = vision.ForegroundDetector(... 
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        'NumTrainingFrames', 5, ...     % only 5 because of short video 
        'InitialVariance', (30/255)^2); % initial standard deviation of 

30/255 

  
% Create a blob analysis System object to segment objects in the video. 
hblob = vision.BlobAnalysis( ... 
                    'CentroidOutputPort', false, ... 
                    'AreaOutputPort', true, ... 
                    'BoundingBoxOutputPort', true, ... 
                    'OutputDataType', 'single', ... 
                    'MinimumBlobAreaSource', 'Property', ... 
                    'MinimumBlobArea', 150, ... 
                    'MaximumBlobAreaSource', 'Property', ... 
                    'MaximumBlobArea', 3600, ... 
                    'MaximumCount', 80); 

  
% Create and configure two System objects that insert shapes, one for 
% drawing the bounding box around the detected objects and the other for 
% drawing the motion vector lines.  

  
hshapeins1 = vision.ShapeInserter( ... 
            'BorderColor', 'Custom', ... 
            'CustomBorderColor', [0 255 0]); 
hshapeins2 = vision.ShapeInserter( ... 
            'Shape','Lines', ... 
            'BorderColor', 'Custom', ... 
            'CustomBorderColor', [255 255 0]); 

  
% Create and configure a System object to write the number of objects being 
% tracked. 
htextins = vision.TextInserter( ... 
        'Text', '%4d', ... 
        'Location',  [1 1], ... 
        'Color', [255 255 255], ... 
        'FontSize', 12); 

  
% Create System objects to display the results. 
sz = get(0,'ScreenSize'); 
pos = [20 sz(4)-300 200 200]; 
hVideoOrig = vision.VideoPlayer('Name', 'Original', 'Position', pos); 
pos(1) = pos(1)+220; % move the next viewer to the right 
hVideoFg = vision.VideoPlayer('Name', 'Foreground', 'Position', pos); 
pos(1) = pos(1)+220; 
hVideoRes = vision.VideoPlayer('Name', 'Results', 'Position', pos); 

  
line_row = 23; % Define region of interest (ROI) 

  

  
% Stream Processing Loop 
% Create a processing loop to track the objects in the input video. This loop 
% uses the previously instantiated System objects. 
% When the VideoFileReader object detects the end of the input file, 
% the loop stops. 

  
while ~isDone(hvfr) 
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    image = step(hvfr);      % Read input video frame 
    y = step(hcsc, image);   % Convert color image to intensity 

  
    % Remove the effect of sudden intensity changes due to camera's 
    % auto white balancing algorithm. 
    y = im2single(y); 
    y = y-mean(y(:)); 
    % hmedianfilt = vision.MedianFilter([5 5]); 
    y = medfilt2(y, [3 3]); % Median Filtering of the foreground  

  
    fg_image = step(hof, y); % Detect foreground 

  
    % Estimate the area and bounding box of the blobs in the foreground 
    % image. 
    [area, bbox] = step(hblob, fg_image); 

  
    image_out = image; 
    image_out(22:23,:,:) = 255;  % Count objects only below this white line 
    image_out(1:15,1:30,:) = 0;  % Black background for displaying count 

  

  
    Idx = bbox(:,2) > line_row; % Select boxes which are in the ROI. 

  
    % Based on dimensions, exclude objects which are not smoke. When the 
    % ratio between the area of the blob and the area of the bounding box 
    % is above 0.3 (30%) classify it as a smoke plume. 
    ratio = zeros(length(Idx),1); 
    ratio(Idx) = single(area(Idx,1))./single(bbox(Idx,3).*bbox(Idx,4)); 
    ratiob = ratio > 0.3; 
    count = int32(sum(ratiob));    % Number of objects 
    bbox(~ratiob,:) = int32(-1); 

  
    % Draw bounding rectangles around the detected objects. 
    image_out = step(hshapeins1, image_out, bbox); 

  
    % Display the number of object tracked and a white line showing the ROI. 
    image_out = step(htextins, image_out, count); 

  
    step(hVideoOrig, image);          % Original video 
    step(hVideoFg,   fg_image);       % Foreground 
    step(hVideoRes,  image_out);      % Bounding boxes around Smoke 
end 

  
% Close the video file 
release(hvfr); 

 

%% Matlab Script ---------------------------------------------------------% 
% Function : Adapt_PCA.m 
% Author : Georges Moussa 
% Date : 10/13/12 

 
%% Adaptive PCA for Visible Capture 13 
begin_frame = 7400;  
last_frame = 8248; 
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% User Input 
ncols     = 650;%873;  
nrows     = 650;%1068; 
frmstart  = begin_frame; 
frmstep   = 1; 
frmend    = last_frame; 
vidfps    = 10; 

  
% generate movie object 
disp('creating movie object') 
frminfo   = [num2str(frmstart) '-' num2str(frmstep) '-' num2str(frmend)]; 
vidinfo   = ['_at' num2str(vidfps) 'fps' ]; 
rawMovObj = VideoWriter('PC2.avi'); 
rawMovObj.FrameRate = vidfps; 
open(rawMovObj); 

