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Abstract We presentDynamic Epistemic Temporal Logic, a framework for reasoning
about operations on multi-agent Kripke models that contain a designated temporal
relation. These operations are natural extensions of the well-known “action models”
from Dynamic Epistemic Logic (DEL). Our “temporal action models” may be used
to define a number of informational actions that can modify the “objective” temporal
structure of a model along with the agents’ basic and higher-order knowledge and
beliefs about this structure, including their beliefs about the time. In essence, this
approach provides one way to extend the domain of action model-style operations
from atemporal Kripke models to temporal Kripke models in a manner that allows
actions to control the flow of time. We present a number of examples to illustrate the
subtleties involved in interpreting the effects of our extended actionmodels on temporal
Kripkemodels.We also study preservation of important epistemic-temporal properties
of temporal Kripke models under temporal action model-induced operations, provide
complete axiomatizations for two theories of temporal action models, and connect our
approach with previous work on time in DEL.
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1 Introduction

Anyone who has been late to an appointment or missed a deadline is aware that it
is often difficult to keep track of time. This basic difficulty is the motivation for this
paper, which presents a framework called Dynamic Epistemic Temporal Logic that
allows us to reason about epistemic agents’ changing beliefs about time, from one
point in time to the next. We will develop this framework by combining techniques
from the traditions of Epistemic Temporal Logic (ETL) (Parikh and Ramanujam 2003)
andDynamic Epistemic Logic (DEL) (Baltag andMoss 2004; Baltag et al. 1998, 2008;
van Benthem et al. 2006; van Ditmarsch et al. 2007).

Our main contribution in this paper is to extend the modal “action model” opera-
tors fromDEL by incorporating explicit temporal information as to the relative time at
which various model-changing events occur. This change to the standard DEL setup
allows for a nuanced study of the relationship between dynamic actions, agent belief,
and time. A number of authors have already looked at these issues (van Benthem
et al. 2009; Dégremont et al. 2011; Hoshi 2009; Hoshi and Yap 2009; Hoshi 2010).
Like these (and other) authors, we are interested in the doxastic/epistemic states of
reasoning agents and the representation of these states by possibly asynchronous sys-
tems. These states can be considered from two perspectives: the “static” perspective
of the underlying model (i.e., from the point of view of a “snapshot in time,” which
includes a snapshot of agents’ knowledge/beliefs about time in that moment) and the
“dynamic” perspective of action model-induced changes to the underlying model (i.e.,
from the point of view of a “progression of snapshots,” which can be used to under-
stand agents’ evolving beliefs about time from one temporal-epistemic snapshot to the
next). The difference between this and previous work is that our action models incor-
porate a binary relation representing the relative time at which the events of the action
model occur. Standard actionmodelswere designed to include only doxastic/epistemic
information explicitly, but our “temporal action models” explicitly include both dox-
astic/epistemic and temporal information. Our aim, like that of standard DEL, is to
represent all key information “dynamically” using flexible relations defined in the
action models themselves. By including a relation for time, our framework extends
the domain of applicability of the “action model approach” to a wider class of models
in which time plays an explicit role in the action model specification language.

As we will see, our framework is sufficiently flexible to accommodate asynchronic-
ity. However, we do not yet have a precise characterization of the exact class of possibly
asynchronous systems our approach can capture. The determination of independent
criteria that capture the models of a certain framework (e.g., Epistemic Temporal
Logic) that are representable within our setting remains an open problem. Some such
criteria are known for DEL itself (van Benthem et al. 2009) and we speculate that
many features of this work might be put to use for the analysis of our own framework.
However, this is a complex task that we must leave for future work.
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With respect to the outline of this paper, Sect. 2 introduces the syntax and semantics
of Dynamic Epistemic Temporal Logic (DETL). Section 3 then highlights several
features of this system by presenting a number of examples that illustrate different
ways of measuring the time at a world in a model. The proof system and completeness
results for DETL appear in Sect. 4. In Sect. 5, we study the preservation under updates
of several model-theoretic properties that one might wish to enforce so as to ensure
models have sensible temporal structure. Finally, we conclude in Sect. 6 by connecting
DETL to other work concerned with adding time to DEL.

2 Dynamic epistemic temporal logic

We begin with a nonempty finite set A of agents and a disjoint nonempty set P
of (propositional) letters. Our semantics is based on Kripke models (with yesterday).
These are structures M = (WM ,→M , �M , V M ) consisting of a nonempty set WM

of (possible) worlds, a binary epistemic accessibility relation→M
a for each a ∈ A

indicating the worlds w′ ←M
a w agent a ∈ A considers possible at w, a binary tem-

poral accessibility relation �M indicating the worlds w′ �M w to be thought of as a
“yesterday” of (i.e., fall one clock-tick before) world w,1 and a (propositional) valua-
tion V M :P → ℘(WM ) indicating the set V M (p) of worlds at which propositional
letter p ∈ P is true. For now, we do not place any restrictions on the behavior of
these relations, but later (in Definition 7) we will introduce several desirable proper-
ties that they will typically have in concrete examples. For a binary relation R, a pair
(w, v) ∈ R is often called an “R arrow.” A pointed Kripke model (with yesterday),
sometimes called a situation, is a pair (M, w) consisting of aKripkemodel and aworld
w ∈ WM called the point. To say that a Kripke model (pointed or not) is atemporal
means that it contains no �arrows.

Pointed Kripke models (M, w) describe fixed (i.e., “static”) epistemic-temporal
situations in which agents have certain beliefs about time, propositional truth, and
the beliefs of other agents. We now define (epistemic-temporal) action models, which
transform a situation (M, w) into a new situation (M[U ], (w, s)) according to a certain
“product operation” M �→ M[U ] defined in a moment (in Definition 5).

Definition 1 (Action Models) Let F be a nonempty set of formulas. An action model
U over F is a structure (WU ,→U , �U ,preU ) satisfying the following.

– WU is a nonempty finite set of informational events the agents may experience.
– For each a ∈ A , the object→U

a is a binary (epistemic) accessibility relation. The
relation→U

a designates the events s′ ←U
a s that agent a thinks are consistent with

her experience of event s.
– �U is a binary temporal relation indicating the events s′ �U s that occur as a
“yesterday” of (i.e., fall one time-step before) event s.

1 For all structures X , let �X denote the converse of �X and let←X
a denote the converse of→X

a . Our
discussion of temporal issues will typically use � rather than �because the former follows the natural
direction of time’s flow. Here and elsewhere, we will omit superscripts on relations when doing so ought
not cause confusion.
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– preU : WU → F is a precondition function assigning a precondition (formula)
preU (s) ∈ F to each event s. The precondition preU (s) of event s is the condition
that must hold in order for event s to occur.

A pointed action model over F , sometimes called an action, is a pair (U, s) consisting
of an action model U over F and an event s ∈ WU called the point. To say that an
action model (pointed or not) is atemporal means that it contains no �arrows. We
define the following sets:

– A(F) is the set of action models over F ,
– Aa(F) is the set of atemporal action models over F ,
– A∗(F) is the set of pointed action models over F , and
– Aa∗(F) is the set of pointed atemporal action models over F .

