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Abstract Much recent attention has been given to the
carotid body because of its potential role in cardiovascular
disease states. One disease, neurogenic hypertension,
characterised by excessive sympathetic activity, appears depen-
dent on carotid body activity that may or may not be accom-
panied by sleep-disordered breathing. Herein, we review recent
literature suggesting that the carotid body acquires tonicity in
hypertension. We predict that carotid glomectomy will be a
powerful way to temper excessive sympathetic discharge in
diseases such as hypertension. We propose a model to explain
that signalling from the ‘hypertensive’ carotid body is tonic, and
hypothesise that there will be a sub-population of glomus cells
that channel separately into reflex pathways controlling sym-
pathetic motor outflows.
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Introduction

The aetiology of many modern-day diseases, such as the
metabolic syndrome, is often associated with alterations in
the autonomic nervous system. The relatively sudden

acceptance that autonomic imbalance is both causative and
essential for the maintenance of disease states in animal
models and humans, has led to an eruption of interventional
approaches to manage these diseases. Modulation of the
autonomic nervous system, whether via stimulation [1, 2]
or ablation of organ-specific afferents and denervation of
sympathetic post-ganglionic fibres targeting selected vascu-
lar beds [3•], is a strong current trend producing spectacular
results. Here, we consider an intervention that is based on
pre-clinical proof of principle data and previously published
clinical results supporting carotid body modulation as a
treatment for neurogenic hypertension.

The Problem of Hypertension is that Not Only Does It
Not Go Away, It Gets Worse

Carey has recently proposed that 14 % of the world’s treated
hypertensive patients are resistant to contemporary pharma-
cological therapy [4]. Even if this number is an overestimate,
we are still left with a substantial clinical problem, given that
there are presently almost 1 billion hypertensives worldwide
[5]. Most hypertensive patients are well managed with anti-
hypertensive drugs, yet there appears to be an increasing trend
to greater resistance [4]. As Carey reports, resistant hyperten-
sives have increased from 5.5 % in 1988–1994, to 8.5 % in
1999–2004 and 11.8 % in 2005–2008 [4]. A resistant hyper-
tensive is a patient with office blood pressure >140/90 mmHg,
despite taking ≥3 anti-hypertensive medications, ideally in-
cluding a diuretic [6]. However, we believe the clinical prob-
lem of blood pressure management extends beyond drug
resistance, and includes hypertensive patients that are drug
intolerant due to adverse effects impacting on quality of life,
often a consequence of high drug dosing and multi-pill ther-
apy. If accepted that the sympathetic nervous system is in part
responsible in the etiology and maintenance of hypertension
[7–9, 10•, 11, 12], then we need to find innovative ways to
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control it. Although highly effective, the early attempts at
gross surgical [13, 14] and then pharmacological sympathec-
tomy [15] are unsurprisingly poorly tolerated. Given that
sympathetic nervous system function is controlled differen-
tially the idea of targeted sympathectomy, such as to the
kidney [3•, 17•] or splanchnic vascular bed [16], has had
considerable success in lowering blood pressure clinically
and in animal models. However, the majority of patients re-
ceiving renal denervation have remained on anti-hypertensive
medication and hypertensive [3•, 17•]. Given the hypothetical
aim of curing hypertension and reducing/removing anti-
hypertensive medication, especially those with severe life
quality impeding side effects, further exploration into novel
interventional therapies is warranted. We will discuss the idea
of removing a distinct sympatho-excitatory afferent drive as a
novel treatment for neurogenic hypertension.

