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predict extinction in a population of bobwhite quail
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Abstract Early warning systems of extinction thresholds have
been developed for and tested in microcosm experiments, but
have not been applied to populations of wild animals. We used
state–space population models and a statistical indicator to
detect a transcritical bifurcation extinction threshold in a pop-
ulation of bobwhite quail (Colinus virginianus) located in an
agricultural region experiencing habitat deterioration and loss.
The extinction threshold was detectible using two independent
data sets. We compared predictions from state–space popula-
tion models to predictions from a statistical indicator and found
that predictions were corroborated. Using state–space popula-
tion models, we estimated that our study population crossed the
extinction threshold in 2010 (2002–2036; 95 % confidence
intervals [CI]) using the whistle count (WC) data set and in
2008 (1999–2064; 95 % CI) using the Breeding Bird Survey
(BBS) data. With the statistical indicator, we estimated that the
extinction threshold will be crossed in 2018 (2004–2031; 95 %
CI) using theWCdata andwill be crossed in 2012 (2006–2018;
95%CI) using the BBS data.We expect extinction in our study
population soon after crossing the extinction threshold, but the
time to extinction and potential reversibility of the threshold are
unknown. Our results suggest that neither small nor decreasing
population size will warn of the transcritical bifurcation extinc-
tion threshold. We suggest that managers of wildlife popula-
tions in regions experiencing land use change should try to

predict extinction thresholds and make management decisions
to ensure the persistence of the species.
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Introduction

Understanding and predicting extinction are central concerns
of conservation biology. Much focus has been given to the
effects of demographic and environmental stochasticity on
population extinction (Melbourne and Hastings 2008), fore-
casting quasi-extinction probabilities (Holmes et al. 2007),
and population viability analyses (Nadeem and Lele 2012) with
less focus directed on identifying and forecasting critical thresh-
old crossings that result in transitions to alternative population
states including extinction (Wissel 1984; Abrams 2002; Drake
and Griffen 2010; Dai et al. 2012, 2013). This shortage of
research and application is particularly evident in the manage-
ment of declining populations, where it is often assumed that a
decreasing or small population size warns of future extinction
(International Union for Conservation of Nature 2001; Abrams
2002). If threshold dynamics occur, a population with a slowly
declining, stable, or even an increasing trend in abundance
could collapse rapidly to extinction even when the trends in
the environmental variables driving the population over the
extinction threshold remain constant (Wissel 1984; Abrams
2002; Drake and Griffen 2010; Dai et al. 2012, 2013).

Dynamical systems theory shows that climate, physio-
logical, and ecological thresholds can be detected due to a
generic phenomenon known as critical slowing down (CSD)
using descriptive statistical indicators (Wissel 1984; Scheffer
et al. 2001, 2009; Carpenter et al. 2011; Lenton 2011; Chen
et al. 2012; Dakos et al. 2012; Scheffer et al. 2012; but see
Hastings and Wysham 2010). If a generic a phenomenon
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such as CSD exists, detection of CSD may be able to provide
early warning of extinction thresholds in populations of wild-
life. Recently, there has been interest in testing early warning
statistical indicators of extinction thresholds in microcosm
experiments (Drake and Griffen 2010; Dai et al. 2012, 2013;
Veraart et al. 2012). The microcosm experiments indicate that
CSD precedes extinction thresholds and can be detected using
a variety of statistical indicators. However, the theory and
methods have not been tested on naturally occurring popula-
tions that would be of most interest to conservation, even
though populations have shown dynamics consistent with
threshold crossing, such as rapid population collapse (Donald
et al. 2001; Frank et al. 2005; Boettiger and Hastings 2013).

More recently, it has been shown that system-specific
information can dramatically improve prediction of thresh-
old crossings (Lade and Gross 2012). This result may be
expected because the allure of detecting a generic phenom-
enon, such as CSD, is that a mathematical model of the
dynamical system does not need to be specified (i.e.,
model-free detection). If an accurate model of the dynamical
system is available, then in most cases, it should be straight-
forward to predict the threshold crossing; it is likely that the
prediction from the dynamical systems model would have
improved predictive skill when compared to the model-free
statistical indicator approach. Furthermore, if system-
specific statistical indicators can be developed based on
properties of the dynamical systems model, these too may
have improved predictive skill when compared to prediction
that rely solely on detecting general phenomenon (Boettiger
and Hastings 2013). Populations present an optimal dynam-
ical system to compare predictions of the fully parametric
modeling approach to system-specific statistical indicators
because system-specific dynamical systems models (i.e.,
population growth models) are well developed, as are statis-
tical methods to estimate model parameters and associated
uncertainty. In addition, using statistical properties of the
population growth models, it is possible to derive statistical
indicators that have theoretical justification. In this paper, we
use state–space population growth models to predict a
transcritical bifurcation extinction threshold in a natural pop-
ulation of northern bobwhite quail (Colinus virginianus) and
we develop and apply theory specific to detecting a
transcritical bifurcation extinction threshold in a population
using a statistical indicator. Finally, we compare the predic-
tions from the state–space population growth model to the
predictions from the statistical indicator.

The paper is organized as follows: In the “Critical slowing
down and the transcritical bifurcation” section, we revisit
CSD and develop prerequisite theory about the transcritical
bifurcation extinction threshold in populations. In the
“Methods” section, we present the bobwhite quail data and
the statistical methods used in our analysis and we derive a
statistical indicator. In the “Results” section, we present the

results of our analysis and comparison. In the “Discussion”
section, we explore some technical aspects of our results and
suggest areas of needed research. Finally, in the “Management
implications” section, we relate the results of our study to the
management of populations and the future of bobwhite quail
within our study area.