Atemporal action models were developed by Baltag and Moss (2004), Baltag et al.
(1998) and have been adapted or extended in various ways in the Dynamic Epistemic
Logic literature in order to reason about knowledge and belief change; see the textbook
(van Ditmarsch et al. 2007) for details and references. Our contribution here is the
inclusion of temporal arrows �within action models. To say more about this, we first
introduce some additional terminology.

Definition 2 (Progressions, Histories, Depth d(w)) We shall use the word state to
refer either to a world of a Kripke model or an event of an action model. A progression
is a finite nonempty sequence 〈wi 〉ni=0 of states having wi � wi+1 for each i < n.
We say that a progression 〈wi 〉ni=0 begins at w0 and ends at wn . The length of a
progression 〈wi 〉ni=0 is the number n, which is equal to the number of � arrows it
takes to link up the states making up the progression (i.e., one less than the number of
states in the progression). A past-extension of a progression σ is another progression
obtained from σ by adding zero or more extra states at the beginning of the sequence
(i.e., in the “past-looking direction” from x to y in the arrow x �y). A past-extension
is proper if more than zero states were added. A history is a progression that has
no proper past-extension. For each state w, we define d(w) as follows: if there is a
maximum n ∈ N such that there is a history of length n that ends at w, then d(w) is
this maximum n; otherwise, if no such maximum n ∈ N exists, then d(w) = ∞. We
call d(w) the depth of w. A state w satisfying d(w) = 0 is said to be initial.

Wewill present a number of examples shortly showing that the inclusion of temporal
�arrows in both Kripke models and action models allow us to reason about time in

a Dynamic Epistemic Logic-style framework. The basic idea is this: if the depth d(w)

of a world w is finite, then the depth d(w) of w indicates the time at w; likewise, if the
depth d(s) of an event s is finite, then the depth d(s) of s indicates the relative time
at which event s takes place. Notice that this notion of “time” can be a little strange:
if t1 � s and t2 � s with t1 �= t2, then d(s) ≥ max{d(t1), d(t2)} but we might
think it odd to say that “the time is d(s)” given that there is “branching” in the past
direction. Therefore, in order to make our notion of time coherent and useful, there
are a number of things we do. First, we introduce our multi-modal language LDETL
having doxastic modalities �aϕ (“agent a believes ϕ”) for each a ∈ A , the temporal
modality [Y ]ϕ (“ϕ was true ‘yesterday’ (i.e., one time-step ago)”), and action model
modalities [U, s]ϕ (“after action (U, s) occurs, ϕ is true”).
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Definition 3 (Languages LDETL and LSETL) The set LDETL of formulasϕ ofDynamic
Epistemic Temporal Logic and the setA∗(LDETL) of pointed actionmodels over LDETL
are defined by the following recursion:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �aϕ | [Y ]ϕ | [U, s]ϕ
p ∈P, a ∈ A , (U, s) ∈ A∗(LDETL)

To say that a formula ϕ is atemporal means that every action model used in the
formation of ϕ according to the above recursion is atemporal. We define the set LSETL
of formulas of Simple Epistemic Temporal Logic as the set of LDETL-formulas that
do not contain any action model modalities [U, s]. We use the usual abbreviations
from classical propositional logic to represent connectives other than those in the
language, including those for the propositional constants� (truth) and⊥ (falsehood);
also, 〈U, s〉 def= ¬[U, s]¬, 〈Y 〉 def= ¬[Y ]¬, and ♦a

def= ¬�a¬.
Definition 4 (Past State) Let U be an action model. A past state is an event s in U
that has no yesterday: there is no s′ �U s.

Every history s0 � s1 � s2 � · · ·� sn begins with a past state (see Definition 2).
The past state s0 plays a special role in the semantics by copying part or all of the input
Kripke model. The next definition shows how this is done. The sequential execution
of successive events s1, . . . , sn then transforms this copy.

Definition 5 (Semantics) We define the binary truth relation |� between pointed
Kripke models (written without delimiting parenthesis) and formulas by an induction
on formula construction that has standard Boolean cases and the following non-
Boolean cases.

– M, w |� �aϕ means M, v |� ϕ for each v ←M
a w.

– M, w |� [Y ]ϕ means M, v |� ϕ for each v �M w.
– M, w |� [U, s]ϕ means M, w |� preU (s) implies M[U ], (w, s) |� ϕ, where

– WM[U ] def= {(v, t) ∈ WM ×WU | M, v |� preU (t)}.
– We have (v, t)→M[U ]

a (v′, t ′) if and only if both v →M
a v′ and t →U

a t ′.
– We have (v′, t ′) �M[U ] (v, t) if and only if we have one of the following:

• v′ �M v, t ′ = t , and t is a past state; or
• v′ = v and t ′ �U t .

– V M[U ](p) def= {(v, t) ∈ WM[U ] | v ∈ V M (p)}.
Formula validity |� ϕ means that M, w |� ϕ for each pointed Kripke model (M, w).
When it will not cause confusion, we will write the application of a function f to a
paired world (v, t) ∈ WM[U ] as f (v, t) instead of the more cumbersome f ((v, t)).
We may write |�DETL in place of |� later in the paper when other notions of truth are
defined.

After taking the update product M �→ M[U ], the epistemic relation→a behaves
as it does in DEL (van Ditmarsch et al. 2007); that is, one pair is epistemically related
to another iff they are related componentwise. This is analogous to the notion of syn-
chronous composition in process algebra (van Glabbeek 2001). However, our relations
→a are epistemic, whereas the relations in process algebra are temporal.
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The behavior of our temporal relation � after the update product M �→ M[U ]
is analogous to the notion of asynchronous composition from process algebra (Aceto
et al. 2001): one component of the pair makes the transition while the other component
remains fixed. However, in our case, if (v′, t ′) �M[U ] (v, t), then the component that
makes the transition depends on whether t is a past state. If t is indeed a past state,
then the first component makes the transition (v′ � v) and the second component
remains fixed (t ′ = t). Otherwise, if t is not a past state, then it is instead the first
component that remains fixed (v′ = v) and the second component that makes the
transition (t ′ � t).

If M and U are atemporal, then our operation M �→ M[U ] is equivalent to the
standard “product update” from DEL and M[U ] is atemporal.

Definition 6 (Epistemic Past State) LetU be an action model. An epistemic past state
is a past state s in U whose precondition is a validity (i.e., |� preU (s)) and whose
only epistemic arrows are the reflexive arrows s →U

a s for each agent a ∈ A .

Like a past state (Definition 4), an epistemic past state s0 in a history s0 � · · ·� sn
plays the special role of copying the initial state of affairs before the remaining events
in the history take place. However, there is a key difference: a past state may copy
only part of the initial state of affairs, whereas an epistemic past state will always
make a complete copy. A later result (Theorem 4) will explain this further. Therefore,
a history s0 � · · · � sn beginning with an epistemic past state s0 may be thought of
as describing the following construction: the epistemic past state s0 makes a complete
copy of the initial state of affairs (thereby remembering the “past” just as it was) and
then the remaining events s1, . . . , sn transform this copy (appending “future” states of
affairs one by one). A series of examples in Sect. 3 will explain this in further detail.