The Peripheral Chemoreceptor

The peripheral or arterial chemoreceptors located in the
carotid body send signals via a branch of the carotid sinus
nerve to the nucleus of the solitary tract located in the
dorsomedial medulla [18]. The carotid body consists of
supporting cells (or type II cells, analogous to astrocytes)
and glomus cells (type I cells) that embryologically origi-
nate from neural crest cells. Glomus cells are morphologi-
cally distinct as large and spherical in shape and are highly
sensitive to oxygen delivery, arterial oxygen and carbon
dioxide levels, blood pH, reduced blood flow (e.g. hemor-
rhage), inorganic phosphate and sodium cyanide [19]; the
latter being used as a convenient experimental tool to pro-
duce tissue hypoxia and profound stimulation [20]. The
carotid body is profusely perfused with blood [21] and the
arterioles are innervated by the sympathetic nervous system.
This is an important point as excessive sympathetic
activity could potentially trigger activation of the che-
moreceptor (via hypoperfusion). Persistent sympathetic
activity might also re-model carotid body arterioles
causing alterations in perfusion that could directly af-
fect sensitivity of the chemoreceptor. The carotid body
cells produce a vast array of chemical transmitters
(including dopamine, noradrenaline, substance P) that
are released to trigger a receptor potential on nearby
afferent endings, resulting in their depolarisation and
action potential generation [22]. In some species, such
as rabbit, cat and human, there are additional glomus
tissue accumulations on the aorta and subclavian arter-
ies [23]. Aortic chemoreceptors have a distinct reflex
response [23] compared to those evoked from carotid
chemoreceptors (see below), and for this reason our
focus will be on the carotid body.

Carotid Body Reflex Response Patterns and the Intimate
Association with Respiration

Stimulation of the carotid body chemoreceptors triggers
hyperventilation, an important protective reflex mecha-
nism ensuring blood gas homeostasis. The peripheral
chemoreceptors may also contribute to dyspnoea [24]
and arousal [25], which is likely due to their supra-
bulbar projections [26].

The reflex cardiovascular response evoked from the ca-
rotid body is interesting, as it comprises a primary and
secondary response [27, 28]. The pattern of response evoked
is dependent on the degree to which respiration increases.
Hyperventilation recruits into play an afferent signal origi-
nating from mechanoreceptors surrounding bronchioles that
on inflation trigger the pulmonary stretch receptor (Hering-
Breuer) reflex giving the secondary response. This second-
ary response consists of tachycardia and vasodilatation; the
former is mediated by cardiac vagal withdrawal and in-
creased cardiac sympathetic tone, and the latter via inhibi-
tion of sympathetic vasomotor tone. This competes with the
primary response of profound bradycardia (vagally mediated)
and sympathetically mediated vasoconstriction. The resultant
response depends on the relative strength of the two afferent
reflexes and the magnitude of the respiratory response, which
is dependent on animal species. The primary response prevails
in the following examples: a diving mammal; human face
immersion into cold water; sleep apnea; sudden infant death
syndrome; and in anesthetised and mechanically ventilated
animals. The bradycardia is potent, abolished with atropine
and most likely protective in function to reduce cardiac me-
tabolism and preserve oxygen. Intriguingly, despite the potent
bradycardia, the sympathetic nervous system targeting the
heart is co-activated [29] along with the cardiac vagal system
and may increase cardiac force of contraction.

The type of stimulus used to activate the peripheral
chemoreceptors will also dictate the response pattern. Using
systemic hypoxia, for example, will produce a direct
hyperpolarising effect on the vascular smooth muscle caus-
ing blood pressure to fall. This will unload baroreceptors
that may trigger a compensatory response, although it is
acknowledged that their interaction with peripheral chemo-
receptors is antagonistic [20, 30, 31]. Finally, the strength of
the stimulus may also produce a graded response, perhaps
overturning coincident reflexes originating from pulmonary
receptors in spontaneously breathing animals. When the
stimulus is intense, peripheral chemoreceptors can trigger
an alerting response, including the classical behavioural and
visceral adjustments associated with fight or flight [19, 25].
In the context of carotid chemoreceptors and hypertension,
this is most relevant, as it has been hinted that continuous
activation of the fight or flight response (so called defence
response) could lead to systemic hypertension [32].
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The Association Between Peripheral Chemoreceptor
Sensitivity and Sympathetic Nerve Activity Excess

The peripheral chemoreceptor reflex sensitivity has been
shown to be significantly enhanced in both patients with
primary hypertension [33–37, 38•, 39] and spontaneously
hypertensive (SH) rat [40••]; this has included the ventila-
tory and sympathetic nerve activity response components.
Incidentally, an increased hypoxic ventilatory response is
characteristic of heart failure patients. This increased periph-
eral chemoreceptor sensitivity is a prognostic indicator for
mortality in these patients [41].

