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Abstract The state of a quantum system is a density matrix with several parame-
ters. The concern herein is how to recover the parameters. Several possibilities exist
for the optimal recovery method, and we consider some special cases. We assume
that a few parameters are known and that the others are to be recovered. The opti-
mal positive-operator-valued measure (POVM) for recovering unknown parameters
with an additional condition is called a conditional symmetric informationally com-
plete POVM (SIC-POVM). In this paper, we study the existence or nonexistence of
conditional SIC-POVMs. We provide a necessary condition for existence and some
examples.

Keywords Quantum state tomography · SIC-POVM · Conditional SIC-POVM

1 Introduction

Positive-operator-valued measures (POVMs) are motivated by quantum information
theory. A POVM is a set {Fi }ki=1 ⊂ Mn(C) of positive operators such that

∑
i Fi = I .

A densitymatrix ρ ∈ Mn(C) can be (partially) informed by the probability distribution
{Tr ρFi }ki=1. A density matrix ρ ∈ Mn(C) has n2 − 1 real parameters. To recover all
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3984 H. Ohno, D. Petz

of the parameters, k ≥ n2 must hold for the POVM.We can take rank-one projections
Pi , 1 ≤ i ≤ n2, such that

n2∑

i=1

Pi = nI, Tr Pi Pj = 1

n + 1
(i �= j), Fi = 1

n
Pi

comprise a symmetric informationally complete POVM (SIC-POVM), also known as
an equiangular tight frame [8,25–29]. This currently popular idea [1,2,4,10,20,33]
was defined by Zauner [31,32]. Zauner proved the existence when n ≤ 5, and there
has been further mathematical and numerical discussions on the same [5,23].Whether
a SIC-POVM exists for every dimension is not known. We can also consider fewer
than n2 projections with similar properties.

ASIC-POVM {Fi }n2i=1 of ann-level system is relevant for quantumstate tomography
[2,15,17,19,21] and is optimal for several arguments; for example, SIC-POVMs are
optimal for linear quantum state tomography. The minimization of the determinant
of the average covariance matrix was studied in [17], and the minimization of the
square of the Hilbert–Schmidt distance between the estimation and the true density
was investigated in [21].

However, if some of the n2 − 1 parameters of a density matrix ρ are known, a
SIC-POVM is not the optimal POVM for linear quantum state tomography for such ρ.
It is obvious that the optimal POVM depends on the known parameters. The optimal
POVM in such a case is studied in [18,22]. A set of projectors Pi , 1 ≤ i ≤ N satisfying

N∑

i=1

Pi = N

n
I, Tr Pi Pj = N − n

n(N − 1)
(i �= j), Fi = n

N
Pi ,

where N is the dimension of the subspace corresponding to the unknown parameter,
comprises a conditional SIC-POVM [18]. A conditional SIC-POVM is the optimal
POVM for linear quantum state tomography in this case.

The existence of a conditional SIC-POVM is a fundamental question. SIC-POVMs
and mutually unbiased bases (MUBs) involve similar problem. Neither the existence
of SIC-POVMs in higher-dimensional Hilbert spaces nor the nonexistence of MUBs
in a six-dimensional Hilbert space has been proved. On the other hand, conditional
SIC-POVMs are considered as equiangular tight frames. The existence of equiangular
tight frames is also studied in many literature (e.g., [8,26–28]).

The main result of this paper, Theorem 2, presents a necessary condition for the
existence of a conditional SIC-POVM. Using the necessary condition, we show some
examples of nonexistence of conditional SIC-POVMs. Some other examples of con-
ditional SIC-POVMs are also considered in Sect. 4.

2 The optimality of conditional SIC-POVMs

In this section, we survey the optimal POVMs for linear quantum state tomography
and conditional SIC-POVMs according to [18,21,22].
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Examples of conditional SIC-POVMs 3985

A quantum state (or a density matrix) ρ ∈ Mn(C) satisfies the conditions Tr ρ = 1
and ρ ≥ 0. We decompose Mn(C) into three orthogonal self-adjoint subspaces:

Mn(C) = A ⊕ B ⊕ C, (1)

where A := {λI : λ ∈ C} is one dimensional. Denote the orthogonal projections onto
the subspaces A, B,C by A, B, C. A density matrix ρ ∈ Mn(C) has the form

ρ = 1

n
I + Bρ + Cρ.