  

  
for j=begin_frame:1:last_frame, 

  
% Open in 9 consecutive visible frames 
file_name1 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j) '.BMP'];  
file_name2 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+2) '.BMP']; 
file_name3 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+4) '.BMP']; 
file_name4 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+6) '.BMP']; 
file_name5 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+8) '.BMP']; 
file_name6 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+10) '.BMP']; 
file_name7 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+12) '.BMP']; 
file_name8 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+14) '.BMP']; 
file_name9 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+16) '.BMP']; 

  
% Read the 9 consecutive frames 
I_1 = im2double(imread(file_name1)); 
I_2 = im2double(imread(file_name2)); 
I_3 = im2double(imread(file_name3)); 
I_4 = im2double(imread(file_name4)); 
I_5 = im2double(imread(file_name5)); 
I_6 = im2double(imread(file_name6)); 
I_7 = im2double(imread(file_name7)); 
I_8 = im2double(imread(file_name8)); 
I_9 = im2double(imread(file_name9)); 

  
% Only Extract Blue Color Band and a smaller FOV 
I_1 = I_1(101:750,176:825,3); 
I_2 = I_2(101:750,176:825,3); 
I_3 = I_3(101:750,176:825,3); 
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I_4 = I_4(101:750,176:825,3); 
I_5 = I_5(101:750,176:825,3); 
I_6 = I_6(101:750,176:825,3); 
I_7 = I_7(101:750,176:825,3); 
I_8 = I_8(101:750,176:825,3); 
I_9 = I_9(101:750,176:825,3); 

  
 

% Display the 9 consecutive Frames before PCA 
 l = size(I_1,1); 
 k = size(I_1,2); 
 figure(10) 
 imshow([I_1 zeros(l,1) I_2 zeros(l,1) I_3 ;... 
         I_4 zeros(l,1) I_5 zeros(l,1) I_6 ;... 
         I_7 zeros(l,1) I_8 zeros(l,1) I_9 ]); 
 title('9 Consecutive Blue Band Frames') 
 

 

  
% Reshape for PCA  
input_images = zeros(size(I_1,1),size(I_1,2),9); 
input_images(:,:,1) = I_1; 
input_images(:,:,2) = I_2; 
input_images(:,:,3) = I_3; 
input_images(:,:,4) = I_4; 
input_images(:,:,5) = I_5; 
input_images(:,:,6) = I_6; 
input_images(:,:,7) = I_7; 
input_images(:,:,8) = I_8; 
input_images(:,:,9) = I_9; 

  
% % Blocks for Blue Band (PCA) 
% Non Adaptive  
fun1 = @(block_struct) ... 
         (PCA_1(block_struct.data)) ; % 873 1068 
 PC =  blockproc(input_images,[650 650], fun1); 

  
 % Adaptive 
 fun2 = @(block_struct) ... 
         (PCA_1(block_struct.data)) ; % 873 1068 
 PC_adapt =  blockproc(input_images,[150 150], fun2); 
 

 % Before Scaling to Full Dynamic Range  
  l1 = size(PC(:,:,1),1); 
  k1 = size(PC(:,:,1),2); 
figure(30) 
 imshow([PC(:,:,1) zeros(l1,1) PC(:,:,2) zeros(l1,1) PC(:,:,3) ;... 
         PC(:,:,4) zeros(l1,1) PC(:,:,5) zeros(l1,1) PC(:,:,6) ;... 
         PC(:,:,7) zeros(l1,1) PC(:,:,8) zeros(l1,1) PC(:,:,9) ]); 
 title('Non Adaptive Principal Components') 

  
 % Display Histograms for Non adaptive before Full Dynamic Range Scaling 
 figure(31) 
 subplot(3,3,1) 
 imhist(PC(:,:,1)) 
  subplot(3,3,2) 
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 imhist(PC(:,:,2)) 
 subplot(3,3,3) 
 imhist(PC(:,:,3)) 
 subplot(3,3,4) 
 imhist(PC(:,:,4)) 
 subplot(3,3,5) 
 imhist(PC(:,:,5)) 
 subplot(3,3,6) 
 imhist(PC(:,:,6)) 
 subplot(3,3,7) 
 imhist(PC(:,:,7)) 
 subplot(3,3,8) 
 imhist(PC(:,:,8)) 
 subplot(3,3,9) 
 imhist(PC(:,:,9)) 

  
 l2 = size(PC_adapt(:,:,1),1); 
 k2 = size(PC_adapt(:,:,1),2); 
 figure(40) 
 imshow([PC_adapt(:,:,1) zeros(l2,1) PC_adapt(:,:,2) zeros(l2,1)  

PC_adapt(:,:,3) ;... 
         PC_adapt(:,:,4) zeros(l2,1) PC_adapt(:,:,5) zeros(l2,1) 

PC_adapt(:,:,6) ;... 
         PC_adapt(:,:,7) zeros(l2,1) PC_adapt(:,:,8) zeros(l2,1) 

PC_adapt(:,:,9) ]); 
 title('Adaptive Principal Components') 