In a significant departure from the temporal logic literature, our language does not
include a future operator [T ] (for “tomorrow”) that acts as a converse of our yesterday
operator [Y ]:

M, w |� [T ]ϕ means M, v |� ϕ for each v �Mw. (1)

The reason we omit the temporal operator [T ] is that the update modal [U, s] already
functions as a forward-looking temporal operator of a different sort. Such operators
[U, s] are parameterized future operators. A common approach (see Balbiani et al.
2008) to relating parameterized and unparameterized operators is to have the unpara-
meterized operator quantify over the parameterized operators. A tomorrow operator
defined that way would be significantly different from [T ] as defined in (1). Fur-
thermore, having the [T ] as well as the update operators [U, s] results in unintuitive
updates, which will be explained from various perspectives over the course of the
paper. For now, it suffices to say that our framework has a static past (via the operator
[Y ]) and a dynamic future (via the Kripke model-changing operators [U, s]). To help
make sense of these notions of “past” and “future,” we will impose in all concrete
examples a number of restrictions on Kripke models and on action models that allow
us to provide a coherent and meaningful account of time and of the flow of time within
the setting of our framework. Many of the restrictions on Kripke models can be found
elsewhere in the literature of DEL and ETL (van Benthem et al. 2009, 2007; Dégre-
mont et al. 2011; Sack 2010, 2008; Yap 2011); however, the identification of relevant
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action model-specific restrictions and the use of Kripke model restrictions in action
models having � arrows is, to the best of our knowledge, new [though it builds off
the authors’ early work in Renne et al. (2009)].

Definition 7 The following properties may apply to Kripke models or to (pointed)
action models. We do not require that any of these properties hold, nor do we claim
that these properties are independent.

– Persistence of Facts (for Kripke models only): w � w′ ⇒ (w ∈ V (p) ⇔ w′ ∈
V (p)) for all w and w′.
This says that propositional letters retain their values across temporal � arrows.

– Depth-Definedness: d(w) �= ∞ for all w.
This says that every world/event has a finite depth.

– Knowledge of the Past: (w′ � w →a v) ⇒ ∃v′(v′ � v) for all a ∈ A , w′, w,
and v.
This says that agents know if there is a past (i.e., a state reachable via a backward
step along a � arrow).

– Knowledge of the Initial Time: w →a v ∧ ¬∃w′(w′ � w) ⇒ ¬∃v′(v′ � v) for
all a ∈ A , w, and v.
This says that agents know if there is no past.

– Uniqueness of the Past: (w′ � w∧w′′ � w)⇒ (w′ = w′′) for all w′, w, and w′′.
This says that there is only one possible past.

– Perfect Recall: (w � v →a v′) ⇒ ∃w′(w →a w′ � v′) for all a ∈ A , w, v, and
v′.
This says that agents do not forget what they knew in the past.2

– Synchronicity: The structure is depth-defined and w →a w′ implies d(w) = d(w′)
for all a ∈ A , w, and w′.
This says that there is no uncertainty, disagreement, or mistakenness among the
agents with regard to the depth of a world/event.

– History Preservation (for action models U only): s′ �U s implies |� preU (s) →
preU (s′) for all s′ and s; further, every past state in U is an epistemic past state.
This says that a non-initial event s can take place only if its predecessor s′ can as
well, and initial events can always take place (Definition 6). Whenever an event s in
a history preserving action model U is executable at a world w of a Kripke model
M (i.e., M, w |� preU (s)), the temporal structure of any partial or full history
sn � · · ·� s0 = s inU is preserved as the partial or full history (w, sn) � · · ·�
(w, s0) = (w, s) in the updated model M[U ]. In this way, history preserving action
models preserve the executable parts of their own histories.

– Past Preservation (for pointed action models (U, s) Epistemic Past Stateonly): The
action model U is history preserving; further, every progression sn �U · · · �U

2 We note that because synchronicity requires the structure to be depth-defined and perfect recall does not,
perfect recall does not imply synchronicity. However, the conjunction of perfect recall, depth-definedness,
and uniqueness of the past are together equivalent to the conjunction of synchronicity and uniqueness of
the past. See Goranko and Pacuit (2014) for a discussion of a weaker version of perfect recall that does not
stand in a similar relationship to synchronicity. In the interest of simplicity, we do not consider this more
complicated weaker version here.
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s0 = s that ends at s can be past-extended to a history

sn+m �U · · ·�U sn+1 �U sn �U · · ·�U s0 = s

that begins at an epistemic past state sn+m . To say an event t ∈ WU is past preserving
means the action (U, t) with point t is past preserving.
This says that there is a “link to the past” (i.e., an epistemic past state) via a sequence
of �arrows. Since past preserving action models are history preserving, it follows
that past preserving action models preserve executable parts of their own histories
and maintain a “link to the past.” (This is explained in detail in and around the
forthcoming Theorem 4.)

– Time-advancing (for pointed action models (U, s) only): The action (U, s) is past
preserving and the point s is not a past state.
This says that the “past” is at least one time-step away.

For the moment, we do not require that our Kripkemodels or actionmodels satisfy any
of the above properties. This will change in Sect. 5, where we study the preservation
of Kripke model properties under action models satisfying appropriate properties, and
in Sect. 6, where we impose a number of these properties in order to study connec-
tions between our framework and other approaches to the study of time in Dynamic
Epistemic Logic.

A note on the depth of worlds (Definition 2) in the updated model M[U ]: if world
w and event t both have finite depth, then the maximum depth of the resulting world
(w, t) ∈ WM[U ] is d(w) + d(t). The reason: we can take at most d(t) backward
steps in the second coordinate (fix the first coordinate and proceed backward in the
second until a past state is reached), and we can take at most d(w) backward steps
in the first coordinate (fix the second coordinate and proceed backward in the first
until an initial world is reached). The actual depth of (w, t) does not need to obtain
its maximum: when stepping backward in either coordinate (with the other fixed), we
may reach a pair (w′, s′)whose worldw′ violates the precondition of the event s′ (i.e.,
M, w′ �|� preU (s′)) and therefore the pair (w′, s′) will not be a member of WM[U ].
However, if the action modelU is history preserving, then this problem is avoided and
hence d(w, t) = d(w)+ d(t).

Finally, we note that we can express finite depth explicitly in our language.

Theorem 1 For each non-negative integer n, define the formulas

Dn
def= 〈Y 〉n[Y ]⊥ ∧ [Y ]n+1⊥ and D′n

def= 〈Y 〉n[Y ]⊥.

We have M, w |� Dn if and only if d(w) = n. Further, if M satisfies uniqueness of
the past, then we have M, w |� D′n if and only if d(w) = n.

In the next section, we will discuss how the depth of a world w can be used as an
explicit measure of the time at world w. If one adopts this measure of time, then it
follows from Theorem 1 that we can express the time of a world within our language
LDETL: we say that “the time at world w is n” to mean that w satisfies Dn .

123



Synthese (2016) 193:813–849 821

Fig. 1 (M, w), a situation in
which p, q ∈P are both true
but the agents do not know that
this is so. Agent arrows→x are
here implicitly closed under
transitivity

p q p qp q

u

a b

a ba b
a ba b

M

3 Examples

In this section, we will illustrate several features of our system. This will demonstrate
the way in which our system can represent interesting epistemic situations as well as
shed some light on the ways in which time is treated in dynamic systems. First, we
will define explicit and implicit measures of time. An explicit measure of time is one
in which the time of a world w in model M can be determined solely by inspection
of M . As we have seen, the depth of a world in a Kripke model (see Definition 2)
can provide an explicit measure of the time at that world, and this can be expressed
explicitly in our language (Theorem 1). In contrast, an implicit measure of time is one
in which the time of a world w in model M cannot be determined solely be inspection
of M . For example, if we measure the time at a world in M by the number of updates
that have led up to M , this can provide an implicit measure of the time at that world.
These are not the only possible implicit and explicit measures, but they are certainly
natural ones within our DETL framework.

