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Nuclear magnetic moment is highly sensitive to the underlying structure of atomic nuclei and therefore serves as a stringent test
of nuclear models. The advanced nuclear structure models have been successful in analyzing many nuclear structure properties,
but they still cannot provide a satisfactory description of nuclear magnetic moments. Recently attempts to summarize the present
understanding on nuclear magnetic moments in both relativistic and non-relativistic theoretical models have been made. The detailed
contents are covered in the issue entitled “Nuclear magnetic moments and related topics” (in Sci China Phys Mech Astron, Vol. 54,
No. 2, 2011). In this paper some of the related achievements will be highlighted.
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Nuclear magnetic moment is an important physical observ-
able that reflects the interplay between collective and single-
particle degrees of freedom in atomic nuclei. It therefore pro-
vides a stringent test of various nuclear structure models. A
concise but interesting history and present understanding of
nuclear magnetic moments have been provided in [1].

Since the successes of the nuclear shell model established
in 1949 by Mayer and Jensen for the explanation of the magic
numbers (Z or N = 2, 8, 20, 28, 50, 82, . . . ), the understand-
ing of the magnetic moment of an odd-A nucleus has been
done in the extreme single-particle picture which leads to
the well known Schmidt values [2]. It was observed in the
early 1950s [3], however, that almost all nuclear magnetic
moments are sandwiched between the two Schmidt lines.

The pion, predicted by Yukawa in 1935, and discovered
experimentally by Powell in 1947, was pointed out to be very
important for understanding nuclear magnetic moments by
Miyazawa in 1951 [4] and by Villars in 1952 [5] via the
one-pion exchange currents, which can be understood as a
medium correction in comparison with the free nuclear mag-
netic moments. Besides the pion effect, the first-order con-
figuration mixing was pointed out to be also important in the
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odd-A nuclei with a j j-closed core by Arima and Horie in
1954 [6,7]. This effect is also called the first-order core polar-
ization or Arima-Horie effect. However, for the nuclei with
a LS -closed core ± 1 nucleon, the first-order configuration
mixing does not contribute to nuclear magnetic moments. In
order to understand the difference between Schmidt values
and experiment data in this type of nuclei, it was realized
that one has to take into account the second-order configura-
tion mixing, which is also called the tensor correlation. The
isoscalar magnetic moments provide us the best evidence of
the tensor correlations. There were also lots of discussion
on whether the Δ-hole mixing can explain the magnetic mo-
ments [8–10].

In the past decades, covariant density functional theory
(CDFT) has been successfully applied to describe the nuclear
structure over the whole periodic table [11–15]. However, the
relativistic description of the magnetic moment is still unsat-
isfactory. By taking into account the renormalized currents
by the random phase approximation (RPA) or applying the
self-consistent deformed CDFT with the time-odd fields, the
isoscalar magnetic moments in the nuclei with a LS -closed
core ± 1 nucleon could be reproduced quite well. Unfor-
tunately, these effects cannot remove the discrepancy exist-
ing in the isovector magnetic moments [16–21]. To eliminate
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this discrepancy, one-pion exchange current corrections have
been included in the relativistic model, which were found to
be significant. However they lead to a larger disagreement
with data. Recently, the second-order configuration mixing
has been considered in the fully self-consistent relativistic
theory and it turned out to be important for improving the
description of the isovector magnetic moments [22].

In addition, many models have been further extended to
describe magnetic moment of nuclear ground-state or gyro-
magnetic ratio (g-factor defined as a ratio of magnetic mo-
ment to the angular momentum) of nuclear excited states [23–
36]. In most of these models, however, nuclear magnetic mo-
ments were calculated by adjusting model parameters to re-
produce the experimental data or by adopting a model-space-
dependent effective orbital/spin g-factor. Although good
agreement with the experimental data could be achieved in
this way, a quantitative and universal description of nuclear
magnetic moments would definitely requires further theoret-
ical investigations.

Experimentally, advances in modern experimental tech-
niques and sensitive detectors have made it even possible to
measure, with a reasonable accuracy, magnetic moments of
short-lived nuclear states [37–40].