Critical slowing down and the transcritical bifurcation

For simple population growth models, the dynamics respon-
sible for CSD are easy to understand. For example, consider
the Gompertz population growth model:

Ntþ1 ¼ Nte
r 1−log Ntð Þ

Kð Þ ð1Þ

where Nt is the current population state, t is the discrete time, r
is the density-independent population growth rate, and K is the
natural log of the equilibrium population size (Gompertz 1825).
For the Gompertz model, CSD occurs when r approaches 0;
that is, as the growth rate of a population decreases, it takes
longer to return to equilibrium from an environmental pertur-
bation (Wissel 1984). When r decreases and passes through
r=0, a transcritical bifurcation occurs and, thereafter, the pop-
ulation has crossed a threshold and is deterministically com-
mitted to extinction. A transcritical bifurcation is a type of
bifurcation in which equilibrium points exchange stability as
a parameter is changed (Strogatz 1994). A feature common to
many population growth models is that a change in the density-
independent growth rate (r) from positive to negative results in
a qualitative change to the dynamical regime. When r>0, there
is a stable equilibrium point for N>0 and an unstable equilib-
rium point at N=0 (i.e., extinction), whereas when r<0, N=0
becomes stable and N>0 becomes unstable. If a transcritical
bifurcation adequately describes an extinction threshold, the
discovery could have profound implications for the manage-
ment and conservation of fisheries and wildlife because the
extinction threshold could be crossed prior to the population
showing traditional warning signs of extinction (e.g., popula-
tion decline). The CSD that precedes the transcritical bifurca-
tion is a phenomenon common to many continuous and dis-
crete time stochastic population models (e.g., Beverton–Holt,
logistic, Ricker, theta-logistic) and detecting CSD can be used
to warn of the transcritical bifurcation extinction threshold
(Drake and Griffen 2010).

Methods

Bobwhite quail data

The northern bobwhite quail (C. virginianus) is an ideal
study organism to determine if an impending extinction
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threshold can be detected in field data because populations
have declined during recent decades (∼3.8 % annually; Sauer
et al. 2011), likely due to habitat deterioration and loss
(Roseberry et al. 1979; Veech 2006). This slow anthropo-
genic forcing may be analogous to the deteriorating environ-
mental conditions of microcosm experiments demonstrating
the transcritical bifurcation (Drake and Griffen 2010).

Whistle count (WC) data were collected by the Nebraska
Game and Park Commission from 1965 to 2011 and
consisted of four roadside survey routes in the tall grass
prairie eco-region in the extreme southeastern portion of
Nebraska. Each route was located entirely in one of four
Nebraska counties: Johnson, Nemaha, Otoe, and Richard-
son. Each survey route consisted of a single biologist starting
at a fixed point in the easternmost portion of the survey area
and recording the number of unique whistling males heard in
2 min. The biologist then moved west approximately 1 mi
and repeated the process until 20 point counts were obtained.
Stops did not occur near farm yards. The surveys were
conducted between 15 June and 10 July, beginning at sun-
rise. Surveys were conducted only if air temperature at the
first stop was <21.1 °C, if it was not raining, and if winds
speeds were <19.3 km h−1. If a survey was initiated, but wind
speeds were >19.3 km h−1 and/or if it was raining at a stop,
the count was recorded as not available. The WC route
averages were available for all years of the study. Historical-
ly, route averages were the only data archived and counts at
each route stop are unavailable for the entire study period.
Route averages were calculated by summing the total num-
ber of unique whistling males heard at each stop and dividing
by the number of survey stops with available counts. Since
the number of total stops was variable due to the sampling
protocol, we multiplied the route average by 20 and rounded
to the nearest integer to obtain the population index used for
our analysis. Judging by more recent data, it appears that
route averages were most often calculated from the full 20
stops. It appears the biologists who collected the WC data
took great caution to initiate surveys only when it was
anticipated that the full 20 stops could be obtained; therefore,
we expect that the population index used in our analysis is
the true route total for most observations.

For comparison purposes, we used an independent data
source with a different sampling protocol, the Breeding Bird
Survey (BBS) data; we used raw count route totals from
1967 to 2011 for Nebraska routes 1–3, which were
conducted in the extreme southeastern Nebraska counties
of Gage, Johnson, Nemaha, Pawnee, and Otoe (USGS Pa-
tuxent Wildlife Research Center 2012). The BBS data in-
cluded several missing counts, and in total, 18.5 % of the
data was missing. If the analysis of the BBS data corrobo-
rates the results of the WC data analysis, we will have
stronger support for our conclusions. In addition, the BBS
data is widely available, but of lower quality (i.e., less strict

protocols and more missing data) than the WC data; detec-
tion of the transcritical bifurcation in the BBS data is a test of
our methods with data that is available for other species and
study areas.

State–space population models

Threshold crossing and transitions to alternative states in
populations have been well documented and described by
dynamical systems (Holling 1973; Bascompte 2003; Ives
et al. 2008; Schooler et al. 2011). Dynamical systems
models, however, have not been used to detect the
transcritical bifurcation extinction thresholds in natural or
microcosm populations (Drake and Griffen 2010). The lack
of application in natural populations may be a result of the
complex statistical methods that must be used to adequately
model nonlinear population dynamics and observational er-
ror. When observational ecological data is available, state–
space time series analysis methods have allowed researchers
to model the data collection process along with realistic
dynamical systems models capable of threshold dynamics
(Ives et al. 2003, 2008; Schooler et al. 2011). Methods to fit
state–space population growth models to observational time
series data are well developed and it would be straightfor-
ward to estimate model parameters and determine if the
growth rate has decreased and if an extinction threshold
has or will be crossed (de Valpine and Hastings 2002; Wil-
liams et al. 2003; Clark and Bjørnstad 2004; Dennis et al.
2006; Wang 2007; Pedersen et al. 2011; Nadeem and Lele
2012).