  
% Display Histograms for Non adaptive before Full Dynamic Range Scaling 
 figure(41) 
 subplot(3,3,1) 
 imhist(PC_adapt(:,:,1)) 
 subplot(3,3,2) 
 imhist(PC_adapt(:,:,2)) 
 subplot(3,3,3) 
 imhist(PC_adapt(:,:,3)) 
 subplot(3,3,4) 
 imhist(PC_adapt(:,:,4)) 
 subplot(3,3,5) 
 imhist(PC_adapt(:,:,5)) 
 subplot(3,3,6) 
 imhist(PC_adapt(:,:,6)) 
 subplot(3,3,7) 
 imhist(PC_adapt(:,:,7)) 
 subplot(3,3,8) 
 imhist(PC_adapt(:,:,8)) 
 subplot(3,3,9) 
 imhist(PC_adapt(:,:,9)) 
 

 
 % Rescale to Full Dynamic Range [0 1] 
 I_9 = im2uint8(scaledata(I_9,0,1)); % Original Blue Band 
 PC1_Scaled = im2uint8(scaledata(PC(:,:,1),0,1)); % PC1 
 PC2_Scaled = im2uint8(scaledata(PC(:,:,2),0,1)); % PC2 
 PC3_Scaled = im2uint8(scaledata(PC(:,:,3),0,1)); % PC3 
 PC4_Scaled = im2uint8(scaledata(PC(:,:,4),0,1)); % PC4 
 PC5_Scaled = im2uint8(scaledata(PC(:,:,5),0,1)); % PC5 
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 PC6_Scaled = im2uint8(scaledata(PC(:,:,6),0,1)); % PC6 
 PC7_Scaled = im2uint8(scaledata(PC(:,:,7),0,1)); % PC7 
 PC8_Scaled = im2uint8(scaledata(PC(:,:,8),0,1)); % PC8 
 PC9_Scaled = im2uint8(scaledata(PC(:,:,9),0,1)); % PC9 

  
 PC1_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,1),0,1)); % Adaptive PC1 
 PC2_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,2),0,1)); % Adaptive PC2 
 PC3_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,3),0,1)); % Adaptive PC3 
 PC4_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,4),0,1)); % Adaptive PC4 
 PC5_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,5),0,1)); % Adaptive PC5 
 PC6_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,6),0,1)); % Adaptive PC6 
 PC7_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,7),0,1)); % Adaptive PC7 
 PC8_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,8),0,1)); % Adaptive PC8 
 PC9_Scaled_Adapt = im2uint8(scaledata(PC_adapt(:,:,9),0,1)); % Adaptive PC9 
  

% Display PC2 for Non Adaptive PCA 
 figure(1) 
 imshow(PC2_Scaled) 
 % Display PC2 for Adaptive PCA 
 figure(2) 
 imshow(PC2_Scaled_Adapt) 

 

% Display all Principal Components 
 l1 = size(PC1_Scaled,1); 
 k1 = size(PC1_Scaled,2); 
 figure(3) 
 imshow([PC1_Scaled zeros(l1,1) PC2_Scaled zeros(l1,1) PC3_Scaled ;... 
         PC4_Scaled zeros(l1,1) PC5_Scaled zeros(l1,1) PC6_Scaled ;... 
         PC7_Scaled zeros(l1,1) PC8_Scaled zeros(l1,1) PC9_Scaled ]); 
 title('Non Adaptive Principal Components') 

  
 l2 = size(PC1_Scaled_Adapt,1); 
 k2 = size(PC1_Scaled_Adapt,2); 
 figure(4) 
 imshow([PC1_Scaled_Adapt zeros(l2,1) PC2_Scaled_Adapt zeros(l2,1) 

PC3_Scaled_Adapt ;... 
         PC4_Scaled_Adapt zeros(l2,1) PC5_Scaled_Adapt zeros(l2,1) 

PC6_Scaled_Adapt ;... 
         PC7_Scaled_Adapt zeros(l2,1) PC8_Scaled_Adapt zeros(l2,1) 

PC9_Scaled_Adapt ]); 
 title('Adaptive Principal Components') 
 

% After Scaling to Full Dynamic Range  
 % Display Histograms for Non adaptive before Full Dynamic Range Scaling 
 figure(51) 
 subplot(3,3,1) 
 imhist(PC1_Scaled) 
  subplot(3,3,2) 
 imhist(PC2_Scaled) 
 subplot(3,3,3) 
 imhist(PC3_Scaled) 
 subplot(3,3,4) 
 imhist(PC4_Scaled) 
 subplot(3,3,5) 
 imhist(PC5_Scaled) 
 subplot(3,3,6) 
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 imhist(PC6_Scaled) 
 subplot(3,3,7) 
 imhist(PC7_Scaled) 
 subplot(3,3,8) 
 imhist(PC8_Scaled) 
 subplot(3,3,9) 
 imhist(PC9_Scaled) 

  
% Display Histograms for Non adaptive before Full Dynamic Range Scaling 
 figure(61) 
 subplot(3,3,1) 
 imhist(PC1_Scaled_Adapt) 
  subplot(3,3,2) 
 imhist(PC2_Scaled_Adapt) 
 subplot(3,3,3) 
 imhist(PC3_Scaled_Adapt) 
 subplot(3,3,4) 
 imhist(PC4_Scaled_Adapt) 
 subplot(3,3,5) 
 imhist(PC5_Scaled_Adapt) 
 subplot(3,3,6) 
 imhist(PC6_Scaled_Adapt) 
 subplot(3,3,7) 
 imhist(PC7_Scaled_Adapt) 
 subplot(3,3,8) 
 imhist(PC8_Scaled_Adapt) 
 subplot(3,3,9) 
 imhist(PC9_Scaled_Adapt) 
 