Hypersensitivity of the carotid body occurs before hyper-
tension is established in both SH rats [40••] and white coat
hypertensive patients [36]. Repetitive exposure of conscious
normotensive rats to hypoxia can induce mild hypertension
[42]. This is dependent on stimulation of peripheral chemore-
ceptors, as the hypertension is abolished by a priori carotid
body removal [42]. This model of chronic intermittent hyp-
oxia has been used as a model for sleep apnea. The model is
tenuous, because it exhibits hypocapnia (not hypercapnia) and
increased ventilation (not apnea). However, the hypertension
produced is caused by activation of the sympathetic nervous
system in rats [43•]. This is consistent with the sympathetic
activation associated with the hypertension seen during ob-
structive or central sleep apnea in human patients with or
without heart failure [44, 45]. Repeated peripheral chemore-
ceptor activation in sleep apnea has also been proposed to
contribute to derangements in metabolism and obesity [46••].
Further, there is evidence that patients with sleep apnea de-
velop tonic peripheral chemoreceptor afferent discharge that
functionally drives muscle sympathetic activity [47]. Repeat-
ed carotid body activation in rats and humans results in
enhanced respiratory-sympathetic coupling and increased
muscle vasoconstrictor activity, which may contribute to the
development of hypertension [10•, 33, 34, 36, 43•, 45]. Re-
cently, we found that adrenomedullin in the rostral ventrolat-
eral medulla was key for producing the long-term potentiation
of sympathetic nerve activity evoked with repetitive stimula-
tion of the carotid body (Colombari DS, Colombari E,
Murphy D & Paton JF—unpublished data). The mechanisms
causing release of adrenomedullin are unknown, but intermit-
tent hypoxia cannot be ruled out. It should also be recognised
that rostral ventrolateral medullary neurons are themselves
intrinsically excited by hypoxia, providing a ‘fail safe’ mech-
anism for driving sympathetic activity in conditions of
prolonged apnea and severe hypoxia, for example [47].

The ‘Hypertensive’ Carotid Body

Morphological studies have revealed that carotid bodies are
enlarged in hypertensive patients [48]. In the spontaneously

hypertensive (SH) rat, the glomus cells are hypertrophied
suggesting up regulation of protein synthesis and there is
angiogenesis within the microvasculature relative to con-
trols [49]. Above, we described that the peripheral chemo-
receptor reflex is sensitised in patients with hypertension.
The mechanism/s for this remain to be fully understood.
However, in pre-hypertensive (juvenile) SH rats, type I cells
display enhanced sensitivity to low pH, due to increased
expression of two acid-sensing non-voltage gated channels,
ASIC3 and TASK1 [40••]. There is also evidence that the
balance between carbon monoxide and hydrogen sulphide
signalling within the CB, as well as the relative activity of
HIF1α versus HIF2α play a role [50]. Animal models of
chronic heart failure have revealed that carotid body (CB)
chemoreceptor activity is augmented by activation of angio-
tensin II receptors [51], impaired nitric oxide synthase ac-
tivity [52], reduced CB blood flow [53•], enhanced adeno-
sine monophosphate-activated protein kinase [54], and in-
flammation [55], but whether these changes are also seen in
hypertensive carotid bodies remains to be elucidated. Height-
ened sympathetic drive to the arterioles of the CB may also
contribute to its hyperactivity due to hypoperfusion (via va-
soconstriction and vascular remodelling). Kato et al. described
that there is significant dopamine β-hydroxylase (DBH) im-
munoreactivity in fibres around glomus cells [56•]. A possi-
bility is that the larger morphology of the CB in the SH rat
may be the effect of the sympathetic innervation [57]. Inter-
estingly, glomus cells in SH rats exhibited greater DBH im-
munoreactivity relative to normotensive rats, suggesting that
this amine is released in abundance in hypertension [56•]. This
is in stark contrast to the normal age-dependent (i.e. matura-
tional) reduction in DBH in the healthy CB [57].