We used a multivariate state–space Gompertz model that
was fit simultaneously to all routes for each data set. The
form of the model was:

Ni;tþ1 ¼ Ni;te
rt 1−

log Ni;tð Þ
Kt

� �
þεi;t

εt∼MVN 0;
X

¼ σ2
pIn þ ρpσ

2
p In−Jnð Þ

� � ð2Þ

Y i;t∼Poisson Ni;t

� � ð3Þ

where Ni,t is the population state of the ith route (of n total
routes) at time t. The time-dependent growth rate is rt=-
rmax+rΔt>0 where rmax is the density-independent maxi-
mum growth rate (assuming rΔ is negative) and rΔ is the
linear trend in rt. The natural logarithm (log) of the equilib-
rium population size at time t is Kt=Kmax+KΔt>0, where
Kmax is the maximum equilibrium population size (assuming
KΔ is negative) and KΔ is the time-dependent trend in Kt. The
observed population size (Yi,t) is described by a Poisson
distribution. The process error term εεt is distributed multi-
variate normal with a mean of 0 and compound symmetry
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variance–covariance matrix, where σp
2 is the environmental

process variance and ρp is the correlation in process error
among routes within a year. The ρp models the spatial
correlation of process error. We also fit a multivariate
state–space formulation of the Ricker (1954) model:

Ni;tþ1 ¼ Ni;te
rt 1−

Ni;t
Kt

� �
þεi;t ð4Þ

All model parameters are the same as the Gompertz model,
except that Kt is the time-dependent equilibrium population
size, rather than the natural logarithm of equilibrium popula-
tion size.

First-order nonlinear difference equations, such as the
Gompertz or Ricker model, were chosen a priori to describe
the population dynamics of bobwhite quail based on life
history traits of the species and limitations of the data. The
WC and BBS data were population-level data and lacked the
detail to develop mechanistic models based on individual
characteristics such as matrix projection models or integral
protection models (Easterling et al. 2000; Caswell 2001;
Lebreton and Gimenez 2013). Therefore, we limited our
methods to fitting phenomenological models that describe
dynamics at the population level. We chose to use discrete
time difference equations because bobwhite quail generally
produce one brood annually and annual survival of adults is
low (Roseberry and Klimstra 1984; Hastings 1996). In addi-
tion, the WC and BBS data were collected annually. There-
fore, a difference equation with annual time steps is appro-
priate to model the population dynamics of the bobwhite
quail and the data collection process.

A challenge when using nonlinear difference equations to
model population dynamics is determining the functional
form of density dependence (Williams 2013). For example,
the Ricker model assumes that the realized growth rate de-
clines linearly as population size increases, whereas the
Gompertz model assumes that the realized growth rate de-
clines linearly as the natural logarithm of population size
increases. A priori, we would have chosen the theta-logistic
population growth model. The theta-logistic population
growth model is flexible in describing the functional form
of density dependence. However, it is well known that the
theta-logistic model suffers from weakly or unidentifiable
parameters, and this was the case in our study (see the
“Discussion” section; Polansky et al. 2009; Clark et al.
2010). Therefore, we were required to choose the functional
form of density dependence and compare functional forms
using graphical model checks and model selection methods.
We chose the density-dependent relationship of the
Gompertz and Ricker models a priori based on the life
history traits of the bobwhite quail and by graphical exami-

nation of the observed growth rate robserved;i;t ¼ log Y i;tþ1

Y i;t

� �� �
plotted against the observed population size (Yi,t) for the WC

and BBS data. The bobwhite quail is characterized as an r-
selected species and is known to have a high reproductive
capacity and low annual survival (Roseberry and Klimstra
1984). Life history strategies can impact the functional form
of density dependence, and it has been suggested that r-
selected species are theoretically expected to exhibit a
pattern of strong reduction in the observed growth rate
at small population sizes because of larger consumption
of resources by the increased reproductive output
(Williams 2013). This would suggest that the Gompertz model
may be the a priori best model to fit to the data. In
addition, the plots of robserved,i,t against the observed
population size (Yi,t) suggested that the observed growth
rate is affected by strong density dependence at small
population sizes. We chose the Ricker model because it
can be difficult to determine the functional form of
density dependence and we wanted to allow for com-
parison with other forms, so that we can potentially
support or refute our a priori model justification using
statistical model selection techniques.