 

 

  %% make movie 
 disp('Reading in frames to movie object') 

  
     img = im2uint8(PC2_Scaled);% zeros(size(PC9_Scaled,1),2) PC9_Scaled 

zeros(size(PC9_Scaled,1),2) PC9_Scaled_Adapt]); 
     index = ceil(j/frmstep); 
     writeVideo(rawMovObj, img); 
     clc 
end 

  
%% close file 
 disp('closing movie object') 
 close(rawMovObj); 

 
 

%% Matlab Script ---------------------------------------------------------% 
% Function : Blob_Detect.m 
% Author : Georges Moussa 
% Date : 07/25/12 
 

%% Blob Detection 
 

% Detect Blobs on Non Adaptive PC2  
regions = detectSURFFeatures(im2double(PC2_Scaled)); 
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% Display Current Image 
figure(5) 
imshow(I_9) 

  
% Display Non Adaptive Scaled PC2 with Blobs 
figure(6) 
imshow(PC2_Scaled); hold on; 
plot(regions) 

  
% Detect Blobs on Adaptive PC2  
regions_Adapt = detectSURFFeatures(im2double(PC2_Scaled_Adapt)); 

  
% Display Adaptive Scaled PC2 with Blobs 
figure(7) 
imshow(PC2_Scaled_Adapt); hold on; 
plot(regions_Adapt) 

 

% Before Scaling 
regions1 = detectSURFFeatures(im2double(PC(:,:,2))); 
figure(11) 
imshow(PC(:,:,2)); hold on; 
 plot(regions1) 

  
regions1_Adapt = detectSURFFeatures(im2double(PC_adapt(:,:,2))); 
figure(12) 
imshow(PC_adapt(:,:,2)); hold on; 
plot(regions1_Adapt) 

 

 

%% Matlab Script ---------------------------------------------------------% 
% Function : Heat_Plume.m 
% Author : Georges Moussa 
% Date : 03/12/12 
 

 

begin_frame = 2000;  
last_frame = 3000; 
 

%% User Input 
ncols     = 873;  
nrows     = 1068; 
bandname  = 'CMWIR'; 
testname  = 'oats1'; 
prefix    = [bandname '_' testname '_' ]; 
datapath  = 'C:\Users\Owner\Documents\Original Data\oats1\'; 
filepath  = [datapath bandname '_' testname '_']; 
frmstart  = begin_frame; 
frmstep   = 1; 
frmend    = last_frame; 
vidfps    = 20; 

  
%% generate movie object 
disp('creating movie object') 
frminfo   = [num2str(frmstart) '-' num2str(frmstep) '-' num2str(frmend)]; 
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vidinfo   = ['_at' num2str(vidfps) 'fps' ]; 
rawMovObj = VideoWriter('Original_PC2.avi'); 
rawMovObj.FrameRate = vidfps; 
open(rawMovObj); 
%% 
for j=begin_frame:1:last_frame, 
    file_name = ['C:\Users\Owner\Documents\Original Data\oats1\CMWIR_oats1_' 

num2str(j) '_fov.raw'];  
    file_name2 = ['C:\Users\Owner\Documents\Original Data\oats1\CMWIR_oats1_' 

num2str(j+1) '_fov.raw']; 

 

 
% Open The First Frame 
fid1 = fopen(file_name,'r'); 
x1= (uint16(fread(fid1,[1068 873],'uint16'))')%./2^14; 
x11=double(imadjust((x1(1:853,:)))); 

  
% Open the Second Consecutive Frame 
fid2 = fopen(file_name2,'r'); 
x2= (uint16(fread(fid2,[1068 873],'uint16'))')%./2^14; 
x22=im2double(imadjust(x2(1:853,:))); 

 
figure(1) 
 output_frame = entropyfilt(abs(rangefilt(x2)-rangefilt(x1))); 
 

%% Trying other Combinations 

% output_frame = abs(x2-x1); 
% output_frame = (x2-x1);  % difference final minus initial 
% output_frame1 = (stdfilt(x1(1:853,:))); % standard deviation 
% output_frame2 = (stdfilt(output_frame1)); %variance 
% output_frame3 = (rangefilt(x1)); % maximum and minimum within 3x3 pixels 
%  output_frame4 = (entropyfilt(x1)); % measure of disorder/variation within 

3x3 pixels 
%  output_frame5 = (stdfilt(output_frame)); % standard deviation of the 

difference 
%  output_frame6 = (stdfilt(output_frame5)); % variance of the difference 
%  output_frame7 = (rangefilt(output_frame)); % rangefilt of the difference 
%  output_frame8 = (entropyfilt(output_frame)); % entropyfilt of the 

difference 
%  output_frame9 = (x1-x2); % difference initial minus final 
%  output_frame10 = abs((stdfilt(x2)-stdfilt(x1))); %difference of the 

standard deviations 
%output_frame11= entropyfilt(output_frame10); 
  %  output_frame11 = (stdfilt(stdfilt(x2))-stdfilt(stdfilt(x1))); 

