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ABSTRACT 

Constant Conduction Angle Biasing for 
Class C Monolithic RF Power Amplifiers 

 
Author: Gursewak Singh Rai 

Thesis Advisor:  Dr. Vladimir I. Prodanov 
 
 In modern wireless communication systems, a base station typically serves a few 

hundred users within its cell coverage. To combat the near-far problem – the situation 

where a nearby user’s strong cellular signal masks the cellular signal of a faraway user – 

base stations continually enforce power control. That is, nearby users must lower their 

transmit power. In CDMA technology, power control can be as large as 70-80dB. At low 

power outputs, this greatly impacts the performance of the RF power amplifier (PA) in 

the cellular device. For small RF drives, the magnitude of the output RF current 

approaches the magnitude of the DC current and thus the efficiency suffers. Operating the 

RF PA in class C operation improves the efficiency, but results in poor linearity.  

 Several methods of so-called dynamic biasing have been proposed. These 

strategies entail lowering the bias of the PA as the RF drive increases. The proposed 

methods, however, fail to explain how to achieve linearity and low third-order 

intermodulation distortion. Additionally, the methods utilize open-loop implementations.  

 This work presents a novel dynamic biasing topology that results in a much 

improved linear class C PA. The topology utilizes a closed loop that cleverly senses the 

operating conditions of the “power device.” Particularly, the loop operates on the 

principle of keeping the conduction angle remarkably constant and thereby ensuring 

linearity. The work details a thorough design methodology that should provide assistance 

to a designer wanting to implement the topology in an RF integrated circuit. Agilent ADS 

simulations and laboratory results from a functional PCB prototype bring merit to the 

topology. 
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1 
Introducion 

1.1 Introducion 

mplification of electrical signals has played an important role in electronics ever 

since the invention1 of the vacuum tube triode (originally named the Audion) by 

Lee de Forest in 1906 [1]. Particularly, power amplifiers (PAs) played a significant role 

in the development of radio, television, and telephone communications in the last 

century. The main reason for their significance comes from the fact that as waves and 

signals propagate in electrical circuits, coaxial cables, or in the air as radio waves, they 

suffer attenuation. Thus, they require suitable amplification to be interpreted by the 

receiver. In the early days, electrical engineers formulated “recipes” for designing PAs 

using vacuum tubes. The design methodology matured with the advent of the solid state 

transistor. At the end of the 20th century and the beginning of the 21st century, the 

introduction of integrated circuit (IC) technology and consumer demand in cellular 

technologies brought new challenges in PA design. 
                                                      
1 Robert von Lieben also developed a triode independently around the same time. As politics 
would have it, this incited a lawsuit between the two [4]. 
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 To ease the reader into the PA design methodology, this chapter begins by 

covering the essential PA basics. It then delves into the different PAs classes, the 

“hockey-stick” shaped I-V transistor curve, and the power control dilemma in modern 

wireless communications. The chapter concludes with a summary of the prior art.  

1.2 Background 

1.2.1 Radio Frequency (RF) PAs Basics 

 High power control enforcement and high peak-to-average power ratios (PAPR) 

in modern digital communications present significant technical challenges in RF PA 

design. RF PAs used in cellular technologies typically operate with an output power 

range of 0-30dBm [1]. Table 1.1 shows the frequency band allocations for a few wireless 

standards. This table reveals the narrowband nature of these RF signals, having a 

worst-case relative bandwidth of 4.4%. Under narrowband conditions and over a short 

number of the carrier cycles, these RF signals are practically sinusoidal. The magnitude 

and the phase of the signals change slowly over many carrier cycles. This crucial point 

validates analyzing PA circuits under sinusoidal operating conditions [1].  

 

Table 1.1 Frequency Bands and Available Bandwidths for Common Wireless Systems. 
Adapted from "Power Amplifier Principles and Modern Design Techniques," by 
V. Prodanov & M. Banu, 2008, Relative Signal Bandwidth for Most Modern PAs. 
Copyright 2008 by Taylor & Francis.  
 

 Licensed Bands 
 US Cellular R-GSM DCS PCS IMT2000 
Uplink (MHz) 824-849 876-915 1710-1785 1850-1910 1920-1980 
Downlink (MHz) 869-894 921-960 1805-1880 1930-1990 2110-2170 
Total BW (MHz) 25 39 75 60 60 
Relative BW (%) ~3.0 ~4.4 ~4.3 ~3.2 ~3.1 
 

 Unlicensed Bands 
 ISM-2.4 UNII-5.2 UNI-5.8 
Carrier (MHz) 2400-2483.5 5150-5350 5725-5825 
Total BW (MHz) 83.5 200 100 
Relative BW (%) ~3.4 ~3.8 ~1.7 
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1.2.2 Does a “Power Amplifier” Amplify Power? 

 In the first part of the 19th century, James Prescott Joule performed a series of 

experiments studying the nature of heat. His study led to the theory of conservation of 

energy, thus leading to the formation of the first law of thermodynamics. Put simply, the 

theory of conservation of energy states that within an isolated system, energy can neither 

be created nor destroyed; the total energy of the system must be conserved. The energy, 

however, may take several forms (e.g. heat, mechanical, or electrical) and can change 

from one form to another, as long as total energy of the system is conserved.  

 When designing robust engineering systems, we would like 100% conversion of 

energy from one form to another (“conversion” efficiency). However, in practice, this is 

hardly the case. For example, conventional gasoline engine vehicles convert chemical 

energy from the petrol or diesel to power at the wheels with efficiencies of 17-21%; On 

the other hand, electrical vehicles convert energy from the DC battery to power at the 

wheels with efficiencies of 59-62% [2]. In the aforementioned cases, the energy not 

converted to the power at the wheels is converted to heat2.   

 So, returning to the primary question of this section: does a power amplifier 

amplify power? The answer is no; it simply converts direct current (DC) power supplied 

by the power lines to RF3 signal power under the control of the RF input. As a result, the 

RF power delivered to the load is larger than the RF power consumed at the input of the 

PA. Figure 1.1 shows the practical flow of power in a RF PA. The flow of power 

expressed in equation form follows: 

𝑃𝑅𝐹𝑖𝑛 + 𝑃𝐷𝐶 = 𝑃𝑅𝐹𝑜𝑢𝑡 + 𝑃𝐿𝑜𝑠𝑠(𝐻𝑒𝑎𝑡) (1.1) 

                                                      
2 Since conventional gasoline engines are inefficient, they emit a lot of heat.  
3 RF describes a subset of alternating current (AC) waves – those with oscillation rates in the 
range of 3kHz to 300GHz [3]. 
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Figure 1.1 Power flow in a practical RF PA. 
 

1.2.3 Single-Transistor PAs, Efficiency, & Linearity 

 Figure 1.2 shows a traditional single-transistor PA. The DC biases are provided 

through the RF chokes (RFCs)4. At conventional RF frequencies, the electrical length of 

the interconnected wires become significant in comparison to the wavelength and thus we 

must consider matching the input impedance, in addition to the output impedance, in 

order to obtain high return loss and maximum power transfer [3]. RF devices are 

typically matched to 50 or 75Ω because interconnections such as coaxial cable tend to 

have optimum power handling and low loss (dB/meter) at these impedances [4].  

VG

 

Input 
Match

Output 
Match

RL

 

vRFin

iD(t) 
iRFin

IDC

VDC

vD(t) 
iRFout

RFC

RFC

vRFout

 
Figure 1.2 A single-transistor current PA. 

 

                                                      
4 RF chokes block RF current from passing through, but allow DC current to pass.  

PDC

PLoss (Heat)

PRFin PRFoutPA
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 In order to evaluate the performance of the PA, we consider two power efficiency 

metrics: 

𝑃𝐸 =
𝑃𝑅𝐹𝑜𝑢𝑡
𝑃𝐷𝐶

 (1.2) 

 

𝑃𝐴𝐸 =
𝑃𝑅𝐹𝑜𝑢𝑡 − 𝑃𝑅𝐹𝑖𝑛

𝑃𝐷𝐶
 (1.3) 

 
Power Efficiency (PE) refers to how efficiently the DC power from the power supply is 

converted to output RF fundamental5 power. Power Added Efficiency (PAE) takes into 

consideration the power consumed at the input. Observing Figure 1.2, we write several 

power relations: 

𝑃𝐷𝐶 = 𝑉𝐷𝐶𝐼𝐷𝐶 (1.4) 
 

𝑃𝑅𝐹𝑜𝑢𝑡 =
1
2
𝑣𝑅𝐹𝑜𝑢𝑡𝑖𝑅𝐹𝑜𝑢𝑡 (1.5) 

 

𝑃𝐿𝑜𝑠𝑠 =
1
𝑇
� 𝑖𝐷(𝑡)𝑣𝐷(𝑡)
𝑇

0

 (1.6) 

 
 In regards to a linear PA, the input and output power are clean RF band-pass 

signals with no harmonics. These types of PAs are operated in the linear region of the 

transistor I-V curve in order to provide linearity; however, they are inherently inefficient 

with a theoretical maximum obtainable efficiency of 50%. PAs operated in the nonlinear 

region tend to have much higher efficiency (theoretically approaching 100%), but tend to 

produce significant harmonic content. This paper addresses an amplifier that is internally 

highly nonlinear, but quite linear in terms of the system input-output relationship. 

  

                                                      
5 We hope to design a linear system and filter out any harmonic when operating the transistor in a 
nonlinear mode.  
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1.3 PA Classes & the “Hockey-Stick” I-V Curve 

1.3.1 PA Families 

 Depending on how transistor PAs are operated, they fall under certain “class” 

designations (i.e. A, B, C, etc.). The PA family tree in Figure 1.3 shows that PAs divide 

into two branches depending upon how they are operated. If we operate the main 

amplifying transistor as a V-I converter, the device is known as a current PA and operates 

on the principle of the conduction angle (θ). Class A, B, and C PAs fall into this category; 

this is the focus of the following section. If, however, we operate the transistor as a 

switch, the device is known as a switching PA; these include classes D, E, and F. Since 

these PAs are by definition, overdriven, they cannot process amplitude modulated signals 

such as nQAM (n quadrature amplitude modulation) used in LTE [5].These amplifiers 

find application in single channel or constant envelope systems that utilize FSK, GMSK, 

QPSK, or DQPSK [6]. The work in this paper is concerned with the first branch of the 

PA family tree, or the current PAs. 

Class A Class B Class C

Mode of Operation

Class D Class E Class F

“Conduction Angle” “Wave Shaping”

V-I Converter Switch

 
Figure 1.3 PA family tree. Adapted from "Power Amplifier Principles and Modern 
Design Techniques," by V. Prodanov & M. Banu, 2008, Types of PAs and the Concept of 
Conduction Angle. Copyright 2008 by Taylor & Francis. 
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1.3.2 Class A, B, & C Operation & the "Hockey –Stick” I-V Characteristic 

 To understand how class A, B, and C PAs work, we need to look at the I-V 

transistor characteristics of the transistor device. Figure 1.4 shows an idealized I-V curve 

for a FET device, which relates the drain current to the gate voltage6. Biasing the 

amplifying transistor in the linear portion of the curve results in class A operation, 

biasing at the knee7 results in class B operation, and biasing below the knee results in 

class C operation. The theoretical maximum efficiency is 50% for class A, 78.5% for 

class B, and asymptotically approaching 100% for class C. Class A is characteristic of a 

drain current with a DC level that remains constant regardless of drive. In class B 

operation, however, the DC level of the current changes with drive. For class C operation, 

the DC level and the conduction angle of the current change with drive.  

TimeGate Voltage
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Class A

Ɵ=360°

Ɵ=180°

Ɵ<180°

Idealized I-V Characteristic Curve
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(PEmax —› 100%)
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Figure 1.4 Class A, B, & C operations on an idealized I-V transistor characteristic. 
  

                                                      
6 A PA device is biased in active move to utilize a transistor’s amplifying ability. 
7 The knee is the point at which the idealized curve goes to zero.  
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 Figure 1.5 illustrates the aforementioned characteristics of class A, B, and C 

operations. 

Drain 
Voltage

Time

Fixed DC level

Fundamental 
Component

Drain 
Current

Time

Fixed DC level

Drain 
Current

Time

Variable DC level

Drain 
Current

Time

Class A

Class B

Variable DC level

Variable 
Conduction Angle

Class C

 
Figure 1.5 Drain voltage and current characteristics for Class A, B, & C operations. 
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 Observe that the ideal I-V curve shown in Figure 1.4 has a sharp knee. Realistic 

transistors, however, have a more gradual turn-on – their I-V characteristics have a soft 

knee as shown in Figure 1.6. This characteristics is “weakly” nonlinear as opposed to the 

ideal characteristic presented earlier.  
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Soft Knee

Dr
ai

n 
Cu

rr
en

t

 
Figure 1.6 I-V curve of a practical transistor. 
 

1.4 Challenges in Wireless Communication PAs 

1.4.1 High Peak-to-Average Ratios  

 In modern wireless communication systems, we encounter digital modulation 

schemes that have high peaks relative to the average signal level over many cycles of the 

carrier. The figure of merit that quantifies this is the peak-to-average ratio (PAR). High 

PAR presents challenges in designing linear and efficient PAs. Particularly, the small and 

large signal components of the composite digital signal must amplify in the same dose to 

ensure linearity. Overall linear operation will hold true for class A and even class B 

operation, but we encounter issues operating the PA in Class C operation. The design 

methodology presented in this paper attempts to address this issue. The next section deals 

with power control - perhaps the most challenging issue in designing PAs for wireless 

communications. 
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1.4.2 Power Control  

 A typical base station may serve a few hundred users within its cell coverage. 

The most pressing issue with handling all the users is the so-called near-far problem. This 

problem entails the condition where the base station receives a strong signal from a 

nearby user and in the process masks a weaker signal from a faraway user. Since CDMA 

shares the same transmission bandwidth and timing, this problem greatly afflicts CDMA 

systems [7]. Due to this near-far problem, base stations enforce power control. Table 1.2 

shows power control specifications for several wireless standards. As mentioned power 

control is critical for CDMA – it requires 70-80dB of power control. This power control 

and its corresponding PAR present significant difficulties in the design of RF PAs.  

 How does power control affect the performance of an RF PA? In this discussion, 

we refer to Figure 1.7. Initially, assume that the nominal output power corresponds to the 

RF input drive shown in red. This results in a drain current with a peak current much 

larger than the DC bias current. Assuming the peak fundamental component8 (half the 

peak current for class B operation) is also much larger than the DC current, the PA 

operates efficiently. The PE is proportional to the ratio of the peak fundamental RF 

current to the DC bias current.  

𝑃𝐸 ∝
𝑖𝑅𝐹,0

𝐼𝐵𝐼𝐴𝑆
 (1.7) 

 
The blue curves indicate the case where the base station has directed the PA to reduce its 

output power. This results in a peak fundamental component that is almost proportional 

to the DC current, indicating poor efficiency. Clearly, there is a need for better design. 

  

                                                      
8 We hope to filter out all the harmonics with our matching network / harmonic trap. 
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Table 1.2 PAR, Bandwidth, and Power Control Specification. Adapted from "Power 
Amplifier Principles and Modern Design Techniques," by V. Prodanov & M. Banu, 2008, 
Current PA Technology and Recent Developments. Copyright 2008 by Taylor & Francis. 
 

Wireless Standard PAR 
(dB) 

Signal Bandwidth 
(MHz) 

Power Control 
(dB) 

    

AMPS, GSM, GPRS, EDGE Low (~0-3.2) Small (≤0.2) Moderate (≤30) 
CDMA, CDMA2000, WCDMA Moderate (3-5) Large (1.23, 3.84) Very large  (70-80) 
IEEE 802.11a, IEEE 802.11g Large (>7) Very large (~17) N/A 
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Figure 1.7 Implications of power control on RF PAs. 
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1.4.3 Prior Art  

 In order to address the inefficiency problem discussed in the previous section, it 

may be tempting to solve the issue by reducing the bias (approach class C operation) as 

shown in Figure 1.8. However, dynamic signals with large PARs will undergo uneven 

power gain. This reasoning comes about from the fact that the conduction angle under 

class C operation does not stay constant (see Figure 1.5). When the conduction angle 

varies for different RF drives, the shape of the drain current essentially changes (i.e. we 

have nonlinearity).  