Now we will consider ways in which explicit and implicit representations of time
might differ. More specifically, we will consider cases in which there is only a single
update (implicitly increasing the time by 1) but at which the explicit time at the actual
world changes by a number other than 1. Second, we will add in the epistemic aspect,
by demonstrating the ways in which agents can hold differing beliefs about temporal
and epistemic features of their situation.

In all of these cases, we will begin with a basic Kripke model (M, w) pictured in
Fig. 1 in which agents a and b are uncertain of the truth values of p and q. The double
outline around world w indicates that w is the “actual world” (i.e., that w is the point)
and hence that p and q are actually true. Throughout this section, we will assume
that our epistemic accessibility relations→a and→b are S5 (i.e., that they are closed
under reflexivity, transitivity, and symmetry); however, for the sake of readability, we
will not draw all transitive arrows.

3.1 Explicit and implicit representations of time

Wenowdiscuss three examples related to discrepancies between the number of updates
that have occurred and the explicit time at a world as determined by its depth. First,
we will see “standard” behavior, in which a single update increases the time of the
actual world by 1.
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t

p s

a, b

a, b

p, q

(u, t)

p, q

(w, t)

p, q

(v, t)

a, b

a, ba, b
a, ba, b

p, q

(w, s)

p, q

(u, s)

a, ba, b
a, b

U2 M U2

Fig. 2 Left: (U2, s), the public announcement of p. Right: The resulting situation (M[U2], (w, s)). Agent
arrows→x are here implicitly closed under transitivity. (Example 1)

Example 1 The action (U2, s) (Fig. 2) represents the public announcement of p.
Applied to our initial situation (M, w) (Fig. 1), the result is (M[U2], (w, s)).

In the situation (M, w) before the announcement, neither a nor b knew p; that is,
M, w |� ¬�a p ∧ ¬�b p. In the situation (M[U2], (w, s)) after the announcement,
both know p; that is, M[U2], (w, s) |� �a p ∧ �b p . But note that in the “after”
model M[U2], we have a “copy” of the original model M consisting of the worlds
(u, t), (w, t), and (v, t) and the arrows interconnecting these worlds. As a result, we
can describe the agents’ knowledge “before” and “after” all together in the resultant
situation:

M[U2], (w, s) |� (�a p ∧�b p) ∧ 〈Y 〉(¬�a p ∧ ¬�b p).

In words, “a and b know p but yesterday they did not.” Further, we note that the
(explicit) time at both the initial world w and its copy (w, t) is 0, and the time at the
final world (w, s) is 1.

The language of ordinary DEL is the atemporal fragment of LDETL without the
[Y ] modality. In this language, the only way to refer to the agents’ knowledge before
the announcement is with reference to the original situation (M, w). This is because
ordinary DEL lacks � arrows, both in action models and in the underlying Kripke
models.

Example 1 showed “standard” temporal behavior: a single update increases the time
of the actual world by 1. Two obvious ways in which updates could be “non-standard”
are by not increasing the time when an update takes place or by increasing the time
by a number greater than 1.

Example 2 Here we consider the effect of the action (U3, t) (Fig. 3) on our initial
situation (M, w) (Fig. 1). This action has a structure that is nearly identical to that
of action (U2, s) in Example 1 (Fig. 2); in fact, these actions are based on the same
underlying action model (i.e., U2 = U3). However, the actual events of (U2, s) and
(U3, t) are different. The result of the update with the latter action is the pointed
model (M[U3], (w, t)). Note that the resultant actual world (w, t) is among the worlds
(u, t), (w, t), and (v, t) that make up the “copy” of the initial model M .
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Fig. 3 Left (U3, t), the future public announcement of p. Right The resulting situation (M[U3], (w, t)).
Agent arrows→x are here implicitly closed under transitivity. (Example 2)

We have designed our system so that the initial world w and its copy (w, t) satisfy
the same formulas. In this way, we may identify each initial world with its copy, so
that the collection of copied worlds (and the arrows interconnecting them) may be
identified with the initial model itself. This allows us to reason about what was the
case in the initial model by evaluating formulas only within the resultant model. In
effect, we can “forget” the initial model because all of its information is copied over
to the resultant model.

To make this work, both w and its copy (w, t) must satisfy the same formulas. We
guarantee this by designing our system so that it ignores all “future” worlds, by which
wemean theworlds accessible from the point only via a link x � y froma “past”world
x to a “future” world y.3 So from the point of view of our theory, the time-1 worlds
(u, s) and (w, s) in Fig. 3 are ignored in the resultant time-0 situation (M[U3], (w, t))
because the time-1worlds can only be reached via a forward� arrow. This leaves only
the “copy” of the initial model M consisting of the worlds (u, t), (w, t), and (v, t).
The resultant situation (M[U3], (w, t)) is therefore equivalent to the initial situation
(M, w) from the point of view of our theory. In other words, the action (U3, t) does
not change the state of affairs at all.4

Remark 1 The previous two examples illustrate some motivation behind our choice
not to include a [T ] operator, as defined in (1). If our language had included such an
operator, two worlds that are intended to represent the exact same state of affairs could
disagree about the truth of formulas. In Example 2, a non-time-advancing update
transforms (M, w) into (M[U3], (w, t)), but the worlds w and (w, t) are meant to

3 Formally, a LDETL-formula ϕ is true at a world x if and only if ϕ is true at x even after we delete all
worlds y satisfying the property that every path from x to y contains at least one � arrow (followed in the
“forward” direction z � z′ from “past” z to “future” z′). This is so because LDETL has no [T ] operator, as
defined in (1).
4 This is similar to the way in which the “do nothing” Propositional Dynamic Logic (PDL) program skip
does not change the state of the system. However, there is a difference: the PDL program does not change
the structure of the model, though the action (U3, t) does. Nevertheless, from the point of view of language
equivalence, this change is inconsequential: the “before” situation and the “after” situation satisfy the same
LDETL-formulas, and so our intention is that these situations are to be identified.
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represent the same situation and so should satisfy the same formulas. However, (M, w)

and (M[U3], (w, t)) disagree on the truth of the formula 〈T 〉p. But as we have defined
LDETL without the [T ]-operator, we can easily show that for any LDETL-formula
ϕ, we have M, w |� ϕ iff M[U ], (w, t) |� ϕ because t is an epistemic past state
(see Theorem 4). This avoids the problem illustrated here where two worlds that are
supposed to represent the same situation disagree on the truth of formulas.

Example 1 also illustrates the semantic difference between an actionmodel operator
[U, s] and the operator [T ]. The truth of [U, s]ϕ is determined by evaluating ϕ in a
new model, while the truth of [T ]ϕ is determined by evaluating ϕ within the model
as it currently stands. In considering our initial model (M, w) (Fig. 1), note that
M, w �|� 〈T 〉p. However, as we can see, M, w |� 〈U2, s〉p. So while we informally
read the formula 〈T 〉ϕ as claiming that ϕ will hold “tomorrow” (and that there is at
least one possible “tomorrow” world), this is only from the perspective of a static
model—it does not consider all possible ways in which that model might evolve given
different updates.