Assume that Bρ and Cρ are the known and unknown traceless parts of ρ, respectively,
and that Cρ is to be estimated.

We use the notation ρ∗ = ρ − Bρ. The aim of quantum state tomography is to
recover ρ∗. Though there exist several methods of quantum state tomography, we only
consider linear quantum state tomography (see Remark 1 or [21] for details).

If the dimension of B is m, then the dimension of C is n2 − m − 1. To reconstruct
ρ∗, we must use a POVMwith at least N = n2−m elements. Additionally, we assume
that a POVM {Fi }ki=1 is in A ⊕ C according to [18].

An informationally complete POVM is a POVM with the property that each quan-
tum state is uniquely determined by its measurement statistics.

Definition 1 A POVM {Fi }ki=1 ⊂ A ⊕C is informationally complete with respect to
A ⊕ C , if for each pair of states ρ, σ ∈ Mn(C) with ρ∗ �= σ∗ there exists i such that
Tr (ρ∗Fi ) �= Tr (σ∗Fi ).

We remark Tr (ρFi ) = Tr (ρ∗Fi ) + Tr ((Bρ)Fi ) = Tr (ρ∗Fi ).
The next proposition follows easily.

Proposition 1 A POVM {Fi }ki=1 ⊂ A ⊕ C is informationally complete with respect
to A ⊕ C if and only if span{Fi }ki=1 = A ⊕ C.

If a POVM {Fi }ki=1 ⊂ A ⊕ C is informationally complete w.r.t. A ⊕ C , then there
exists a set of self-adjoint operators {Qi }ki=1 ⊂ Mn(C) satisfying

ρ∗ =
k∑

i=1

Tr (ρFi )Qi (2)

for any state ρ ∈ Mn(C). We call {Qi }ki=1 a dual frame of {Fi }ki=1, though this is
slightly different from the original definition. Define the superoperator F on Mn(C)

by

F =
k∑

i=1

1

Tr Fi
|Fi 〉〈Fi |,

which is invertible on suppF = A ⊕ C , where |Fi 〉〈Fi |X = Tr (Fi X)Fi for all X
∈ Mn(C). Then, the set of
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3986 H. Ohno, D. Petz

Qi = F−1 1

Tr Fi
Fi

is a dual frame of {Fi }ki=1, and is called the canonical dual frame of {Fi }ki=1.
If a measurement corresponding to {Fi }ki=1 is performed on a system in a state

corresponding to ρ ∈ Mn(C), then the probability of obtaining a measurement value
i is

pi = Tr (ρFi ).

Assume that y1, . . . , yM are outcomes of measurements on M identical copies of the
state ρ, with the result that yi ∈ {1, 2, . . . , k}. Let x j be the number of outcomes j ,
i.e., x j = |{i : yi = j}|. An approximate value of pi is

p̂i = 1

M
xi . (3)

Then, our estimate of ρ∗ is

ρ̂∗ =
k∑

i=1

p̂i Qi . (4)

The error measured by the square of the Hilbert–Schmidt norm is

‖ρ∗ − ρ̂∗‖22 =
∥
∥
∥
∥
∥

k∑

i=1

(
pi − p̂i

)
Qi

∥
∥
∥
∥
∥

2

2

.

Since p̂i is considered as a random variable, we can take the expectation
E
(‖ρ∗ − ρ̂∗‖22

)
, of the above error. We assume that the choice of an unknown state

ρ ∈ Mn(C) depends on a probability measure μ on the set of all states in Mn(C).
Additionally, we assume

∫
ρdμ(ρ) = 1

n I . For a POVM {Fi }ki=1 and a dual frame
{Qi }ki=1 of {Fi }ki=1, we denote the expected value of the error by

e(F, Q) :=
∫

E
(
‖ρ∗ − ρ̂∗‖22

)
dμ(ρ)

= 1

nM

k∑

i=1

Tr (Fi )Tr
(
Q2

i

)
− 1

M

∫

Tr
(
ρ2∗
)
dμ(ρ)

(see, e.g., [18]). We would like to minimize e(F, Q).