 From the previous discussion, we conclude that in order to obtain a linear PA, we 

need to hold the conduction angle constant. Much of the prior art in adaptive biasing9 

solutions seems to neglect this important detail. The inventor of the patent in [8] seems to 

understand that linearity and constant conduction angle are related, but doesn’t formally 

acknowledge this. Figure 1.9 shows a block diagram of the topology described by the 

patent. The RF signal feeds into a driver transistor10 and a sampling transistor (sampling 

stage) converts the input drive into a current drive at its output. The averaging stage 

consists of a two-stage cascaded current mirror with an RC filter in each stage. This 

filtering serves to yield an average value of the current. The output of this stage feeds into 

a resistive divider that converts this current into a voltage, which is applied to the base of 

the class C PA. This circuit topology aims to reduce the DC bias as RF drive increases. 

Despite the claim by the inventor stating that the circuit should maintain the conduction 

angle, there is no clear evidence to the matter. The adaptive biasing strategies described 

in [9, 10, 11] follow a similar type of strategy. They seem to adjust “hidden” knobs in 

order to obtain best linearity and lowest third order intermodulation distortion (IMD3).  

                                                      
9 It is worth noting papers in this field of study often mention “envelope injection” when referring 
to adaptive biasing schemes. Since wireless modulation methods such as nQAM have amplitude 
modulation, the DC bias must follow the envelope of the RF signal for adaptive biasing to work. 
10 The author vaguely mentions that this can be biased in class B but offers no explanation. 
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The most significant issues with the prior art are the following: 

• The implementations use an open-loop strategy for adaptively biasing. 
They don’t sense the operating conditions (the state of the drain current) 
of the actual class C PA, which truly defines the conduction angle.  
 

• In addition, some of the approaches pass the RF signal through a driver 
stage, which can prove troublesome if device mismatches occur over time; 
these conditions could adversely affect efficiency and linearity. 
 

• There is really no clear-cut consensus on how to obtain class C linear 
operation; [8] seems to suggest, but not outright claim, that linearity and 
constant conduction angle are interwined.  
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Figure 1.8 Reducing bias for low drives. 
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Figure 1.9 Approach to adaptive biasing used by [8]. 
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2 
Constant Conducion Angle Biasing 

2.1 Teory 

s mentioned in the previous chapter, when we operate in class C, the conduction 

angle (conduction period) changes with drive. The conduction angle increases 

with an increase in RF drive and this indicates nonlinearity. Figure 2.1 illustrates this 

issue. To understand this analytically, we need to first look at the I-V characteristics of a 

transistor. 
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Figure 2.1 (a) Non-ideal widening of drain current with conventional class C biasing; 
(b) Desired class C operation. 
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Figure 2.2 Voltage-to-current conversion of an ideal transistor with a "hockey-stick" 
I-V characteristic. 
 

Figure 2.2 shows the I-V curve for an ideal transistor with a sharp turn-on. After some 

detailed analysis, to which we direct the reader to Appendix A, we obtain several 

important equations. Equation (2.1) relates the DC to AC11 ratio to the conduction 

angle12. Equations (2.2) and (2.3) relate the DC and fundamental current, respectively, to 

RF drive and conduction angle.  

𝑉𝐷𝐶
𝑉𝐴𝐶

= − cos �
𝜃
2
� (2.1) 

 

𝐼𝐷𝐶 =
𝑔𝑚𝑉𝐴𝐶
𝜋

�sin �
𝜃
2
� −

𝜃
2

cos �
𝜃
2
�� (2.2) 

 

𝐼𝜔0 =
𝑔𝑚𝑉𝐴𝐶

2𝜋
[𝜃 − sin(𝜃)] (2.3) 

 

                                                      
11 This refers to the peak value of the RF voltage swing, and what we hitherto called RF drive.  
12 The conduction angle is in units of radians. 
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The aforementioned DC and fundamental drain current expressions show that as long as 

the conduction angle holds constant, linearity is ensured. The next few sections will 

explore methods on how to implement this. For brevity, we will use the abbreviation, 

CCA, to refer to constant conduction angle throughout the rest of this paper.  

2.2 A Poor-Man’s CCA Biased Class C PA 

It is important to give credit where it’s due. This section summarizes the approach, 

issues, and conclusions from the work performed by Greg LaCaille, in conjunction with 

Professor Prodanov, when the CCA idea was in its infancy.  

2.2.1 Ideal Class B Operation 

 We beging by noting that a conduction angle of 180° corresponds with an ideal 

class B operation. Substituting this conduction angle into (2.2) and (2.3) leads to the 

following results: 

𝐼𝐷𝐶 =
𝑔𝑚
𝜋
∙ 𝑉𝐴𝐶  (2.4) 

 
𝐼𝜔0 =

𝑔𝑚
2
∙ 𝑉𝐴𝐶 (2.5) 

 
Thus an ideal class B PA is linear irrespective of RF drive.  

2.2.2 CCA Biasing using a Pair of Scaled Replica Transistors: 
Equal RF Drive, Unequal DC Ratio Method 

 Consider that we have two identical (the same transconductance or gm) and 

matched devices that are driven by the same RF drive. They differ only by how they are 

biased – one is biased in class C and the other is biased in class B.  
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We write the expression for the DC current of the class C: 

𝐼𝐷𝐶,𝐶 =
𝑔𝑚𝑉𝐴𝐶
𝜋

�sin �
𝜃
2
� −

𝜃
2

cos �
𝜃
2
�� (2.6) 

 
The DC current of the class B follows: 

𝐼𝐷𝐶,𝐵 =
𝑔𝑚
𝜋
∙ 𝑉𝐴𝐶  (2.7) 

 
Notice that the ratio of the DC currents yields: 

𝐼𝐷𝐶,𝐶

𝐼𝐷𝐶,𝐵
= sin �

𝜃
2
� −

𝜃
2

cos �
𝜃
2
� (2.8) 

 
Thus, if we can keep the DC currents of the class B and C devices in constant proportion 

the conduction angle stays significantly13 constant. A strategy to accomplish this is by 

implementing a fixed-biased14 class B device which produces a “reference” low-

frequency current, 𝐼𝐷𝐶.𝐵, based upon the RF drive. A servo loop than provides the gate 

bias of the class C device in a manner such that the ratio of the DC currents of the class B 

and C devices remain in constant proportion regardless of RF drive. Setting the ratio of 

the DC currents determines the conduction angle of the class C device.  

 Designed properly, with a servo loop that has enough bandwidth to accommodate 

the bandwidth of the modulated RF signal, the class C device should have low IMD3 in 

the face of complex modulation schemes used in wireless communication systems.  

 Figure 2.3 shows the block diagram of the approach investigated by LaCaille. A 

fixed DC source biases the class B transistor, while the feedback loop provides the bias 

for the class C transistor and the 100x scaled replica class C power transistor. The RF 

capacitively couples to all three devices. This approach assumes respectable matching of 

the like components and good thermal matching.  

                                                      
13 We say “significantly” here because our analysis is based on an ideally sharp knee when in 
reality the knee is soft for a practical solid state transistor. 
14 Biased at the gate for a FET, or base for a BJT. 
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Figure 2.3 Simplified block diagram of LaCaille’s CCA biasing approach. 
 

2.2.3 The Major Drawback with the Approach 

 By virtue of the design discussed in the previous section, the RF drives to the 

class B and C devices must be the same. This requirement proves a significant problem 

for the class C PA. Referring to Figure 2.4, we see that the class B transistor reaches its 

maximum output current first. Note that beyond this point, the class B transistor will 

saturate and no longer provide a valid DC current reference for the class C PA. Thus, this 

point sets the maximum allowable input RF drive to the PA. Since the class C PA cannot 

use the full extent of the practical I-V curve, this invalidates the proposed design. 

 Perhaps, a less serious issue with the design is the use of capacitive coupling to 

three different points in the circuit from one source. Not only is it impractical to couple 

into three points, but the capacitors introduce more poles into the system.  
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Figure 2.4 Underutilization of Class C PA with equal RF drive and unequal DC current 
ratios method. 

 

2.3 An Improved CCA Biased Class C PA 

The following strategy was explored and simulated by Stephen Garber and implemented 

by Michael Spahn. 

2.3.1 CCA Biasing using a Pair of Scaled Replica Transistors: 
Unequal RF Drive, Equal DC Ratio Method 

 Assuming identical devices as before, consider now the RF drives are different. 

We have the following expressions for the DC currents: 

𝐼𝐷𝐶,𝐶 =
𝑔𝑚𝑉𝐴𝐶,𝐶

𝜋
�sin �

𝜃
2
� −

𝜃
2

cos �
𝜃
2
�� (2.9) 

 
𝐼𝐷𝐶,𝐵 =

𝑔𝑚
𝜋
∙ 𝑉𝐴𝐶,𝐵 (2.10) 
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Forcing the DC currents equal, we obtain the following relation for the ratio of the 

RF drives: 

𝑉𝐴𝐶,𝐵

𝑉𝐴𝐶,𝐶
= sin �

𝜃
2
� −

𝜃
2

cos �
𝜃
2
� (2.11) 

 
This proves better than the previous strategy of “equal RF drive, unequal DC current 

ratio”, since the class C has a larger drive than the class B device allowing it to have a 

higher maximum current. However, apparent from Garber’s work15, it still can’t deliver 

the maximum possible current. The block diagram for this concept is shown in 

Figure 2.5. The associated detailed schematic of the circuit16, which was built by Spahn, 

is shown in Figure 2.6. The RF coupling and drive scaling are impractical, the 

current-setting resistors are too small, and there are issues with loop stability (observed 

by Spahn in the lab). We address the specifics of the loop stability in Chapter 3. 
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Bias 

RF Drive 
Control

 
Figure 2.5 Simplified block diagram of Garber’s CCA biasing approach. 

                                                      
15 The peak swing of the class B devices is always greater than the class C device at any time. 
16 This implementation uses BJTs but this is valid because the I-V characteristics are very similar 
to a FET device. The difference lies in the fact that BJTs are current-controlled devices and 
require a small amount of base current to operate. 
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Figure 2.6 Detailed schematic of the CCA biasing circuit built by Spahn. 
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2.3.2 CCA Biasing using a Pair of Scaled Replica Transistors: Hybrid Control 

 In addition to showing that a CCA can be achieved using different RF drives, 

Garber also noticed a mixed possibility. Notice that the previous schemes are the extreme 

cases of the more general scheme: 

𝐼𝐷𝐶,𝐶

𝐼𝐷𝐶,𝐵
∙
𝑉𝐴𝐶,𝐵

𝑉𝐴𝐶,𝐶
= sin �

𝜃
2
� −

𝜃
2

cos �
𝜃
2
� (2.12) 

 
The first case assumes that the second quantity has a ratio of 1 and the second case 

assumes the first quantity has a ratio of 1. Thus for the same conduction angle there are 

an infinite amount of possible solutions and in the ideal case they are all equivalent. 

However, in the case of a practical transistor with a soft knee, there should be an 

optimum solution. This solution should yield the most linear fundamental response and 

the lowest IMD3. 

2.4 An Optimum Hybrid Approach 

Previously we mentioned the issue of Class C device never achieving the maximum 

possible drain current. How do we do this? We need to ensure equal peak excursions of 

the class B and C devices. To begin the peak excursions of the two devices follow: 

𝑉𝑝𝑘,𝐵 = 𝑉𝐴𝐶,𝐵 (2.13) 
 

𝑉𝑝𝑘,𝐶 = 𝑉𝐴𝐶,𝐶 + 𝑉𝐷𝐶,𝐶  (2.14) 
 
Using (2.1), we rewrite (2.14) to the following form: 

𝑉𝑝𝑘,𝐶 = 𝑉𝐴𝐶,𝐶 �1 − cos �
𝜃
2
�� (2.15) 

 
In order to determine the optimum RF drive ratio, we equate (2.13) and (2.15): 

�
𝑉𝐴𝐶,𝐵

𝑉𝐴𝐶,𝐶
�
𝑜𝑝𝑡

= 1 − cos �
𝜃
2
� (2.16) 
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To determine the optimum DC current ratio, we substitute (2.16) into (2.12): 

�
𝐼𝐷𝐶,𝐶

𝐼𝐷𝐶,𝐵
�
𝑜𝑝𝑡

=
sin �𝜃2� −

𝜃
2 cos �𝜃2�

1 − cos �𝜃2�
 (2.17) 

 
The optimum RF drive and DC current ratios constrain us to one set of requirement per 

conduction angle. The requirements for a range of class C conduction angles are shown 

in Figure 2.7. Figure 2.8 shows a pictorial representation of the idea of equal peak 

excursion. Notice that we can now drive the class C PA to its maximum output current. 

 
Figure 2.7 Optimum hybrid control ratio requirements for various conduction angles. 
Plot generated in MATLAB. 
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Figure 2.8 Pictorial depiction of optimum hybrid control. 

 

2.5 Fundamental Troughput and  Eciency Tradeoo 

Before concluding this chapter, the implications of different conduction angles, in terms 

of how much fundamental current is produced and the associated efficiency, require some 

discussion.  

 For this discussion, we observe Figure 2.9. This plot shows the harmonic content 

of the drain current for each conduction angle. It also plots the maximum possible 

efficiency17 for the conduction angles. The reader may refer to Appendix A to find the 

drain current expressions used to plot the harmonics. For the efficiency18 expression we 

have the following: 

𝜂 =
𝑃𝑅𝐹𝑜𝑢𝑡
𝑃𝐷𝐶

=
1
2𝑉𝑜𝑢𝑡𝐼𝑜𝑢𝑡
𝑉𝐷𝐶𝐼𝐷𝐶

   

 
For maximum swing on the output, 𝑉𝑜𝑢𝑡 = 𝑉𝐷𝐶 . Thus we have on the following page: 

                                                      
17 The case when the output impedance is set for maximum swing. 
18 When calculating efficiency we are concerned with the fundamental components. The 
expression used here is also found in Appendix A. 
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𝜂 =
1
2𝑉𝐷𝐶𝐼𝑜𝑢𝑡
𝑉𝐷𝐶𝐼𝐷𝐶

=
1
2
𝑔𝑚𝑉𝐴𝐶

2𝜋 [𝜃 − sin(𝜃)]
𝑔𝑚𝑉𝐴𝐶
𝜋 �sin �𝜃2� −

𝜃
2 cos �𝜃2��

=
𝜃 − sin(𝜃)

4 �sin �𝜃2� −
𝜃
2 cos �𝜃2��

 (2.18) 

 
From the figure, we notice a few things. First, the second harmonic is particularly strong 

for class C operation – strongest at a conduction angle of 120°. This conduction angle 

corresponds to an efficiency of about 90%! Another important characteristic to notice is 

that the fundamental component starts dropping off steeply as the conduction angle 

becomes smaller. The conduction angle of 120° seems to be a reasonable practical point 

of tradeoff between fundamental throughput and efficiency. After this point, the 

fundamental starts dropping off too steeply. Depending on what type of tradeoff the 

specific application requires, the designer may choose the appropriate conduction angle 

in the range highlighted in the figure. 

 
Figure 2.9 Harmonic drain current and efficiency vs. conduction angle. Plot generated 
in MATLAB. 
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3 
CCA Biasing Design & Simulation  

3.1 Approach 

he use of matching networks and tuning sometimes puzzles analog electronic 

design engineers. Similarly, microwave engineers sometimes get into trouble with 

stability when designing DC bias networks for amplifiers. So, for a design concept such 

as the one19 presented, we want to approach the problem in a modular approach – first 

working out the basic “analog issues” and then scaling the concept to the application 

frequency. Instead of trying to design the circuitry at the cellular band frequency, we 

instead scale down the frequency to avoid dealing with transmission line effects. This 

chapter deals with the development and design of the practical CCA biasing topology, 

analysis of its control loop, and its performance in terms of linearity and IMD3.  

