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Abstract Citation and coauthor networks offer an insight into the dynamics of scientific

progress. We can also view them as representations of a causal structure, a logical process

captured in a graph. From a causal perspective, we can ask questions such as whether

authors form groups primarily due to their prior shared interest, or if their favourite topics

are ‘contagious’ and spread through co-authorship. Such networks have been widely

studied by the artificial intelligence community, and recently a connection has been made

to nonlocal correlations produced by entangled particles in quantum physics—the impact

of latent hidden variables can be analyzed by the same algebraic geometric methodology

that relies on a sequence of semidefinite programming (SDP) relaxations. Following this

trail, we treat our sample coauthor network as a causal graph and, using SDP relaxations,

rule out latent homophily as a manifestation of prior shared interest only, leading to the

observed patternedness. By introducing algebraic geometry to citation studies, we add a

new tool to existing methods for the analysis of content-related social influences.

Keywords Citation network � Causal network � Semidefinite programming � Hidden
variables � Sum-of-squares decomposition
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Introduction

Clarifying a line of argumentation by references, citations as a legacy mapping and ori-

entation tool have been in use by knowledge organization for a long time. Their respective

importance has led to the birth of new fields of study like scientometrics and altmetrics
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123

Scientometrics (2017) 110:765–777
DOI 10.1007/s11192-016-2194-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191548729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-1539-8256
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-016-2194-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-016-2194-9&amp;domain=pdf


(Borgman and Furner 2005; Zahedi et al. 2014; Cronin and Sugimoto 2014), permeating

funding decisions and ranking efforts (Vanclay 2012; Hicks 2012). At the same time,

citations embody scholarly courtesy as well as a form of social behavior, maintaining or

violating norms (Cronin and Overfelt 1994; Kaplan 1965; Mitroff 1974; Gilbert 1977;

Ziman 2000; Sandstrom 2001; Börner et al. 2006). Due to this, as is often the case when

individual and social patterns of action are contrasted, one can suspect that factors not

revealed to the observer of a single individual may point at underlying group norms when

communities of individuals are scrutinized. To understand our own behavior as a species, it

is important to detect any such influence.

Lately, the idea that multiple versions of probabilities do exist brought new ideas to the

foreground (Mugur-Schächter 2014; Khrennikov 2010). Eventually the testing of a second

probability alternative has made it clear that by its use, rules that were known to apply to

the subatomic world of quantum mechanics only start making sense in the atomic world

too. Examples include decision theory and cognition (Busemeyer and Bruza 2012),

economy (Haven 2015), biology (Asano et al. 2012; Wittek et al. 2013), and language

(Bruza and Woods 2008; Darányi and Wittek 2012; Cohen et al. 2010).

With the above unexpected development in the history of science, and departing from

earlier work in social network research (Aral et al. 2009; Ver Steeg and Galstyan 2011),

we turned to citation studies to find supporting evidence for signs of quantum-likeness in

co-author behaviour, captured by longitudinal datasets. Our working hypothesis was that in

citation patterns, a more fundamental layer would correspond to research based on shared

interest between the author and her/his predecessors called latent homophily, whereas a

more ephemeral second layer would link in current trends in science. Due to this, e.g. for a

funding agency to find citation patterns going back to latent homophily as a single source

would amount to better founded decisions, with such a pattern playing the role of a

knowledge nugget. Consequently, ruling out latent homophily would correspond to a sieve

filtering out cases where correlations in the data go back to more than latent homophily,

one important step in an anticipated workflow to dig for such nuggets by stratification in

citations.

Related research and conceptual clarifications

The notion of the citation network was famously developed by de Solla Price (1965) and

since then it has evolved in many different directions. Incidentally, Garfield et al. (1964)

had already proposed the use of ‘‘Network Charts’’ of papers for the study of the history of

science, but see also Garfield et al. (2003) and Garfield (2009) for a newfound interest in

algorithmic historiography. Although fruitful for analysis at a less aggregated level, these

maps provide the possibility to visualize the network structure of single citing/cited papers

of up to, say, the lower hundreds of papers before becoming too complex to overview. To

remedy this, aggregated forms of citation networks have been developed, most notably

bibliographic coupling (Kessler 1963), ‘co-mentions’ of literary authors (Rosengren 1968),

and the more established concept of ‘co-citation’ of papers (Small 1973). Eventually, over