Parameter estimation for state–space population models is
well developed using maximum likelihood (ML) or posterior
sampling under a Bayesian paradigm (de Valpine and Has-
tings 2002; Clark and Bjørnstad 2004; Dennis et al. 2006;
Wang 2007; Ponciano et al. 2009; Pedersen et al. 2011;
Nadeem and Lele 2012). For our situation, we feel that ML
estimation is desirable because our results could be sensitive
to the specification of vague priors. A sensitivity analysis to
justify our conclusions would be cumbersome. We used the
data cloning (DC) algorithm to obtain ML parameter esti-
mates (Lele et al. 2007, 2010; Ponciano et al. 2009; Nadeem
and Lele 2012). The DC algorithm uses Markov chainMonte
Carlo (MCMC) posterior sampling to obtain ML parameter
estimates and the associated asymptotic variance–covariance
matrix. Using DC methods can be a bit more involved than
MCMC sampling under a Bayesian paradigm. Most notably,
the number of data clones (c) must be increased until the
posterior distribution of the model parameters is nearly de-
generate. This is shown numerically when the standardized
largest eigenvalue of the parameter variance–covariance ma-
trix (λs) approaches 0 at the rate 1

c (Lele et al. 2010). A
predetermined cutoff value of λs is specified and, when
reached, the DC algorithm is assumed to have converged.
In addition, convergence of the MCMC algorithm must also
be monitored. Although this may appear cumbersome, fairly
automated software has been developed to complete the task
(Sólymos 2010). Furthermore, when the DC algorithm has
converged, all model parameters have been shown numeri-
cally to be identifiable (Lele et al. 2010). With the large
number of parameters in our nonlinear population growth
models, parameter identifiability may be questionable; the
DC algorithm can numerically demonstrate that model pa-
rameters are identifiable (Lele et al. 2010). For our analysis,
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we assumed that the DC algorithm had converged when
λs<0.05 and appeared to visually decrease at the rate 1

c

(Sólymos 2010). We also assumed that the MCMC simula-
tion had converged when the multivariate scale reduction
factor was <1.1 (Brooks and Gelman 1998). When λs did not
decrease at the rate 1

c, the unidentifiable parameter was
identified using diagnostic plots and removed from the mod-
el, and parameters were estimated for the reduced model
(Lele et al. 2010).

All quantities derived from the population models (e.g.,
population prediction intervals and distributions of statis-
tical indicators) and confidence intervals (CI) were
obtained by bootstrap integration over the asymptotic dis-
tribution of the model parameters using 50,000 bootstrap
samples (Nadeem and Lele 2012). For these bootstrap
simulations, we assumed that rt≥0, Kt≥0.01, and Nt≥1
for all t. These restrictions were required to avoid numer-
ical issues associated with the population models post-
bifurcation. CIs for all other derived quantities were
obtained from the equal tail percentiles of one million
parametric bootstrap samples (Efron and Tibshirani
1993). When the derived quantities were linear combina-
tions of model parameters, we obtained standard errors
from linear transformations of the asymptotic variance–
covariance matrix and constructed Wald-type CIs
(Ponciano et al. 2009). Our methods were well document-
ed and described by Nadeem and Lele (2012), with the
only difference being that we are fitting multivariate pop-
ulations models and allowing population model parame-
ters to have time-dependent trends.

We compared the Ricker and Gompertz models using
Akaike’s information criterion adjusted for small sample size
(AICc; Burnham and Anderson 2002). Although likelihood
values cannot be easily calculated for our state–space popu-
lation models, calculating the likelihood ratio is relatively
straightforward and, therefore, calculating the difference
in AICc (ΔAICc) between the two models is feasible.
Our goal in fitting multiple population models and com-
parison using AICc was not necessarily consistent with
the goals of model selection and multimodal inference
(Burnham and Anderson 2002). Instead, we intended to
find population models that graphically described the
observed time series and statistical indicator well. Our
approach to model comparison and criticism is similar
to posterior predictive checks under a Bayesian paradigm
(Gelman et al. 2004); however, instead of comparing the
posterior distribution with the observed data and statistical
indicators, we compare the bootstrap distributions. We used
the program R (version 2.15.1) for all statistical computing (R
Project for Statistical Computing, Vienna, Austria). We used
JAGS (version 3.2.0) for all MCMC sampling (Plummer
2012) called from the dclone package (version 1.8-1) in
program R (Sólymos 2010).

Statistical indicator

Population variability can be driven by the interaction be-
tween environmental variability (density-independent pro-
cess error) and density dependence (Williams et al. 2003).
The population variability driven by environmental variabil-
ity should be amplified by a weakening growth rate prior to
the transcritical bifurcation (Drake and Griffen 2010). This is
analogous to what others have termed CSD, where, due to a
reduced growth rate, the population returns to equilibrium
from perturbations slower as the threshold is approached
(Drake and Griffen 2010; Scheffer et al. 2012). If this am-
plification in population variability is detectable, then the
extinction threshold may be anticipated.

We propose the statistical indicator SVL, which is the
annual between survey-route sample variance of the natural
log-transformed population counts. The Gompertz model
provides analytically tractable justification for a statistical
indicator. It can be shown (see the Appendix) for the
Gompertz model in Eq. 2 that:

Var log Ntð Þð Þ

¼
σ2
p 1−ρp
� �

2 rt
Kt

� �
− rt

Kt

� �2 1− 1−
rt
Kt

� �2t
 !