The [U, s] and [T ] operators are not the only options for “tomorrow” operators.
Section 2 mentions the way in which the update operators [U, s] serve as dynamic
parameterized operators. And it is also possible to define dynamic unparameterized
operators that work by quantifying over the parameterized ones, and these also are
different from [T ] operators. Call our unparameterized operator [N ], and we can
define: M, w |� [N ]ϕ if and only if M, w |� [U, s]ϕ for all action models (U, s)with
only epistemic preconditions (this constraint is imposed on the action models, so as to
ensure the well-foundedness of the semantics) (Balbiani et al. 2008). Since all public
announcement actionmodels fall into this category, we have thatM, w |� 〈N 〉p (since
M, w |� 〈U2, s〉p) and yet M, w �|� 〈T 〉p.

We believe that these interpretive issues involving [T ] reflect its complex relation-
ship with the update modalities. Indeed, [T ] may not even have a clear interpretation
in the context of our framework, which is part of the rationale for leaving it out of
our language. But such a situation is not unusual in the epistemic logic tradition. For
instance, a common system for modeling agents’ beliefs is KD45, whose epistemic
accessibility relation does not have to be symmetric. In such systems, it is not clear that
the converse of the accessibility relation has a clear semantic interpretation, but this
is not viewed as problematic. So for us, the relation �is one example of many from
modal logic of a relation that has a corresponding modality but whose converse does
not. (Also, the semantic asymmetry of having a [Y ] operator but no corresponding [T ]
operator is analogous to an asymmetry in ordinary DEL, which has [U, s] modalities
but no converse [U, s]−1 modalities.) As a result, our system DETL is one that has
a dynamic parameterized future (accessed via the update modals [U, s]) and a static
unparameterized past (accessed via the yesterday modal [Y ]).
Example 3 In this example, the time at the actual world increases by 2 even though
only a single update (U4, r) (Fig. 4) takes place. With simple modifications of (U4, r),
we could increase the time by any finite number.

These three examples demonstrate the differences between explicit and implicit
measures of time; in particular, the number of updates (the implicit time) need not
equal the depth of the actual world (the explicit time). In this paper, we will adopt the
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Fig. 4 Left (U4, r), the double public announcement of p. Right the resulting situation (M[U4], (w, r)).
Agent arrows→x are here implicitly closed under transitivity. (Example 3)

convention that the time at the actual world is measured by its depth (explicit time).
While this is by no means a necessary choice, it has the advantage of allowing us to
determine the time at a world solely by inspection of the model to which it belongs.

3.2 Agents mistaken about time

Given thatwe aremeasuring the time at aworld by its depth,we can represent situations
in which agents are unable to distinguish between worlds that have different times.
These situations can be brought about by DETL actions, as the following example
illustrates.

Example 4 In this example, (U5, r) (Fig. 5) represents the sequenced public announce-
ment of p followed by the asynchronous semi-private announcement of q to agent b.
This increases the time at the actual world by 2, as in Example 3. However, in the
present example, agent a is uncertain whether the time has increased by 1 or by 2.

We contrast Example 4 with the following.

Example 5 (U6, r) (Fig. 6) couples a public announcement of pwith the simultaneous
semi-private announcement of q to agent b. When we compare this with Example 4
(pictured in Fig. 5), we note that the agents’ respective knowledge gain is identical
with respect to the propositional facts: a learns that p is true but not whether q is true,
while b learns both p and q. However, in the current example (pictured in Fig. 6),
b learns p and q simultaneously instead of successively, and a’s knowledge differs
accordingly.

We now compare the truth values of several propositions in M[U5] from Example 4
(Fig. 5) and M[U6] from Example 5 (Fig. 6). First, it should be clear from inspection
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Fig. 5 Left (U5, r), the sequenced public announcement of p followed by the asynchronous semi-private
announcement of q to agent b. Right the resulting situation (M[U5], (w, r)). Agent arrows→x are here
implicitly closed under transitivity. (Example 4)

that at both actual (i.e., double circled) worlds, agent a knows p is true but does not
know whether q is true, while agent b knows both p and q. Agent a also considers
b’s current epistemic state vis-à-vis p and q to be possible, as both worlds satisfy
♦a�b(p ∧ q) ∧ �b(p ∧ q); that is, agent a considers it possible that b knows p
and q, and this possibility is in fact the correct one, since b does in fact know p and
q. However, note that M[U5], (w, r) |� ♦a[Y ]�b(p ∧ q) while M[U6], (w, r) �|�
♦a[Y ]�b(p ∧ q). The formula ♦a[Y ]�b(p ∧ q) says that a considers it possible that
b knew p and q “yesterday” (i.e., one step in the past). So despite the fact that agent
a’s knowledge of b’s epistemic state vis-à-vis p and q is the same at the resultant
situations (M[U5], (w, r)) and (M[U6], (w, r)), there is a key difference: agent a’s
knowledge of how these epistemic states evolved over time is not the same. In the first
case (M[U5], (w, r)), agent a thinks bmay have learned p before learning q. However,
in the second case (M[U6], (w, r)), though a still thinks b may have learned q, he
believes that the only way this could have happened is that b learned both q and p
simultaneously.

4 Proof system and completeness

Definition 8 The theory of Dynamic Epistemic Temporal Logic, DETL, is defined in
Fig. 7. Axioms whose name begins with “U” are called reduction axioms.5

5 While these may not have the typical “look” of reduction axioms as they are commonly found in Dynamic
Epistemic Logics, they can nevertheless be considered reduction axioms in the sense that they allow us to
prove the reduction to LSETL as per Theorem 2.
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Fig. 7 The theory DETL

Many axioms of DETL are the same as in Dynamic Epistemic Logic.6 In defining
DETL, we have not imposed any of the properties from Definition 7 on action models,
nor have we designed the theory to be sound for Kripke models having properties from
Definition 7 that one might expect. So DETL should be viewed as the minimal theory
that brings update mechanisms to a basic Epistemic Temporal Logic. However, we
will study the preservation of these properties in Sect. 5, and we study a DETL-based
theory satisfying a number of these properties in Sect. 6.

Theorem 2 (LDETL Reduction)For every LDETL-formula ϕ, there is an actionmodel-
free LSETL-formula ϕ◦ such that DETL � ϕ ↔ ϕ◦.

Proof The proof is a straightforward adaptation of the standard argument from
Dynamic Epistemic Logic (van Ditmarsch et al. 2007). ��
Theorem 3 (Soundness and Completeness) DETL � ϕ if and only if |� ϕ.

Proof Soundness (� ϕ implies |� ϕ) is by induction on the length of DETL-
derivations. All cases except U[Y ] soundness are straightforward adaptations of the
standard atemporal Dynamic Epistemic Logic arguments (van Ditmarsch et al. 2007),
so we shall only prove U [Y ] soundness here. Proceeding, we are to show that

|� [U, s][Y ]ϕ ↔ (
preU (s)→ [Y ][U, s]ϕ)

if s is a past state, and

|� [U, s][Y ]ϕ ↔ (
preU (s)→∧

s′�U s[U, s′]ϕ)
if s is not a past state.