time these aggregated forms of measurement were extended to analyse network structures

of authors (McCain 1986; White and Griffith 1981). By today, possibilities include the

coverage of source titles and, for bibliographic coupling to reveal the networks based on

address data such as department, institution and country, are limited only to the kind of

structured data available in the database used for sampling (van Eck and Waltman
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2010, 2014). Common for many of these efforts is that the network structure is used to map

or represent bibliometric data for descriptive purposes in visualization, while attempts at

analyzing the relationships dynamically in more causal ways have not been considered to

the same extent. A notable exception is Bar-Ilan (2008) for an overview of a third mode of

aggregated co-studies, namely co-authorship studies that incorporate complex systems

research and Social Network Analysis.

To address a different subject area, graphical models capture the qualitative structure of

the relationships among a set of random variables. The conditional independence implied

by the graph allows a sparse description of the probability distribution (Pearl 2009).

Therefore by combining co-authorship and citation data we propose to view co-author and

citation graphs as examples of such graphical models.

However, not all random variables can always be observed in a graphical model: there

can be hidden variables. Ruling these out is a major challenge. Take, for instance, obesity,

which was claimed to be socially contagious (Christakis and Fowler 2007). Is it not

possible that a latent variable was at play that caused both effects: becoming friends and

obesity? The above assumption of latent homophily, Ver Steeg and Galstyan (2011) asks

whether there is a limit to the amount of correlation between friends, at the same time

being separable from other sources different from friendship. Or, do some smokers become

connected because they had always smoked, or because copying an example may bring

social rewards? To cite a methodological parallel, in quantum physics, the study of non-

local correlations also focuses on classes of entanglement that cannot be explained by local

hidden variable models—these are known as Bell scenarios, initially stated as a paradox by

Einstein, Podolsky and Rosen in their so-called EPR paper (Einstein et al. 1935).

As is well known, the EPR paper proposed a thought experiment which presented then

newborn quantum theory with a choice: either supraluminal speed for signaling is part of

nature but not part of physics, or quantum mechanics is incomplete. Thirty years later, in a

modified version of the same thought experiment (Bell 1964), Bell’s Theorem suggested

that two hypothetical observers, now commonly referred to as Alice and Bob, perform

independent measurements of spin on a pair of electrons, prepared at a source in a special

state called a spin singlet state. Once Alice measures spin in one direction, Bob’s mea-

surement in that direction is determined with certainty, as being the opposite outcome to

that of Alice, whereas immediately before Alice’s measurement Bob’s outcome was only

statistically determined (i.e., was only a probability, not a certainty). This is an unusually

strong correlation that classical models with an arbitrary predetermined strategy (that is, a

local hidden variable) cannot replicate.

Recently, algebraic geometry offered a new path to rule out local hidden variable

models following from Bell’s Theorem (Ver Steeg and Galstyan 2011; Ma et al. 2015;

Ver Steeg 2015). By describing probabilistic models as multivariate polynomials, we can

generate a sequence of semidefinite programming relaxations which give an increasingly

tight bound on the global solution of the polynomial optimization problem (Lasserre 2001).

Depending on the solution, one might be able to reject a latent variable model with a high

degree of confidence. In our case, Alice and Bob decide about references to be picked in

complete isolation, yet their decisions, in spite of being independent from each other’s,

may be still correlated. If we identify the source of the shared state preceding their

decisions as they make their choices, we can observe correlations between author pairs,

and conclude that their patterns of citing behaviour cannot be explained alone by the fact

that they have always liked each other. In other words, experimental findings may rule out

latent homophily as a single source of correlations in certain scenarios. In a Bell scenario,

this means that Alice and Bob can agree on a strategy beforehand (latent hidden variable),
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but at the end of the day, their observed correlations are so strong that they could only be

caused by shared entanglement.