   

                                                      
19 This is especially important because we have a control loop in the system and if designed 
improperly we quickly run into stability issues. 

T 
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3.2 Proposed Design Topology 

Figure 1.2 shows the conceptual schematic of the CCA. We begin by describing the 

different sections of the proposed design. First, notice that we have solved the issue of 

multiple capacitive coupling by only capacitively coupling into one point. The class B 

transistor sensor obtains its RF drive by virtue of the transformer/narrowband choke. The 

class C transistor sensor in this design is a part of the power device – it is one finger of 

the whole20. Each of these fingers is a “small” transistor (the same size as the class B 

sensor) that carries the same current as the others. So, we just need to sample one of these 

fingers in order to sample the operating condition of the class C PA. In an integrated 

circuit (IC) implementation, we would place the class C sensor in the middle of the 

cascade so that it would best compensate for real-time transistor thermal conditions.  

 The current filters remove the fundamental and harmonic components of the 

drain current to yield the DC levels of the currents. The non-inverting integrator21 senses 

the DC levels of the class B and C sensors by the voltage drops that occur across resistors 

𝑅𝐵 and 𝑅𝐶, respectively. The integrator then forces the “error” to zero; i.e. it will adjust 

the gate voltage of the class C to cause the voltages 𝑉𝐵𝑟𝑒𝑓 and 𝑉𝐶𝑟𝑒𝑓 to be equal. Thus, 

the ratio of the “current-sense” resistors determines the DC current ratio. The drive ratio 

is simply controlled by the secondary windings of the transformer22.  

 The output network consists of an impedance matching section. The impedance 

required for maximum swing will typically differ from the terminating load impedance. 

Thus we scale the impedance with a matching network. Also, note, we can design a 

matching network to incorporate filtering of the harmonics produced by the class C PA. 

We discuss this issue in more detail in Chapter 4.  

                                                      
20 This is known as a multi-fingered transistor and is essentially a composite transistor consisting 
of many “small” cascaded transistors in order to create a power transistor in an IC.  
21 We are ensured negative feedback by the transistor which inverts the signal by 180°. 
22 The class B transistor will always be driven less than the class C as shown in Figure 2.7. 



 

28 

Mcx

Class C PA

RFin 

CACin

VCC

Lb

Mb

RB

50Ω 

RFout 

VBref

Class C “Sensor”

Non-Inverting 
Integrator

VCC

VCC

RFC

Multi-Fingered 
Transistor

Class B “Sensor”

Cc

RC

VCref

∫

Class B 
Biasing

Current 
Fitler

Current 
Fitler

Mcx-1 Mcx+1

Lc

Z-Match

CACout

50Ω 

Harmonic Trap/
  Z-Match

DC Current 
Ratio Control

RF Drive 
Control / Choke

 
Figure 3.1 A conceptual schematic of the optimized CCA biasing topology. 
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3.3 Implemented Design Details 

Ideally we want to fabricate the circuit in an IC with matched devices in order to test the 

full extent of the design. Such an endeavor is bold and requires a significant amount of 

additional research and coordination. However the priority, initially, is to develop a 

“quick and dirty” proof-of-concept. This is the motivation of the present work.  

 In order to demonstrate a multi-fingered PA, we used the CA3086 IC, which 

consists of 5 NPN BJTs each. We discuss the details of the actual prototype 

implementation in the next chapter. Notice, that although we performed our CCA 

analyses based upon FETs, the I-V characteristics of FETs and BJTs are similar. Thus, 

the proposed topology should hold the conduction angle of a BJT constant as well. 

 For the feedback, we use an LM6134 rail-to-rail operational amplifier (op-amp). 

A rail-to-rail capability allows for the ability to bias the class C low enough. 

Additionally, the op-amp has a gain-bandwidth product (GBW) about 10 times the design 

frequency of 1MHz. This allows for a more “ideal” integrator at the design frequency and 

we need not worry about the op-amp dynamics effecting CCA biasing operation. 

 Originally, simulations were performed in LTspice. However, LTspice performs 

poorly in the frequency-domain, when analyzing the non-linear behavior of 

reduced-conduction angle mode devices. This prompted the change to move to 

Agilent ADS to perform the simulations. The harmonic balance method23 used in ADS 

allows for effective frequency-domain simulations especially in determining 

intermodulation distortion in circuits.  

 Figure 3.2 shows the detailed schematic of the design explored in this paper. The 

next few sub-sections contain discussions on the details of the circuit. 

                                                      
23 Much regard goes to Matthew King for his assistance in learning this simulator in ADS. 
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Figure 3.2 The detailed schematic of the designed and simulated CCA biasing topology. 
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3.3.1 The Emitter Degeneration  

 In the design presented, notice that the transistors are emitter degenerated. 

Emitter degeneration24 simplifies the design of a common emitter (CE) amplifier by 

making the DC bias and AC gain more reliable as described in [12]. Additionally, RF 

power devices typically a parasitic emitter resistance that “degenerates” the response, 

making the I-V characteristic more linear. 

  Figure 3.3 shows a plot of the I-V characteristic of a single transistor of the 

CA3086 IC, for the cases of degeneration versus no degeneration. In the case of no 

degeneration, the curve is very steep. This implies that any slight variations in the I-V 

characteristics of the transistors in the IC may lead to widely varying collector currents. 

In addition, we want the class B and C sensors to dissipate negligible power in 

comparison to the class C PA. Thus, as seen in the figure, a degeneration resistance of 

22Ω provides a much more appealing I-V curve for the CCA biasing design.  

 Finally, we give a brief statement on the I-V curve of an emitter degenerated 

CE amplifier. The degeneration essentially changes the transconductance, or gm, and 

gives rise to an effective transconductance, as described in [13]. We can write the 

effective transconductance as:  

𝑔𝑚(𝑒𝑓𝑓) =
𝑔𝑚

1 + 𝑔𝑚𝑅𝑑𝑒𝑔
 (3.1) 

 
For a large transconductance, the effective transconductance approaches 1/𝑅𝑑𝑒𝑔.  

  

                                                      
24 Emitter degeneration is a type of “negative feedback” 
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Figure 3.3 Effect of degeneration on the I-V characteristics of an NPN CA3086 BJT. 
Simulated in ADS. 
 

3.3.2 The “Buffered” Class B Bias & Benefit of Inductive Coupling 

 For this discussion, we refer the reader to Figure 3.4.The class B sensor obtains 

its bias via current mirror action. This current mirror topology is slightly different from 

the classical topology. In place of the collector-base diode-connection of the bias 

transistor, we place a transistor in the path as shown. The reasoning for this design comes 

from the fact that a BJT is in essence a current controlled current device. It requires some 

amount of base current to produce the desired collector current. This implies that as the 

input drive to CE amplifier increases, more and more base current is requested by the 

base.  
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 Thus in the configuration presented, the transistor placed between the collector 

and base of the biasing transistor provides the current requested by the class B sensor. It 

essentially acts as a buffer. Recall, that the current requested by the base of a CE BJT is 

𝛽 (CE current gain) times smaller. Thus, the buffer needs only to provide this small 

amount of current25 for the class B device; the base current drawn by the buffer will be 

another 𝛽 times smaller (i.e. very negligible). This approach prevents “current starving” 

the bias transistor when driving the class B sensor with large RF drives. 

 The approach to inductively couple the RF signal to the class B device is very 

appealing since it does so without disturbing the bias branch. Additionally, since an 

inductor presents itself as a short to DC, the bias and class B transistors share the same 

base bias voltage regardless of RF drive. We obtain a fixed bias for the class B sensor as 

required by the CCA biasing topology.  

Qbuffer

Qbias

Rdeg

Cstab1

Cstab2

VCC

Qb

IBIAS

Rdeg

~IBIAS ~IBIAS

 
Figure 3.4 The “buffered” biasing of the class B sensor. 
  

                                                      
25 Depending upon the RF drive presented to the class B sensor. 
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3.3.3 Sections of the Control Loop & the Rest of the Circuit 

 As RF drive is applied to the circuit, the class B sensor starts producing current 

with a conduction angle of about 180°. This current flows through a two-stage CR filter 

to remove the fundamental and harmonic content, yielding the average or DC current on 

the other side. The class C sensor performs in the same manner. The op-amp integrator 

then acts to bring the steady state error to zero by biasing the class C sensor to force 

𝑉𝐵𝑟𝑒𝑓 to equal 𝑉𝐶𝑟𝑒𝑓. The ratio of the DC currents is therefore set by the ratio of the 

resistors 𝑅𝐵 and 𝑅𝐶. These resistors should be large enough in value to produce a suitable 

voltage drop for small RF drives in order to be sensed by the op-amp as a difference. We 

defer the analysis of the integrator, compensation pole, and loop to the next section. 

 In regards to the transformer/narrowband choke, we resonate using an LC in 

order to produce high impedance to RF without the use of very large valued inductors – 

especially at 1MHz!  

 Finally, in terms of the class C PA, it is implemented as a cascade of 12 CA3086 

BJTs26 with their bases and collectors tied together. The class C sensor is placed in the 

“middle” of this cascade27 with only its base tied to the rest of the transistors. The 

composite collector of theses transistors is connected to the DC power supply through an 

RF choke. In order to filter the harmonics generated by class C operation, we utilize the 

filtering properties of the matching network (required to scale the impedance for 

maximum collector voltage swing). A more detailed discussion on the design of the 

matching network is found in Chapter 4. 

  

                                                      
26 These were spread amount 3 ICs since each CA3086 contains 5 BJTs. 
27 This is done to attempt to compensate for temperature differences between at least 2 of the ICs. 
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3.4 Loop Analysis 

Perhaps the most important issue to discuss is the control loop. The design of loop proves 

critical in obtaining stability and optimum loop bandwidth. In the CCA biasing topology, 

we need enough loop bandwidth to accommodate the changing envelope of the incoming 

modulated RF signal. If the bandwidth of the signal exceeds the bandwidth of the loop, 

the signal will typically start to encounter phase problems; the IMD3 of the PA will as a 

consequence increase tremendously. For a typical integrator, the loop bandwidth is the 

width of the region with loop gain above28 0dB. Figure 3.5 shows a pictorial of this for an 

inverting integrator. 

 In the next section, we provide a model of the control loop in the CCA biasing 

circuit. We then present simulations in regards to the open-loop response. 

Freq. (Hz)

Magnitude 
(dB)

0dB 

Freq. (Hz)

Phase 
(deg)

0°

-90°

Unity gain frequency determines 
the “maximum” bandwidth that 
the loop can support. 

(For a good design, the unity gain 
frequency should be higher than the 
bandwidth of the RF signal) 

-20dB/dec

 
Figure 3.5 The magnitude and phase response of an inverting integrator. 
 

  

                                                      
28 The feedback will start to become ineffective for signal components close to 0dB gain. Thus, 
when designing the system, we would like our 0dB frequency to be a good degree higher than the 
maximum bandwidth of RF signal to be injected in the system. 
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3.4.1 The Loop Model 

Figure 3.6 shows an open-loop model for the CCA biasing circuit. We begin our 

discusion at the inputs of the operational amplifier. The class B filter presents only the 

“DC29” reference to the integrator.The filter on the class B side does not have a 

significant affect on the open-loop response. The non-inverting30 integrator consists of 

the class B current-setting resistor and the feed back capacitor. To understand the 

reasoning for the compensation pole following the integrator, we first write the 

integrator’s transfer function: 

𝐻 =
1 + 𝑠𝑅𝐵𝐶𝐹𝐵
𝑠𝑅𝐵𝐶𝐹𝐵

=
1 + 𝑠

𝜔𝑍
𝑠
𝜔0

 (3.2) 

 
From the transfer function, we realize that it has a left-hand plane zero, which is quite 

problematic since this the zero prevents the gain response from continuing to drop off 

after reaching 0dB. Although we achieve improved phase margin, we lose gain margin. 

This should not be understated since the class C sensor provides a significant amount of 

gain (proportional to gm). In order to alleviate the problem, we add a compensation pole 

since 

𝐻 ∙
1

1 + 𝑠
𝜔𝑍

=
1
𝑠
𝜔0

 . 

 
The values of compensation components have to equal the values of the components that 

form the zero. Thus, 𝑅𝐶𝑂𝑀𝑃 = 𝑅𝐵 and 𝐶𝐶𝑂𝑀𝑃 = 𝐶𝐹𝐵  

 In terms of the other components we have the transformer/choke, which due to its 

resonance produces a significant phase swing at the RF carrier frequency. This however, 

does not pose a problem since the open-loop gain, at this point, is below 0dB. The input 

                                                      
29 The low-frequency, baseband, content for a dynamic signal. 
30 Note, we use a non-inverting integrator because the class C amplifier inverts the signal such that 
there is negative feedback. Clearly, if we used an inverting integrator, we have an unstable system. 
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AC capacitance also introduces slight effects on the loop behavior. The transconductance 

stage (i.e. the class C sensor) that follows ads a significant gain to the response. This 

gain, what we call GMeff, is related to the transconductance and the conduction angle by 

the following equation: 

𝐺𝑀𝑒𝑓𝑓 ≈
𝑔𝑚
2𝜋

∙ 𝜃 [𝑟𝑎𝑑] (3.3) 
 
The derivation of this equation can be found in Appendix B. Note that for an emitter 

degenerated case, simply replace gm in the above equation with gm(eff). 

 Finally, the last stage of the loop is the output of the class C sensor’s collector 

which feeds into a two-pole filter. This presents a significant effect on the response. 

Particularly, a tradeoff exists between how well the signal is filtered and the loop 

bandwidth. The following section presents some simulations that show how the different 

sections of the loop affect the response. 
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Figure 3.6 Open-loop model of the CCA biasing circuit. 
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3.4.2 Simulations of the Open-Loop Response 

 In the work presented, we focus on one conduction angle (θ=120°) to really 

understand how the system performs. The idea behind the work is to present a strategy to 

best design the CCA biasing circuit for a given conduction angle. In any case, we present 

some simulations of the open-loop response. The values used in the simulation reflect the 

final design values and are tabulated in Table 1.1 below. 

 In addition to values shown, the effective transconductance due to the emitter 

degeneration is 0.042S (see Figure 3.3). For a conduction angle of 120°, the GMeff 

calculates to 1/3 of this value, or 0.014S. We use this value in simulating the open-loop 

response in ADS. 

 It is important to state that stability is ensured if the phase is greater than 180° for 

magnitudes of 0dB or greater. So, we begin by showing the impact of the two pole filter 

in the collector of the class C sensor in Figure 3.7. We see that although the the filter 

reduces the loop bandwidth by a certain degree (~10kHz), it impact the phase 

considerably. The phase starts “rotating” much earlier. This problem may be alleaviated 

if we increase the cutoff frequency of the current filter. However this comes at the 

expense of filtering out the fundamental and harmonics31.  

 

Table 3.1 Values used in simulating CCA biasing circuit for θ=120°. 
 

𝑹𝒇𝒊𝒍𝒕𝒙 1kΩ 𝑪𝒇𝒊𝒍𝒕𝒙 2.7nF 
𝑹𝑩 = 𝑹𝑪𝑶𝑴𝑷 1kΩ 𝑹𝑪 1.46kΩ 

𝑳𝑪 76.8µH 𝑪𝑪 330pF 
𝑪𝑨𝑪𝒊𝒏 10nF 𝑪𝑭𝑩 = 𝑪𝑪𝑶𝑴𝑷 100nF 

 

 Figure 3.8 shows the effect of compensation on the overall open-loop response. 

As mentioned before, we achieve phase margin (PM), but lose gain margin (GM)32. 

                                                      
31 This is undesirable because we want only the DC component. 
32 PM=∠H(s)|H(s)|=0dB+180°, GM=0dB-20log10|H(s)|∠H(s)=-180°; These values should be positive. 
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The trouble area is around 200kHz, where we still have gain in the system and the phase 

starts to swing sharply. This phase swing is undesirable and can lead to instability. 

 
Figure 3.7 Effect of the current filter of the class C sensor on the open-loop response. 
Dotted Lines – Phase, Solid Lines – Magnitude. 