In order to draw more attention to the status of nuclear
magnetic moment studies and also to introduce the major
achievements on the related subjects, the editorial board of
Science China Physics Mechanic and Astronomy has invited a
number of major theoretical nuclear physicists in this field to
contribute to a special issue entitled “Nuclear magnetic mo-
ments and related topics” (in Sci China Phys Mech Astron,
Vol. 54, No. 2, 2011). This paper attempts to summarize the
progress on theoretical studies of nuclear magnetic moment
and the related topics.

1 Remarks and discussion

1.1 Arima-Horie effect on nuclear magnetic moments

In the extreme single-particle shell model, magnetic moment
of an odd-A nucleus is carried only by one valence nucleon,
which leads to the well known Schmidt values. It was ob-
served in the early 1950s [3], however, that almost all nuclear
magnetic moments are sandwiched between the two Schmidt
lines, and that some of them, like 17F or 15N, show only small
deviations from the Schmidt values, while others, like 209Bi
or 207Tl, show very large deviations. In this extreme single-
particle picture, one expects that the valence proton particle
(or proton hole) in the latter nuclei moving independently
around the core of 208Pb should be similar to that in the for-
mer nuclei moving around 16O. Therefore, it is impossible to
interpret such differences between the two groups of nuclei
within this model.

In 1954 Arima and Horie pointed out a very distinct dif-
ference between these two groups of nuclei [6]. Nuclei in
the former group are LS -closed, i.e. the spin-orbit partners

j = � ± 1/2 of the core are completely occupied. There-
fore they are not expected to be excited strongly by a M1
external field. As for the latter group (like 208Pb), their cores
are j j-closed, i.e. one of the spin-orbit partners is open, and
therefore nucleons in the core can be strongly excited to the
empty spin-orbit partner by the M1 external field. This M1
giant resonance state of the core can be excited by the in-
teraction with the valence nucleon [41]. This is the idea of
Arima-Horie effect on nuclear magnetic moments. Besides,
the second-order core polarization and the meson exchange
current (MEC) were found to be also very important in expla-
nation of the discrepancy between the Schmidt values and the
experimental data [42–44]. It has been shown that the total
effects of second-order core polarization and MEC give cor-
rections, which improve the description of isovector magnetic
moments by the Schmidt values [45, 46]. A recent Green’s
function Monte Carlo calculation of magnetic moments and
M1 transitions for A � 7 nuclei demonstrated again the im-
portance of the MEC contributions to nuclear isovector mag-
netic moments [32].

In [1], Arima presented a brief review of this history as
well as the present understandings of nuclear magnetic mo-
ments and Gamow-Teller transitions. The roles of config-
uration mixing, MEC and relativistic effects have been ad-
dressed. The quenching of isoscalar spin matrix elements and
the recent measurement of the Gamow-Teller strength in (p,n)
and (n,p) reactions on 90Zr pointed out the importance of the
tensor correlations.

1.2 Nuclear magnetic moments from covariant density
functional theories

In the past decades, the covariant density functional theory
or relativistic mean-field (RMF) approach incorporating im-
portant relativistic effects has been used extensively in the
analysis of structure properties. With a few universal param-
eters, it has already achieved great successes not only in de-
scribing many nuclear phenomena for both stable and exotic
nuclei [11–15], but also in reproducing the elemental abun-
dance distributions in both solar system and ultra-metal-poor
stars [47–53]. However, a straightforward application of the
single-particle RMF model with only time-even fields can-
not reproduce the magnetic moment of nuclear ground state,
even for near LS double-closed shell nuclei [16–21]. The
underlying reason is due to the small Dirac effective mass
(M∗ ∼ 0.6M) in the RMF approach which results in the en-
hancement of the Dirac current. The solution of this problem
lies in treating the response of the nuclear core to the unpaired
valence nucleon properly. One way is to treat the polarization
effect of the unpaired nucleon on the core by allowing excita-
tions from the core and thus creating particle-hole vibration.
The coupling of a single-particle state in a nuclear medium to
such a vibration state by meson exchanges in the framework
of relativistic RPA could restore the single-particle electro-
magnetic current to its free-nucleon value [20,54,55]. A more
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general discussion starting from a Ward identity, in which the
coupling to a vibration state represents a vertex correction,
arrived at the same conclusion [56]. In Landau-Migdal quasi-
particle approach or in the language of quantum liquids, the
effective single-particle currents in nuclei or the “back-flow”
effect were also introduced to resolve this problem [57].