Proposition 2 [18,21,22] For a fixed informationally complete POVM {Fi }ki=1⊂ A ⊕ C w.r.t. A ⊕ C, the expected value of the error e(F, Q) is minimized when
{Qi }ki=1 is the canonical dual frame of {Fi }ki=1.
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Examples of conditional SIC-POVMs 3987

A POVM {Fi }ki=1 (with the canonical dual frame {Qi }ki=1) is optimal, if the average
of the expected values of the error e(F, Q) is the minimum among all POVMs and all
dual frames. If a POVM is optimal, then it satisfies the following condition.

Theorem 1 [18,22] An informationally complete POVM {Fi }ki=1 ⊂ A ⊕ C w.r.t.
A ⊕ C is optimal if and only if

F = A + n − 1

N − 1
C. (5)

In addition, let k = N and Pi = N
n Fi . Then, the POVM {Fi }Ni=1 is optimal, or

equivalently the equality (5) holds if and only if

N∑

i=1

Pi = N

n
I, Tr Pi Pj = N − n

n(N − 1)
(i �= j), Tr X Pi = 0 (X ∈ B).

When {Fi }Ni=1 satisfies (5), then Pi is a rank-one projection and {Fi }Ni=1 (and also
{Pi }Ni=1) is called a conditional SIC-POVM.

Remark 1 There exist several methods of quantum state tomography. In this paper,
we only consider an estimate ρ̂∗ given by (3) and (4). Such a method is called linear
quantum state tomography [21]. Remark that there exist better estimation methods of
quantum state tomography (see, e.g., [19,30]).

Remark 2 The square root of the value

Tr Pi Pj = N − n

n(N − 1)

in Theorem 1 is called Welch bound [25,29]. A set of unit vectors {ξi }Ni=1 ⊂ C
n is

called an equiangular tight frame if

|〈ξi , ξ j 〉| =
√

N − n

n(N − 1)

for all 1 ≤ i, j ≤ N , and i �= j . Therefore, a conditional SIC-POVM is actually
an equiangular tight frame. However, the existence of conditional SIC-POVM also
dependson the subspace Bwhich corresponds to theknownspace.Hence, the existence
of conditional SIC-POVMs and the existence of equiangular tight frames are slightly
different (see Remark 4 for details).

3 Necessary condition for existence of conditional SIC-POVMs

In this section, we present a necessary condition for the existence of a conditional SIC-
POVM.The existence of conditional SIC-POVMs is a fundamental question. It is often
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not easy to prove nonexistence, as in the case of MUBs in a six-dimensional Hilbert
space, but we can prove nonexistence in some cases using the necessary condition.

Lemma 1 Let a set of rank-one projections {Pi }Ni=1 be a conditional SIC-POVM in
A ⊕ C, and let

Si =
√
n(N − 1)

N (n − 1)

(

Pi − 1

n

(

1 +
√

n − 1

N − 1

)

I

)

. (6)

Then, {Si }Ni=1 is an orthonormal basis of A ⊕ C.

Proof The normality of {Si }Ni=1 is proved by simple calculation:

Tr

⎛

⎝

(

Pi − 1

n

(

1 +
√

n − 1

N − 1

)

I

)2
⎞

⎠

= Tr

⎛

⎝Pi − 2

n

(

1 +
√

n − 1

N − 1

)

Pi + 1

n2

(

1 +
√

n − 1

N − 1

)2

I

⎞

⎠

= 1 − 2

n

(

1 +
√

n − 1

N − 1

)

+ 1

n

(

1 + 2

√
n − 1

N − 1
+ n − 1

N − 1

)

= 1 − 1

n
+ n − 1

n(N − 1)
= N (n − 1)

n(N − 1)

for any 1 ≤ i ≤ N . The orthogonality of {Si }Ni=1 is shown as follows:

Tr

((

Pi − 1

n

(

1 +
√

n − 1

N − 1

)

I

)(

Pj − 1

n

(

1 +
√

n − 1

N − 1

)

I

))

= Tr

⎛

⎝Pi Pj − 1

n

(

1 +
√

n − 1

N − 1

)

(Pi + Pj ) + 1

n2

(

1 +
√

n − 1

N − 1

)2

I

⎞

⎠

= N − n

n(N − 1)
− 2

n

(

1 +
√

n − 1

N − 1

)

+ 1

n

(

1 + 2

√
n − 1

N − 1
+ n − 1

N − 1

)