≈
σ2
p 1−ρp
� �

2 rt
Kt

� �
− rt

Kt

� �2 : ð5Þ

The main result is that the theoretical variance of the log-
transformed population state depends only on the process
error and correlation, the time (t) since initiation (i.e., the
stationarity of the distribution), the growth rate, and the
equilibrium population size. For reasonable t (t>1) and
values of rt

Kt
, the theoretical variance is approximately equal

to a convex function that depends only on rt, Kt, and σp
2(1−-

ρp). As rt approaches 0, the theoretical variance increases
nonlinearly to infinity along a vertical asymptote and

limrt→0

σ2p 1−ρpð Þ
2

rt
Kt
ð Þ− rt

Kt
ð Þ2 ¼ ∞ suggests that estimating when the

transcritical bifurcation occurs is equivalent to determin-
ing the location of the vertical asymptote along the time
axis. Estimating the location of the vertical asymptote
along the time axis can be used to predict when the
transcritical bifurcation will occur. Since the asymptotic
distribution of log(N∞) is approximately normally dis-
tributed (Lande et al. 2003), an estimator of Var(log(Nt))
is the annual between-survey-route sample variance of
the log-transformed population state:

SVLt ¼ 1

n−1

Xn

1
log Ni;t

� �
−log Ntð Þ

� �2
ð6Þ

where Ni,t is the population state of the ith route (of n
total routes) at time t. However, since the observation
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process results in measurement errors, we suggest substituting
the observed annual route count totals for the population state
(Ni,t) in Eq. 6. Although the theoretical variance for the
Poisson log-normal state–space formulation of the Gompertz
model (i.e., Eqs. 2 and 3), which accounts for observational
error, becomes analytically intractable, it is easy to show by
numerical simulation that SVL increases nonlinearly to infin-
ity along a vertical asymptote as rt goes to 0 as expected from
the analytical results which do not account for observer error
(see the results from Fig. 3). This suggests that the statistical
indicator SVL is robust to observational error. Furthermore,
this phenomenon appears to be generic among many popula-
tion models, including the Ricker model. To show this in the
analytically intractable case of observational error and for
models other than the Gompertz model, we plot the bootstrap
distribution of SVL simulated from the state–space models
with model parameters estimated from the WC and BBS data
(Fig. 3).

To determine if SVL is a useful indicator, we compare the
observed time series of SVL (Eq. 6) calculated from the WC
and BBS data to the bootstrap distribution from the state–
space population models. Comparing the observed SVL to
the bootstrap distribution allows us to determine if the ob-
served SVL follows the theoretically expected relationship.
To empirically detect the transcritical bifurcation, we fit a
generalized nonlinear model (GNLM) with a gamma re-
sponse distribution to the time series of SVL. GNLMs are
similar to generalized linear models, except that, instead of
specifying a link function and a linear predictor (Stroup
2012), which is linear in the model parameters, we specify
a mean function, which can be nonlinear with respect to the
model parameters. We fit the gamma GNLM using the mean
function:

μt ¼
β1

2 β2tð Þ− β2tð Þ2 ð7Þ

where β1 and β2 are the model parameters and t is the time in
years. Comparing Eq. 7 to Eq. 5, it is clear that β1 is an
estimate of σp

2(1−ρp) and β2t is an estimate of rt
Kt
, hence μt is

an estimate of Var(log(Nt)). GNLMs are an easily accessible
phenomenological method to detect changes in the observed
SVL. The gamma distribution is a natural choice to model
variances, and the mean function (μt) has theoretical justifi-
cation and appears to be a good description of the expected
nonlinear increase in SVL. Estimating the date when the
transcritical bifurcation is expected to occur can be accom-
plished by determining the year (t) when the denominator of
Eq. 7 is equal to 0 (i.e., the year (t) when bμt ¼ ∞) and the
95 % CI for this date can be calculated using parametric
bootstrapping. This date corresponds to the estimated date
when rt=0 and occurs when SVL is predicted to become
infinite. Because the gamma distribution is undefined for an

SVL of 0 (i.e., all survey total route counts for the year are
the same), we added a small (0.01) positive constant to SVL
estimates of 0. When that survey total route count was zero
(i.e., Yi,t=0), SVL was undefined, so we added 1 to the count.
An observed count of 0 occurred twice in the BBS survey
data and did not occur in the WC data. For the BBS data,
when only one route was available in a given year, we did not
calculate SVL and assumed that it was missing.

Results

The population growth rate (rt) decreased during the survey
period. Although the exact estimate of rt depended on the
assumed population growth model and data set, the decreas-
ing trend was ubiquitous for all population models in both
WC and BBS data (Fig. 1). Using the WC data, the estimated
date when the transcritical bifurcation occurred (i.e., when
rt=0) was 2010 (2002–2036; 95 % CI), assuming the
Gompertz model, and 2007 (1999–2065; 95 % CI), assum-
ing the Ricker model. Similarly, using the BBS data, the
estimated date when the transcritical bifurcation occurred
was 2008 (1999–2064; 95 % CI), assuming the Gompertz
model, and 2004 (1994–∞; 95 % CI), assuming the Ricker
model. The equilibrium population size eKtð Þ showed a
decreasing trend over the study period for both WC and
BBS data when the Gompertz model was assumed; however,
this trend was not statistically significant, as evident by the
increasing upper 95 % CI (Fig. 2). Estimated equilibrium
population size, assuming the Gompertz model, on the date
of bifurcation was 37.4 (13.6–90.0; 95 % CI) using the WC
data and 11.9 (3.2–43.8; 95 % CI) using the BBS data
(Fig. 2). We were unable to fit the Ricker model that allowed
for a decreasing trend in Kt because KΔ was unidentifiable in
both the WC and BBS data sets. Therefore, the equilibrium
population size (Kt) as estimated by the Ricker model was
constant through the study period and was estimated to be
61.2 (45.0–77.4; 95 % CI) using the WC data and 32.9
(22.0–43.7; 95 % CI) using the BBS data (Fig. 2). Similarly,

the observed count (Yi,t) and estimated observed count cY i;t

� �
was also relatively large (Fig. 3, inset plots). Equilibrium
population sizes and observed counts much greater than
0 suggest that neither small nor decreasing population size
will warn of the transcritical bifurcation extinction threshold.