 

 
Figure 3.8 Effect of the compensation on the open-loop response. Dotted Lines – 
Phase, Solid Lines – Magnitude. 
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 When we take a second look at the open-loop model it becomes clear why we 

have the two phase swings. One of the phase swings is associated with the parallel 

resonance of the LC while the other is due to the inductor series resonating with the AC 

coupling capacitor. What implications does this series resonance have? In the case of no 

compensation, we have gain in the system at this resonance; thus, any noise in the system 

can accumulate energy at this frequency and cause the system to oscillate. We will take a 

look at the transient response with no compensation versus compensation in the “system 

performance” section.  

 Figure 3.9 shows the effect on varying the AC coupling capacitor on the 

open-loop response. We see increasing its value causes the phase to start rotating earlier, 

decreasing the bandwidth slightly. So even though we want a large coupling capacitor, to 

act as a “short” to the input RF signal, we sacrifice phase margin and bandwidth.  

 Finally, Figure 3.10 shows the effect of changing the feedback capacitance33. 

With smaller values for the feedback capacitor, the response has significantly more gain 

with a phase that continues to drop throughout the range of the spectrum. Remember, for 

an ideal integrator response – one that gives zero steady state error - we want a magnitude 

response with a constant 20dB/dec drop and a flat phase response of 90° (for a 

non-inverting integrator). 

  

                                                      
33 And the compensation capacitance. 
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Figure 3.9 Effect of varying the AC coupling capacitor on the open-loop response. 
Dotted Lines – Phase, Solid Lines – Magnitude. 

 

 
Figure 3.10 Effect of varying the feedback capacitor on the open-loop response. Dotted 
Lines – Phase, Solid Lines – Magnitude. 
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3.5 System Performance 

3.5.1 A Discussion on the Simulator 

 In the following sections, we provide simulations that show the performance of 

the system in several key aspects. We perform simulations in Agilent ADS due its ability 

to efficiently perform frequency domain analysis on highly nonlinear analog circuits. The 

tool used to perform these analyses in ADS is harmonic balance. In essence, the simulator 

finds the frequency-domain voltages and currents and directly calculates the steady-state 

spectral content of the voltages and currents of the circuit [14]. The simulator also 

reconstructs the time-domain waveforms from the harmonics. The simulation runs much 

quicker than a transient simulation. To learn more about the harmonic balance simulator 

in ADS, we refer the reader to [14]. 

 Despite the benefits of harmonic balance, with dynamic circuits such as the one 

presented in this paper, we run into issues. If the circuit is unstable, the harmonic 

simulator does not reveal this and the simulation seems valid. However, running a 

transient simulation uncovers the instability. Thus we follow the approach of first running 

a transient simulation in order to verify stability and then utilize harmonic balance. When 

using harmonic balance34, it is important to utilize enough harmonics to properly 

reconstruct the time-domain waveforms.  

 Figure 3.11 illustrates the biasing circuit, used in simulation, with the “nominal” 

values that should, in theory, yield a conduction angle 120°. Note the biasing buffer 

transistor used is a discrete 2N3904 BJT. Initially, we developed a prototype and then 

realized that the biasing BJT was losing collector current to the base of the class B device 

for large drives. To solve this issue, we added the discrete package instead of an IC. 

                                                      
34 The Krylov Solver is a suggested solver to use when using harmonic balance for its reduced 
computation time and memory usage, ableit less robust than the direct solver. 
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Figure 3.11 The CCA biasing circuit showing values used in the final design. The output network built in the prototype is not shown. 
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3.5.2 A Discussion on the Class B Bias 

 Naturally an important question the reader may ask is where to bias the class B 

sensor since a realistic transistor has soft knee. In the real world, there is no class B 

operation, but what is called class AB operation. Nevertheless, we operate at the knee “as 

close as possible” to the so-called class B bias. It would seem that as explained in 

Chapter 2, we want the class B sensor to have a linear fundamental response. However, 

extensive simulation has shown this not to be true. In fact, we find that a class B response 

that is slightly class C characteristic produces the best class C PA linearity. However, if 

we are able to produce a linear class C, the details of whether the class B sensor is linear 

or not is of no consequence.  

3.5.3 Finding the Optimum Bias, Single Tone Sweeps 

 In the previous section, we mentioned that a bias “sweet spot” exists on the knee 

of the transistor I-V curve that produces the best linearity for the class C PA. To find this 

we perform single tone sweeps in ADS for various biases. The results from the 

simulations are shown in Figure 3.12. From the plot, a bias of 300μA appears to yield the 

best linearity. Additionally, Figure 3.13 shows the currents of the class B and C sensors. 

This figure shows what we mentioned in the previous section – the most linear class C 

response does not require the class B response to be linear. The reasoning for this comes 

from the fact the I-V curve is real and has a soft knee.  

 To show the benefits of the CCA biasing strategy, using the 300μA bias, we find 

the adapted DC bias of the class C PA for maximum RF drive. We then apply a fixed DC 

bias of this value to the class C PA. The result from sweeping the fundamental over the 

same RF drive range is shown in Figure 3.14. Clearly the CCA biasing strategy has merit. 
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Figure 3.12 Sweep of the fundamental class C PA current for various biases. 
 

 
Figure 3.13 Fundamental current of class B and C; IBIAS = 300μA. 
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Figure 3.14 Sweep of the fundamental class C PA current for CCA biasing vs. no CCA 
biasing; IBIAS = 300μA. 
 

3.5.4 A Look at Stability in the Time-Domain 

 To test the stability of the loop, we ground the input terminal of the amplifier and 

apply a current impulse35 sink to one of the “sensor legs”. The current impulse applied 

has a magnitude of 100μA and duration of 1μs. For various bias currents, the simulation 

reveals a stable loop. An example loop response for the case of a bias current of 300μA is 

shown in Figure 3.15.  

 However, when we remove the compensation pole, the loop destabilizes for bias 

currents above 460μA36. The base voltage of the class C PA for the case of a bias current 

of 500μA is shown in Figure 3.16. Clearly, compensation is a necessity for the CCA 

biasing circuit presented. 
                                                      
35 This is the method of “simulating” noise in simulation.  
36 For these bias currents the class C sensor provides enough gain for unwanted oscillation to 
occur.  
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Figure 3.15 Response of the class C PA base due to a current impulse in the loop; 
IBIAS=300μA. 

 

 
Figure 3.16 Response of the class C PA base due to a current impulse in the loop; 
IBIAS=500μA. No Compensation. 
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 In our discussion earlier, we showed the effect of changing the feedback 

capacitance on the open-loop response. What implications does the capacitance have in 

the time-domain? Consider an input RF signal that undergoes a sudden increase in its 

amplitude from 100mVpeak to 400mVpeak. Figure 3.17 shows the class C bias response to 

this change for three different feedback capacitor values. Although increasing the 

capacitance reduces the ringing, there is a compromise in the settling time. This settling 

time is closely related to the bandwidth (Δ𝑓) that the system can support and is 

proportional to the inverse of the settling time (TS).  

Δ𝑓𝑚𝑎𝑥 ∝
1
𝑇𝑆

 (3.4) 

 

 
Figure 3.17 Response of the class C PA biasing to a sudden signal increase in the loop 
for different feedback capacitor values. 

 
  

− CFB=50nF 
− CFB=100nF 
− CFB=150nF 
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3.5.5 Important Waveforms in the Time-Domain 

 In this section we present time-domain waveforms showing correct operation of 

the CCA biasing circuit. Since a 300μA bias for the class B sensor yielded the most 

linearity of the fundamental collector current, only simulations at this bias are presented. 

 Figure 3.18 shows a simulation of the RF input voltages to the class B sensor and 

the class C sensor and PA37 for an RF drive of 400mVpeak. As indicated by the figure, the 

class C PA input voltage waveform reaches the same peak at the same time as the input 

voltage waveform of the class B device. As discussed in Chapter 2, we are now able to 

fully utilize the class C PA and produce maximum fundamental collector current.  

 Figure 3.19 shows how the DC base bias of the class C PA varies linearly with 

RF drive – the bias decreases as drive increases. However, it is apparent that as the RF 

drive approaches zero the DC bias curve flattens out. We attribute this “flattening” to the 

soft knee of transistor I-V curve for a real transistor device such as the CA3086.  

 Finally, Figure 3.20 shows the collector currents of the class B and C sensors for 

RF drives up to 400mVpeak. The conduction angle of the class B sensor is constant as 

expected by the theory. In addition, the class C sensor has a collector current with a 

conduction angle that is held exceptionally constant. Figure 3.21 shows the class C PA 

total output current for various RF drives. The difference from the idealized theory is 

apparent for very small RF drives. Due to the soft knee, there is 360° conduction in these 

cases. This leads to the nonlinearity seen in the sweep of the fundamental current. 

However, the fundamental current characteristic is greatly improved to the fixed biased 

case as shown in Figure 3.14.  

  

                                                      
37 Recall that the class C sensor is a “finger” of the whole class C PA. 
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Figure 3.18 Equal peak excursions of class B and C devices; VRFin=400mVpeak. 

 

 

 
Figure 3.19 Variation of the DC base bias of the Class C PA with respect to RF drive. 
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Figure 3.20 Constant conduction angle of the class C sensor collector current over a 
range of RF drives in addition to the reference class B sensor collector current. 
 

 
Figure 3.21 Constant conduction angle of the class C PA output current over a range of 
RF drives. 
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3.5.6 Intermodulation Distortion (IMD) 

 When designing RF PAs intermodulation distortion, or IMD, is an important 

issue to take into consideration. It is particularly apparent in the nonlinear class C 

operation. IMD occurs when two or more frequencies are present at the input of 

semiconductor devices [15]. Essentially products of these frequencies are produced at the 

output of the devices. In the case of two tones, the intermodulation products are: 

M𝑓1 ± N𝑓2 for M, N = 0,1,2, … (3.5) 
 
 The third-order intermodulation products (IP3) present the biggest problems in 

design. They are the closest to the fundamental frequencies and thus hard to filter as 

illustrated in Figure 3.22.  

 Since modern RF signals have complex modulation techniques, they consist of 

multiple frequencies. In practice a “two-tone” test is performed to test the severity of 

IMD3 since it is easier to generate two continuous-wave (CW) RF signals than it is to 

modulate a carrier [16]. The two tones are separated by the bandwidth of the anticipated 

modulated RF signal38. An additional issue with modulated RF waveforms is that the 

intermodulation bands tend to spread out; this is known as “spectral regrowth” sidebands 

in the literature [16]. This presents problems in multiple channel communication systems. 

As channels are closely spaced, these products will tend to leak into the adjacent channels 

causing distortion and increasing bit error rates (BERs). Thus, it is important to design 

RF PAs with low IMD3. Another common term that the reader may encounter in the 

literature is adjacent channel power ratio (ACPR) which refers to the ratio of the power 

outside the bandwidth of the main signal to the power of the main signal. The band that 

defines the adjacent channel is loosely defined and varies from application to application. 

                                                      
38 The spectrum of this two tone signal is like that of a double sideband suppressed-carrier 
(DSB-SC). 
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Figure 3.22 Illustration of IMD and the problem of IP3. 

 

 To test the IMD3, we inject two tones into the CCA biasing circuit. This is easily 

done in ADS which allows a voltage source with multiple tones to be specified. The 

IMD3 relative to the carriers is measured in dBc. Initially a test is done with a small tone 

separation of 500Hz. The result of this test for biases of 300μA and 700μA is shown in 

Figure 3.23. Observing the figure, we see that the IMD3 for the 300μA case is better, as 

expected, due it having a more linear fundamental characteristic. In addition the IMD3 

approaches a maximum distortion and thereafter improves and approaching a constant 

value. This non-monotonic response is consistent with reduced conduction angle PAs 

including class AB PAs. 

 Holding the bias constant at 300μA, the tone separation is varied and the 

resulting IMD3 is shown in Figure 3.24. As expected the IMD3 becomes worse as tone 

separation increases. This increase comes from the fact that the system starts to run out of 

loop gain (see section 3.4.2). In time domain, this can be thought of as the system not 

responding fast enough to follow the envelope of the RF signal. This failure typically 

shows itself as phase error in the response. 
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Figure 3.23 IMD3 of the class C PA; ∆f=500Hz, IBIAS=300μA, 700 μA. 
 

 

 
Figure 3.24 IMD3 of the class C PA for various tone separations; IBIAS=300μA. 
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4 
CCA Biasing Prototype & Lab Results 

4.1 Te Prototype Designs 

o quickly prototype the CCA biasing circuit, an initial prototype was built on a 

solderable breadboard (FR4). At 1MHz, this is a feasible design. A 1MHz signal 

has a wavelength39 of about 300m assuming a propagation velocity of the speed of 

light (𝑐). In actuality depending upon the material (particularly the dielectric constant) 

this will be somewhat less. In the case of FR4, which typically has a dielectric constant of 

4.2, the propagation velocity is about half 𝑐 [17]. Thus, the wavelength would be about 

150m. The breadboard used in the preliminary prototype measures about 17.5cm in 

length. For all practical purposes the voltage at any given time is constant over this 

length.  

 In parallel to building the first prototype, a PCB layout was done in 

Cadsoft Eagle. This popular PCB design software comes in a free light edition which 

allows the user to generate a layout with two signal layers and a board area limited to 

                                                      
39 Recall wavelength (𝜆) equals the propagation velocity (𝑣) divided by the frequency (𝑓). 

T 
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100 x 80mm. Although detailed tutorials are found on the Cadsoft Eagle website40, 

Appendix C contains a simple tutorial developed by Matthew Bloom41.  

 The first PCB board fabricated, however, did not have a buffered bias and the 

placement of some parts was inconvenient. After some deliberation and realizing the 

need to buffer the biasing transistor, a second PCB board was fabricated with revisions. 

The reader can find the layout of the initial prototype and the schematic and layout of the 

final design in Appendix D. 

4.1.1 The Initial Prototype  

 Figure 3.9 shows a picture of the top and bottom view of the initial prototype 

constructed on breadboard. As shown, three CA3086 ICs are used to implement the 

biasing, class B and C sensors and the class C “power transistor.” A couple of important 

comments regarding the implementation follow. First, each of the ICs has a substrate 

connection connected to the emitter of one of the 5 NPN BJTs. The substrate connection 

must be connected to the most negative point of the system to maintain isolation between 

the transistors in the array and ensure normal transistor behavior [18]. Secondly, the 

CA3086 ICs have a pair of transistors that are connected as a differential pair (i.e. their 

emitters terminals are tied together). These transistors are used as a part of the class C 

power transistor with 11Ω of degeneration, instead, to provide same effect as 22Ω for 

two isolated BJTs.  

 The LM6134 IC provides two op-amps in a package. As we only utilize one of 

the op-amps for the non-inverting integrator stage in the CCA biasing topology, the other 

op-amp must be properly terminated. In our implementation, we grounded the op-amp 

input and left the output open. This did not result in any adverse effects. However, 

                                                      
40 See http://www.cadsoftusa.com/training/tutorials/. 
41 A dedicated student and great friend, who know works for NASA’s Jet Propulsion Laboratory. 

http://www.cadsoftusa.com/training/tutorials/
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Maxim Integrated specifies a better method in dealing with uncommitted op-amps in 

[19]. 

 In terms of the biasing stage, the LM334 adjustable current source is used to 

source the biasing stage with a good degree of constant current regardless of supply 

variation. We configure the current source as shown in Figure 4.2. The variable resistor 

RSET sets the current by the following relation: 

𝐼𝐵𝐼𝐴𝑆 =
227 𝜇𝑉/°𝐾

𝑅𝑆𝐸𝑇
@𝑅𝑜𝑜𝑚 𝑇𝑒𝑚𝑒𝑟𝑎𝑡𝑢𝑟𝑒
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�

~67𝑚𝑉
𝑅𝑆𝐸𝑇

 (4.1) 

 
The 1kΩ resistor placed in series with the current source allows easy measurement of the 

current by virtue of the voltage drop across the resistor. As mentioned in Chapter 3, we 

use a discrete 2N3904 NPN BJT to “buffer” the bias-setting transistor.  

 The transformer used to drive the class B sensor is made by making two 

windings of 26 AWG (American Wire Gauge) magnetic wire on an FT37-43 ferrite core. 