%difference of the variances 
%  output_frame12 =(rangefilt(x2)-rangefilt(x1)); % difference of the 

rangefilts  
%  output_frame13 = entropyfilt(x2)-entropyfilt(x1); % difference of the 

entropyfilts 

  
%% Imadjust the frames 
% output_frame = ((imadjust(output_frame(1:853,:)))); 
% output_frame1 = (imadjust((output_frame1(1:853,:)))); 
% output_frame2 = (imadjust(uint16(output_frame2(1:853,:)))); 
% output_frame3 = (imadjust(uint16(output_frame3(1:853,:)))); 
%  output_frame4 = (imadjust(uint16(output_frame4(1:853,:)))); 
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%  output_frame5 = (imadjust(uint16(output_frame5(1:853,:)))); 
%  output_frame6 = (imadjust(uint16(output_frame6(1:853,:)))); 
%  output_frame7 = (imadjust(((output_frame7(1:853,:))))); 
%  output_frame8 = (imadjust(uint16(output_frame8(1:853,:)))); 
%  output_frame9 = (imadjust(uint16(output_frame9(1:853,:)))); 
%  output_frame10 = (imadjust(uint16(output_frame10(1:853,:)))); 
%  output_frame11 = (imadjust(uint16(output_frame11(1:853,:)))); 
%  output_frame12 = (imadjust((output_frame12(1:853,:)))); 
%  output_frame13 = (imadjust(uint16(output_frame13(1:853,:)))); 
%imshow(imadjust(output_frame(1:853,:))); 

  
% Threshold 
%figure(4) 
%output_frame(output_frame > 190) = 65536; 
%imshow(output_frame); 

 
%% make movie 
disp('reading in frames to movie object') 
%for i = frmstart:frmstep:frmend 

  
 img = im2uint8([x11 output_frame]); 
    index = ceil(j/frmstep); 
    fclose(fid1); 
    fclose(fid2); 
    writeVideo(rawMovObj, img); 
    clc 
 

end 
%% close file 
disp('closing movie object') 
close(rawMovObj); 

 

%% Matlab Script ---------------------------------------------------------% 
% Function : Blob_Segmentation.m 
% Author : Georges Moussa 
% Date : 11/14/12 

  
begin_frame = 1;%400; 
last_frame = 848;%449;%417; 
total = zeros(1,last_frame - begin_frame + 1); 

 
%L = struct(zeros(1,last_frame - begin_frame + 1)); 
% H = zeros(1,last_frame - begin_frame + 1); 
 begin_frame_color = 7800; 
 last_frame_color = 8248; 

  
% User Input 
ncols     = 650;%480;%873;  
nrows     = 650;%584;%1068; 
bandname  = 'Visible Blue'; 
testname  = 'Capture_13'; 
prefix    = [bandname '_' testname '_' ]; 
datapath  = 'C:\Users\Owner\Documents\Original Data\oats1\'; 
filepath  = [datapath bandname '_' testname '_']; 
frmstart  = begin_frame; 
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frmstep   = 1; 
frmend    = last_frame; 
vidfps    = 5; 
%  
% generate movie object 
disp('creating movie object') 
frminfo   = [num2str(frmstart) '-' num2str(frmstep) '-' num2str(frmend)]; 
vidinfo   = ['_at' num2str(vidfps) 'fps' ]; 
rawMovObj = 

VideoWriter('Blurred_1_Med_10_PC2_B_abs_1F_thre_15_Overlay_Moving_Average.avi

'); 
rawMovObj.FrameRate = vidfps; 
open(rawMovObj); 

  
for j=begin_frame:1:last_frame, 
% Open images 
% file_name1 = ['C:\Users\Owner\Documents\MATLAB\PC2_B_1F_abs\PC2_B_1F_abs_' 

num2str(j) '.BMP'];  
% file_name1 = 

['C:\Users\Owner\Documents\MATLAB\PC2_Blue_Thresh_2_Inv\PC2_Blue_Thresh_2_Inv

_' num2str(j) '.BMP'];  
% file_name1 = ['C:\Users\Owner\Documents\MATLAB\PC2_Blue_Scaled (Visible 

Capture  13 Oats1 Frame 7800 to Frame 8248)\PC2_Blue_Scaled_' num2str(j) 

'.BMP'];  
%  file_name2 = ['C:\Users\Owner\Documents\MATLAB\PC2_Blue_Scaled (Visible 

Capture  13 Oats1 Frame 7800 to Frame 8248)\PC2_Blue_Scaled_' num2str(j+1) 

'.BMP'];  
%  file_name3 = ['C:\Users\Owner\Documents\MATLAB\PC2_Blue_Scaled (Visible 

Capture  13 Oats1 Frame 7800 to Frame 8248)\PC2_Blue_Scaled_' num2str(j+2) 

'.BMP'];  

  
%file_name1 = 

['C:\Users\Owner\Documents\MATLAB\Blurred_1_Med_10_PC2_B_abs_1F\Blurred_1_Med

_10_PC2_B_abs_1F_' num2str(j) '.BMP'];  
%file_name1 = 

['C:\Users\Owner\Documents\MATLAB\GMM_Blurred_Abs_PCA\GMM_Blurred_Abs_PCA_' 

num2str(j) '.BMP'];  
file_name1 = 

['C:\Users\Owner\Documents\MATLAB\Blurred_1_Med_10_PC2_B_abs_1F\Blurred_1_Med

_10_PC2_B_abs_1F_' num2str(j) '.BMP']; 
file_name9 = ['C:\Users\Owner\Documents\Original 