The observed SVL from bothWC and BBS data showed a
similar nonlinear increasing trend. The pattern in the ob-
served SVL was well explained by the bootstrap distribution
of SVL estimated from the Gompertz model as evident from
the estimated expected trend and 95 % CIs from the boot-
strap distribution of SVL (Fig. 3). The Ricker model showed
a similar pattern in SVL, but does not describe the observed
SVL as well as the Gompertz model as judged by the 95 %
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bootstrap CIs. Regardless, both population models and data
sets confirm that SVL was increasing as rt decreased and the
transcritical bifurcation was approached.

Using our GNLM methods, which rely only on the ob-
served SVL, we estimated that the transcritical bifurcation
will occur in 2018 (2004–2031; 95 % CI) using the WC data
and will occur in 2012 (2006–2018; 95 % CI) using the BBS
data. The SVL provides similar predictions as our state–
space population growth model as the CIs are broadly
overlapping. In addition, the mean function and associated
95 % CIs describing the observed SVL are similar to the
mean function and 95 % CIs of SVL based on the bootstrap
distribution from the Gompertz and Ricker models. It ap-
pears that our GNLM methods provide a reasonable model
describing the observed increase in SVL.

Population prediction intervals based on the Gompertz
and Ricker models appear to explain the observed time series
survey data well (Fig. 3 inset). Based on these plots alone, it
would be difficult to declare which model best described the
data, although the deterministic declining trajectory of the
Gompertz model appears to fit the observed data better. The
observed SVL compared to the bootstrap distribution of SVL
from the population models suggests that both the Gompertz
and Ricker models explain the increasing trend. The ΔAICc

between the Ricker and Gompertz models was 1.2 for the
WC data and 1.9 for the BBS data. Again, neither model

appears to excessively outperform the other with respect to
both data sets; however, the Gompertz model does appear
graphically to fit the data better than the Ricker model and
this slight advantage is also supported by the ΔAICc values.

Discussion

Our results are the first to detect a transcritical bifurcation
extinction threshold using state–space population models
and field data collected from a wildlife population. Our
results indicate that the population of bobwhite quail in the
extreme southeastern portion of Nebraska has crossed or will
cross, in the near future, the transcritical bifurcation extinc-
tion threshold. This conclusion is well supported by two
independent data sets and model-based inference based on
ML. An initial assumption might have been that the dynam-
ics of a population driven to extinction would result in the
equilibrium population size decreasing to 0 and the growth
rate remaining constant (Huang et al. 2012). If this were the
case, the population would track the declining equilibrium
population size and declining population size should warn of
extinction. As our results show, the growth rate can decrease
over time. When the growth rate becomes negative, the
population will be committed to extinction. Our results show
that the growth rate becomes negative long before extinction
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Fig. 1 Estimated time-
dependent population growth
rate (rt) with 95 % CIs (dashed
lines) assuming the Gompertz
and Ricker population growth
models using WC survey data
and BBS data for northern
bobwhite quail in southeastern
Nebraska. The vertical gray
lines are the estimated date of
the transcritical bifurcation
(solid lines) and associated
95 % CIs (dashed lines)
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due to a decreasing equilibrium population size. These dy-
namics result in an extinction threshold, marked by a
transcritical bifurcation, that standard methods such as pop-
ulation trend analysis or population viability analysis assum-
ing population growth models with constant parameters
would not detect (Nadeem and Lele 2012).

Similarly, our results are the first to detect a transcritical
bifurcation with a statistical indicator using field data col-
lected from a wildlife population. Others have suggested that
statistical indicators may fail in situations when observation-
al errors are large (Dai et al. 2012; Carpenter et al. 2011; Ives
and Dakos 2012). In both WC and BBS data, observational
errors are significant, yet predictions based on the statistical
indicator were similar to our state–space model which ex-
plicitly accounted for observation error (de Valpine and
Hastings 2002; Nadeem and Lele 2012). Based on numerical
simulations and corroborating predictions from state–space
models, it appears that the statistical indicator SVL is robust
to observational error. Furthermore, our theoretical results
suggest a critical level of SVL that allows us to predict when
the transcritical bifurcation extinction threshold will be
crossed without a reference population and allows for statis-
tical inference using GNLMs. Lack of inference procedures
and critical levels of statistical indicators has been a major
limitation even when a reference system is available (Drake
and Griffen 2010; Carpenter et al. 2011; Dai et al. 2012; Ives

and Dakos 2012; Boettiger and Hastings 2013). Our methods
based on SVL overcome these limitations. However, we feel
that comparisons of state–space models, SVL, and other gen-
eralized model-based approaches developed to detect thresh-
olds would be useful (Wissel 1984; Ives and Dakos 2012;
Boettiger and Hastings 2012a, b; Lade and Gross 2012).