= N − n

n(N − 1)
− 1

n
+ n − 1

n(N − 1)
= 0

for any 1 ≤ i < j ≤ N . �
Theorem 2 If there exists a conditional SIC-POVM in A ⊕ C, then for any X ∈ B
and any orthonormal basis {Ri }mi=1 of B, the following equation holds:

m∑

i=1

R∗
i X Ri = N − n

n(n − 1)
X. (7)
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Proof Let {Pi }Ni=1 be a conditional SIC-POVM in A ⊕ C and define {Si }Ni=1 by (6).
From the previous lemma, {S1, . . . , SN , R1, . . . Rm} is an orthonormal basis ofMn(C).
It is well known that

N∑

i=1

S∗
i X Si +

m∑

i=1

R∗
i X Ri = Tr (X). (8)

B is orthogonal to A = CI , with the result that Tr (X) = 0. Hence, we will calculate∑N
i=1 S

∗
i X Si . Since Pi is a rank-one projection, Pi X Pi = t Pi for some t ∈ C.

However, Tr (Pi X Pi ) = 〈Pi , X〉 = 0 implies that t = 0; therefore, Pi X Pi = 0. From
the equation

N∑

i=1

Pi = N

n
I,

we have

N (n − 1)

n(N − 1)

N∑

i=1

S∗
i X Si

=
N∑

i=1

(

Pi − 1

n

(

1 +
√

n − 1

N − 1

))

X

(

Pi − 1

n

(

1 +
√

n − 1

N − 1

))

=
N∑

i=1

⎛

⎝Pi X Pi − 1

n

(

1 +
√

n − 1

N − 1

)

(X Pi + Pi X) + 1

n2

(

1 +
√

n − 1

N − 1

)2

X

⎞

⎠

= −1

n

(

1 +
√

n − 1

N − 1

)(

X
N∑

i=1

Pi +
N∑

i=1

Pi X

)

+ N

n2

(

1 +
√

n − 1

N − 1

)2

X

=
(

−2N

n2

(

1 +
√

n − 1

N − 1

)

+ N

n2

(

1 + 2

√
n − 1

N − 1
+ n − 1

N − 1

))

X

= N

n2

(

−1 + n − 1

N − 1

)

X = N (n − N )

n2(N − 1)
X.

This implies the assertion. �
If Eq. (7) in Theorem 2 holds for an orthonormal basis {Ri }mi=1 of B, the equa-

tion also holds for any other orthonormal basis of B. Indeed, let {Ti }mi=1 be another
orthonormal basis of B. Then, we have the equation

N∑

i=1

S∗
i X Si +

m∑

i=1

T ∗
i XTi = Tr (X)
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3990 H. Ohno, D. Petz

for any X ∈ Mn(C). Therefore, combining (8), we obtain

m∑

i=1

R∗
i X Ri =

m∑

i=1

T ∗
i XTi

so that

m∑

i=1

T ∗
i XTi = N − n

n(n − 1)
X.

Hence, it is enough to check Eq. (7) for only one orthonormal basis of B.

4 Examples of conditional SIC-POVMs

In this section, we show some examples of the existence or nonexistence of conditional
SIC-POVMs. Some open problems are also discussed.

Example 1 If we have no information regarding the state (m = 0, N = n2), then

Tr Pi Pj = 1

n + 1
(i �= j).

Hence, this well-known SIC-POVM is a conditional SIC-POVM (if it exists [20]). �
One of the most important POVMs is a POVM which corresponds to an orthonomal
basis. Example 2 says that such a POVM is a conditional POVM. In Examples 3, 4,
and 5, we consider a conditional SIC-POVM which complements such a POVM.

Example 2 If we know the off-diagonal elements of the state, and we want to estimate
the diagonal entries (m = n2 − n, N = n), then it follows from Theorem 1 that a
conditional SIC-POVM has the properties

Tr Pi Pj = 0 (i �= j),
n∑

i=1

Pi = I, and Pi is diagonal.