Data\Visible\VISIBLE_capture-13_' num2str(j+7416) '.BMP']; 
file_name3 = 

['C:\Users\Owner\Documents\MATLAB\Moving_Average_20_Total_Area_Abs_PC2/Moving

_Average_20_Total_Area_Abs_PC2_' num2str(j) '.BMP']; 

  
% % Read the Original colored Image 
 I_9 = im2uint8(imread(file_name9)); 
 I_9 = I_9(101:749,176:825,:); %smaller FOV 

  
% Read Absolute PC2 of Blurred Original Image 
%  I_2 = im2uint8(imread(file_name2)); 
%  I_2 = I_2(1:649,:,1); %smaller FOV 

  
% Read Plot Frames 
I_3 = im2uint8(imread(file_name3)); 
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% Zero pad in order to match the same size 
B = padarray(I_3, [153;107]); 
% I_cropped = imread(file_name1); 
% I_cropped = (I_cropped(:,:,1)); 

  
I_1 = im2uint8(imread(file_name1)); 
I_1 = I_1(1:649,:,1); 
% I_2 = im2uint8(imread(file_name2)); 
% I_2 = I_2(:,:,1); 
% I_3 = im2uint8(imread(file_name3)); 
% I_3 = I_3(:,:,1); 

  
%% Blob Segmentation 
%I_eq = adapthisteq(I_cropped); 
% figure(1) 
% imshow(I_1) 

  
%% Gaussian Blur Filter 
%  h = fspecial('gaussian', size(I_1), 1.0); % Make a Gaussian Mask 
%  I_Blurred = imfilter(I_1, h,'symmetric'); % Apply Gaussian Mask to Blur 

Image 
%  figure(2) 
%  imshow(I_Blurred) 

  
%  H = fspecial('disk',10); 
% blurred = imfilter(I,H,'replicate'); 
%% median filtering 
 m = 25; % Dimension of median filter 
 n = 25; % Dimension of median filter 
 B1 = medfilt2(I_1, [m n],'symmetric'); % Apply Median Filter 
%  figure(3) 
%  imshow(B1) 

  
%% Threshold 
[M N]=size(B1); 

  
 T1 = median(median(B1))+15;% 5 lower bound 
% T2 = median(median(B1))+10;% 10 upper bound 
% %   T1 = 98; 
% %   T2 = 113; 
% NewImage1 = uint8(255*(B1 >= T1));% To capture the dark portions of PC2; 
 NewImage2 = uint8(255*(B1 >= T1));% To capture the bright portions of PC2; 
% % NewImage3 = uint8(255*(B1 >= T1 & B1 >= T2)); 
%  
% figure(4) 
% imshow(NewImage1) 
% figure(5) 
% imshow(NewImage2) 

  
% figure(6) 
% imshow(NewImage3)  

  
% % Invert NewImage1 to have the same polarity as NewImage1 
%  NewImage1_inv = imcomplement(NewImage1); 
%  figure(6) 
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%  imshow(NewImage1_inv) 

  
% % Add  NewImage2_inv to NewImage1 to segment the entire smoke plume in PC2 
%  Mask = imadd(NewImage2,NewImage1_inv); 
%  figure(11) 
%  imshow(Mask) 
Mask = uint8(255*(B1 >= T1)); 
%% Remove Blobs with small area 
 % Cleaning up and then overlaying the perimeter on the Original PC2 image. 
bw2 = imfill(Mask,'holes'); 
% figure(12) 
% imshow(bw2) 

  
bw3 = imopen(bw2, ones(5,5)); 
% figure(13) 
% imshow(bw3) 

  
bw4 = bwareaopen(bw3, 578);% 578 Remove the cars and small blobs; 
% figure(14) 
% imshow(bw4) 

  
%% median filtering 
 m = 15; % Dimension of median filter 
 n = 15; % Dimension of median filter 
 B2 = medfilt2(bw4, [m n],'symmetric'); % Apply Median Filter 

  
bw4_perim = bwperim(B2,4); 
overlay1 = imoverlay(I_1, bw4_perim, [.3 1 .3]);% Change this to I_1 instead 

of I_2 
% figure(15) 
% imshow(overlay1) 

  
% Overlay Green color Mask on original Colored Image 
bw4_perim = bwperim(bw4,4); 
overlay2 = imoverlay(I_9, bw4_perim, [.3 1 .3]); 
figure(16) 
imshow(overlay2) 

  
%% Calculate Blob total area 

  
total(j) = bwarea(bw4); 

  
%% Fourier Transform of PC2 in Attempt to Blur the image using LPF 
% z1 = fftshift(fft2(I_1)); 
% % figure(10) 
% % imagesc(20.*log10(abs(z1))), colormap(gray), axis image, colorbar; 
% % title('fft2 shifted of original Magnitude Response (Log Scale)'); 
%  
% [m n]=size(z1); 
% % Generate a 2D Low Pass Filter 
% c = lpf2D([m,n],0.1,100); 
%  
% % filter The image in frequency domain 
% p = (z1.*c); 
% w=im2uint8(scaledata((abs(ifft2(p))),0,1)); 
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%  
% figure(11) 
% imshow(w); 
% title('Blurred'); 

