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Numerical Simulation of Heat Transfer in Porous
Metals for Cooling Applications

EDGAR AVALOS GAUNA and YUYUAN ZHAO

Porous metals have low densities and novel physical, mechanical, thermal, electrical, and
acoustic properties. Hence, they have attracted a large amount of interest over the last few
decades. One of their applications is for thermal management in the electronics industry because
of their fluid permeability and thermal conductivity. The heat transfer capability is achieved by
the interaction between the internal channels within the porous metal and the coolant flowing
through them. This paper studies the fluid flow and heat transfer in open-cell porous metals
manufactured by space holder methods by numerical simulation using software ANSYS Fluent.
A 3D geometric model of the porous structure was created based on the face-centered-cubic
arrangement of spheres linked by cylinders. This model allows for different combinations of
pore parameters including a wide range of porosity (50 to 80 pct), pore size (400 to 1000 lm),
and metal particle size (10 to 75 lm). In this study, water was used as the coolant and copper
was selected as the metal matrix. The flow rate was varied in the Darcian and Forchheimer’s
regimes. The permeability, form drag coefficient, and heat transfer coefficient were calculated
under a range of conditions. The numerical results showed that permeability increased whereas
the form drag coefficient decreased with porosity. Both permeability and form drag coefficient
increased with pore size. Increasing flow rate and decreasing porosity led to better heat transfer
performance.
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I. INTRODUCTION

POROUS metals, or metallic foams, are metals with
pores deliberately integrated in their structure.[1] The
pores are of crucial importance because they give new
properties to the material. For applications requiring
good permeability to fluids, the internal network of the
cells in the porous metal must be open. The open-cell
porous metals are emerging as an effective material for
heat transfer management.[2]

In active cooling applications using the open-cell
structures, the cooling system is composed of the porous
metal medium and the fluid is used as a coolant flowing
through the material. In the design of heat exchangers
with porous metals, two key properties are important:
the heat transfer coefficient and the pressure drop across
the sample,[3] which are strongly affected by the pore
structure.[4]

Porous copper manufactured by the space holder
methods, such as the Lost Carbonate Sintering (LCS)

process,[5] is a promising type of material for use as heat
exchangers.[6] However, there is a very limited amount
of data available on the fluid flow and the heat transfer
behavior of this type of materials. Measurements of
fluid permeability and heat transfer coefficient are
difficult and time-consuming.
Numerical simulation has gained popularity as a

reliable tool to study heat transfer in porous media. For
example, Teruel and Rizwan-Uddin[7] numerically cal-
culated the interfacial heat transfer coefficient in porous
media. Xin et al.[8] numerically investigated the heat and
mass transfer behaviors in porous media for multiphase
flow. Hwang and Yang[9] simulated the heat transfer and
fluid flow characteristics in a metallic porous block
subjected to a confined turbulent slot jet. Numerical
simulation has shown to be a very useful and consistent
tool.
Different approaches have been considered in tackling

the porous media problem. One methodology is consid-
ering the porous media as an arrangement of tube banks
in 2D.[10] Another practice is creating a representative
3D cell structure.[11] A different technique is creating a
random walled structure acting as the porous matrix.[12]

This paper studies the fluid flow and heat transfer in
open-cell porous metals by numerical simulation using
ANSYS Fluent. A 3D representative elementary volume
(REV) has been created to represent the porous
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structure of LCS porous copper, allowing for different
combinations of porosity, pore size, and metal particle
size.

II. NUMERICAL SIMULATION

A. Representative Elementary Volume (REV)

The REV used to represent the porous structure of
LCS porous copper in this study is composed of 5 FCC
unit cells similar to the one shown in Figure 1. To create
the unit cell, the spherical pores are arranged in the same
way as that the atoms are arranged in the FCC
structure. The pores are connected by cylindrical open
channels at the contact points. The porosity of the REV
is varied by changing the radius of the cylinder, rc, and
the distance between the centers of the neighboring
spheres, ls.