6 The primary difference is with those concerning the Y -modality. There are two cases: s is a past state,
and s is not a past state. In both cases, U[Y ] is a simplification of U�a , reflecting the involvement of
asynchronous composition rather than synchronous (see the discussion after Definition 5). In U�a , the
conjunction reflects the transitions made in the action model, while the modality �a that follows reflects
the transitions made in original model. Note that if s is a past state, then there is no s′ �U s, so we can
remove the conjunction. If s not a past state, then it is the first coordinate rather than the second coordinate
that must be fixed in a � transition in the updated model. Hence we remove the modality [Y ] that would
otherwise follow the conjunction.
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Given (M, w), we assume that M, w |� preU (s), for otherwise the result follows
immediately.

– Case: s is a past state.
Assume M, w |� [U, s][Y ]ϕ. By the definition of truth, M[U ], (w′, s) |� ϕ for
each (w′, s) �M[U ] (w, s). Therefore, if v �M w satisfies M, v |� preU (s), then
M[U ], (v, s) |� ϕ. Conclusion: M, w |� [Y ][U, s]ϕ.
Conversely, assume M, w |� [Y ][U, s]ϕ and (w′, s) �M[U ] (w, s). The second
assumption implies both that w′ �M w—and hence M, w′ |� [U, s]ϕ by the first
assumption—and that M, w′ |� preU (s). But then M[U ], (w′, s) |� ϕ. Conclu-
sion: M, w |� [U, s][Y ]ϕ.

– Case: s is not a past state.
AssumeM, w |� [U, s][Y ]ϕ. By the definition of truth,M[U ], (w, t) |� ϕ for each
(w, t) �M[U ] (w, s). If s′ �U s satisfies M, w |� preU (s′), then (w, s′) �M[U ]
(w, s) and hence M[U ], (w, s′) |� ϕ. Conclusion: M, w |�∧

s′�U s[U, s′]ϕ.
Conversely, assume M, w |� ∧

s′�U s[U, s′]ϕ and (w, t) �M[U ] (w, s). The sec-
ond assumption implies both that t �U s—and hence M, w |� [U, t]ϕ by the first
assumption—and that M, w |� preU (t). But then M[U ], (w, t) |� ϕ. Conclusion:
M, w |� [U, s][Y ]ϕ.
Completeness (� ϕ implies �|� ϕ) follows by LDETL Reduction (Theorem 2), the

standard normal modal logic canonical model argument for the action model-free
sublanguage LSETL (Blackburn et al. 2001, Chap. 4),7 and the combination of LDETL
Reduction with soundness. ��

5 Preservation results

In this section, we study the preservation of properties of Kripke models defined
previously in Definition 7. These properties have been of interest in the study of time
in Dynamic Epistemic Logic (van Benthem et al. 2009, 2007; Dégremont et al. 2011;
Sack 2010, 2008; Yap 2011) and so it will be useful for our purposes to understand
the conditions under which they are preserved within our DETL setting. Theorem 4
concerns the behavior of past states in action models, and Theorem 5 concerns the
preservation of Kripke model properties.

Theorem 4 (Past State) Let (U, s) be an action satisfying M, w |� preU (s).

(a) If s is an epistemic past state, then (M[U ], (w, s)) and (M, w) satisfy the same
LDETL-formulas.

(b) If (U, s) is past preserving, then there is a history

(w, s0) �M[U ] (w, s1) �M[U ] · · ·�M[U ] (w, sn) = (w, s)

7 The axiomatization of the validities of the action model-free sublanguage LSETL are obtained from the
axiomatization of DETL by deleting each of the reduction axioms, deleting the rule UN, and restricting
the language to that of LSETL. What results is just multi-modal K, with one K modality for each agent
modal �a and one K modality for the yesterday modal [Y ]. Completeness thereby follows by the standard
construction (e.g., in (Blackburn et al. 2001, Chap. 4) using the “modal similarity type” of LSETL).
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such that (M[U ], (w, s0)) and (M, w) satisfy the same LDETL-formulas.

Proof (a) Since the language of LDETL does not include forward-looking tomorrow
operators [T ], it follows by the standard argument in modal logic (Blackburn et al.
2001) that bisimilar worlds satisfy the same action model-free LDETL-formulas
(i.e., the same LSETL-formulas).8 By LDETL Reduction (Theorem2) and soundness
(Theorem 3), bisimilar worlds also satisfy the same LDETL-formulas. Finally, one
can show that there is a bisimulation between (w, s) and w. The result follows.

(b) Past preservation of (U, s) implies there exists a history s0 �U · · · �U sn = s
that begins at an epistemic past state s0. The result therefore follows by part (a).��
Theorem 4(a) tells us that, from the point of view of the language, an epistemic past

state essentially makes a copy of a given situation (M, w) within the context of the
updated model M[U ]. Part 4(b) tells us that after the execution of a past preserving
action (U, s), the copy of the initial situation resides at the beginning of a history

(w, s0) �M[U ] · · ·�M[U ] (w, sn) = (w, s) (2)

produced by the stepwise occurrence of a past state s0 followed by events s1, . . . , sn =
s. Past states in past preserving actions (U, s) therefore play the role of “maintaining a
link to the past” in virtue of the fact that there is a temporal linkage (2) in the resultant
model M[U ] leading back to the initial situation (as it exists in its copied form).

Theorem 4 would fail if we were to include a tomorrow operator [T ] in our lan-
guage.9 This not only violates the theorem but also our intuition about what it means
for the occurrence of an action to increment the time. In particular, given that we
identify the time of a world with its depth, a time-incrementing action must take an
initial situation and successively add on additional layers of “future” worlds:

(initial world) � (+1 world) � (+2 world) � · · ·� (+n world). (3)

In order for us to view this process as a progression that began with a particular
situation (M, w), the leftmost world in the temporal sequence (3) should be identical
to our initial situation (M, w) from the point of view of the language. Furthermore, we
should be able to “trace backward in time” from the final resultant situation—made up
of the rightmost world in the temporal sequence (3)—to our initial situation. And this
is just what Theorem 4 says we can do. So since adding the [T ] operator would falsify
the theorem and hence go against our intuition, we decided to leave this operator out.

8 In detail: a bisimulation is a nonempty binary relation B between the worlds of Kripke models (with

yesterday) M = (WM ,→M , �M , V M ) and M ′ = (WM ′ ,→M ′ , �M
′
, V M ′ ) such thatwBw′ impliesw

andw′ satisfy the same propositional letters; and, for each binary relation symbol R ∈ {→a | a ∈ A }∪{ �}
specified by the structures, wBw′ and wRMv implies there is a v′ ∈ WM ′ such that w′RM ′v′ and vBv′,
and wBw′ and w′RM ′v′ implies there is a v ∈ WM such that wRMv and vBv′. Note that the definition of
bisimulation only considers temporally reachable worlds “in the past” (i.e., in the direction from x to y in
the arrow x �y).
9 For example, we have M, w �|� 〈T 〉p (Fig. 1) and yet M[U3], (w, t) |� 〈T 〉p (Fig. 3).
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We now examine the relationship between our conditions on action models (Defi-
nition 7) and the preservation of certain Kripke models properties (also Definition 7)
under the update operation M �→ M[U ].
Theorem 5 (Preservation) Suppose M, w∗ |� preU (s∗) for some w∗ ∈ WM and
s∗ ∈ WU.