Due to these conceptual overlaps, we believe there is value in introducing this algebraic

geometric framework to citation analysis for the following reasons:

– It can indicate the presence of peer influence (e.g. intellectual fashion, social pressures

etc.) interfering with scientific conviction. Also, following Aral et al. (2009) and

offering a different angle on it, this would correspond to correlations that cannot be

explained by latent homophily alone. Singling out such cases could be a methodolog-

ical step forward for citation studies;

– In our model, latent homophily corresponds to what we call a latent hidden variable

model in Bell scenarios in quantum information theory. Rejecting such a model

indicates entanglement in quantum mechanics, promising a next stepping stone for

methodological progress in the study of citation patterns;

– Given that entanglement in QM goes back to non-classical correlations, it would be a

valuable finding that given such outcome, classical and non-classical correlations both

contribute to patternedness in citation data. This provides a new research alliance

prospect between citation studies and quantum theory based approaches, e.g. new

trends in computational linguistics (Widdows and Cohen 2009; Blacoe et al. 2013) or

decision theory (Bruza et al. 2009; Khrennikov 2010; Busemeyer and Bruza 2012;

Wittek et al. 2013).

Citation networks and latent homophily

To translate the above to experiment design, we must discuss how latent homophily

manifests in citation networks and why we want to restrict our attention to static models.

We shall be interested in citation patterns of individual authors who have co-authored

papers previously. Social ‘contagion’ means that authors will cite similar papers later on if

they previously co-authored a paper. On the other hand, latent homophily means that some

external factor—such as shared scientific interest—can explain the observed correlations

on its own.

Given an influence model in which a pair of authors make subsequent decisions, if we

allow the probability of transition to change in between time steps, then arbitrary corre-

lations can emerge. Static latent homophily means that the impact of the hidden variable is

constant over time, that is, the transition probabilities do not change from one time step to

the other. We restrict our attention to such models, this being a necessary technical

assumption for the algebraic geometric framework. In practice, this means that an author

does not get more or less inclined over time to cite a particular paper.

A straightforward way to analyze correlations is to look at citation patterns between

authors. Departing from a set of authors in an initial period, we can study whether the

references an author makes influence the subsequent references of her or his coauthors as

defined in the initial period. In this sense, we define a graph where each node is an author-

reference. Two nodes are connected if the authors have co-authored a paper at some initial

time step. A node is assigned a binary state �1, reflecting whether that author-reference

pair is actually present. The influence model is outlined in Fig. 1.

We cannot, however, look at all the references that an author made until the end of some

time period. If we assign ?1 to the condition that an author-reference pair exists, i.e. the
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author cited the paper until the end of the specified period, this node state will never flip

back to �1. In other words, given sufficient time, all node states would become ?1,

revealing very little about correlations. Therefore we assign a ?1 state to a node if the

author cites a paper within the observation period. If during the next period he or she does

not cite it, it will flip back to �1.

In what follows, we follow the formalism as described by Ver Steeg and Galstyan

(2011), which, for an individual time step, also closely resembles the study of Bell scenarios

by semidefinite programming in quantum information theory (Navascués et al. 2007).

Suppose we are looking at a pair of authors, A for Alice and B for Bob. Let aþ be the

probability that node A flips from þ to -, and a� the probability of the reverse transition.

The initial probability of being in the þ state is a0. We define the same probabilities for B

with bþ; b� and b0. The state of node A at time step t is At, and the sequence A1:T denotes the

states until some time step T; similarly for B. Further suppose that A depends on some

hidden variable RA and B on RB. A random variable E depends on both hidden variables and

it represents edges between time steps, that is, E describes our graph structure.

The probability of a sequence of possible transitions is as follows:

PðA1:T jRAÞ ¼ aFþðAÞ
þ aF�ðAÞ

� ð1� a�ÞS�ðAÞð1� aþÞSþðAÞ

a1=2ð1þA1Þ
0 ð1� a0Þ1=2ð1�A1Þ;

ð1Þ

where F� and S� are counters of the transitions:

F� ¼
XT�1

t¼1

1

4
ð1� AtÞð1� Atþ1AtÞ:

S� ¼
XT�1

t¼1

1

4
ð1� AtÞð1þ Atþ1AtÞ:

Similarly for B. Let x ¼ ða0; aþ; a�; b0; bþ; b�Þ be the parameter vector.

Fig. 1 Outline of the influence model. The latent variables RA and RB cause the edges in the co-author
network and are also the sole influence in changes whether an author-reference pair changes in subsequent
time steps
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We are ready to move towards a geometric description of the problem. Let us take

observables OjðA;BÞ on A and B—these can be the indicator functions of all possible

outcomes, for instance. We define the expectation values of these observables as

yj ¼
X

RA;RB

PðRA;RBjEÞfjðxÞ; ð2Þ

where

fjðxÞ ¼
X

A;B

PðA1:T jRAÞPðB1:T jRBÞOjðA;BÞ:

The constraints on the variables are such that they must be probabilities, therefore we have

K ¼ fx 2 R6 : giðxÞ ¼ xið1� xiÞ� 0; i ¼ 1; . . .; 6g: ð3Þ

The equalities in yj together with the constraints in K are all polynomials. If there is a

hidden variable model, the constraints can be satisfied. If not, the problem is infeasible and

we must reject the hidden variable model.