The radius of the cylinder is selected to reflect the size
of the necks or windows connecting the neighboring
pores in the LCS porous copper, which is determined by
the sizes of the K2CO3 and Cu particles and can be
calculated by Eq. [1].[13,14]

Asc ¼
p
2

dK2CO3
ð Þ2 1� uþ 2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 6uþ 5
p

 !

; ½1�

where Asc is the area of the neck, dK2CO3
is the K2CO3

particle diameter, and u is the K2CO3-to-Cu particle
size ratio, i.e., the ratio between the diameters of the
K2CO3 and Cu particles.
The coordination number, or the number of contacts

of a sphere with its neighbors, is 12 in the FCC
structure. In LCS porous metals, however, the coordi-
nation number, x, is much lower and can be estimated
by Eq. [2].[13]

x ¼ 2

1� uþ2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ6uþ5
p

� �

1� uþ u
e

� �

; ½2�

where e is the porosity.
To account for this difference, the total area of the

necks in the REV is considered to be equal to the total
area of the necks of a pore in the real porous material.
The radius of the cylinders used in the REV can
therefore be obtained by Eq. [3].

Fig. 1—FCC unit cell to represent the porous structure.
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rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � Asc

12p

r

½3�

Given the pore size, dK2CO3
, the cylinder radius, rc,

and the porosity, e, the distance between the centers of
the neighboring spheres, ls, can be determined.

The values of the cylinder radius and the distance
between the centers of the neighboring spheres for each
combination of pore size and porosity are presented in
Table I. In this study, theCuparticle size is fixed as 50lm.

B. Governing Equations and Boundary Conditions

Incompressible Newtonian flows at pore-scale level
are governed by the Navier–Stokes equations. For this
study, the k� e model was used. The continuity,
momentum, and energy equation are given by Eqs. [4]
through [6].

qrv ¼ 0 ½4�

v � rð Þv ¼ r � �PIþ l rvþ rvð ÞT
� �h i

½5�

qCpv � rT ¼ r � krTð Þ; ½6�

where q is the density of the fluid, v is the velocity, P
is pressure, I is the identity matrix, lis the viscosity of
the fluid, T is the temperature, Cp is the specific heat,
and k is the thermal conductivity.

Simulations were carried out using ANSYS Fluent
CFD with different REVs to account for different
combinations of pore size and porosity as shown in
Table I. The parameters considered for this analysis
were pore size, porosity, and volumetric flow rate.

The computational domain is composed of three
parts: a fluid channel long enough for the fluid to be
fully developed, the REV in the fluid channel that
represents the porous metal, and a solid copper block
underneath the REV supplying a constant heat flux
(Figure 2). The working fluid used in this study is water.

A constant heat flux (J = 250 kW/m2) was set at the
bottomof the solid block. The heat is transferred from the
block to the REV via conduction and is removed from the
REV by forced convection using water. The top of the

domain was set as zero heat flux. The other two sides of
the domain were set as symmetric. The initial temperature
for the whole domain was set as 300 K (27 �C).
The velocity, pressure, and temperature fields in the

fluid phase of the domain were investigated. The
governing equations were solved numerically and
numerical computations were performed for a wide
range of porosity (50 to 80 pct), pore size 400 to
1000 lm, and Darcian flow velocity (0.02 to 0.3 m/s) or
flow rate (0.2 to 1.8 l/min). A total of 120 simulations
were carried out in order to analyze and compare the
effects of these parameters.
In this study, the overall quality of the mesh was>0.9

in all cases. The numerical computations were consid-
ered to be converged when the residuals of the variables
were lowered by six orders of magnitude (i.e., � 10�6).
Double precision conditions were selected at solver to
minimize the possibility of errors.

C. Permeability and Form Drag Coefficient

According to Darcy’s law for unidirectional flow
through a porous medium in creeping flow regime, the
pressure drop per unit length is proportional to the
superficial fluid velocity as shown in Eq. [7].