(a) If M satisfies persistence of facts, then so does M[U ].
(b) If M and U are depth-defined, then so is M[U ].
(c) If M and U satisfy knowledge of the past and U is history preserving, then M[U ]

satisfies knowledge of the past.
(d) If M satisfies knowledge of the initial time and U is history preserving, then M[U ]

satisfies knowledge of the initial time.
(e) If M and U satisfy uniqueness of the past, then so does M[U ].
(f) If M and U satisfy perfect recall and U is history preserving, then M[U ] satisfies

perfect recall.
(g) If M and U are synchronous and U is history preserving, then M[U ] is synchro-

nous.

Proof We prove each item in turn.
(a) If M satisfies persistence of facts, then so does M[U ]. Suppose that M satisfies

persistence of facts and (w, s) �M[U ] (w′, s′). It follows that w = w′ or w �M w′.
Now M satisfies persistence of facts, so w ∈ V M (p) iff w′ ∈ V M (p). Applying
the fact that (v, t) ∈ V M[U ](p) iff v ∈ V M (p), we have (w, s) ∈ V M[U ](p) iff
(w′, s′) ∈ V M[U ](p).

(b) If M and U are depth-defined, then so is M[U ]. Assume that M and U are
depth-defined. Notice that if

∀(w, s) ∈ WM[U ] : d(w, s) ≤ d(w)+ d(s), (4)

then since we have d(w) < ∞ and d(s) < ∞ by the depth-definedness of M and U ,
it follows that M[U ] is depth-defined. It therefore suffices to prove (4) by induction
on d(s).

– Base case: d(s) = 0.
It follows that s is a past state. Therefore (w′, s′) �M[U ] (w, s) implies w′ �M w

and s′ = s. We now prove (4) by a sub-induction on d(w). In the sub-induction
base case, d(w) = 0 and therefore there is no w′ �M w, which implies there is no
(w′, s) �M[U ] (w, s). But then d(w, s) = 0 = d(w)+ d(s), which completes the
sub-induction base case. For the sub-induction step, we assume that (4) holds for all
worlds v having 0 ≤ d(v) < d(w) (the “sub-induction hypothesis”) and we prove
(4) holds for world w itself. If d(w, s) = 0, then (4) follows immediately because
depths are non-negative integers. So let us assume that d(w, s) > 0. Then we may
choose an arbitrary (w′, s) �M[U ] (w, s), from which it follows that w′ �M w.
SinceM is depth-defined, d(w′) ≤ d(w)−1 and sowemay apply the sub-induction
hypothesis:

d(w′, s) ≤ d(w′)+ d(s) ≤ d(w)− 1+ d(s).
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Hence

d(w, s) = 1+max{d(w′, s) | (w′, s) �M[U ] (w, s)}
≤ 1+max{d(w)− 1+ d(s) | (w′, s) �M[U ] (w, s)}
= d(w)+ d(s)

– Induction step: we suppose (4) holds for all events t having 0 ≤ d(t) < d(s) (the
“induction hypothesis”) and prove that (4) holds for event s itself.
s is not a past state because d(s) > 0. Therefore (w′, s′) �M[U ] (w, s) implies
w′ = w and s′ �U s. If d(w, s) = 0, then (4) follows immediately because depths
are non-negative integers. So let us assume d(w, s) > 0. Then we may choose
an arbitrary (w, s′) �M[U ] (w, s), from which it follows that s′ �U s. Since U
is depth-defined, we have d(s′) ≤ d(s) − 1 and so we may apply the induction
hypothesis:

d(w, s′) ≤ d(w)+ d(s′) ≤ d(w)+ d(s)− 1.

Hence

d(w, s) = 1+max{d(w, s′) | (w, s′) �M[U ] (w, s)}
≤ 1+max{d(w)+ d(s)− 1 | (w, s′) �M[U ] (w, s)}
= d(w)+ d(s)

(c) If M and U satisfy knowledge of the past and U is history preserving, them
M[U ] satisfies knowledge of the past. Suppose M and U satisfy knowledge of the
past, U is history preserving, and

(w′, s′) �M[U ] (w, s)→M[U ]
a (v, t).

We want to show that there exists (v′, t ′) �M[U ] (v, t). Given (w, s) →M[U ]
a (v, t),

we have w →M
a v and s →U

a t . Given (w′, s′) �M[U ] (w, s), one of two cases
obtains.

– Case: w′ �M w and s′ = s is a past state.
Since w′ �M w →M

a v and M satisfies knowledge of the past, there exists v′ �M

v. Since U is history preserving and s is a past state, s is an epistemic past state.
From this we obtain two things. First, (v′, s) ∈ WM[U ] because epistemic past
states have valid preconditions. Second, applying the fact that s →U

a t , it follows
that s = t because→a arrows leaving epistemic past states are all reflexive. Since
v′ �M v and s is a past state, we conclude that (v′, s) �M[U ] (v, s) = (v, t).

– Case: w′ = w and s′ �U s.
Since s′ �U s →U

a t and U satisfies knowledge of the past, there exists t ′ �U

t . Applying this to the assumption that U is history preserving and the fact that
(v, t) ∈ WM[U ], it follows that (v, t ′) ∈ WM[U ]. But then (v, t ′) �M[U ] (v, t).
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(d) If M satisfies knowledge of the initial time and U is history preserving, then
M[U ] satisfies knowledge of the initial time. Suppose M satisfies knowledge of the
initial time, U is history preserving, (w, s) →M[U ]

a (v, t), and d(w, s) = 0. We wish
to show that d(v, t) = 0 as well. Toward a contradiction, assume d(v, t) �= 0, which
implies there exists (v′, t ′) �M[U ] (v, t). It follows from (w, s) →M[U ]

a (v, t) that
w →M

a v and s →U
a t . We consider two cases.

– Case: s is not a past state.
Since s is not a past state, there exists s′ �U s. Since U is history preserving and
(w, s) ∈ WM[U ], it follows that (w, s′) ∈ WM[U ]. But then (w, s′) �M[U ] (w, s),
which contradicts our assumption that d(w, s) = 0.

– Case: s is a past state.
SinceU is history preserving and s is a past state, s is in fact an epistemic past state.
Applying the fact that s →U

a t , it follows that s = t because→a arrows leaving
epistemic past states are all reflexive. Since (v′, t ′) �M[U ] (v, t) and t = s is a past
state, it follows that t ′ = t = s and v �M v′. Also, it follows from the fact that s is
a past state and d(w, s) = 0 that we have d(w) = 0. Since M satisfies knowledge
of the initial time, it follows from d(w) = 0 and w →M

a v that d(v) = 0, but this
contradicts v �M v′.

Since both cases lead to a contradiction, we conclude that d(v, t) = 0, as desired.
(e) If M and U satisfy uniqueness of the past, then so does M[U ]. SupposeM andU

satisfy uniqueness of the past and we have (v1, t1) �M[U ] (w, s) and (v2, t2) �M[U ]
(w, s). We wish to show that (v1, t1) = (v2, t2). There are two cases to consider.