Figure 4.3 shows a pictorial on how to wind the coils such that the voltages are in phase. 

In addition, (4.2) show the relationship voltage-, turns-, and inductance-ratio of the 

secondary and primary sides. One side resonates to act as a choke for the base biasing of 

the class C device; this side is designed first and measured on a Vector Network Analyzer 

(VNA). 

𝑉𝑠
𝑉𝑝

=
𝑁𝑠
𝑁𝑝

= �
𝐿𝑠
𝐿𝑝

  (4.2) 

 

 The output network shown in Figure 3.9 is designed by first measuring the 

inductors and then choosing the capacitors to elicit the best response. The toroidal 

inductors, pictured on the top side of the board, are in series and act as the series 

inductance for the matching network.  
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Figure 4.1 Top and bottom, respectively, of initial CCA biasing prototype. 
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Figure 4.2 Implementation of bias current source using an LM334 adjustable current 
source. 
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4.1.2 The Final PCB Design 

 Figure 4.4 shows a picture of the top and bottom sides of the PCB prototype of 

the CCA biasing circuit. As in the initial prototype, IC sockets are used for the ability to 

conveniently replace a bad IC. As in the case of a true RF circuit design, the bottom layer 

is used as a ground plane. However, there are a few traces such as power and the class C 

base connection that are also run on the bottom layer. They are seen as the insulated 

traces on the bottom in Figure 4.4. We run the class C base line on the bottom layer since 

it is naturally lower power than the class C collector line. Again, as in the case of good 

RF circuit design practice, ground via fences are added along the main collector line42. 

Also, a few test points (see the figure) are added to view different waveforms on the 

prototype. 

 In order to have a prototype which could be “tuned” to a different conduction 

angle, a potentiometer is used for class B DC current-setting resistor. However, the 

secondary windings of the transformer used to deliver the signal to the class B sensor, 

would need changed when selecting a different conduction angle.  

 The output network contains several tunable inductors used to implement the 

impedance matching and short the harmonics. The supply is filtered with a series of 

capacitors as shown in the figure. We use a ferrite bead in the path of the DC supply to 

prevent the resonance of the AC filtering capacitors with the inductance of the long lead 

length of the supply lines. The output AC coupling capacitor does not impact the 

performance of the CCA biasing circuit and thus a large 1μF valued capacitor is used to 

act as a “short-circuit” to the 1MHz signal. 

  

                                                      
42 At 1MHz, these via fences likely affect the response by much. However, for designs in the GHz 
frequencies, they help reduce crosstalk tremendously designed correctly [23].  
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Figure 4.4 Top and bottom, respectively, of final PCB CCA biasing prototype. 
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4.1.3 The CA3086 I-V Characteristics 

 Terminating the prototype in 50Ω at the input and output terminals and 

measuring the class B bias voltage resulted in a 60mV difference from simulation. In 

order to understand where this difference came from, we decided to measure the practical 

I-V curve. To do this, we diode-connected a CA3086 BJT as shown in Figure 4.5 and 

applied the LM334 current source. The measured source current43 and base voltage is 

plotted as an I-V curve in Figure 4.6; the I-V curve from simulation is also plotted to 

show comparison. Apparent in the figure, there is about a 60mV increase in the base 

voltage of the actual device for the same current. Testing several CA3086 ICs resulted in 

the about the same shift in characteristics.  

 Despite this strange difference, the operation of the CCA biasing is not 

compromised as this shift only increase the voltage. This increase is consistent with all 

the CA3086 transistors in the three ICs used and thus the criterion for matched transistors 

is still met. However, a caveat of this shift in the I-V curve is that DC power dissipation 

increases. 

 

  

                                                      
43 The collector current will be practically the same as the source current as the base will draw a 
much smaller current. 
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Figure 4.5 Test setup to measure the CA3086 I-V curve. 

 

 
Figure 4.6 Measured and simulated I-V curve for CA3086 with 22Ω degeneration. 
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4.2 Bias Choke & Output Stage Design 

In this section we discuss the design and measurement of the bias choke and the output 

stage. In measuring the inductors and the impedance responses we used the HP8753A 

VNA shown in Figure 4.7. Copper top boards like the one shown in Figure 4.8 were 

constructed to make the measurements.  

 VNAs deal with S parameters which relate incident and reflected waves in a 

two-port network. We refer the reader to [20] for a discussion of S parameters and why 

they are useful in RF measurements. The input reflection coefficient (S11) is of most 

concern to us as it is proportional to the input impedance as indicated by (4.3). Note, Z0 is 

the characteristic impedance of the system and is 50Ω for VNAs.  

𝑍𝐼𝑁 = 𝑍0
1 + 𝑆11
1 − 𝑆11

 (4.3) 

 

 
Figure 4.7 HP8753A VNA used to measure inductors, capacitors, and impedance 
responses of the bias choke and output network. 
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Figure 4.8 Example “prototype” copper top board used to measure components and the 
impedance response of the bias choke and output network. 

 

4.2.1 The Class C Bias Choke  

 The class C bias choke serves two purposes: to couple the signal to the class B 

sensor via the toroidal transformer and to act as a choke to the RF current of the input 

signal. The measured inductance of the primary side of the toroidal transformer was 

about 73.7μH. For resonance at 1MHz, this requires a parallel capacitor with a value of 

about 344pF. In the implementation, we used a 330pF in parallel with 12pF. The 

measured impedance response is shown in Figure 4.9. Figure 3.19 shows that the choke 

provides 8kΩ or more impedance for a relative bandwidth44 of 5% or less.  

 

  

                                                      
44 Relative bandwidth refers to the ratio of the bandwidth to center frequency. 
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Figure 4.9 Measured impedance response of the class C bias choke. 
 

 
Figure 4.10 Impedance response 50kHz above and below 1MHz. 
 

  

-90°

-60°

-30°

0°

30°

60°

90°

0

2

4

6

8

10

12

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

∠Z
 [d

eg
]  

|Z
| [

kΩ
] 

Frequency [MHz] 

Impedance Response of the Class C Bias Choke 

Magnitude
Phase

-90°

-60°

-30°

0°

30°

60°

90°

4

5

6

7

8

9

10

11

12

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05

∠Z
 [d

eg
]  

|Z
| [

kΩ
] 

Frequency [MHz] 

Impedance Response of the Class C Bias Choke 

Magnitude
Phase



 

66 

4.2.2 The Output Stage 

 In Chapter 3 we made briefly mentioned the output network and its need. In this 

section we emphasize the importance of the filtering and impedance matching. Observing 

Figure 4.11, the output current of the class C PA will be the reduced conduction angle 

current discussed throughout this paper. However, it contains harmonic content 

(particularly the second harmonic) that we don’t want to deliver to the load. Thus we 

filter this out with a harmonic trap as shown in the figure. A second important point to 

note in the figure is that for the maximum current, the ideal maximum voltage swing in 

the case of BJT or FET device would be from 0V to twice the supply voltage. In practice, 

we would back off slightly on this swing so as not to saturate the transistor when the 

voltage swings down to 0V. Nevertheless, the optimum load is therefore the ratio of the 

peak voltage and fundamental current.  

𝑅𝑜𝑝𝑡 =
𝑉𝑙𝑜𝑎𝑑,𝑝𝑒𝑎𝑘

𝐼𝑓0,𝑝𝑒𝑎𝑘
 (4.4) 

 
 This method of selecting45 the load resistor is known as “loadline” matching and 

is discussed in [21]. Since this optimal load resistance is almost always different from the 

standard 50Ω load encountered in RF systems, we must use an impedance matching 

network. The matching network essentially lowers the voltage swing while increasing the 

current swing in order to transfer the full power to the load.  

 The popular lowpass pi-type matching network shown in Figure 4.12 has an 

advantage over two-element matching network in terms of flexibility in design, especially 

in fine-tuning the response. It allows for quality factor specification. The values may be 

solved for analytically as shown in [22] or through the use of a Smith chart as shown 

in [23]. In our design, we used an online calculator46 that was quite accurate. 

                                                      
45 In practice load pull techniques are used to find the optimum load impedance. 
46 See http://www.vk2zay.net/calculators/piMatchingNetwork.php. 

http://www.vk2zay.net/calculators/piMatchingNetwork.php
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Figure 4.11 Class C PA output stage description of voltage and current waveforms. 

 

L

C1

R1

C2

R2

 
Figure 4.12 Schematic of a lowpass pi matching network. 

 

4.2.3 The Design of the Matching Network/Harmonic Trap 

 Figure 4.13 shows two designs that were considered for the output network. The 

fundamental difference between the designs is that one utilizes resonance to prevent the 

fundamental current from passing through while the other utilizes a large inductor or RF 

choke (RFC). The first design has obvious benefits at the design frequency of 1MHz, 

because a large RFC in the hundreds of microhenries to a millihenry would be required in 

order to use the second design. Notice in the figure, that a series LC is shown in the place 

of a capacitor. In both designs, this acts as an effective capacitor at the fundamental 

frequency and a short-circuit to the second harmonic current. This is necessary as a 

class C PA has a particularly strong second harmonic. The design of this series LC is 

discussed in Appendix E. 
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Figure 4.13 (a) Matching network and harmonic trap design #1; (b) Matching network 
and harmonic trap design #2. 
 

 The networks47 in Figure 4.13 were built on copper top boards like the one 

shown in Figure 4.8 and tested using the HP8753A VNA. As discussed in the previous 

section, we want to design a match that elicits maximum collector voltage swing at 

maximum fundamental current output. In the CCA biasing implementation, the maximum 

fundamental current was somewhat unclear. A fundamental output current of 26mApeak 

was chosen since the corresponding class C RF input reaches ground on its downward 

swing. Since the implementation is done in a CA3086 IC with its substrate grounded, we 

would not like the input to drive below ground as this could possibly forward bias the 

substrate and destroy the IC48. In terms of the collector voltage, the voltage can swing 

from 0 to twice the supply voltage. However, in order to prevent saturation of the 

transistor and the swing is designed for 7V (the supply is 8V). This results in a load 

resistance of 270Ω. Thus, we must match from 50Ω to 270Ω.  

                                                      
47 In the case of design #1, the network connected to VCC was tied to ground when tested on the 
VNA. In design #2, the RFC was not included during testing. 
48 Practically, the device should not be affected for a swing of up to a few hundred millivolts 
below ground. 
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 Using the online calculator mentioned earlier, the pi matching network 

components were generated for a nodal Q design of 9 (see Figure 4.14). In order to 

implement the output networks, we used tunable inductors from Coilcraft and surface 

mount capacitors and a 50Ω surface mount resistor for the load impedance. The tunable 

inductors used and their inductance ranges are shown in Table 4.1.  

 Figure 4.15 shows both output network designs with the values required to match 

50 to 270Ω. The resulting impedance response (as seen by the collector of the power 

transistor) for both networks after tuning is shown in Figure 4.16. Despite, quite an effort 

put in tuning, the response was not able to tune to 270Ω at 1MHz. This may have been 

due to the capacitors being off and since we did not have any tunable capacitor’s we 

could not see the effect of varying the capacitors on the impedance response. The more 

likely issue may be that the inductors used did not have enough Q to support this 

impedance scaling. In any case, we see that design #1 does a good job at filtering the 

second harmonic. However, there is a second resonance that occurs between 2 and 

2.5MHz. This resonance is small and occurs at a non-harmonically related frequency. 

The second design, although doesn’t have a second resonance, does not do a good job in 

filtering the second harmonic. 

270Ω 50Ω 6.7μH

5.3nF 12nF

 
Figure 4.14 PI matching network, matching 50 and 270Ω with a Q of 9. 

 

 

Table 4.1 Coilcraft tunable inductor inductance ranges, specified and measured. 
 

Tunable Inductor Specified Range Measured Range 
7M2-821 0.738-0.902μH N/A, tested at 0.72μH 
7M3-153 11-19μH ~20-30μH 
7M3-822 6.6-9.8μH ~4-12μH 
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50Ω 

6.7μH 1μH

6μH

680pF
27μH 5.6nF 12nF

50Ω 

6.7μH

5.6nF

1μH

0.72μH

8.2nF

Z Z

(a) (b)  
Figure 4.15 (a) Component values used to match 50 to 270Ω in design #1; (b) Values 
used to match 50 to 270Ω in design #2. 

 

 

 
Figure 4.16 Measured and tuned impedance response of the output network for both 
designs. 
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4.2.4 Tuning the Response on the VNA using the Smith Chart Display 

 The Smith chart is a powerful graphical tool used in solving many problems in 

the RF discipline. The reader may find a wealth of information on the internet on 

Smith charts. In our discussion here, we are concerned with the impedance aspect of the 

Smith chart. Figure 4.17 shows some important characteristics of the Smith carth. 

Particularly, the top half represents inductive impedances and the bottom half represents 

capacitive impedance. The middle represents purely resistive impedances. Impedances 

along the outer circle are purely reactive. From the left to the rigth, impedance increases 

from short circuit to open circuit. In addition, there are constant resistance circles where 

the resistive part of the impedance stays constant while the reactive part changes. 

Constant reactive curves represent the opposite scenario. 

 The output response of design #2 is shown in Figure 4.18. Although, the 

measurement is S11, the Smith chart shows input impedance of the network. In addition, 

the complex impledance is shown on top of the chart (indicated in the figure). The 

impedance curve moves in a clockwise direction with frequency.The cross-over point 

between inductance and capacitance is where there is parallel resonance. As seen in the 

figure, the resonance is mistuned at a higher frequency then 1MHz. The series resonance 

is also mistuned as it is not at the short-circuit point on the Smith chart. Using the tunable 

inductors, we tune the the response such that the fundamental resonates at the correct 

impedance. The tuned response is shown in Figure 4.19. Consistent with the unfortunate 

result seen in the last section, the 50Ω load is not matched to 270Ω but rather about 221Ω 

as seen in the figure. In addition, the circuit still presents some impedance at the second 

harmonic. The aformentioned tuning process was performed on design #1 (not shown 

since a screen capture was not taken at the time).  
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Figure 4.17 A Smith chart showing several key impedance characteristics. 
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Figure 4.18 S11 response of untuned output network (design #2). Smith chart. 
 

 
Figure 4.19 S11 response of tuned output network (design #2). Smith chart. 
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4.3 System Performance 

In this section, we provide lab results that closely agree with the simulations. The results 

prove the real-world merit of the CCA biasing topology. We begin by verifying the 

optimum bias predicted in simulation, then explore stability, view CCA waveforms, 

measure IMD3 and finally make a quick investigation of the efficiency of the class C PA.  

 The main test equipment used is shown in the following figures.  

 
Figure 4.20 The Agilent MSO-X 2012A function generator/oscilloscope used as the 
RF source to the PA and used to view waveforms on the prototype. 
 

 
Figure 4.21 The Rigol DG1022 function generator used to source to two-tones for the 
IMD3 measurements. 
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Figure 4.22 The Agilent CXA N9000A spectrum analyzer used perform spectral 
analysis on the class C PA. 
 

4.3.1 The Optimum Bias and Harmonic Content 

 Prior to adding the matching network and tank, we configured the output of the 

class C PA as shown in Figure 4.23. The 330μH inductor acts has a high impedance to 

the output current and so all the current couples into the spectrum analyzer (SA). As in 

simulation, we swept the drive and measured the fundamental current for the same set of 

biases. Figure 4.24 shows the resulting plot which is in a great deal of agreement with the 

simulation results. Here again, we confirm that a class B 300μA bias yields the best 

linearity in the class C PA. 

50Ω

330µH
1µF

VCC

Agilent CXA N9000A 
Spectrum Analyzer

Class C
PA

 
Figure 4.23 Initial test setup for measuring the output current of the class C PA. 
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Figure 4.24 Sweep of the fundamental class C PA current for various biases. 
 

 As we did in simulation, we found the adapted bias of the class C PA for the RF 

drive of 400mVpeak (about 0.552V). We then removed the feedback and directly biased 

(via the class C base choke) the class C PA at this fixed value. Observing Figure 3.14, we 

see a result that closely resembles the simulation in Chapter 3.  