Thanks to the development of numerical computation, the
fully self-consistent RMF calculations of A ± 1 nucleons be-
come possible. Then the time-odd fields generated by the un-
paired valence nucleon could be treated properly. To include
the time-odd components self-consistently in the RMF ap-
proach, the spherical symmetry must be broken at the mean-
field level. After taking into account the time-odd nuclear
magnetic potential in axially [58–60] or triaxially [61] de-
formed RMF models, the isoscalar magnetic moments of LS
double-closed shell ± 1 nucleon systems can be reproduced
well. However, there are still several problems to be solved
in this framework. One of them is the restoration of rota-
tional symmetry broken by the time-odd fields at mean-field
level. A significant progress has been made in the implemen-
tation of angular momentum projection based on the RMF
approaches [62–66] in the past decade. Due to the numerical
complexity, these implementations are currently restricted to
even-even nuclei. The extension of such kind of calculations
for odd-A nuclei requires further efforts.

Another problem is to remove the discrepancy existing in
the isovector magnetic moments as there is no vertex correc-
tions for the isovector part of the currents. To eliminate the re-
maining discrepancy, similar as the previous non-relativistic
studies, the MEC correction was performed in the relativistic
models [67, 68]. Unfortunately, although the MEC correc-
tion was found to be significant, the agreement with the data
became worse.

In [22], using the single-particle wave function of Dirac
spinor and the two-body residual interaction derived from a
covariant energy density functional, a step further was made
to incorporate the second-order core polarization correction
to nuclear magnetic moments of nuclei with a LS -closed core
± 1 nucleon and with A = 15, 17, 39 and 41. The second-
order core polarization was found to contribute significantly
to nuclear magnetic moments. It is the cancelation between
the second-order core polarization and the one-pion exchange
current corrections that improves the relativistic description
of isovector magnetic moments.

1.3 g-Factor of nuclear low-lying excited states

The renormalization of the orbital g-factor g� in nuclei is a
fascinating subject in nuclear physics. It has an impact not
only on nuclear magnetic moments, but also on electric and
magnetic sum rules for nuclear collective excitations. The re-
lation between g� and the E1 sum rule in the region of the gi-
ant dipole resonance (GDR) has been investigated [69]. This
relation, which is much more general than the original deriva-
tion in the Fermi gas model, is consistent with experimental

data. The relation between g� and the recently determined M1
sum rule for the scissors mode in deformed nuclei, however,
remains a puzzle which has to be examined in future works.

Nuclear shell model provides a firm framework for study-
ing low-lying states in nuclei. However, the configuration
space of shell models is too huge to be handled for medium-
mass and heavy nuclei. In order to study the properties of
low-lying states, one usually has to truncate the shell model
space. Pair approximation is one of the ideas along this line.
The nucleon pair approximation of the nuclear shell model,
including its history and physical foundation as well as its va-
lidity and applications to the energy spectra were discussed
in [70]. The electromagnetic moments of a few nuclei with
mass number around A ∼ 210 region were calculated by im-
plementing the recently developed technique of diagonalizing
the shell model Hamiltonian in the nucleon pair basis.

Extension of mean-field approaches to describe the g-
factor of nuclear excited states requires the restoration of ro-
tational symmetry breaking in the mean-field approximation.
Recently, the self-consistent beyond mean-field study of g-
factor for nuclear low-lying excited states was carried out
in 24Mg [71]. The nuclear wave functions were constructed
by configuration mixing of relativistic mean-field states pro-
jected on good angular momentum. In this approach, there is
no need to introduce effective charge or effective orbital and
spin g-factor for neutron and proton since the full configura-
tion was used. The available experimental g factor and spec-
troscopic quadrupole moment have been reproduced quite
well. Furthermore, the calculated g factors have been found
to be almost the same for the low-lying excited states with
different angular momenta and close to the empirical value
gR = Z/A of rigid rotor. It indicates that the dominant con-
figurations are quite similar for these low-spin yrast states in
24Mg.

1.4 Some related topics

In the special issue, some related topics, e.g. the phase tran-
sition of nuclear shape, masses of nuclei and the application
of the nucleon pair approximation are discussed. Here some
comments are given and the emphasis is on the results mainly
from Chinese research groups.