Hence, the diagonal matrix units form a conditional SIC-POVM. �
Example 3 If we know the diagonal elements of the state, and we want to estimate the
off-diagonal entries (m = n − 1, N = n2 − n + 1), then it follows from Theorem 1
that a conditional SIC-POVM has the properties

Tr Pi Pj = n − 1

n2
(i �= j),

n∑

i=1

Pi = n2 − n + 1

n
I

and that Pi has a constant diagonal.
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Examples of conditional SIC-POVMs 3991

Existence is not clear generally, but if n − 1 is a prime power, then it can be
constructed on the basis of the prime power conjecture [6,24], and details are provided
in [18]. We provide examples in M2(C), M3(C), and M4(C). The case of a two-
dimensional space is very simple, and it will be presented in the next example.

On the other hand, we cannot prove nonexistence using Theorem 2. Let λ =
exp(2π i/n), where i = √−1, and W = Diag (1, λ, λ2, . . . , λn−1) ∈ Mn(C). Then,
the subspace B is span{Wk}n−1

k=1 and { 1√
n
Wk}n−1

k=1 is an orthonormal basis of B. Here,
we have

n−1∑

k=1

1

n
W ∗kW jWk = n − 1

n
W j

for any 1 ≤ j ≤ n − 1. Therefore, the condition in Theorem 2 holds. �

Example 4 Assume that for a density matrix ρ ∈ M2(C) the diagonal entries are
known. To recover the other parameters, we use a POVM {F1, F2, F3}. A conditional
SIC-POVM is described by projections Pi = 3Fi/2 (1 ≤ i ≤ 3) such that the diagonal
terms are the same and

∑

i

Pi = 3

2
I, Tr Pi Pj = 1

4
(i �= j).

Concretely,

P1 = 1

2

[
1 1

1 1

]

, P2 = 1

2

[
1 λ

λ2 1

]

, P3 = 1

2

[
1 λ2

λ 1

]

,

where λ = exp(2π i/3). �

Example 5 Assume that for a density matrix ρ ∈ M3(C) the diagonal entries are
known, and the other parameters are to be found from a POVM {Fi }6i=0. A conditional
SIC-POVM is described by projections Pi = 7Fi/3 (0 ≤ i ≤ 6) such that the diagonal
terms are the same and

∑

i

Pi = 7

3
I, Tr Pi Pj = 2

9
(i �= j).

We have

P0 = 1

3

⎡

⎢
⎣

1 1 1

1 1 1

1 1 1

⎤

⎥
⎦,
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3992 H. Ohno, D. Petz

and the other projection matrices are parameterized by α = exp (2π i/7):

P1 = 1

3

⎡

⎢
⎣

1 α1 α3

α6 1 α2

α4 α5 1

⎤

⎥
⎦, P2 = 1

3

⎡

⎢
⎣

1 α2 α6

α5 1 α4

α1 α3 1

⎤

⎥
⎦, P3 = 1

3

⎡

⎢
⎣

1 α3 α2

α4 1 α6

α5 α1 1

⎤

⎥
⎦,

P4 = 1

3

⎡

⎢
⎣

1 α4 α5

α3 1 α1

α2 α6 1

⎤

⎥
⎦, P5 = 1

3

⎡

⎢
⎣

1 α5 α1

α2 1 α3

α6 α4 1

⎤

⎥
⎦, P6 = 1

3

⎡

⎢
⎣

1 α6 α4

α1 1 α5

α3 α2 1

⎤

⎥
⎦.

We can see that in all of the matrices, the numbers {αi : 1 ≤ i ≤ 6} appear exactly
once; therefore, Tr P0Pi is constant for 1 ≤ i ≤ 6. Since

∑6
i=0 Tr P0Pi = 7/3, we

have Tr P0Pi = 2/9. If we use the notation Pi = |xi 〉〈xi |, then

|x0〉 = 1√
3
(1, 1, 1) and |xi+1〉 = U |xi 〉

with a unitary U = Diag (1, α6, α4). This implies that Tr Pi Pi+ j = Tr P0Pj ; hence,
Tr Pi Pk = 2/9 holds for i �= k. Consequently, the operators Fi = 3Pi/7 (0 ≤ i ≤ 6)
form a conditional SIC-POVM.