Identifying the feasibility of this problem is a hard task, and we provide a relaxation.

This relaxation will approximate the feasible set from the outside: that is, if the relaxation

is an infeasible problem, the original one too must be infeasible. Therefore by the same

relaxation one can reject hidden variable models.

To explain how it works, suppose we are interested in finding the global optimum of the

following constrained polynomial optimization problem:

min
x2Rn

f ðxÞ

such that

giðxÞ� 0; i ¼ 1; . . .; r

Here f and gi are polynomials in x 2 Rn. We can think of the constraints as a semialgebraic

set K ¼ fx 2 Rn : giðxÞ� 0; i ¼ 1; . . .; rg. Lasserre’s method gives a series of semidefinite

programming (SDP) relaxations of increasing size that approximate this optimum through

the moments of x (Lasserre 2001). For polynomial optimization problems of noncom-

muting variables this amounts to the exclusion of hidden variable theorems in networked

data, and that we can verify the strength of observed correlations.

Even in this formulation, there is an implicit constraint on a moment: the top left element

of the moment matrix is 1. Given a representing measure, this means that
R

K dl ¼ 1. It is

actually because of this that a k dual variable appears in the dual formulation:

max
k;r0

k

such that

f ðxÞ � k ¼ r0 þ
Xr

i¼1

rigi

r0; ri 2 R½x�; degr0 � 2d:

In fact, we can move k to the right-hand side, where the sum-of-squares (SOS) decom-

position is, k being a trivial SOS multiplied by the constraint
R

K dl, that is, by 1.
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We normally think of the constraints that define K as a collection of giðxÞ polynomial

constraints underlying a semialgebraic set, and then in the relaxation we construct

matching localizing matrices. We can, however, impose more constraints on the moments.

For instance, we can add a constraint that
R

K xdl ¼ 1. All of these constraints will have a

constant instead of an SOS polynomial in the dual.

This SDP hierarchy and the SOS decomposition have found extensive use in analyzing

quantum correlations (Navascués et al. 2007; Pironio et al. 2010), and given the notion of

local hidden variables in studying nonlocality, there is a natural extension to studying

causal structures in general (Ver Steeg and Galstyan 2011). For a static latent homophily

model, we are interested in the following SOS decomposition:

max
b;riðxÞ

bŷ ð4Þ

such that

1� bf ðxÞ ¼ r0 þ
X

i

riðxÞgiðxÞ

ri 2 R½x�;

where ŷ contains the observables extracted from the data, and f(x) and giðxÞ encode our

model. If this problem is infeasible, we can rule out a local hidden variable model as

imposed by the constraints.

Corpus

Longitudinal data were collected from Web of Science, using the journal indices WoS-

Extended, SSCI, and AHCI between 1945 and 2013 (Table 1). The collection consists of

the full set of published items in 20 high impact journals found in the database. 43168

items where collected in total, comprising of 22784 articles (52.4%), 10270 book reviews

(23.8%), 2325 editorial material papers (5.4%), and 1898 proceedings papers (articles)

(4.4%).

The selection process was conducted by using four different journal rankings. The

reason for using multiple source rankings was to minimize the impact of perspective,

where, for example, the JCR ranking for Information and Library Studies contains journals

from the Information Systems area, however that would not count as (core) LIS journals by

practioners in the field. The ranking schemes used were JCR 2012, JCR 1997 (the oldest

one found readily in the WoS platform), Google top publications (H5-Index), and Elsevier

SCImago Rank 2012. Journal rank data and citation data were collected on January 20,

2014.

The inclusion of publication years 2013 and 2014 is not complete, since it is generally

acknowledged that WoS has not received the underlying data until late spring the year after

publication. Since the dataset is used for information based research and not for perfor-

mance based evaluation, inclusion of as much as possible material was deemed more

important than completeness.