DP
DL

¼ l
K
u; ½7�

where DP is the pressure drop between the inlet and
outlet of the porous media, DL is the length of the
porous media, l is the viscosity of the fluid, u is the
Darcian velocity of the fluid (i.e., flow rate divided by
the cross-sectional area), and K is the permeability of
the porous media.
If the Reynolds number, Re, increases to a critical

value, the fluidwill become turbulent and this relationship
will change to nonlinear and the Forchheimer equation
needs to be used.[15] This new relationship between
pressure drop and permeability is shown in Eq. [8].

DP
DL

¼ lu
K

þ qCu2; ½8�

where q is the density of the fluid, and C is the
Forchheimer’s coefficient, or form drag coefficient.
In this study, the fluid flow is considered to be in the

Forchheimer’s regime. Equation [8] was therefore used
to determine permeability, K, and form drag coefficient,
C, from the pressure drop values.

Table I. Cylinder Radius and Distance Between Neighboring Spheres for the FCC Unit Cells

Pore Diameter (lm)

400 600 800 1000

e (pct) rc (lm) ls (lm) rc (lm) ls (lm) rc (lm) ls (lm) rc (lm) ls (lm)

50 37.76 463.87 47.33 691.85 55.34 919.85 62.36 1147.60
60 45.01 435.44 56.89 649.85 66.81 864.30 75.49 1078.60
65 49.17 423.11 62.48 631.70 73.59 840.47 83.30 1049.05
70 53.82 411.61 68.86 614.93 81.41 818.50 92.37 1021.90
75 59.15 400.70 76.32 599.13 90.67 797.82 103.21 996.50
80 65.40 390.03 85.33 583.75 102.05 777.93 116.67 972.15
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D. Heat Transfer Coefficient

The heat flux and heat transfer coefficient in the LCS
porous copper is related by Newton’s cooling law given
in Eq. [9].

J ¼ h Tb � Tinð Þ; ½9�

where J is the input heat flux, h is the heat transfer
coefficient, Tb is the temperature at the contact point
between the heat source and the LCS porous copper,
and Tin is the temperature of the water at the inlet. In
this study, Eq. [9] was used to determine the heat
transfer coefficient, h, from the temperature of the heat
block.

III. RESULTS AND DISCUSSION

A. Pressure Drop

The relationship between pressure drop and Darcian
velocity for samples with a pore size of 1000 lm and
different porosities is shown in Figure 3. It is clear that
the trend is not linear and the form drag coefficient
needs to be considered to account for the inertial effects.

Figure 4 compares the numerical results obtained for
pressure drop with experimental data available from
Reference 16 for a range of combinations of pore size,
porosity, and flow velocity.

Fig. 2—Representative Elementary Volume (REV) and computational domain.

Fig. 3—Relationship between pressure drop and Darcian velocity for
samples with a pore diameter of 1000 lm and different porosities.
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The numerical results have the same trends as the
experimental data and show good agreement with the
experimental values for most porous structure and flow
conditions. However, there exist significant differences
between the numerical and experimental results, espe-
cially for low porosity conditions. These differences are
partly due to the different porous structure parameters
used. In the numerical simulation, a fixed pore size and a
fixed porosity are used. The experimental values, how-
ever, were obtained for a porous sample with a range of
pore sizes and a measured porosity deviated from the
numerical condition. Another cause for the differences is
the simplification of the porous structure with a unit cell.
In the unit cell, each pore or sphere is connected with 12
pores. The actual number of contacts in the LCS porous
metals, however, is often much lower[13] and decreases
with decreasing porosity as shown in Eq. [2].

B. Permeability and Form Drag Coefficient

Figures 3 and 4 show that, in all cases, the pressure drop
increases quadratically with Dacian velocity, indicating
applicability of the Forchheimer Eq. [8]. In order to obtain

permeability, K, and form drag coefficient, C, from the
numerical results, Eq. [8] can be rearranged to give a linear
relationship between DP and u in the form of Eq. [10].