It is easy to provide a similar example for M4(C). Let

|x0〉 = 1

2
(1, 1, 1, 1) and |xi+1〉 = U |xi 〉

with a unitary U = Diag (1, α, α4, α6) and α = exp (2π i/13). Then, the operators
Fi = 4|xi 〉〈xi |/13 (0 ≤ i ≤ 12) form a conditional SIC-POVM. �
Remark 3 We consider a similar example forM7(C). Assume that for a density matrix
ρ ∈ M7(C), the diagonal entries are known, and the other parameters are to be found
from a POVM {Fi }43i=1. The question is the existence of the projections {Pk : 1 ≤ k ≤
43} such that the diagonal terms are the same and

Tr Pk P� = 6

49
(k �= �),

43∑

k=1

Pk = 43

7
I.

This appears to be a complicated situation. Assume that {ξi : 1 ≤ i ≤ 7} is an
orthonormal basis in the Hilbert space. The unit vectors {pk : 1 ≤ k ≤ 43} provide
the projections

{Pk := |pk〉〈pk | : 1 ≤ k ≤ 43} .

The formulation pk =∑7
i=1 pkiξi gives

Pk =
∑

i, j

pki pk j |ξi 〉〈ξ j |,
7∑

i=1

|pki |2 = 1,
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Examples of conditional SIC-POVMs 3993

so the (i, j)-entry of the matrix Pk is pki pk j . Then, Tr Pk P� = 6/49 implies that

Tr Pk P� = |〈pk, p�〉|2 =
∣
∣
∣
∣
∣
∣

〈
7∑

i=1

pkiξi ,
7∑

j=1

p�jξ j

〉∣∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣

7∑

i=1

pki p�i

∣
∣
∣
∣
∣

2

= 6

49
(k �= �).

(9)

The condition

43∑

k=1

〈ξi , Pkξ j 〉 = 43

7
〈ξi , ξ j 〉

which is equivalent to
∑

k Pk = 43I/7 can be reformulated as

43∑

k=1

pki pk j = 43

7
〈ξi , ξ j 〉 = 43

7
δi j (1 ≤ i, j ≤ 7). (10)

The condition that the diagonal entries are the same implies

|pki |2 = 1

7
. (11)

The essential problem is to construct an example that satisfies (9), (10), and (11).
Since 7 − 1 = 6 is not a prime power, the existence of the projections {Pk : 1 ≤

k ≤ 43} does not follow from Example 3. Moreover, we cannot prove nonexistence
using Theorem 2. It would be interesting to know the relation to existence.

A POVM which corresponds to MUBs is important in quantum information; for
example, better estimation methods of quantum state tomography stated in Remark 1
use MUBs. It is known that n + 1 MUBs exist in C

n when n is a prime power (see,
e.g., [3,9,30]). In the case of n = 6, the existence of 7 MUBs is open problem and it
was conjectured that 4 MUBs do not exist [31,32]. We consider a conditional POVM
which complements 3 MUBs in C6.

Example 6 Consider MUBs in M6(C). It is known that there are three mutually unbi-
ased orthonormal bases in C

6. Let λ = exp(2π i/6), and let

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, W =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Then, maximal abelian subalgebras corresponding to the three bases are

span{Sk : 0 ≤ k ≤ 5}, span{Wk : 0 ≤ k ≤ 5}, span{SkWk : 0 ≤ k ≤ 5}.
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Assume that the known space is B = span{Sk,Wk, SkWk : 1 ≤ k ≤ 5} (m =
15, N = 21), and consider a conditional SIC-POVM. An orthonormal basis of B is

{
1√
6
Sk,

1√
6
Wk,

1√
6
SkWk : 1 ≤ k ≤ 5

}

.

The equation SW = λWS implies that

5∑

k=1

(
S∗k S j Sk + W ∗k S jWk + W ∗k S∗k S j SkWk

)
= 5S j + 2

5∑

k=1

λ jk S j = 3S j

for any 1 ≤ j ≤ 5. Similarly,

5∑

k=1

(
S∗kW j Sk + W ∗kW jWk + W ∗k S∗kW j SkWk

)
= 3W j

5∑

k=1

(
S∗k S jW j Sk + W ∗k S jW jWk + W ∗k S∗k S jW j SkWk

)
= 3S jW j.