 An additional set of data was taken measuring the harmonic content for a range 

of RF drives. The plot of this data (Figure 4.26) shows how second harmonic is quite 

strong as predicted by the analysis in Chapter 2. From the figure, we see that harmonics 

above the 3rd harmonic are relatively weak.  
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Figure 4.25 Comparison of CCA biasing vs. no CCA biasing; IBIAS=300μA. 
 

 
Figure 4.26 Sweep of the harmonic current of the class C PA; IBIAS=300μA. 
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4.3.2 Stability 

 In an initial test of the stability, we began by terminating the amplifier in 50Ω at 

the input (see Figure 4.27). The output automatically “terminated” in 50Ω as it was 

connected to the SA. Powering the PA on and biasing the class B sensor at 300μA, we 

then observed the spectrum on the SA. As seen in Figure 4.28, there is a small amount of 

energy around 462kHz. This may be caused by noise in the control loop that is amplified 

to the output by the PA. However, when the system is active with an input signal, the 

noise floor rises and masks this energy (see Figure 4.29). In any case, this energy does 

not have an impact on the performance of the system. 

 In Chapter 3, we emphasized the importance of the compensation pole. In order 

see impact of the compensation pole, we intentionally removed the compensation pole 

from the prototype49 and observed the output. The resulting spectrum, shown in 

Figure 4.30, clearly shows instability. There is considerable power spread in the 

spectrum. This proves the necessity of the compensation pole in the CCA biasing circuit 

that was built. 

 
Figure 4.27 SMA Male 50Ω termination. 

 

  

                                                      
49 The supply voltage was lowered so the circuit would not be damaged if the circuit became 
unstable. 
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Figure 4.28 Spectrum at the output of the class C PA with the input terminated; 
IBIAS=300μA. 

 

 
Figure 4.29 Spectrum at the output of the class C PA with an input of 400mVpeak; 
IBIAS=300μA. 

 

Possibly accumulated noise 
in the control loop that is 
“amplified” to the output. 
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Figure 4.30 Spectrum at the output of the class C PA with the input terminated and no 
compensation pole in the feedback, IBIAS=300μA. 

 

 As a final test of the stability of the system, we used the burst capability of the 

Rigol DG1022 function generator. In this mode, a signal is output to the circuit at 

intervals. Essentially, the RF signal turns on for an interval and then turns off for an 

interval50. This test not only tests if the loop is stable but how well it can respond. From 

Figure 4.31, we see there is an initial ripple and the loop tries to adjust the bias. 

Observing the time divisions, the loop takes about 200-300μs to reach a steady state 

value. Figure 4.32 shows the response of the loop to the signal turning off. The circuit 

responds quicker51 and takes about 80-100μs. 

 

  

                                                      
50 The effective signal is similar to an amplitude shift keying (ASK) signal. 
51 Note that for this figure the divisions are in 20μs steps. 
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Figure 4.31 Step input of the RF signal and loop response. 

 

 
Figure 4.32 Loop response after the signal is suddenly turned off. 

 

Class C 
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4.3.3 Constant Conduction Angle & Time Domain Waveforms 

 In this section we present several laboratory data that support the results seen in 

simulation in Chapter 3. The data is taken for a class B bias of 300μA unless otherwise 

specified. First, observe that Figure 4.33 shows correct operation of the CCA biasing 

circuit as the peak voltages of the inputs to the class B and C devices reach the same 

point at the same time. Also, as required for a conduction angle of 120°, the class C 

device is driven twice has hard as the class B device. Figure 4.34 shows how the DC bias 

of the class C PA decreases linearly with drive. This is consistent with the simulation and 

theory.  

 In order to view the shape of the current waveform and to see if the conduction 

angle stays constant with drive, we initially placed a 50Ω resistor52 in the output of the 

class C PA as shown in Figure 4.35. We then probed the “cascaded” collector of the 

class C PA and the supply voltage. Using the math function on the scope, we subtracted 

the collector voltage from the supply voltage to obtain the voltage drop across the resistor 

and thus a scaled waveform of the current53. As seen in Figure 4.36, the conduction angle 

is held significantly constant. Also apparent from the figure is that for very small drives 

the current conducts over the whole period of the signal due to the soft knee of the 

transistor. 

 Finally, with output network of Figure 4.15a integrated to the class C PA output, 

Figure 4.37 shows the class C PA base and collector voltage waveforms for a large drive. 

Figure 4.38 shows the class C PA collector and output voltage waveforms for the same 

drive. From the figures, we observe that the harmonic tank does a good job in filtering the 

harmonics.  

                                                      
52 Chosen such that the voltage drop was not large enough to bring the PA into saturation. 
53 Recall, from elementary circuit analysis that the current through and voltage across a resistor are 
in phase. 
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Figure 4.33 Equal peak excursions of class B and C devices; VRFin=400mVpeak. 
 

 
Figure 4.34 The DC base bias of the class C PA and the class B sensor. 
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Figure 4.35 Circuit implementation to sample the output current of the class C PA. 

 

 

 

 
Figure 4.36 Constant conduction angle of the class C PA. 
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Figure 4.37 Class C PA base and collector voltages; VRFin=560mVpeak 

 

 

 
Figure 4.38 Class C PA base and output voltage; VRFin=560mVpeak 
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4.3.4 IMD Testing 

 To perform IMD measurements, we performed a two-tone test as discussed in 

Chapter 3. To combine the tones, initially a 6dB54 resistive power combiner (Figure 4.39) 

was made on a copper top board. This board was used in the two-tone testing of the initial 

prototype. In the two-tone testing of the final PCB prototype, the ZFSC-2-6+ zero degree, 

3dB power combiner (Figure 4.40) was used. Figures 4.41 and 4.42 show the spectral 

performance of these combiners. The clear advantage of “inductive” combiner is its 

isolation55 of the input ports - about 37dB at 1MHz as specified in the datasheet. 

 
Figure 4.39 The 6dB resistive power combiner.  

 

 
Figure 4.40 The ZFSC-2-6+ zero degree, 3dB power combiner  
  

                                                      
54 This “6dB” indicates the power loss in each tone. 
55 The isolation of a resistive combiner is equal to its insertion loss and is thus 6dB. 
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Figure 4.41 Output of the 6dB resistive power combiner for two tone inputs at 0dBm 
each; 𝒇𝟏=0.98MHz & 𝒇𝟐=1.02MHz. 
 

 
Figure 4.42 Output of the ZFSC-2-6+ zero degree, 3dB power combiner for two tones 
input at 0dBm each; 𝒇𝟏=0.98MHz & 𝒇𝟐=1.02MHz. 
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 The two-tone tests that follow were performed with the output stage integrated. 

Figure 3.23 shows IMD3 measurements, for a tone spacing of 500Hz, taken at two class B 

biases – 300 and 700μA. The 300μA bias IMD3 response shows lower IMD3. This is 

consistent with the simulation in Chapter 3. However, apparent in the figure, we see the 

IP3 products are slightly asymmetrical in magnitude. This is a “memory effect” that may 

be caused by phase error in the loop56. 

 As in the Chapter 3 simulation, we held the bias constant at 300μA and took 

measurements of the IMD3 for a few tone separations (see Figure 3.24). The IMD3 

characteristics seen in the resulting plot are consistent with the simulation and theory – if 

the bandwidth of a signal is larger than the loop bandwidth, the control loop will not be 

able to effectively follow the envelope and thus IMD3 will significantly increase.  

 Figures 4.45 to 4.47 show the spectrum of the class C PA output when two tones 

are input57 at 300mVpeak for tone spacings of 500Hz, 5kHz, and 10kHz, respectively. For 

a tone spacing of 500Hz, we see the asymmetry of the IP3 products due to the 

aforementioned “memory effects.” In addition to the IP3 products, we see all of the other 

intermodulation products, which taper off in magnitude.  

 

  

                                                      
56 This is caused by the system not being fast enough to follow the envelope of input signal. 
57 To the combiner, that is. 
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Figure 4.43 IMD3 of the class C PA; ∆f=500Hz, IBIAS=300μA, 700 μA. 

 

 

 
Figure 4.44 IMD3 of the class C PA for various tone separations; IBIAS=300μA. 
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Figure 4.45 Class C PA IMD spectrum, ∆f=500Hz; IBIAS=300μA, Vtone=300mVpeak. 

 

 

 
Figure 4.46 Class C PA IMD spectrum, ∆f=5kHz; IBIAS=300μA, Vtone=300mVpeak. 
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Figure 4.47 Class C PA IMD spectrum; ∆f=10kHz, IBIAS=300μA, Vtone=300mVpeak. 

 

4.3.5 Effect of the Impedance Mismatch & Losses on the Class C PA Efficiency 

 In regards to the output network that was built and tuned, we were unable to 

match from 50 to 270Ω, but achieved a match to about 215Ω. This is most probably due 

to the Q of the inductors used in addition to not being able to tune the capacitors. The 

mismatch and the lossy nature of the practical inductors used led to lower power 

efficiency than observed in simulation. Figure 4.48 shows the DC-to-RF power efficiency 

simulated in ADS and measured in the lab. The ADS simulation utilized the output 

network of Figure 4.15a.  

 In an IC implementation, we could design a much more accurate output network. 

Nevertheless, the ADS simulation shows the possibility of a highly efficient RF PA. 
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Figure 4.48 DC-to-RF efficiency of the CCA biased class C PA. 
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5 
Conclusion & Future Prosecs 

he CCA biasing idea was first researched and worked on in 2010 by Greg LaCaille 

working alongside Professor Prodanov. In his work, LaCaille showed the 

relationship of the fundamental and DC drain currents to the input signal drive and 

conduction angle. This relationship led to the conclusion that if the conduction angle is 

held constant, the fundamental and DC currents will linearly depend on the signal drive. 

In addition, an ideal class B device has a constant conduction angle and thus the 

fundamental and DC currents of it also linearly depend on the signal drive. This led to the 

idea of using two scaled replica devices58 of the actual “power device”. Each device is 

driven by the same drive and the “DC” currents of the devices are sensed and forced in a 

certain ratio by virtue of the feedback. As a consequence of the feedback, the base bias of 

the class C “power device” is set. A fundamental problem, however, existed with this 

approach – the class C PA was underutilized. It could never achieve its maximum 

potential current since the class B device would reach the saturation point of the I-V 

curve first.  
                                                      
58 One device biased in class B and the other biased at the same point as the power device. 

T 
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 In 2011, Stephan Garber was the second individual to work with Professor 

Prodanov on CCA biasing idea. He showed that the conduction angle could be kept 

constant by equal RF drive and unequal DC current ratio-ing, unequal RF drive59 and 

equal DC current ratio-ing, or unequal RF drive and unequal DC current ratio-ing. 

Additionally, he simplified the control loop. Although the class C PA was able to be 

driven “harder” with the unequal RF drive and equal DC current ratio-ing method, it still 

couldn’t be driven to produce its maximum output current. Finally, in terms of a practical 

implementation, Michael Spahn built a prototype based on Garber’s work. When testing 

the prototype, he noticed some evidence of instability. 

 The work presented in this paper served to address the aforementioned issues. An 

optimum hybrid control was proposed. This optimum control allowed for the class C PA 

to exercise the full extent of the “hockey-stick” I-V curve – a significant improvement 

over previous iterations of the CCA biasing idea. Secondly, the coupling and drive 

strategy was improved. The class C sensor was “embedded” as a “finger” of the 

class C PA and shared the same base voltage as the other “fingers”. The class B sensor 

was driven by a transformer via the class C base-biasing choke. Additionally, an accurate 

open-loop model of the control loop was developed. To test the validity of the design, a 

robust prototype was developed and tested. The prototype results showed strong 

correlation with simulation and ultimately gave merit to the CCA biasing topology.  

 The next step in the evolution of the CCA biasing circuit is to implement the 

topology in a single IC at the intended cellular frequency. In the implementation, the 

non-inverting op-amp should be replaced with an operational transconductance amplifier 

(OTA) as opposed to a “full-blown” op-amp. An OTA is much faster as it is not burdened 

by the extra stages of a conventional op-amp. 

 
                                                      
59 We drive the class C device “harder” than the class B device. 
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Appendix A 
Harmonic Drain Current  xpressions 
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Figure A.1 Voltage-to-current conversion of an ideal transistor. 
 

Considering an ideal transistor amplifier with the I-V characteristic shown in Figure A.1 

we write the drain current as follows: 

𝑖𝐷(𝑡) = �0,                 𝑣𝐺(𝑡) ≤ 0
𝑔𝑚𝑣𝐺(𝑡),   𝑣𝐺(𝑡) > 0 (A.1) 
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Note that 𝑉𝑂𝑁, in the figure, represents the voltage that defines the knee of a real 

transistor60. We set this to zero to simplify the analysis61. From (A.1), we write the input 

sinusoid62: 

𝑣𝐺(𝑡) = 𝑉𝐴𝐶 cos(𝜔𝑡) + 𝑉𝐷𝐶 (A.2) 
 
 The conduction angle (𝜃) defines the portion of the input sinusoid that the 

transistor conducts current. 

𝜃 [𝑟𝑎𝑑] ≝ 2𝜋 ∙
𝑡𝑜𝑛
𝑇

 (A.3) 

 

vG(t)

ωt

iD(t)

ωt

VDC

VAC

IAC

VON

IDC

0 2π 4πθ/2tON

t0-t0  
Figure A.2 Relationship between drain current and gate voltage. 
 

  

                                                      
60 As in the case with silicon BJTs, the “turn-on” voltage is typically ~0.7V. 
61 To account for this quantity simply add this term to the quantity “VDC”. 
62 We use the cosine function to describe the input waveform, due its symmetry about zero on the 
time axis.  
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Using (A.2), (A.3), and Figure A.2, we find relationship between the conduction angle 

and DC-to-AC ratio: 

𝑡𝑂𝑁 = 2𝑡0 
 

𝑣𝐺(𝑡0) = 𝑉𝐴𝐶 cos(𝜔𝑡0) + 𝑉𝐷𝐶  
 

 
At time instance, 𝑡0, the gate voltage is zero. Thus we have: 

𝑉𝐴𝐶 cos(𝜔𝑡0) + 𝑉𝐷𝐶 = 0 
 

𝑡0 =
cos−1 �−𝑉𝐷𝐶𝑉𝐴𝐶

�

𝜔
=
𝜋 − cos−1 �𝑉𝐷𝐶𝑉𝐴𝐶

�

𝜔
 

 

 
Finally, we write the conduction angle: 

𝜃 =
𝑡𝑜𝑛
𝑇

[𝑟𝑎𝑑] =
2
𝜋 − cos−1 �𝑉𝐷𝐶𝑉𝐴𝐶

�
𝜔

1
𝜔

= 2 �𝜋 − cos−1 �
𝑉𝐷𝐶
𝑉𝐴𝐶

�� (A.4) 

 
Take care to note that DC voltage is taken as a negative quantity in the above expression. 

 Using (A.1), (A.2), and Figure A.2, we can write the following: 

𝑖𝐷(𝑡) = 𝑔𝑚𝑉𝐴𝐶 cos(𝜔𝑡) + 𝑔𝑚𝑉𝐷𝐶  
 

where,  
 

𝐼𝐴𝐶 = 𝑔𝑚𝑉𝐴𝐶   and  𝐼𝐷𝐶 = 𝑔𝑚𝑉𝐷𝐶  

 

 
We can also write the DC-to-AC ratio in terms of the conduction angle: 

𝑉𝐷𝐶
𝑉𝐴𝐶

= − cos �
𝜃
2
� (A.5) 

 
 To determine the harmonic content of the drain current, we first write an 

expression for the drain current using, (A.1) , (A.2), and (A.5). 