Given the role for the immune system in hypertension
and the pro-inflammatory function of the sympathetic ner-
vous system [58–60], inflammation within the carotid body
may also be a potential mechanism. Activation of toll-like
receptors increases NLRP3 inflammasome expression in
carotid body cells, which enhances IL-1β production that
acts in an autocrine manner to enhance peripheral chemore-
ceptor drive [61•].

Making the Distinction Between Peripheral Chemoreflex
Sensitivity and Carotid Body Tonicity

We previously raised the issue of whether reflex
chemosensitivity is always associated with carotid body
hyperactivity (tonicity), or if increased carotid body tone
can occur in the absence of increased chemosensitivity [62].
This remains to be fully validated. Nevertheless, it may be
crucial to understand the relationship between reflex sensi-
tivity and tonicity if the carotid body is targeted therapeuti-
cally (see below). Hyperoxia has been used to demonstrate
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carotid body tonicity by inactivating aberrant discharge
[38•, 63]. In SH rats, hyperoxia (100 % oxygen) was found
to reduce arterial pressure and renal sympathetic nerve ac-
tivity [64••]. In human hypertensive patients [38•] and pa-
tients with sleep apnea [46••], a similar effect was observed,
including reductions in arterial pressure and muscle sympa-
thetic nerve activity. The cause for this pathological tone is
not known, but could include mechanisms described above,
driving sensitivity. These mechanisms demonstrate a funda-
mental role of the carotid bodies in the pathogenesis of
cardiovascular disease including essential hypertension.

The Carotid Body Can Generate Hypertension:
A Pre-Clinical Proof of Principle Study

Our recent endeavours with a pre-clinical model of hyper-
tension have shown that carotid body (CB) ablation can
prevent both the development of hypertension and reduce
established hypertension in the SH rat [64••, 65]. The effect
is prompt (1–2 days post-surgery) and very well maintained
(up to 6 weeks). It is associated with a profound reduction in
sympathetic nerve activity (~55 %), improved baroreceptor
reflex gain and renal function, and reduced systemic inflam-
mation [64••]. The anti-hypertensive effect is independent of
the renal nerves, yet provides a summative effect if
performed after renal denervation [64••]. As reviewed re-
cently [62], unilateral carotid body resection has been used
extensively as a treatment for dyspnoea in asthmatic and

chronic obstructive pulmonary disease patients. In two stud-
ies, blood pressure changes were reported. Nakayama et al.
documented sustained blood pressure reductions following
CB resection [66]. They reported a reduction in systolic
blood pressure from 170 mmHg to 130 mmHg at 5-days
post-op that was maintained throughout the duration of the
study (6 months). Additionally, Winter et al. noted acute
blood pressure reductions after CB removal [67]. No clinical
trial has studied the effect of unilateral carotid body resec-
tion for hypertension in humans.

Novel Insights Revealed by the Hypertensive Carotid
Body

An understanding of the drivers of carotid body tonicity
becomes crucial academically as well as clinically. We raise
the question as to whether all glomus cells in hypertension
become active or perhaps only those regulating sympathetic
activity. Said differently, are there distinct connections from
the carotid body into the nervous system targeting different
reflex pathways (Fig. 1)? The observation that deactivation
of carotid bodies in SH rats and humans [38•, 64••] reduces
sympathetic activity, but does not affect respiration or end
tidal carbon dioxide, is consistent with the distinct connec-
tion between glomus cells and central regulatory pathways
as proposed above. This is further upheld by the finding that
dopamine infusion to reversibly inactivate the carotid body
had no effect on femoral blood flow, conductance or mean
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Fig. 1 Mechanistic, hypothetical model depicting separate lines of
communication from individual glomus cells to distinct functional
neuronal networks regulating a range of reflex visceral and behavioural
responses. It is also conceivable that different glomus cells connect to
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medulla (RVLM) controlling distinct target organs. Abbreviations:
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arterial pressure either at rest or during exercise, but did reduce
the ventilatory response to hypoxia in healthy normotensive
subjects [63]. This being the case, one might predict seeing
heterogeneity amongst glomus cells in response to stimulants.
Recently, a sub-population of glomus cells was found respon-
sive to pH, but not hypoxia and vice versa [68]. Moreover,
there appears to be clear demarcation of inputs to neurons
within the nucleus tractus solitarii (NTS), the central site of
termination of carotid chemoreceptor primary afferents. There
are distinct convergence patterns on to NTS cells receiving
carotid body inputs, some being excitatory and others inhib-
itory, from baroreceptors, cardiac receptors, and pulmonary
receptors [69, 70]. Based on the patterns of reflex response
from these inputs, this was interpreted as indicating the func-
tional role of individual NTS cells in circuits controlling
sympathetic, parasympathetic, respiratory outputs, or higher
brain functions. This idea was consistent with the unique
projection patterns of different carotid body activated NTS
neurons [20]. Based on this, we hypothesise that there will a
distinct sub-population of glomus cells within the carotid
body that drive sympathetic activity uniquely (Fig. 1). We
are underway with the quest to determine what this driver is.