Alternative explanations for the observed increase in SVL
could be decreasing equilibrium population size, increased
environmental variability (Williams et al. 2003), various
forms of demographic stochasticity (Melbourne and Has-
tings 2008), or alternative thresholds. The theoretical SVL
based on specific population models is likely a complex
function of equilibrium population size, population growth
rate, and environmental stochasticity. For the Gompertz
model, the relationship between equilibrium population size
and SVL is complex, and for most other population models,
the relationship can only be explored numerically. Our nu-
merical simulations of SVL (Fig. 3) seem consistent with
SVL increasing due to a decreasing growth rate, in that if we
set KΔ to 0 for the Gompertz model, the increasing trend in
SVL is still present. If nonstationary environmental variabil-
ity is a plausible explanation of the observed increase in
SVL, process error (σp

2) would have had to trend similarly
to the nonlinear increasing pattern in SVL. Nonlinearly
increasing process error due to increasing environmental
variability seems like an improbable explanation given that
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Fig. 2 Estimated time
dependent equilibrium
population size with 95 % CIs
(dashed lines) assuming the
Gompertz (eKt ) and Ricker (Kt)
population growth models using
WC survey data and BBS data
for bobwhite quail in
southeastern Nebraska
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our theory, supported by a decreasing growth rate, matches
the empirical data well. If any form of demographic
stochasticity was substantially influencing SVL, we would
expect SVL to increase in the population as the population
was declining. We did not test this hypothesis in our example,
but if the population has declined to the point that demograph-
ic stochasticity influences SVL, it seems likely that conserva-
tion measures should be taken. In this case, the potential loss
due to false detection of the transcritical bifurcation seems
minimal. In addition to the transcritical bifurcation extinction
threshold identified in our state–space model, other mecha-
nisms in the population dynamics may exist that result in
threshold dynamics, such as an Allee effect (Hoffman et al.
2010; Dai et al. 2012; Lade and Gross 2012). Although we
cannot rule out that SVL is detecting alternative extinction
thresholds, the generality of CSD suggests that we might
expect the same patterns in SVL, regardless of the mechanism
generating the threshold (Wissel 1984).

It could be argued that we should have fit a wider array of
population models (e.g., theta-logistic) and reduced (e.g.,
Gompertz with rΔ=0) and expanded (e.g., rt=rmax+rΔt+r2Δt

2,
where r2Δ is the coefficient of the second-order polynomial

time-dependent change in rt) population growth models and
observational error distribution (e.g., overdispersed Poisson;
Knape et al. 2011). We then could compare several plausible
explanations of our data using our graphical comparison and
AICc. Such a comparison would be ideal; however, it was not
feasible for our study. For example, we fit a state–space
formulation of the theta-logistic, but our estimation procedure
failed unless we specified the shape parameter which deter-
mined the functional form of density dependence. Potential
difficulties when fitting the theta-logistic are well known
(Polansky et al. 2009; Clark et al. 2010), and failure of our
estimation procedure could be attributed to unidentifiable
parameters. Still, we could have expanded our model set by
including fewer parameters in the Gompertz and Ricker
models. We in fact did do this (e.g., state–space Gompertz
with rΔ=0 and KΔ=0), but this approach was unproductive
because there were some obvious features common to both
data sets that we feel a population model must explain, such as
the decreasing trend in abundance and increasing trend in
SVL. The parameterizations of the state-space models (SSMs)
in our analysis appear to be the simplest parameterizations that
adequately describe these dynamics. Furthermore, we could
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Fig. 3 Statistical indicator SVL (thick black line; Eq. 6) estimated from
the bobwhite population using WC data and BBS data with mean (thin
black line) and 95 % CI (black dashed line) from the bootstrap distri-
bution of SVL estimated from the Gompertz or Ricker state–space
population models. The red line is the mean function (Eq. 7) and
95 % CI (dotted red line) from a GNLM used to describe the increasing
trend in the statistical indicator SVL. The inset plot contains population
time series data (thin black lines) along with the expected population

count (thick black line) and 50 % (gold) and 95 % (blue) CIs under the
assumed population model. The vertical black line is the estimated date
of the transcritical bifurcation along with the lower 95 % CI (black
dashed line) based on the assumed population model. The vertical red
line is the estimated date of the transcritical bifurcation with the lower
95 % CI (red dashed line) that was estimated with the GNLM using the
statistical indicator SVL
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have fit models that allowed for polynomial trends in rt andKt.
We explored the potential of this, but found that MCMC
sampling was difficult due to highly correlated parameters;
again, this is likely due to unidentifiable parameters. We did
not evaluate alternative observational error distributions for
our SSM. It is unlikely that our data could identify the correct
observation error model because we lacked replication at the
route level (Knape et al. 2011). We attempted to fit some
alternative distributions to describe observational error (e.g.,
log-normal), but it appeared that the error component
parameters were weakly identifiable. A more serious concern
regarding SSM observation error model is nondetection.
Methods to correct for nondetection in SSMs require replicat-
ed counts or additional continuous covariates that affect
detection (Hefley et al. 2013). Obtaining useful covariates that
affect detection (e.g., wind speed) would be difficult or
impossible for all years of our study. We do not expect the
predicted dates of the bifurcation to be highly sensitive to
specification of the observation error model, although exact
population model parameter estimates may vary.

Additionally, we could have considered covariates that
may potentially explain the trends in rt and Kt. Habitat
deterioration and loss are difficult to quantify, and accessible
data (e.g., National Land Use Dataset) do not have the
temporal resolution required for our study. Showing the
dependence of population growth model parameters on hab-
itat covariates is an area of needed research (Griffen and
Drake 2008) because, although we can phenomenologically
model the effects of covariates by assuming that model
parameters change linearly with time, it would be highly
desirable to know which habitat variables are potentially
influencing the population so that remedial actions can be
taken.