𝑖𝐷(𝑡) = 𝑔𝑚𝑣𝐺(𝑡) 
 

= 𝑔𝑚[𝑉𝐴𝐶 cos(𝜔𝑡) + 𝑉𝐷𝐶] 
 

= 𝑔𝑚 �𝑉𝐴𝐶 cos(𝜔𝑡) − 𝑉𝐴𝐶 cos �
𝜃
2
�� 
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Letting 𝑥 = 𝜔𝑡, to simplify analysis, we have: 

𝑖𝐷(𝑥) = 𝑔𝑚𝑉𝐴𝐶 �cos(𝑥) − cos �
𝜃
2
�� (A.6) 

 
Next, we need to take the Fourier series of the expression in (A.6). Note that the 

conduction period is defined by the interval, 𝑥 ∈ �− 𝜃
2

, 𝜃
2
�. 

 Solving for the DC term: 

𝐼𝐷𝐶 =
1
𝑇
� 𝑖𝐷(𝑥) 𝑑𝑥
−

𝑇
 

 

=
1

2𝜋
� 𝑔𝑚𝑉𝐴𝐶 �cos(𝑥) − cos �

𝜃
2
�� 𝑑𝑥

𝜃/2

−𝜃/2

 

 

=
𝑔𝑚𝑉𝐴𝐶

2𝜋
� �cos(𝑥) − cos �

𝜃
2
�� 𝑑𝑥

𝜃/2

−𝜃/2

 

 

=
𝑔𝑚𝑉𝐴𝐶

2𝜋
�sin(𝑥) − 𝑥 cos �

𝜃
2
���

−𝜃2

   𝜃2
 

 

=
𝑔𝑚𝑉𝐴𝐶

2𝜋
��sin �

𝜃
2
� −

𝜃
2

cos �
𝜃
2
�� − �sin �−

𝜃
2
� − �−

𝜃
2
� cos �

𝜃
2
��� 

 

=
𝑔𝑚𝑉𝐴𝐶

2𝜋
�2 sin �

𝜃
2
� − 𝜃 cos �

𝜃
2
�� 

 

 

𝐼𝐷𝐶 =
𝑔𝑚𝑉𝐴𝐶
𝜋

�sin �
𝜃
2
� −

𝜃
2

cos �
𝜃
2
�� (A.7) 

 
 Solving for the nth harmonic term: 

𝐼𝑛𝜔0 =
2
𝑇
� 𝑖𝐷(𝑥) cos(𝑛𝑥)𝑑𝑥
−

𝑇
 

 

=
2

2𝜋
� 𝑔𝑚𝑉𝐴𝐶 �cos(𝑥) − cos �

𝜃
2
�� cos(𝑛𝑥)𝑑𝑥

𝜃/2

−𝜃/2

 

 

=
𝑔𝑚𝑉𝐴𝐶
𝜋

� �cos(𝑥) cos(𝑛𝑥) − cos �
𝜃
2
� cos(𝑛𝑥)� 𝑑𝑥

𝜃/2

−𝜃/2
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𝐼𝑛𝜔0 =
𝑔𝑚𝑉𝐴𝐶
𝜋

⎩
⎪
⎨

⎪
⎧

� [cos(𝑥) cos(𝑛𝑥)] 𝑑𝑥 

𝜃/2

−𝜃/2�����������������
#1

− � �cos �
𝜃
2
� cos(𝑛𝑥)�  𝑑𝑥 

𝜃/2

−𝜃/2�����������������
#2 ⎭

⎪
⎬

⎪
⎫

 (A.8) 

 
To simplify the analysis, we solve for the #1 and #2 individually. 

 Solving for #163: 

� [cos(𝑥) cos(𝑛𝑥)] 𝑑𝑥 

𝜃 2⁄

−𝜃/2

=
1
2

� {cos[𝑥(1 − 𝑛)] + cos [𝑥(1 + 𝑛)]}𝑑𝑥 

𝜃 2⁄

−𝜃/2

 

 

=
1
2

� {cos[𝑥(𝑛 − 1)] + cos [𝑥(𝑛 + 1)]}𝑑𝑥 

𝜃 2⁄

−𝜃/2

 

 

=
1
2
�

1
𝑛 − 1

sin[𝑥(𝑛 − 1)] +
1

𝑛 + 1
sin[𝑥(𝑛 + 1)]��

−𝜃2

   𝜃2
 

 

 

� [cos(𝑥) cos(𝑛𝑥)] 𝑑𝑥 

𝜃 2⁄

−𝜃/2

=
1

𝑛 − 1
sin �

(𝑛 − 1)𝜃
2

� +
1

𝑛 + 1
sin �

(𝑛 + 1)𝜃
2

� (#1) 

 
 Solving for #2: 

� �cos �
𝜃
2
� cos(𝑛𝑥)�  𝑑𝑥 

𝜃/2

−𝜃/2

= cos �
𝜃
2
� � cos(𝑛𝑥)  𝑑𝑥 

𝜃/2

−𝜃/2

 

= cos �
𝜃
2
�

sin(𝑛𝑥)
𝑛

 �
−𝜃2

   𝜃2
    

=
2
𝑛

cos �
𝜃
2
� sin �𝑛

𝜃
2
� 

 

 
Simplifying64:  

2
𝑛

cos �
𝜃
2
� sin �𝑛

𝜃
2
� =

2
𝑛
∙

1
2
�sin �

𝜃
2

+ 𝑛
𝜃
2
� − sin �

𝜃
2
− 𝑛

𝜃
2
��  

 

                                                      
63 We use the Trig. Identity: cos𝐴 cos𝐵 = 1

2
[cos(𝐴 − 𝐵) + cos (𝐴 + 𝐵)]. 

64 Here we use the Trig. Identity: cos𝐴 sin𝐵 = 1
2

[sin(𝐴 + 𝐵) − sin (𝐴 − 𝐵)]. 
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� �cos �
𝜃
2
� cos(𝑛𝑥)�  𝑑𝑥 

𝜃/2

−𝜃/2

=
1
𝑛
�sin �

(𝑛 + 1)𝜃
2

� + sin �
(𝑛 − 1)𝜃

2
�� (#2) 

 
Substituting #1 and #2 in (A.8), we have: 

𝐼𝑛𝜔0 =
𝑔𝑚𝑉𝐴𝐶
𝜋

�
1

𝑛 − 1
sin �

(𝑛 − 1)𝜃
2

� +
1

𝑛 + 1
sin �

(𝑛 + 1)𝜃
2

�

−
1
𝑛

sin �
(𝑛 + 1)𝜃

2
� −

1
𝑛

sin �
(𝑛 − 1)𝜃

2
�� 

 

=
𝑔𝑚𝑉𝐴𝐶
𝜋

��
1

𝑛 − 1
−

1
𝑛
� sin �

(𝑛 − 1)𝜃
2

� + �
1

𝑛 + 1
−

1
𝑛
� sin �

(𝑛 + 1)𝜃
2

�� 

 

=
𝑔𝑚𝑉𝐴𝐶
𝜋

�
1

𝑛(𝑛 − 1)
sin �

(𝑛 − 1)𝜃
2

� −
1

𝑛(𝑛 + 1)
sin �

(𝑛 + 1)𝜃
2

�� 

 

 

𝐼𝑛𝜔0�

𝑛≥1

=
𝑔𝑚𝑉𝐴𝐶
𝑛𝜋

�
1

(𝑛 − 1)
sin �

(𝑛 − 1)𝜃
2

� −
1

(𝑛 + 1)
sin �

(𝑛 + 1)𝜃
2

�� (A.9) 

 
 In order solve for the fundamental component (n=1), we need to use 

L ‘Hôspital’s Rule. To use the rule, we first put (A.9) in the form a single fraction: 

𝐼𝑛𝜔0 =
𝑔𝑚𝑉𝐴𝐶
𝜋

�
sin �(𝑛 − 1)𝜃

2 �

𝑛(𝑛 − 1) −
sin �(𝑛 + 1)𝜃

2 �

𝑛(𝑛 + 1) � 

 

=
𝑔𝑚𝑉𝐴𝐶
𝜋

�
(𝑛 + 1) sin �(𝑛 − 1)𝜃

2 � − (𝑛 − 1) sin �(𝑛 + 1)𝜃
2 �

𝑛(𝑛 + 1)(𝑛 − 1) � 

 

 

𝐼𝑛𝜔0 =
𝑔𝑚𝑉𝐴𝐶
𝜋

�
(𝑛 + 1) sin �(𝑛 − 1)𝜃

2 � − (𝑛 − 1) sin �(𝑛 + 1)𝜃
2 �

𝑛3 − 𝑛
� (A.10) 

 
Now, the rule states that in order to find the case where n=1, we must take the limit as n 

approaches 1 of quantity that represents the derivative of the numerator divided by the 

derivative of the denominator. This analysis is done on the following page 
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𝐼𝜔0 = lim
𝑛→1

𝑔𝑚𝑉𝐴𝐶
𝜋

�(𝑛 + 1) sin �(𝑛 − 1)𝜃
2 � − (𝑛 − 1) sin �(𝑛 + 1)𝜃

2 ��
′

{𝑛3 − 𝑛}′  

 

= lim
𝑛→1

𝑔𝑚𝑉𝐴𝐶
𝜋

�
sin �(𝑛 − 1)𝜃

2 � + (𝑛 + 1) cos �(𝑛 − 1)𝜃
2 � 𝜃2 

3𝑛2 − 1

−
sin �(𝑛 + 1)𝜃

2 � + (𝑛 − 1) cos �(𝑛 + 1)𝜃
2 � 𝜃2

3𝑛2 − 1
� 

 

=
𝑔𝑚𝑉𝐴𝐶
𝜋

�
𝜃 − sin(𝜃)

2
� 

 

 

𝐼𝜔0 =
𝑔𝑚𝑉𝐴𝐶

2𝜋
[𝜃 − sin(𝜃)] (A.11) 

 
 Thus, observing (A.7) and (A.11), the fundamental and DC components linearly 

relate to the RF drive (𝑉𝐴𝐶) if the conduction angle is held constant. 
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Appendix B 
 oecive Transconducance of a 

Reduced Conducion Angle Mode PA 

The following analysis is used to find the effective transconductance (GMeff) of a 

transistor operating in a reduced conduction angle mode such as class B or C. This, GMeff, 

allows us to better model the loop stability of the CCA biasing control circuit. 

VAC

VDC + ΔVDC

 IDC + ΔIDC

 

 
Figure B.1 Transistor depiction of the CCA biasing of a class C device. 
 

Equations (B.1) and (B.2), derived earlier, are needed in determining GMeff. 

𝑉𝐷𝐶
𝑉𝐴𝐶

= −𝑐𝑜𝑠
𝜃
2

 (B.1) 

 

𝐼𝐷𝐶 =
𝑔𝑚
𝜋

 ∙  �𝑠𝑖𝑛
𝜃
2
−
𝜃
2
𝑐𝑜𝑠

𝜃
2

 �  ∙  𝑉𝐴𝐶 (B.2) 
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We can make the following formalizations: 

𝜃 →  
𝑉𝐷𝐶
𝑉𝐴𝐶

 
𝐺𝑀𝑒𝑓𝑓
�⎯⎯⎯�  𝐼𝐷𝐶 (B.3) 

 
The conduction angle specifies a certain DC bias-to-AC drive ratio and this therein gives 

rise to a DC drain/collector current by virtue of the so-called “GMeff” we are solving for.  

 To solve for GMeff, let’s consider a small change in the DC bias voltage which 

gives rise to a small change in the DC drain/collector current. 

𝑉𝐷𝐶 + Δ𝑉𝐷𝐶  →  𝐼𝐷𝐶 + Δ𝐼𝐷𝐶 (B.4) 
 
And also the nominal conduction angle is related by: 

𝜃 →
𝑉𝐷𝐶 + Δ𝑉𝐷𝐶

𝑉𝐴𝐶
 (B.5) 

 
The form of the desired effective transconductance is given as: 

Δ𝐼𝐷𝐶 = 𝐺𝑀𝑒𝑓𝑓Δ𝑉𝐷𝐶 (B.6) 
 
Observing (B.2), the quantity in parenthesis is dependent on the conduction angle which 

is related by the expression in (B.3). Thus we can write: 

𝐼𝐷𝐶 + 𝛥𝐼𝐷𝐶 =
𝑔𝑚
𝜋

 ∙  ℱ �
𝑉𝐷𝐶 + 𝛥𝑉𝐷𝐶

𝑉𝐴𝐶
�  ∙  𝑉𝐴𝐶  

 
where,  

ℱ �
𝑉𝐷𝐶 + Δ𝑉𝐷𝐶

𝑉𝐴𝐶
� = 𝑠𝑖𝑛

𝜃
2
−
𝜃
2
𝑐𝑜𝑠

𝜃
2

 (B.7) 

 
This expression can be approximated and simplified as follows: 

𝐼𝐷𝐶 + Δ𝐼𝐷𝐶 ≈
𝑔𝑚
𝜋

 ∙  �ℱ �
𝑉𝐷𝐶
𝑉𝐴𝐶

� + 𝛼
Δ𝑉𝐷𝐶
𝑉𝐴𝐶

�  ∙ 𝑉𝐴𝐶   

 

= �
𝑔𝑚
𝜋

 ∙  ℱ �
𝑉𝐷𝐶
𝑉𝐴𝐶

�  ∙  𝑉𝐴𝐶� + �
𝑔𝑚
𝜋

 ∙  𝛼
Δ𝑉𝐷𝐶
𝑉𝐴𝐶

∙  𝑉𝐴𝐶� (B.8) 

 
The underlined expression in (B.8) is just 𝐼𝐷𝐶  and we can further simplify overall 

expression and write 𝐺𝑀𝑒𝑓𝑓. 
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𝐼𝐷𝐶 + Δ𝐼𝐷𝐶 = 𝐼𝐷𝐶 +
𝑔𝑚
𝜋

 ∙  𝛼
Δ𝑉𝐷𝐶
𝑉𝐴𝐶

∙  𝑉𝐴𝐶  

 
𝛥𝐼𝐷𝐶 = �

𝑔𝑚
𝜋
𝛼�  ∙  𝛥𝑉𝐷𝐶  

 

 
𝐺𝑀𝑒𝑓𝑓 =

𝑔𝑚
𝜋
𝛼 (B.9) 

 
 So how do we find 𝛼, the effective transconductance scaling factor? It is 

dependent upon the conduction angle and the procedure for empirically finding 𝛼 for a 

given conduction angle is outlined next. 

 We start with the conduction angle of interest and calculate the associated 

VDC/VAC ratio. This is the starting point of the analysis and we want to observe the 

change about this point. The independent variable given in (B.5) is explicitly shown in 

(B.10). 

𝑉𝐷𝐶 + Δ𝑉𝐷𝐶
𝑉𝐴𝐶

=
𝑉𝐷𝐶
𝑉𝐴𝐶

+ δ (B.10) 

 
where,  

δ =
Δ𝑉𝐷𝐶
𝑉𝐴𝐶

  

 
To solve for the dependent variable, ℱ �𝑉𝐷𝐶+Δ𝑉𝐷𝐶

𝑉𝐴𝐶
�, we first need to solve for the 

conduction angle using (B.10). 

𝜃 = 2cos−1 �
𝑉𝐷𝐶
𝑉𝐴𝐶

+ δ� (B.11) 

 
Now, we need to solve the dependent variable for a slew of points close to the nominal 

VDC/VAC. We can then plot the function in Excel and use the curve-fit capability of Excel 

to find an equation for this line, in order to extract the slope. 

  



 

108 

 Now, why is the slope important? Well, if we plot the function we will obtain an 

equation of line in the form shown below. 