  
%  T9 = median(median(w))-15;% lower bound 
%  T10 = median(median(w))+15;% upper bound 
%  NewImage5 = uint8(255*(w >= T9 & w <= T10)); 
%  NewImage5 = imcomplement(NewImage5); 

 
%bw = im2bw(I_eq, graythresh(I_eq)); 

  
%  % inverts the colors in the image 
%  NewImage1 = imcomplement(NewImage1); 
% %  figure(2) 
% %   imshow(NewImage1) 

  
%  T3 = median(median(I_2))-15;% lower bound 
%  T4 = median(median(I_2))+15;% upper bound 
%  NewImage2 = uint8(255*(I_2 >= T3 & I_2 <= T4)); 
%  % inverts the colors in the image 
%  NewImage2 = imcomplement(NewImage2); 
%   
%  T5 = median(median(I_3))-15;% lower bound 
%  T6 = median(median(I_3))+15;% upper bound 
%  NewImage3 = uint8(255*(I_3 >= T5 & I_3 <= T6)); 
%  % inverts the colors in the image 
%  NewImage3 = imcomplement(NewImage3); 
%   
%  NewImage4 = zeros(M,N); 
 %% Time moving Average per pixel 
%  for m=1:1:M, 
%      for n = 1:1:N, 
%         NewImage4(m,n) = (1/3)*NewImage1(m,n) + (1/3)*NewImage2(m,n)... 
%                        + (1/3)*NewImage3(m,n); 
%      end 
%  end 
%  NewImage4 = im2uint8(NewImage4); 

  
%  figure(1) 
%  imshow(NewImage1) 
%  
%  figure(2) 
%  imshow(I_1) 

  
%  figure(2) 
%  imshow(NewImage4) 

  
%% median filtering 
%  m = 27; 
%  n = 27; 
%   
%  B1 = medfilt2(NewImage1, [m n]); 
% % figure(2) 
% % imshow(I_eq) 
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%  
%  bw = B1; 
%  figure(3) 
% imshow(bw) 

  
% % Cleaning up and then overlaying the perimeter on the Original PC2 image. 
% bw2 = imfill(bw,'holes'); 
%  
% bw3 = imopen(bw2, ones(5,5)); 
% % figure(4) 
% % imshow(bw3) 
% bw4 = bwareaopen(bw3, 400);%40); 
% % figure(5) 
% % imshow(bw4) 
%  
% bw4_perim = bwperim(bw4,4); 
% overlay1 = imoverlay(I_1, bw4_perim, [.3 1 .3]); 

  
% mask = zeros(size(bw4_perim,1),size(bw4_perim,2),3); 
% mask(:,:,1) = bw4_perim(:,:); 
% mask(:,:,2) = bw4_perim(:,:); 
% mask(:,:,3) = bw4_perim(:,:); 

  
% figure(7) 
% imshow(overlay1) 

 
% figure(5) 
% imshow([bw bw2 bw3 bw4]) 

 
% mask_em = imextendedmax(I_eq, 30); 
% figure(4) 
% imshow(mask_em) 

  
% % Let's clean that up and then overlay it. 
%  
% mask_em = imclose(mask_em, ones(5,5)); 
% mask_em = imfill(mask_em, 'holes'); 
% mask_em = bwareaopen(mask_em, 40); 
% overlay2 = imoverlay(I_eq, bw4_perim | mask_em, [.3 1 .3]); 
% figure(5) 
% imshow(overlay2) 

  
% Dimensions of the frame 
   l1 = size(I_9,1); 
   k1 = size(I_9,2); 
B2_Mask = zeros(l1,k1,3); 
B2_Mask(:,:,1) = B2(:,:); 
B2_Mask(:,:,2) = B2(:,:); 
B2_Mask(:,:,3) = B2(:,:); 
B2_Mask = im2uint8(B2_Mask); 
 %% make movie 
 disp('Reading in frames to movie object') 

  
     img = im2uint8([B2_Mask overlay1 overlay2 B]); 
     index = ceil(j/frmstep); 
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     writeVideo(rawMovObj, img); 
     clc 
 j 
%% 
% figure(100) 
% plot(total) 
% axis([0 (last_frame-begin_frame+1) 0 6.0*10^4]) 
% grid on 
% title('Instantaneous Total Segmented Blob Area') 
% xlabel('Frame'); 
% ylabel('Area'); 
% hold on 
%  
% % Set a Threshold line (Alarm On if Total area is greater than this 
% % threshold) 
% z = 8300.*ones(1,last_frame - begin_frame + 1); 
% plot(z,'r') 
% hold off 
% L(j) = getframe; 
%  
% output = tsmovavg(total, 's', 20); 
% figure(101) 
% plot(output) 
% axis([0 (last_frame-begin_frame+1) 0 6.0*10^4]) 
% grid on 
% title('Moving Average of Total Segmented Blob Area') 
% xlabel('Frame'); 
% ylabel('Area'); 
% hold on 
%  
% % Set a Threshold line (Alarm On if Total area is greater than this 
% % threshold) 
% y = 8300.*ones(1,last_frame - begin_frame + 1); 
% plot(y,'r') 
% hold off 
% H(j)=getframe; 

  
end 
% numtimes=1; 
% fps=5; 
% figure(100) 
% movie(L,numtimes,fps) 
% figure(101) 
% movie(H,numtimes,fps) 
% %Save video/Animations 
%  movie2avi(L, 'Instantaneous_Total_Area_Abs_PC2.avi','compression', 