Atomic nuclei display a variety of different equilibrium
shapes – spherical, axially deformed, or soft with respect
to triaxial deformations. The transitions in nuclear shapes,
also referred as quantum phase transition (QPT) reveal the
changes of dominant configurations or distinctly different
shapes in nuclear states. In the last decade, QPTs in nuclei
have attracted a lot of attention both in theory and experi-
ment [72–76]. Meanwhile, several Chinese groups have pub-
lished their results on this subject too [77–87].

Masses of atomic nuclei are of primary importance as they
not only allow the determination of the existence limits of
nuclei and provide the essential information about neutron-
proton (np) pairing, but also serve as an important key to re-
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veal the origin of proton-rich nuclei.
Although around ten global models have been devel-

oped to reproduce measured masses and to predict unknown
masses far from the valley of stability, they are presently
limited to an accuracy at the level of 400–600 keV [88].
Recently, the semi-empirical macroscopic-microscopic mass
formula is further improved by considering some residual
corrections and the rms deviation from 2149 known nuclear
masses is significantly reduced to 336 keV [89, 90]. On the
other hand, various local mass relations or formulae have
been often demonstrated to have a better accuracy. For in-
stance, in [91] the Coulomb displacement energy (CDE) was
computed in the RMF model and the rms deviation with re-
spect to all the available CDEs with Z � 8 was improved
by more than a factor of 5 in comparison with the corre-
sponding rms value for absolute masses. Another highlight
of local mass relations that has been extensively investigated
in the last few years is the residual proton-neutron interac-
tions [92–94]. With the help of local mass relations, the ac-
curacy and predictive power of some global mass models can
be significantly improved [95].

The increasing interest in nuclei far from the stability line
demands special attention to the pairing correlations. The
comparison between the calculated results with both micro-
scopic and phenomenological nuclear pairing interactions
was made in [96]. The parameters in the isospin- and
density-dependent zero-range pairing interaction [97] were
readjusted by fitting neutron gaps from a microscopic calcu-
lations [98]. For the pairing in nuclei, Chen et al. proposed
the nucleon pair approximation model which is well appli-
cable to even-even nuclei [99]. This model was refined and
generalized to a unified approach which can be used to both
even and odd nuclei [100]. In recent years, these models are
extensively used in many respects of nuclear processes and
considerable progresses were obtained [101–108].

The description of deformed dripline nuclei requires ded-
icate efforts in treating both deformation and continuum ef-
fects properly. Attempts along this line have been made in
the past decades [109–115].

For the above topics, some review articles and comments
can also be found in [116–118].

2 Summary and perspectives

In summary, the progress of theoretical studies on nuclear
magnetic moments and the recent developments on the re-
lated subjects have been reviewed. The emphasis has been
put on those topics covered in the issue entitled “Nuclear
magnetic moments and related topics” (in Sci China Phys
Mech Astron, Vol. 54, No. 2, 2011).

Theoretical description of nuclear magnetic moments is
one of the long-standing subjects. The magnetic dipole mo-
ments of most atomic nuclei throughout the periodic table
still remain unexplained and the underlying physics mecha-

nism is not fully understood. We are looking forward to more
research contributions to this important subject in the future.
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9 Knüpfer W, Dillig M, Richter A. Quenching of the magnetic multipole
strength distribution and of the anomalous magnetic moment in com-
plex nuclei and mesonic renormalization of the nuclear spin current.
Phys Lett B, 1980, 95: 349–354

10 Oset E, Rho M. Axial currents in nuclei: The Gamow-Teller matrix
element. Phys Rev Lett, 1979, 42: 47–50

11 Serot B D, Walecka J D. The relativistic nuclear many-body problem.
Adv Nucl Phys, 1986, 16: 1–327

12 Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl
Phys, 1996, 37: 193–263

13 Vretenar D, Afanasjev A, Lalazissis G, et al. Relativistic Hartree-
Bogoliubov theory: Static and dynamic aspects of exotic nuclear struc-
ture. Phys Rep, 2005, 409: 101–259

14 Meng J, Toki H, Zhou S, et al. Relativistic continuum Hartree Bo-
goliubov theory for ground-state properties of exotic nuclei. Prog Part
Nucl Phys, 2006, 57: 470–563