Trzebski and colleagues studied 20 subjects with mild hyper-
tension versus age and sex-matched control subjects [36]. Ven-
tilatory and blood pressure responses to hypoxia were greater in
the hypertensive subjects. Interestingly, there was a significant
correlation between the responses to hypoxia and hypercapnia in
the normotensive subjects but not the hypertensive subjects,
suggesting a predominant role for hypoxic stimulation of pe-
ripheral chemosensors in hypertension. This supports the im-
portance of hypoxic preconditioning for chemosensitivity. How-
ever, we argue that while chemosensitivity may be present in
many chronic hypertensive patients who "precondition for
chemosensitivity", it remains unclear if this is coincidental or
even dependent upon underlying tonic hyperactivity. In support
of this, we have seen recently a hypotensive effect resulting from
dopamine-mediated inhibition of the CB, while hypoxic
chemosensitivity was low, in a hypertensive patient (L Ratcliffe,
P Sobotka, J Paton—unpublished observation). Thus, whether
chemosensitization of some type is required to increase tonicity,
or if chemosensitivity can be increased without changing tonic-
ity, is an open question. However, given our pilot data, it appears
that tonicity can be increased without apparent chemosensitivity,
at least to hypoxia. Indeed, the physiologic consequences of
chemosensitivity and tonic hyperactivity activity may prove to
be different.

Conclusions and future perspectives

In discussing carotid body chemoreceptors, Ponte and
Purves (1974) remarked: “their function of ensuring ade-
quate oxygenation of the brain may be the most important

one they possess” [71]. This must include maintenance of
cerebral perfusion brought about by increasing systemic
arterial pressure. However, an assessment of carotid body
reflex control on cerebral circulation and any modulation of
this in cardiovascular disease will become important to fully
appreciate Ponte and Purves’ proposal.

With direct input to the caudal commissural nucleus
tractus solitarii, the carotid body provides excitatory synap-
tic drive to neurons that is both powerful and long lasting
relative to other inputs [20]. Carotid chemoreceptors gener-
ate sympathetic activity reflexively by activating rostral
ventrolateral medullary pre-sympathetic neurons [72], and
indirectly by exciting respiratory neurons connected to these
sympathetic neurons [43•]. Importantly, carotid chemore-
ceptors are essential for inducing chronic potentiation of
sympathetic activity and hypertension seen after intermittent
hypoxia in rats, for example [42]. Thus, their activity can
cause long-term synaptic plasticity within brainstem
sympatho-excitatory networks. Recent work indicates that
this may include alteration in the excitability of the respira-
tory neurons coupled to pre-motor sympathetic neurons
(Moraes, DJA, Machado BH and Paton JFR—unpublished
data). Future studies now need to assess how repeated
carotid body activation triggers neuronal plasticity, and
why this is to functionally specific neuronal types.

Future studies will need to determine the molecular basis
for the differences in carotid body reflex sensitivity versus
tonicity of chemoreceptor afferents, and whether these
changes occur at the level of the glomus cell and/or on the
terminal ending of the primary afferents. Since in hyperten-
sion (but also heart failure), there is an increase in carotid
body reflex sensitivity such that evoked increases in sym-
pathetic activity are larger in hypertensive animals [40••]
and humans [35, 36], and since this occurs before the onset
of hypertension [40••], a transcriptomic analysis may be
optimal in the first instance.
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