Even if we had expanded our model set, we question
the utility of AICc in our situation. Variants of the AIC
are well established for model selection and have been
used for comparison of SSMs (Burnham and Anderson
2002; de Valpine and Hastings 2002; Nadeem and Lele
2012). The utility of model selection tools for threshold
detection is a needed area of research if SSMs are to be
used for detecting the transcritical bifurcation. The AICc

used in our analysis does not take parameter uncertainty into
consideration. Calculating the marginal likelihood for SSMs
requires integrating out the random population state. The pop-
ulation state can be highly influenced by the timing of the
bifurcation. When using AICc, the uncertainty in the model
parameters used to estimate the bifurcation date is not taken into
account and we suspect that doing so may influence model
selection. Secondly, post-bifurcation, the stochastic Gompertz
and Ricker models are no longer valid population models as
initially defined. Post-bifurcation population dynamics are un-
known and both stochastic population models may result in
implausible dynamics. For example, after the transcritical

bifurcation, the population state could diverge to infinity
depending on the value of the population state prior to
the bifurcation. A biologically plausible model would
converge to zero. We suspect that post-bifurcation pop-
ulation dynamics will likely influence parameter estima-
tion and model selection. For our results, it appears that the
estimated population model parameters are plausible, but we
are unsure of AICc-based model selection results. Since time
series data are relatively easy to visualize, at present, we prefer
our graphical model criticism approach.

Management implications

Our results suggest that the population of bobwhite quail in the
extreme southeastern portion of Nebraska has crossed the
transcritical bifurcation extinction threshold or will in the near
future. We expect extinction soon after, but due to bifurcation
delay, there will be an unknown amount of time between when
the threshold is crossed and when extinction occurs (Kuehn
2011). Drake and Griffen (2010) experimentally induced a
transcritical bifurcation in populations of Daphnia magna. In
this experiment, habitat deterioration caused by a reduction in
food started on day 154 and the transcritical bifurcation oc-
curred on day 271, with the mean date of extinction on day 297
(SE=16.4 days). The amount of time between transcritical
bifurcation and extinction is undoubtedly dependent on the
species and environmental process driving extinction.

The drivers of the extinction threshold in the bobwhite
population are unknown. We speculate that a slow anthropo-
genic forcing due to habitat deterioration and loss caused the
density-independent growth rate to decrease. In our study
area, habitat deterioration likely occurred due to a decrease
in crop diversity (Hiller et al. 2009) and a decrease in the
abundance of weedy species within agricultural fields as a
result of genetically modified herbicide-tolerant crops
(Watkinson et al. 2000). Habitat loss may have also occurred
as a result of increased agricultural field size and de-
crease in brushy fencerow habitat, both of which have
been documented in our study area (Baltensperger 1987;
Hiller et al. 2009). Recovery of populations that have
crossed the transcritical bifurcation extinction threshold
has not been shown in microcosm or natural populations. We
expect that microcosm experiments will provide the first in-
sights into the reversibility of the transcritical bifurcation.

The result that the equilibrium population sizes and ob-
served abundance of the bobwhite quail population was
much greater than 0 on the date that the extinction threshold
was estimated to be crossed suggests that neither small nor
decreasing population size will warn of the transcritical
bifurcation extinction threshold. Managers of populations
in regions experiencing land use changes need to consider
the implications of this result. Early detection of extinction
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thresholds is essential to ensure the persistence of species
when habitat changes over time (Krebs et al. 1999; Donald
et al. 2001; Hole et al. 2002; Green et al. 2005; Ringsby et al.
2006; Biggs et al. 2009). This is especially true in situations
where the land use change is relatively slow because the
extinction thresholds may be detectable long before the
threshold is crossed, but once crossed, the land use changes
may be slow, difficult, and potentially impossible to reverse,
even if the population could be recovered.
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Appendix

Assume the stochastic multivariate Gompertz model as in
Eq. 2, but parameterized so that bt ¼ − rt

Kt
.

N tþ1 ¼ N te
rtþbt log N tð Þþεt

εt∼MVN 0;
X

¼ σ2
pIn þ ρpσ

2
p In−Jnð Þ

� � ð8Þ

where Nt is the vector of population states for all routes (i.e.,
separate time series) at time t. First, derive Var(log(Nt+1)).

Var log N tþ1ð Þð Þ ð9Þ

¼ Var log N te
rtþbt log N tð Þþεt

� �� �
ð10Þ

¼ Var log N tð Þ þ rt þ btlog N tð Þ þ εtð Þ ð11Þ

¼ Var rt þ bt þ 1ð Þlog N tð Þ þ εt ð12Þ

¼ bt þ 1ð Þ2Var log N tð Þð Þ þ Var εtð Þ ð13Þ

¼ bt þ 1ð Þ2Var log N tð Þð Þ þ σ2
p 1−ρp
� �

ð14Þ

Eq. 14 is a first-order linear difference equation with the
solution

Var log N tð Þð Þ ð15Þ

¼
σ2
p 1−ρp
� �

1− 1þ btð Þ2t
� �

1− bt þ 1ð Þ2 þ bt þ 1ð Þ2tVar log N0ð Þð Þð16Þ

for −2<bt<0. If we assume the initial state (N0) is known,
then Var(log(N0))=0 and Eq. 16 reduces to:

¼
σ2
p 1−ρp
� �

1− 1þ btð Þ2t
� �

1− bt þ 1ð Þ2 ˙: ð17Þ

For reasonable t (t>1) and for bt approaching zero:

≈
σ2
p 1−ρp
� �

1− bt þ 1ð Þ2 ð18Þ

approximates Var(log(Nt)). After rearranging the denomina-
tor and replacing bt with − rt

Kt
, we get Eq. 5:

¼
σ2
p 1−ρp
� �

2 rt
Kt

� �
− rt

Kt

� �2 : ð19Þ
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