To rank the journals, in all four lists the 20 top journals were scored from 20 to 1, so that

the top journal earned 20 points and the last one earned 1 point. Then the points from each
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Table 1 The number of published entries, along with total number of citations, mean number of citations,
and first year of inclusion in the WoS index is found in the table

Ord Journal Recs Citations Mean
citations

Mean citations
per year

First
year

1 Journal of the American Society for

Information Science and Technology

2494 22958 9.21 1.11 2001

Journal of the American Society for

Information Science

2977 39593 13.3 0.57 1970

American Documentation 780 4347 5.57 0.11 1956

Journal of Documentary Reproduction

(United States)

2 Journal of Informetrics 420 3714 8.84 1.69 2007

3 Scientometrics 3637 38202 10.5 0.94 1978

Journal of Research Communication Studies 119 137 1.15 0.03 1978

4 Information Systems Research 649 25817 39.78 3.19 1994

5 MIS Quarterly 1071 70899 66.2 4.54 1981

6 College and Research Libraries 5156 12144 2.36 0.12 1956

7 Journal of the American Medical Informatics

Association

4260 40687 9.55 0.95 1994

8 Library and Information Science Research 1209 6198 5.13 0.4 1984

Library Research (United States)

9 Annual Review of Information Science and

Technology

550 7269 13.22 0.82 1966

10 Journal of Documentation 3700 18437 4.98 0.26 1945

11 Journal of Health Communication 1233 10570 8.57 0.99 1997

12 Journal of Information Science 1379 7802 5.66 0.29 1979

Information Scientist (United Kingdom)

Institute of Information Scientists. Bulletin

(United Kingdom)

13 International Journal of Geographical

Information Science

1299 14635 11.27 1.09 1997

International Journal of Geographical

Information Systems

311 6547 21.05 0.99 1991

14 Journal of Information Technology 612 5613 9.17 0.8 1993

15 Library Quarterly 4603 6200 1.35 0.07 1956

16 Journal of the Medical Library Association 1104 4275 3.87 0.44 2002

Bulletin of the Medical Library Association 3639 10255 2.82 0.11 1956

17 Empty

18 Arxiv Digital Libraries (cs.DL)

19 Information and Management 1702 31902 18.74 1.52 1983

Systems Objectives Solutions 63 274 4.35 0.13

Information Management 200 25 0.13 0 1983

Management Datamatics (Netherlands)

Management Informatics (Netherlands)

IAG Journal (Netherlands)

20 Reference Librarian

Total number of records 43167 11.53 0.88
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of the occurring journals in the four rankings were added and the journals were listed again

based on their combined score for Table 1.

For every selected journal title, the title was run against the Ulrichs Periodicals

Directory to identify title changes during the span of the journal’s publishing history. In all,

33 versions of the titles were searched for in WoS. Of these, 24 titles were found in the

database.

The number of published entries, along with total number of citations, mean number of

citations, and first year of inclusion in the WoS index are presented in Table 1. The

coauthor network has 45904 nodes and 78418 edges.

An illustrative example

We decided to conduct an experiment with a semi-synthetic example to verify whether

such a network of citations allows for the exclusion of latent hidden variables. For this

case, to design a model of influence, the graph had to be directed, whereas a coauthor

network is typically undirected. To establish directions in the graph, we considered a

pairwise asymmetric relationship between authors in which one of the authors is ‘domi-

nant’. To this end we considered the following two alternatives:

1. The more dominant author is the one with more citations. As in our corpus every

author pair has the same number of citations, this option was not viable and was

therefore discarded;

2. The more dominant author has a higher degree in the graph of the coauthor network

because he or she had more coauthors in the past. This enabled us to direct the graph.

We assumed that the network structure does not evolve over time. Taking the directed

coauthor network graph in consideration, we assigned a state to each node, and set its value

randomly with �1 with equal probability.

Once this initialization was done, we had to simulate influence. We randomly picked a

pair, and the nondominant author copied the state of the dominant one. In a time step, we

did M such random picks, where M is the number of edges. This gave sufficient oppor-

tunity for the graph to flip most of its nodes if necessary. We created two more time slices

on top of the initial one. Using these time slices, we could calculate the statistics

PðA1:TB1:T jE ¼ 1Þ with T ¼ 3, where E ¼ 1 meant that there was a directed edge from

author A to author B.