DP
DL � u ¼ l

K
þ qCu: ½10�

The values of K and C were thus obtained by linear
regression of the numerical data to Eq. [10].
The variations of permeability and form drag coefficient

with porosity, obtained from the numerical results, are
shown in Figures 5(a) and (b), respectively. It is shown that
both pore size and porosity have significant effects on
permeability and form drag coefficient. As expected, perme-
ability increasedwith porosity whereas form drag coefficient
decreased with porosity, because less frontal surface area in
the solid material generates less drag force against the fluid.
In the literature, the form drag coefficient is some-

times defined in terms of permeability and a drag force
coefficient[17] as in Eq. [11].

C ¼ Cf
ffiffiffiffi

K
p ; ½11�

Fig. 4—Comparison between numerical and experimental pressure drop values for different pore sizes and porosities. The numerical and experi-
mental (in parenthesis) pore sizes are: (a) 400 (250 to 425) lm, (b) 600 (425 to 710) lm, (c) 800 (710 to 1000) lm, and (d) 1000 (1000 to 1500)
lm.
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where Cf is the drag force coefficient.
Figure 6 shows the log–log plots between form drag

coefficient and permeability. The form drag coefficient
increases with pore size, but the slope of the logC vs
logK curve decreases with pore size. It is clear that the
data in the current study do not follow Eq. [11], but can
be described in the form of Eq. [12].

C ¼ CfK
�m; ½12�

where m is a constant for any fixed pore size.
The values for the exponential term and drag force

coefficient for different pore sizes, obtained from linear
regressions of the data in Figure 6, are presented in
Table II. The value of the exponential term m is not
constant, but it decreases and approaches 0.5 when pore
size is increased. The drag force coefficient also increases
with pore size.

C. Heat Transfer Coefficient

The relationships between heat transfer coefficient
and water flow rate for the porosities of 50 and 80 pct
are shown in Figures 7(a) and (b), respectively.

Fig. 5—Relationships between (a) permeability and porosity and (b)
form drag coefficient and porosity.

Fig. 6—Relationship between form drag coefficient and permeability.

Table II. Exponential Term and Drag Force Coefficient

Pore Size (lm) m Cf

400 1.3184 3.156299
600 1.0264 3.320117
800 0.8065 4.360558
1000 0.7223 5.734497

Fig. 7—Heat transfer coefficient of REVs with a porosity of (a) 50
pct and (b) 80 pct.
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It can be seen that the heat transfer coefficient
increased rapidly with flow rate. The effect of pore size
can be seen here as well. Although at low flow rates the
effect of pore size was negligible, at higher flow rates, h
was increased by about 5 to 8 pct when pore size was
decreased.

The relationships between the heat transfer coefficient
and the porosity for pore sizes of 400 and 1000 lm are
shown in Figures 8(a) and (b), respectively. A linear
relationship exists between the heat transfer coefficient
and porosity for all flow rates. At all cases, the best heat
transfer coefficient was achieved with higher flow rates.
Once again, it can be seen that pore size has little
influence on the heat transfer coefficient.

IV. CONCLUSIONS

This paper presented a 3D geometric model for
numerical simulation of liquid flow and heat transfer
in open-cell porous media. The representative elemen-
tary volume was created based on the face-centered-cu-
bic arrangement of spheres linked by cylinders. Different
combinations of pore parameters including porosity (50

to 80 pct), pore size (400 to 1000 lm), and fluid flow rate
(0.2 to 1.8 l/min) were studied using the software
ANSYS Fluent. The numerical results on the pressure
drop agreed reasonably well with the experimental
data for the LCS porous copper and followed the
Forchheimer equation. The numerical results showed
that permeability increased whereas the form drag
coefficient decreased with porosity. Both permeability
and form drag coefficient increased with pore size. The
form drag coefficient was related to permeability and the
relationship can be expressed by the drag force coeffi-
cient and an exponential term. The drag force coefficient
increased, whereas the exponential term decreased, with
pore size. Heat transfer coefficient increased with flow
rate but decreased with porosity. Pore size had very little
effect on heat transfer coefficient.
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