Therefore, the condition in Theorem 2 holds, and we cannot prove the nonexistence of
a conditional SIC-POVMusing Theorem 2. The existence of a conditional SIC-POVM
in this case remains an open problem. �

States on the coupled quantum system have recently been studied from many
points of view. Here, we focus on density matrices in coupled quantum system
Mn(C)⊗Mn(C)whose restrictions are the same or I/n. A set of such densitymatrices
is considered in many literature [7,11–14,16]. A density matrix whose restrictions are
I/n corresponds to a unital completely positive trace-preserving map. Moreover, if
such a density matrix has rank one, the density matrix (or the state) is called a max-
imally entangled state. In Examples 7 and 8, we consider states whose restrictions
are the same and show examples of nonexistence of conditional SIC-POVMs using
Theorem 2.

Example 7 We consider a density matrix ρ ∈ M4(C) = M2(C)⊗M2(C). The density
matrix

ρ =

⎡

⎢
⎢
⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤

⎥
⎥
⎦

has reduced densities:

ρ1 =
[
a11 + a22 a13 + a24
a31 + a42 a33 + a44

]

, ρ2 =
[
a11 + a33 a12 + a34
a21 + a43 a22 + a44

]

.
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Note that ai j = a ji for 1 ≤ i, j ≤ 4.We assume that ρ satisfies the condition ρ1 = ρ2.
This condition implies that

a22 = a33, a13 + a24 = a12 + a34, and a31 + a42 = a21 + a43

(m = 3, N = 13). Let

R1 = 1√
2
(e22 − e33), R2 = 1

2
(e12 − e13 − e24 + e34),

R3 = 1

2
(e21 − e31 − e42 + e43),

where {ei j }ni, j=1 is a set of matrix units. Then, an orthonormal basis of the known
space B is {R1, R2, R3}. Furthermore, ρ has the form

ρ =

⎡

⎢
⎢
⎢
⎢
⎣

a11 a12 a13 a14

a∗
12 b a23 c − a13

a∗
13 a∗

23 b c − a12

a∗
14 c∗ − a∗

13 c∗ − a∗
12 a44

⎤

⎥
⎥
⎥
⎥
⎦

,

which is orthogonal to B. In this case, a conditional SIC-POVMdoes not exist. Indeed,
the equations

R∗
1 R1R1 = 1

2
R1, R∗

2 R1R2 = 0, R∗
3 R1R3 = 0

imply
∑3

i=1 R
∗
i R1Ri = R1/2, and this contradicts the condition in Theorem 2. �

Remark 4 It is known that an equiangular tight frame exists if n = 4 and N = 13
(see, e.g., [27]), where n is the dimension of the Hilbert space and N is the number
of vectors. The conditional SIC-POVM shown in Example 5 is an example of such an
equiangular tight frame. On the other hand, Example 7 is also in the case n = 4 and
N = 13. However, a conditional SIC-POVM does not exist in Example 7. This says
that the existence of conditional SIC-POVMs depends on the known space B.

Example 8 We extend Example 7 to the caseMn2(C) = Mn(C)⊗Mn(C). The density
matrix

ρ =
n∑

i, j,k,�=1

ai, j,k,�ei j ⊗ ek�

has reduced densities:

ρ1 =
n∑

i, j=1

n∑

k=1

ai, j,k,kei j , ρ2 =
n∑

i, j=1

n∑

k=1

ak,k,i, j ei j .
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We assume that ρ satisfies the condition ρ1 = ρ2. This condition implies that

n∑

k=1

ai, j,k,k =
n∑

k=1

ak,k,i, j

for all 1 ≤ i, j ≤ n. Let

Qi, j =
n∑

k=1

(ekk ⊗ ei j − ei j ⊗ ekk) = (I ⊗ ei j − ei j ⊗ I ),

and let

Ri, j =
⎧
⎨

⎩

1√
2n

∑n
k=1 λik Qk,k (i = j)

1√
2n
Qi, j (i �= j)

for 1 ≤ i, j ≤ n, where λ = exp(2π i/n). Then, the known space B is span{Qi, j }ni, j=1,

and {Ri, j : 1 ≤ i, j ≤ n}\{Rn,n} is an orthonomal basis of B (m = n2 − 1, N =
n4 − n2 + 1). Note that Rn,n = 0.