With this random initialization, one can detect if, given a particular graph structure,

there is a possibility of latent homophily at all. We used metaknowledge1 to work with the

citation network (McIlroy-Young and McLevey 2015), Ncpol2sdpa2 to generate the SDP

relaxations (Wittek 2015), and Mosek3 to solve the SDP. The computational details are

available online.4 Taking the observables OjðA;BÞ as the indicator function and a level-3

relaxation of the Lasserre hierarchy, the SDP solver detects any dual infeasibility. In turn,

such an infeasibility means that the SOS decomposition does not exist and we can rule out

latent homophily as the source of correlations with a high degree of confidence.

1 http://networkslab.org/metaknowledge/.
2 https://pypi.python.org/pypi/ncpol2sdpa/.
3 https://mosek.com/.
4 http://nbviewer.jupyter.org/github/peterwittek/ipython-notebooks/blob/master/Citation_Network_SDP.
ipynb.
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Static latent homophily in the coauthor network: results and discussion

As a joint probability distribution, one obtains 64 possible combinations of outcomes,

because for each author and time period, the outcome is binary, and given two authors and

three time periods, we obtain this number. We observe all possible outcomes on this

sample. We used the same OjðA;BÞ observable as in the semi-synthetic example, i.e. the

indicator function, and a level-3 relaxation of the Lasserre hierarchy.

We used different splits over the corpus to analyze the network at different granularity.

In the most basic split, the sample corpus factorized in three periods with the following

distribution:

Period Number of papers

1945–1968 4104

1968–1991 12293

1991–2014 26770

Clearly, the earliest period was the sparsest. The SDP solver detected dual infeasibility,

therefore we could rule out latent homophily as the single source of correlations. On this

time scale, however, assuming that the network remained static is unrealistic. Therefore,

we repeated the test with a span of 30, 10, and 5 years.

For the 30- and the 10-year spans, we analyzed every subsequent fifth year as the

starting year. Due to sparse data in the first years, all analysis in this part started with 1949.

Thus, for instance, we analyzed 1949–1979, followed by 1954–1984, and so on. This gave

us a total of twenty time intervals, with only one case, the 10-year period of 1949–1959

allowing the possibility of latent homophily.

For the 5-year intervals, we started with 1959, again, for reasons of data sparsity. Then

we analyzed intervals starting with every third year, so, for instance, 1959–1964, followed

by 1962–1967, and so on. This gave us another seventeen data points, with only two

intervals, 1959–1964 and 1965–1970, not being able to rule out latent homophily.

Our result indirectly confirms that ‘contagion’ in the practice of citation is a distinct

possibility. If citation patterns continue spreading, over time everybody will cite more or

less the same papers. This in turn explains the phenomenon of Sleeping Beauties (Ke et al.

2015): since dominant authors do not cite such articles, everybody else ignores them.

Secondly, we recall that in its simplest form, Bell’s theorem states that no physical

theory of local hidden variables can ever reproduce all of the predictions of quantum

mechanics, i.e. it rules out such variables as a viable explanation of quantum mechanics.

Therefore we hypothesized that if we can find entanglement in our data, with local hidden

variables as their source ruled out, patterns in the sample must be quantum-like for non-

obvious reasons. Ruling out Bell inequalities as the source of entanglement in our results

points to such non-classical correlations at work in the dataset.

Conclusions

Citation and coauthor networks offer an insight into the dynamics of scientific progress. To

understand this dynamics, we treated such a network as the representation of a causal

structure, a logical process captured in a graph, and inquired from a causal perspective if
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authors form groups primarily due to their prior shared interest, or if their favourite topics

are ‘contagious’ and spread through co-authorship. Following an algebraic geometric

methodology that relies on a sequence of semidefinite programming (SDP) relaxations, we

analyzed a sample citation network for the impact of latent hidden variables. Using the

SDP relaxations, we were able to rule out latent homophily, or shared prior interest as the

source of correlations, hinting at that citation patterns in fact spread.

Statistical sampling on the author pairs was akin to making repeated measurements with

bipartite Bell scenarios in quantum mechanics. The finding that shared prior interest as a

latent variable cannot account on its own for citation patterns calls for a related analysis

into the nature of ‘contagious’ influences including fashionable topics, reputation etc.,

affecting the outcome. This confirmation and the algebraic geometric framework to

compute it are novel concepts in scientometrics. We hope this work will act as a stepping

stone for further research.
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