15 Meng J, Guo J Y, Li J, et al. Covariant density functional theory in
nuclear physics. Prog Phys, 2011, 31: 199–336

16 Ohtsubo H, Sano M, Morita M. Relativistic corrections to nuclear mag-
netic moments and Gamow-Teller matrix elements of beta decay. Prog
Theor Phys, 1973, 49: 877

17 Miller L D. Relativistic single-particle potentials for nuclei. Ann Phys,
1975, 91: 40

18 Bawin M, Hughes C A, Strobel G L. Magnetic tests for nuclear Dirac
wave functions. Phys Rev C, 1983, 28: 456–457

19 Bouyssy A, Marcos S, Mathiot J F. Single-particle magnetic moments
in a relativistic shell model. Nucl Phys A, 1984, 415: 497–519

20 Kurasawa H, Suzuki T. Effective mass and particle-vibration coupling
in the relativistic σ − ω model. Phys Lett B, 1985, 165: 234–238

21 Yao J M, Mei H, Meng J, et al. Magnetic moment in relativistic mean
field theory. High Energ Phys Nucl, 2006, 30(suppl. 2): 42–44

22 Li J, Meng J, Ring P, et al. Relativistic description of second-order
correction to nuclear magnetic moments with point-coupling residual
interaction. Sci China Phys Mech Astron, 2011, 54: 204–209

23 Wolf A, Casten R F. Effective valence proton and neutron numbers in
transitional A∼150 nuclei from B(E2) and g-factor data. Phys Rev C,
1987, 36: 851

24 Zhang J Y, Casten R F, Wolf A, et al. Consistent interpretation of



4398 Zhao E G Chin Sci Bull December (2012) Vol. 57 No. 34

B(E2) values and g factors in deformed nuclei. Phys Rev C, 2006, 73:
037301

25 Terasaki J, Engel J, Nazarewicz W, et al. Anomalous behavior of 2+1
excitations around 132Sn. Phys Rev C, 2002, 66: 054313

26 Bonneau L, Le Bloas J, Quentin P, et al. Effects of core polarization
and pairing correlations on some ground-state properties of deformed
odd-mass nuclei within the higher Tamm-Dancoff approach. Int J Mod
Phys E, 2011, 20: 252–258

27 Jia L Y, Zhang H, Zhao Y M. Systematic calculations of low-lying
states of even-even nuclei within the nucleon pair approximation. Phys
Rev C, 2007, 75: 034307

28 Forssen C, Caurier E, Navratil P. Charge radii and electromagnetic mo-
ments of Li and Be isotopes from the ab initio no-core shell model.
Phys Rev C, 2009, 79: 021303

29 Honma M, Otsuka T, Brown B A, et al. New effective interaction for
pf-shell nuclei and its implications for the stability of the N = Z = 28
closed core. Phys Rev C, 2004, 69: 034335

30 Brown B A, Stone N J, Stone J R, et al. Magnetic moments of the 2+1
states around 132Sn. Phys Rev C, 2005, 71: 044317

31 Shimizu N, Otsuka T, Mizusaki T, et al. Anomalous properties of
quadrupole collective states in 136Te and beyond. Phys Rev C, 2006,
74: 059903

32 Marcucci L E, Pervin M, Pieper S C, et al. Quantum Monte Carlo
calculations of magnetic moments and M1 transitions in A � 7 nuclei
including meson-exchange currents. Phys Rev C, 2008, 78: 065501

33 Bian B A, Di Y M, Long G L, et al. Systematics of g factors of 2+1
states in even-even nuclei from Gd to Pt: A microscopic description
by the projected shell model. Phys Rev C, 2007, 75: 014312

34 Alder K, Steffen R M. Electromagnetic moments of excited nuclear
states. Ann Rev Nucl Sci, 1964, 14: 403–482

35 Hill J C, Wohn F K, Wolf A, et al. Study of magnetic moments of nu-
clear excited states at Tristan. Hyperfine Interactions, 1985, 22: 449–
457

36 Benczer-Koller N, Kumbartzki G J, Gurdal G, et al. Measurement of
g factors of excited states in radioactive beams by the transient field
technique: 132Te. Phys Lett B, 2008, 664: 241–245

37 Benczer-Koller N, Kumbartzki G J. Magnetic moments of short-lived
excited nuclear states: Measurements and challenges. J Phys G, 2007,
34: R321