For 1 ≤ i ≤ n − 1, 1 ≤ j, k ≤ n and j �= k, we have

R∗
j,k Ri,i R j,k

= 1

2
√
2n2

n∑

�=1

λi�(I ⊗ ek j − ek j ⊗ I )(I ⊗ e�� − e�� ⊗ I )(I ⊗ e jk − e jk ⊗ I )

= 1

2
√
2n2

(

λi j (I ⊗ ekk − ekk ⊗ I ) +
n∑

�=1

λi�(ekk ⊗ e�� − e�� ⊗ ekk)

)

so that

∑

j �=k

R∗
j,k Ri,i R j,k

= 1

2
√
2n2

⎛

⎝
n∑

j=1

λi j (−I ⊗ e j j + e j j ⊗ I ) + (n − 1)
n∑

�=1

λi�(I ⊗ e�� − e�� ⊗ I )

⎞

⎠

= n − 2

2n
Ri,i .

Furthermore, for 1 ≤ i, j ≤ n − 1,

R∗
j, j Ri,i R j, j

= 1

2
√
2n3

∑

p,q,r

λiq+ j (r−p)(I ⊗ epp−epp ⊗ I )(I ⊗ eqq−eqq ⊗ I )(I ⊗ err −err ⊗ I )
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= 1

2
√
2n3

⎛

⎝
n∑

p=1

λi p(I ⊗ epp − epp ⊗ I ) +
∑

p,r

λi p+ j (r−p)(epp ⊗ err − err ⊗ epp)

+
∑

p,r

λir+ j (r−p)(err ⊗ epp − epp ⊗ err ) +
∑

p,q

λiq(epp ⊗ eqq − eqq ⊗ epp)

)

= 1

n2
Ri,i + 1

2
√
2n3

∑

p,r

λ j (r−p)
(
λi p(epp ⊗ err − err ⊗ epp)

+ λir (err ⊗ epp − epp ⊗ err )
)

= 1

n2
Ri,i + 1

2
√
2n3

∑

p �=r

λ j (r−p)
(
λi p(epp ⊗ err − err ⊗ epp)

+ λir (err ⊗ epp − epp ⊗ err )
)

so that

n−1∑

j=1

R∗
j, j Ri,i R j, j

= n − 1

n2
Ri,i − 1

2
√
2n3

∑

p �=r

(
λi p(epp ⊗ err − err ⊗ epp)

+ λir (err ⊗ epp − epp ⊗ err )
)

= n − 1

n2
Ri,i − 1

2
√
2n3

∑

p,r

(
λi p(epp ⊗ err − err ⊗ epp)

+ λir (err ⊗ epp − epp ⊗ err )
)

= n − 1

n2
Ri,i − 1

2
√
2n3

(
∑

p

λi p(epp ⊗ I − I ⊗ epp)

+
∑

r

λir (err ⊗ I − I ⊗ err )

)

= 1

n
Ri,i .

Therefore, for 1 ≤ i ≤ n − 1, we obtain

n−1∑

j=1

R∗
j, j Ri,i R j, j +

∑

j �=k

R∗
j,k Ri,i R j,k = 1

2
Ri,i ,

and this contradicts the condition in Theorem 2. Consequently, a conditional SIC-
POVM does not exist. �
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Example 9 We consider another example similar to Example 7. We assume that ρ ∈
M4(C) = M2(C) ⊗ M2(C) satisfies the condition ρ1 = ρ2 = 1

2 I . This condition
implies that

a11 = a44, a22 = a33, a34 = −a12, a24 = −a13, a43 = −a21, a42 = −a31

(m = 6, N = 10). Let

R1 = 1√
2
(e11 − e44), R2 = 1√

2
(e22 − e33), R3 = 1√

2
(e12 + e34),

R4 = 1√
2
(e21 + e43), R5 = 1√

2
(e13 + e24), R6 = 1√

2
(e31 + e42).

The known space B is B = span{Ri }6i=1. Moreover, ρ has the form

ρ =

⎡

⎢
⎢
⎢
⎢
⎣

b a12 a13 a14

a∗
12

1
2 − b a23 −a13

a∗
13 a∗

23
1
2 − b −a12

a∗
14 −a∗

13 −a∗
12 b

⎤

⎥
⎥
⎥
⎥
⎦

, (12)

which is orthogonal to B. In this case, it is easy to see that for all X ∈ B,

6∑

i=1

R∗
i X Ri = 1

2
X.

This is the condition in Theorem 2. Hence, we cannot prove the nonexistence of a
conditional SIC-POVM in this case using Theorem 2. The existence of a conditional
SIC-POVM in this case remains an open problem. �
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