ℱ �
𝑉𝐷𝐶 + Δ𝑉𝐷𝐶

𝑉𝐴𝐶
� = 𝑚�

𝑉𝐷𝐶 + Δ𝑉𝐷𝐶
𝑉𝐴𝐶

� + 𝑏  

 
which simplifies to: 

ℱ �
𝑉𝐷𝐶 + Δ𝑉𝐷𝐶

𝑉𝐴𝐶
� = 𝑚

𝑉𝐷𝐶
𝑉𝐴𝐶

+ 𝑚
Δ𝑉𝐷𝐶
𝑉𝐴𝐶

+ 𝑏 (B.12) 

 
Remember, earlier we approximated the dependent variable to: 

ℱ �
𝑉𝐷𝐶 + Δ𝑉𝐷𝐶

𝑉𝐴𝐶
� ≈ ℱ �

𝑉𝐷𝐶
𝑉𝐴𝐶

� + 𝛼
Δ𝑉𝐷𝐶
𝑉𝐴𝐶

 (B.13) 

 
Therefore, equating (B.12) and (B.13) we obtain: 

ℱ �
𝑉𝐷𝐶
𝑉𝐴𝐶

� = 𝑚
𝑉𝐷𝐶
𝑉𝐴𝐶

+ 𝑏  (B.14) 

 
where,  

𝛼 = 𝑚 (B.15) 
 
 Using the aforementioned method 𝛼 was solved for conduction angles of 90° to 

180° in 10° steps. In keeping consistent and accurate, the step size (𝛿) was set such that 

the conduction angles only varied by about 3% from the nominal conduction angle. The 

resulting plot is shown in Figure 2 on the next page. 
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Figure B.2 Relationship between alpha & the conduction angle65. 
 

The result is very appealing. We can write the following expression for alpha: 

𝛼 ≈ 0.00873 ∙ 𝜃 =
𝜃 [𝑑𝑒𝑔]
114.5°

=
𝜃 [𝑟𝑎𝑑]

2
 (B.16) 

 
Plugging this in the GMeff expression, we obtain: 

𝐺𝑀𝑒𝑓𝑓 ≈
𝑔𝑚
2𝜋

∙ 𝜃[𝑟𝑎𝑑] (B.17) 
 

 

                                                      
65 The “R2” value in the excel chart represents how well the “curve” fits the data. 

y = 0.0087x - 0.0001 
R² = 1.0000 
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α 
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Relation of "GMeff Factor, α" to Conduction Angle 
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Appendix C 
Cadsof  agle Tutoriall Package, Schematic, and 

Layout Creation by Mathew Bloom 

PCB Designl Package Creation 

Download the free version of Cadsoft Eagle from http://www.cadsoftusa.com/download-

eagle/?language=en. There are usually three steps involved in the entire PCB process: 

package creation, schematic entry, and PCB layout. The package creation step, in some 

cases, can be skipped if the package/footprint for a specific part is already given. 

 

Start by creating a new library in Eagle (refer to Figure C.1). After a new library window 

appears, name the library file and save it to the “lbr” directory where Eagle was installed 

to (example: JohnDoeCustom.lib). 

 

During the component creation process, there are three steps the user must proceed 

through to make the final part. The three steps are Package Creation, Symbol Creation, 

and Device Creation. Package Creation involves creating a footprint for the component, 

which will consist of laying out land patterns (surface mount, through hole, etc.), silk 

screens, and so forth. Symbol Creation involves creating the schematic symbol for the 

component. Component Creation links the package to the schematic symbol. Refer to 

Figure C.2 for the library window. 

http://www.cadsoftusa.com/download-eagle/?language=en
http://www.cadsoftusa.com/download-eagle/?language=en
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Figure C.1 Cadsoft Eagle main window – starting a custom library. 

 

 

 

 
Figure C.2 Cadsoft Eagle library window. 
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Begin component creation by selecting the package button. When the “Edit” window 

appears, name the package after the component’s package type, and then save the name. 

A black background with a grid should appear; the window has now changed to the 

package creation window. Before setting up the package in the workplace, the user 

should consult the component’s datasheet for recommended land patterns. Once the land 

pattern is found, start the process by setting up the work space’s grid (Figure C.3). After 

setting a desired grid area, start placing either surface mount pads (SMDs) or through-

hole pads onto the workspace using the recommended land patterns from the datasheet. 

The size and shape of each pad can be altered by going to the top of the work space and 

changing the dimensions (Figure C.4). To make a circular SMD, set the roundness to 

100%. 

 
Figure C.3 Package creation work space with typical grid settings. 

 

 
Figure C.4 SMD and through-hole size/dimension options, respectively. 
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Note that the SMDs should be on the “Top” (copper) layer, and the through-hole pads 

should be on the “Pads” layer. To check if certain aspects of the design are on the right 

layers, select the visible layers drop down and select/deselect layers. After placing pads, 

silkscreens can be placed to outline the component’s package and display the 

component’s schematic reference number and manufacturer number. Component outline 

silkscreens can be created using the Wire and Circle tools on the left toolbar, while the 

reference number (Name) and manufacturer’s part number (Value) silkscreens can be 

created using the Text tool. Note that during component creation, the reference number 

and part number should be set as “>Name” and “>Value.” The actual designators will be 

placed onto the layout workspace once the schematic is created. The component outline 

silkscreens should be created on the “tPlace” layer while the Name and Value silkscreens 

should be placed on the “tName” and “tPlace” layers, respectively. The "t" in each layer 

represents the top layer ("b" would then represent the bottom layer). As an example, a 

finished part is shown in Figure C.5 (8-pin DIP socket for the TL072). 

 
Figure C.5 Package design example – 8-pin DIP socket for TL072. 
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A few tips about the package creation process should be mentioned. The first is the 

shortcut to place pads down through coordinate commands. At the top of the work space 

is a white command prompt bar. Instead of clicking and dragging pads to a specific 

coordinate, each point can be entered in an (x y) format. For example, if a pad is required 

60mils x 100mils from the origin (and the units are in inches), the coordinate command 

would be (0.060 0.100) (type the coordinates and press enter). 

 

The second tip revolves around the use of the crosshair at the center of the workspace. 

The crosshair is used as an indicator for how a part will be placed onto the user's cursor 

when being dragged and placed onto the workspace during the layout stage. Therefore it 

is a matter of preference for the user on how the part will be oriented onto the workspace 

during the package stage. A general method used is to center the bottom-left most pad 

onto the cross-hair and design the package from there. Once the package is completed, 

select the Group tool and drag a selection box over every single package element. Once 

the package is highlighted, select the Move tool and right-click near the package. At the 

bottom of the tool-tip that shows up, select Move: Group. Center the package around the 

center cross-hair and save the design. 

 

The third tip is in regards to pad naming. To make connections between the schematic 

symbol and the package simple, each pad can be given a name. Type “Name” into the 

command prompt and select each pad. A new window will come up where the respective 

pin name or designator can be edited. The same process should be performed during 

schematic symbol creation when handling pin names. 

 

Next, create a schematic symbol by selecting the associated icon. An “Edit” prompt will 

appear much like during the package process. Name the schematic symbol after the 
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manufacturer’s part name and proceed. A window similar to the package creation work 

space will appear, but the background will be white (Figure C.6). The default grid 

configuration should be acceptable for this process, but can also be altered to the user's 

preferences. The entire schematic process is similar to that of the package process, where 

each pin will receive a name/designator and the symbol will be labeled with the >Name 

and >Value conventions. An example symbol can be seen in Figure C.7 (8-pin DIP 

socket for the TL072). 

 
Figure C.6 Schematic symbol creation work space. 
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Figure C.7 Schematic symbol design example – 8-pin DIP socket for the TL072. 
 

Finally, select the Device icon to complete the component creation process. A new 

window should appear as seen in Figure C.8. First, click the Add button and select the 

schematic symbol that was created. Next, click the New button and add the created 

package symbol. Finally, press the Connect button to link the schematic and package 

symbols together. The connection window should look like Figure C.9. If the pads and 

pins from the previous processes were given their respective names, they should line up 

directly with one another as seen in Figure C.9. If not, the user will have to search for and 

select the connections between each associated pad and pin. By the end of the connection 

process, the “Connection” section in the last-third of the window should be full. Press 

“OK” to complete the component process. 
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Figure C.8 Device creation work space. 

 

 

 
Figure C.9 Schematic and package symbol connection window. 
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PCB Designl Schematic and Layout 

Start a new project in Eagle by referring to Figure C.10and then start a new schematic as 

seen in Figure C.11. 

 
Figure C.10 Starting a new project in Eagle. 
 

 
Figure C.11 Starting a new schematic in the project directory. 
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A new schematic work space should appear, as seen in Figure C.12. All parts should be 

accessible via the Add button (including parts from the custom-made library). Place parts 

onto the schematic work space and wire them together using the Wire tool. All 

components can have their reference names and values changed by selecting the Name 

and Value tools. One useful tool to use is the Group tool when having to move or copy 

multiple components at any given time. For example, group all desired components 

together by creating a selection box with the Group tool. Once all desired components are 

highlighted, select either the move or copy option, and then right-click the work space. 

Finally, when the tool-tip appears, select “Group: “<Action>,” where <Action> is either 

move, copy, or another command. After completing the schematic entry, press the Board 

button at the top of the work space to generate a board layout from the schematic. 

 
Figure C.12 Schematic workspace. 
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When Eagle generates the board layout, the program will create a component pile at the 

bottom left corner of the layout work space (Figure C.13). Before routing the board, it is 

usually wise to specify the design rules for the board, which follow the guidelines 

established by the board fabricator. To access the design rules, go to Tools > DRC… and 

input the necessary fabrication limitations. 

 

As seen in Figure C.13, the white rectangular boundaries within the work space are 

the board dimensions for the PCB. The boundaries can be adjusted by clicking 

and dragging the polygon. Each of the components on the screen can also be 

clicked and dragged onto the PCB area. Note how each connected component 

from the schematic is now connected by a yellow line known as a “netlist.” All 

components can either be manually routed by following each netlist, or an auto- 

route feature can be used by selecting the Auto button on the left toolbox. When 

routing components, a majority of the routing will take place on the “Top” layer 

(rustic-colored). However, routing can also take place on the “Bottom” layer 

(blue-colored). Because the board is a 2-layer design, the top layer is usually the 

component layer whereas the bottom layer is specified as ground. 

 

To set the bottom layer as ground, select the Polygon tool in the left toolbox, and 

then select the layer to be “Bottom” from the layer pull-down menu at the top of 

the work space. Create a rectangular polygon around the inner sides of the PCB 

boundary (keep a small amount of buffer room between the ground plane and 

board edges). After the polygon is created, right-click on the polygon, select 

“Properties,” and rename the signal name to “GND.” Once connections are made 
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to the GND netlist, the bottom layer should automatically fill up from the blue 

polygon GND layer. If not, press the “Ratsnest” button.  Use the steps above to 

complete the PCB layout. 

 
Figure C.13 Layout workspace. 

 

PCB Designl Gerber File Generation 

To generate the Gerber and drill files, select the “CAM” button at the top of the work 

space (refer to Figure C.13). When the CAM processor window opens, a job must be 

selected to generate the Gerber files for a 2-layer board (refer to Figure C.14). Next, 

select the “gerb274x.cam” job file, which is a default job created specifically for 2-layer 

boards. 

 

Once the job is selected, the Cam processor window should now look like Figure C.15. 

Take notice of the tabs that appear at the top of the window. Gerber files should be 

generated for the component layer, ground layer, component silkscreens, component 
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layer solder-mask stop, and ground layer solder-mask stop. For each layer, the affected 

board attributes are highlighted in blue. Click “Process Job” when all parameters are 

configured. 

 
Figure C.14 CAM processor window. 

 

 
Figure C.15 Gerber file configuration for a 2-layer board job. 
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After the Gerber Files are saved, select File > Open > Job… and select the 

“excellon.cam” job to create the drill files for the board. A similar screen like Figure C.15 

should appear. Again, once all parameters are set, click “Process Job.” When sending the 

Gerber and drill files to a board fabrication house, certain files are necessary in the board 

fabrication process. For this project, the company Advanced Circuits (www.4pcb.com) 

was used as a board fabrication vendor. Table 1 lists the files necessary to have Advanced 

Circuits fabricate a board. 

 

 

Table C.1 Necessary Gerber and drill files for board fabrication.  
 

File Description 

.cmp Component side data 

.sol Solder side data 

.plc Component side silk screen data 

.stc Component side solder stop mask data 

.sts Solder side stop mask data 

.drd Excellon drill description 
 

 

 

http://www.4pcb.com/
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Appendix D 
Breadboard Layout & PCB Schematic, Layout 

PCB Designl Package Creation 

Figure C.1 shows the layout of the initial breadboard prototype from the perspective of 

looking up from the bottom side of the board. Three buses line the breadboard prototype 

on the right and left sides of the boards. To conveniently connect the class C power 

transistor, two of the lines on each side are designated for the base and collector. As a 

ground connection is necessary throughout, one of the busses is designated for ground. 

The power line is run by an external wire. As radiation was apparent from the lines, the 

excess portions of the busses were cut. 

Te PCB Schematic & Layout 

Figure D.2 shows the Eagle schematic of the final PCB prototype. This schematic was 

used to generate the layout shown in Figure D.3. The bottom layer traces are shown in 

blue and the top layer traces are shown in red. With the exception of the isolated traces 

(shown with wide borders), the bottom layer is entirely ground. Vias are shown in green 

and holes are shown in white. The board layout measures 4 x 3.2 inches – the board size 

limit for the free version of Cadsoft Eagle. 
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Figure D.1 Initial prototype layout as seen when looking from the perspective of the bottom.  
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Figure D.2 Final PCB Eagle schematic. 
 



 

127 

 

Figure D.3 Final PCB Eagle layout. 
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Appendix   
Te Harmonic Short 

LS

CS
Short

Cefff0

2f0

 

Figure E.1 A series LC which acts as a capacitor at the fundamental and a short for the 
second harmonic. 
 

 The circuit in Figure A.1 serves to short circuit the second harmonic while act as 

an effective capacitance at the fundamental. We can derive the design equations for 

selecting the appropriate component values to obtain aforementioned desired response.  

 We begin by defining the variable 𝜔0 as the fundamental frequency and 𝜔0
𝑠 as 

the series resonance frequency. The series resonance formula is given by: 

𝜔0
𝑠 =

1
�𝐿𝑆𝐶𝑆

 (E.1) 

 
We also write the reactance of the effective capacitance, Ceff: 

𝑋𝐶𝑒𝑓𝑓 =
−1

𝜔0𝐶𝑒𝑓𝑓
 (E.2) 

 
This reactance can also be expressed in terms of the sum of the series inductor and 

capacitor reactances. 

𝑋𝐶𝑒𝑓𝑓 = 𝑋𝐿𝑆 + 𝑋𝐶𝑆 = 𝜔0𝐿𝑆 −
1

ω0𝐶𝑆
 (E.3) 



 

129 

We then write 𝐿𝑠 in terms of 𝑋𝐶𝑒𝑓𝑓 by replacing 𝐶𝑠 using (A.2). 

𝑋𝐶𝑒𝑓𝑓 = 𝑋𝐿𝑆 + 𝑋𝐶𝑆 
 

= 𝜔0𝐿𝑠 −
1

𝜔0𝐶𝑠
 

 

= 𝜔0𝐿𝑠 −
1

𝜔0 �
1

(𝜔0𝑠)2𝐿𝑠
�

 

 

= 𝜔0𝐿𝑠 −
(𝜔0

𝑠)2𝐿𝑠
𝜔0

 

 

=
(𝜔0)2 − (𝜔0

𝑠)2

𝜔0
𝐿𝑆 

 

 
𝐿𝑠 =

𝜔0
(𝜔0)2 − (𝜔0𝑠)2 𝑋𝐶𝑒𝑓𝑓 (E.4) 

 
 Since we desire series resonance to occur at the second harmonic, 𝜔0

𝑠 = 2𝜔0. 

Therefore, 𝐿𝑠can be rewritten as the following: 

𝐿𝑠 =
𝜔0

𝜔02 − (2𝜔0)2 𝑋𝐶𝑒𝑓𝑓 = −
𝑋𝐶𝑒𝑓𝑓
3𝜔0

 (E.5) 

 
Similarly 𝐶𝑠 is written as: 

𝐶𝑆 =
1

(2𝜔0)2𝐿𝑆
=

1

4𝜔02 �−
𝑋𝐶𝑒𝑓𝑓
3𝜔0

�
= −

3
4𝜔0𝑋𝐶𝑒𝑓𝑓

  
(E.6) 

 

Thus design procedure for the harmonic short that is integrated into the output network of 

the CCA biasing circuit consists of two steps: 

1) Solve for the reactance of Ceff. 

2) Plug this reactance into (E.5) and (E.6) to solve for the series inductance 

and capacitance, respectively. 
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