38 Zheng Y N, Zhou D M, Yuan D Q, et al. Nuclear structure and mag-
netic moment of the unstable 12B-12N mirror pair. Chin Phys Lett,
2010, 27: 022102

39 Yuan D Q, Fang P, Zheng Y N, et al. Study of dependence of quasi-
particle alignment on proton and neutron numbers in A = 80 region
through g-factor measurements. Hyperfine Interactions, 2010, 198:
129

40 Yuan D, Zheng Y, Zuo Y, et al. The g-factors and magnetic rotation in
82Rb. Chin Phys B, 2010, 19: 062701

41 Noya H, Arima A, Horie H. Nuclear moments and configuration mix-
ing. Prog Theor Phys Suppl, 1958, 8: 33–112

42 Chemtob M. Two-body interaction currents and nuclear magnetic mo-
ments. Nucl Phys A, 1969, 123: 449–470

43 Shimizu K, Ichimura M, Arima A. Magnetic moments and GT type
beta decay matrix elements in nuclei with a LS doubly closed shell
plus or minus one nucleon. Nucl Phys A, 1974, 226: 282–318

44 Towner I S, Khanna F C. Corrections to the single-particle M1 and
Gamow-Teller matrix elements. Nucl Phys A, 1983, 399: 334–364

45 Towner I S. Quenching of spin matrix elements in nuclei. Phys Rep,
1987, 155: 263–377

46 Arima A, Shimizu K, Bentz W, et al. Nuclear magnetic properties and
Gamow-Teller transitions. Adv Nucl Phys, 1987, 18: 1–106

47 Sun B H, Montes F, Geng L S, et al. Application of the relativistic
mean-field mass model to the r-process and the influence of mass un-
certainties. Phys Rev C, 2008, 78: 025806

48 Sun B H, Meng J. Challenge on the astrophysical r-process calculation
with nuclear mass models. Chin Phys Lett, 2008, 25: 2429

49 Niu Z M, Sun B H, Meng J. Influence of nuclear physics inputs and
astrophysical conditions on the Th/U chronometer. Phys Rev C, 2009,
80: 065806

50 Zhang W H, Niu Z M, Wang F, et al. Uncertainties of nucleo-
chronometers from nuclear physics inputs. Acta Phys Sin, 2012, 61:
112601

51 Meng J, Li Z P, Liang H Z, et al. Covariant density functional the-
ory for nuclear structure and application in astrophysics. Nucl Phys A,
2010, 834: 436c–439c

52 Meng J, Niu Z M, Liang H Z, et al. Selected issues at the interface be-
tween nuclear physics and astrophysics as well as the standard model.
Sci China Phys Mech Astron, 2011(suppl. 1), 54: 119–123

53 Li Z, Niu Z M, Sun B H, et al. WLW mass model in nuclear r-process
calculations. Acta Phys Sin, 2012, 61: 072601

54 Shepard J R, Rost E, Cheung C Y, et al. Magnetic response of closed-
shell ±1 nuclei in Dirac-Hartree approximation. Phys Rev C, 1988, 37:
1130–1141

55 Ichii S, Bentz W, Arima A. Isoscalar currents and nuclear magnetic
moments. Nucl Phys A, 1987, 464: 575–602

56 Bentz W, Arima A, Hyuga H, et al. Ward identity in the many-body
system and magnetic moments. Nucl Phys A, 1985, 436: 593

57 McNeil J A, Amado R D, Horowitz C J, et al. Resolution of the mag-
netic moment problem in relativistic theories. Phys Rev C, 1986, 34:
746–749

58 Hofmann U, Ring P. A new method to calculate magnetic moments in
relativistic mean field theories. Phys Lett B, 1988, 214: 307–311

59 Furnstahl R J, Price C E. Relativistic Hartree calculations of odd-A
nuclei. Phys Rev C, 1989, 40: 1398–1413

60 Li J, Zhang Y, Yao J M, et al. Magnetic moments of 33Mg in time-odd
relativistic mean field approach. Sci China Ser G: Phys Mech Astron,
2009, 52: 1586–1592

61 Yao J M, Chen H, Meng J. Time-odd triaxial relativistic mean field ap-
proach for nuclear magnetic moments. Phys Rev C, 2006, 74: 024307
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