'none'); 
%  movie2avi(H, 'Moving_Average_20_Total_Area_Abs_PC2.avi','compression', 

'none'); 

  

  
% figure(100) 
% plot(total) 
% grid on 
% %title('Instantaneous Total Segmented Blob Area') 
% xlabel('Frame'); 
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% ylabel('Area'); 
% %  
% output = tsmovavg(total, 's', 30); 
% figure(101),plot(output) 
% grid on 
% title('Moving Average of Total Segmented Blob Area') 
% xlabel('Frame'); 
% ylabel('Area'); 
% hold on 
% %  
% % Set a Threshold line (Alarm On if Total area is greater than this 
% % threshold) 
% y = 8300.*ones(1,last_frame - begin_frame + 1); 
% plot(y,'r') 

  

  
% close file 
 disp('closing movie object') 
 close(rawMovObj); 

 

 

begin_frame = 1; 
last_frame = 448; 

  
% User Input 
ncols     = 650;%873;  
nrows     = 650;%1068; 
bandname  = 'Visible Blue'; 
testname  = 'Capture_13'; 
prefix    = [bandname '_' testname '_' ]; 
datapath  = 'C:\Users\Owner\Documents\MATLAB\PC2_Blue_Scaled (Visible Capture  

13 Oats1 Frame 7800 to Frame 8248)'; 
filepath  = [datapath bandname '_' testname '_']; 
frmstart  = begin_frame; 
frmstep   = 1; 
frmend    = last_frame; 
vidfps    = 5; 

  
% generate movie object 
disp('creating movie object') 
frminfo   = [num2str(frmstart) '-' num2str(frmstep) '-' num2str(frmend)]; 
vidinfo   = ['_at' num2str(vidfps) 'fps' ]; 
rawMovObj = VideoWriter('PC2_Blue_Thres5_Med5_1_2_5_7_10.avi'); 
rawMovObj.FrameRate = vidfps; 
open(rawMovObj); 
%% Matlab Script ---------------------------------------------------------% 
% Function : PC2_Blue_Difference.m 
% Author : Georges Moussa 
% Date : 11/14/12 

  
for j=begin_frame:1:last_frame, 

  
% Open in 2 consecutive visible frames 
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file_name1 = ['C:\Users\Owner\Documents\MATLAB\PC2_Blue_Scaled (Visible 

Capture  13 Oats1 Frame 7800 to Frame 8248)\PC2_Blue_Scaled_' num2str(j) 

'.BMP'];  
%file_name2 = ['C:\Users\Owner\Documents\MATLAB\PC2_Blue_Scaled (Visible 

Capture  13 Oats1 Frame 7800 to Frame 8248)\PC2_Blue_Scaled_' num2str(j+1) 

'.BMP']; 

  
% Read the 2 consecutive frames 
I_1 = im2double(imread(file_name1)); 
%I_2 = im2double(imread(file_name2)); 

  
I_1 = im2uint8(I_1(:,:,1)); 
%I_2 = I_2(:,:,1); 
% % Compute the Absolute Difference in PC2 
% I_diff = abs(I_2 - I_1); 
%  
% % Rescale Absolute Difference to Full Dynamic Range [0 1] 
% I_diff_Scaled = im2uint8(scaledata(I_diff,0,1)); 

  
% Dimensions of the frame 
  l1 = size(I_1,1); 
  k1 = size(I_1,2); 
%   
%  I_2 = im2uint8(I_2);  
%  I_diff = im2uint8(I_diff);  

  
% % Display Figures 
% figure(1) 
% imshow(I_1) 
%  
% figure(2) 
% imshow(I_2) 
%  
% figure(3) 
% imshow(I_diff) 
%  
% figure(4) 
% imshow(I_diff_Scaled) 

 
  %% Threshold 
 T1 = median(median(I_1))-5;% lower bound 
 T2 = median(median(I_1))+5;% upper bound 
 NewImage1 = uint8(255*(I_1 >= T1 & I_1 <= T2)); 
%   
% inverts the colors in the image 
IM1 = imcomplement(NewImage1); 

  
 % median filtering 
 m = 7; 
 n = 7; 

  
 B1 = medfilt2(IM1, [m n]); 
 B2 = medfilt2(B1, [m n]); 
 B3 = medfilt2(B2, [m n]); 
 B4 = medfilt2(B3, [m n]); 
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 B5 = medfilt2(B4, [m n]); 
 B6 = medfilt2(B5, [m n]); 
 B7 = medfilt2(B6, [m n]); 
 B8 = medfilt2(B7, [m n]); 
 B9 = medfilt2(B8, [m n]); 
 B10 = medfilt2(B9, [m n]); 
%% make movie 
 disp('Reading in frames to movie object') 

  
     img = im2uint8([I_1 zeros(l1,2) B1 zeros(l1,2) B2; 
         B5 zeros(l1,2) B7 zeros(l1,2) B10]); 
     index = ceil(j/frmstep); 
     writeVideo(rawMovObj, img); 
     clc 
j 

  
end 

  
% close file 
 disp('closing movie object') 
 close(rawMovObj); 

 