– Case: s is a past state.
Since s is a past state, if follows from (v1, t1) �M[U ] (w, s) and (v2, t2) �M[U ]
(w, s) that we have s = t1 = t2, v1 �M w, and v2 �M w. Since M satisfies
uniqueness of the past, it follows that v1 = v2. Hence (v1, t1) = (v2, t2).

– Case: s is not a past state.
Since s is not a past state, if follows from (v1, t1) �M[U ] (w, s) and (v2, t2) �M[U ]
(w, s) that we have w = v1 = v2, t1 �U s, and t2 �U s. Since U satisfies
uniqueness of the past, it follows that t1 = t2. Hence (v1, t1) = (v2, t2).

(f) If M and U satisfy perfect recall and U is history preserving, then M[U ] satisfies
perfect recall. Suppose M and U satisfy perfect recall, U is history preserving, and
(w′, s′) �M[U ] (w, s) →M[U ]

a (v, t). We wish to prove that there exists (v′, t ′) ∈
WM[U ] such that (w′, s′) →M[U ]

a (v′, t ′) �M[U ] (v, t). Proceeding, it follows from
(w, s)→M[U ]

a (v, t) thatw →M
a v and s →U

a t . It follows from (w′, s′) �M[U ] (w, s)
that one of two cases obtains.

– Case: w′ = w and s′ �U s.
Since s′ �U s →U

a t and U satisfies perfect recall, there exists t ′ satisfying
s′ →U

a t ′ �U t . Since U is history preserving and (v, t) ∈ WM[U ], it follows that
(v, t ′) ∈ WM[U ]. But then (v, t ′) �M[U ] (v, t). Since w →M

a v and s′ →U
a t ′, we

have (w′, s′) = (w, s′)→M[U ]
a (v, t ′).

– Case: w′ �M w and s′ = s is a past state.
Since w′ �M w →M

a v and M satisfies perfect recall, there exists v′ satisfying
w′ →M

a v′ �M v. Further, since s is a past state and U is history preserving,
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s is an epistemic past state. From this two things follow. First, (v′, s) ∈ WM[U ]
because epistemic past states have valid preconditions. Second, applying the fact
that s →U

a t , it follows that s = t because →a arrows leaving epistemic past
states are all reflexive. Since v′ �M v and s is a past state, we have (v′, s) �M[U ]
(v, s) = (v, t). Further, since w′ →M

a v′ and s →U
a t = s, we have (w′, s′) =

(w′, s)→M[U ]
a (v′, s).

(g) If M and U are synchronous and U is history preserving, then M[U ] is syn-
chronous. Assume M and U are synchronous and U is history preserving. Since
synchronicity requires being depth-defined, it follows by item (b) that M[U ] is
depth-defined. So all that remains is to prove that (w, s) →M[U ]

a (w′, s′) implies
d(w, s) = d(w′, s′). To prove this, we for the moment assume the following:

∀(v, t) ∈ WM[U ] : d(v, t) = d(v)+ d(t). (5)

Proceeding under this assumption, it follows from (w, s)→M[U ]
a (w′, s′) that w →M

a
w′ and s →U

a s′. Since M and U are synchronous, it follows that d(w) = d(w′) and
d(s) = d(s′). But then

d(w, s) = d(w)+ d(s) = d(w′)+ d(s′) = d(w′, s′)

by (5), completing the argument. So all that remains is to prove (5). The proof proceeds
by induction on d(t).

– Base case: d(t) = 0.
It follows that t is a past state. Since U is history preserving, t is an epistemic
past state. Therefore, u ∈ WM implies (u, t) ∈ WM[U ] because epistemic past
states have valid preconditions, and hence u �M u′ implies (u, t) �M[U ] (u′, t).
It follows by an easy sub-induction on d(v) that d(v, t) = d(v). Since d(t) = 0,
this proves (5).

– Induction step: assume the result holds for events s with d(s) < d(t) (the “induction
hypothesis”) and prove the result holds for event t with d(t) > 0.

Since d(t) > 0, there exists t ′ �U t with d(t ′) = d(t) − 1. Since U is history
preserving, we have |� preU (t)→ preU (t ′). But then it follows from (v, t) ∈ WM[U ]
that (v, t ′) ∈ WM[U ]. Since d(t ′) < d(t), wemay apply the induction hypothesis, from
which it follows that

d(v, t ′) = d(v)+ d(t ′) = d(v)+ d(t)− 1.

Further, we note that from t ′ �U t we obtain (v, t ′) �M[U ] (v, t). Now take an
arbitrary (u, s) �M[U ] (v, t). Since d(t) > 0, event t is not a past state and it
therefore follows that u = v and s �U t . Hence d(s) ≤ d(t) − 1. Applying the
induction hypothesis,

d(u, s) = d(v, s) = d(v)+ d(s) ≤ d(v)+ d(t)− 1.
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Note that this holds for all (u, s) �M[U ] (v, t). Finally, since

d(v, t) = 1+max
{
d(u, s) | (u, s) �M[U ] (v, t)

}
,

it follows by what we have shown above that

d(v, t) = 1+ d(v, t ′) = d(v)+ d(t),

which completes the proof. ��
Theorem 5 describes conditions under which properties of epistemic temporal

models are preserved under updates. We will use this theorem later to show that a
well-studied atemporal Dynamic Epistemic Logic approach to reasoning about time
is limited to the class of Kripke models that necessarily satisfy all of the properties
we have defined. This highlights one of the key advantages of our DETL framework:
it may be used to reason about situations that do or do not satisfy these (or other)
properties. The choice is left to the user.

6 Connections with previous work

6.1 RDETL

Theorem 5 studied the preservation of Kripke model properties under certain actions.
We chose these properties because they have been of interest in many studies of time
in Dynamic Epistemic Logic (van Benthem et al. 2009, 2007; Dégremont et al. 2011;
Sack 2010, 2008;Yap 2011).We now focus our attention on the class ofKripkemodels
that satisfy these properties. This provides a paradigmatic example demonstrating how
our DETL framework can be used to reason about a well-studied account of time in
Dynamic Epistemic Logic.

Definition 9 (Restricted (forest-like) models) A Kripke model M is restricted (or
forest-like) if it satisfies persistence of facts, depth-definedness, knowledge of the past,
knowledge of the initial time, uniqueness of the past, and perfect recall (Definition 7).
Let R be the class of all the restricted Kripke models and R∗ the class of all pointed
restricted Kripke models.

The restricted models satisfy all the constraints on Kripke models given in Defini-
tion 7. Although synchronicity was not explicitly named as one of the properties of a
restricted model, it is not hard to show that synchronicity does follow from the other
properties (argue by induction on the depth of worlds, making use of perfect recall,
knowledge of the past, and knowledge of the initial time).

We now define a fragment of LDETL whose update modals preserve these restricted
models.

Definition 10 (Language LRDETL) The language LRDETL of restricted DETL is the
sublanguage of LDETL obtained by removing all actions [U, s] that are based on
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Fig. 8 The theory RDETL; formulas and actions all come from LRDETL

an action model U that fails to satisfy one or more of persistence of facts, depth-
definedness, knowledge of the past, history preservation, knowledge of the initial
time, uniqueness of the past, or perfect recall. This removal applies recursively to
preconditions as well.

The restrictions on the action models in LRDETL are those that appear in the Preser-
vation Theorem (Theorem 5). Hence updating a restricted model by an action model
in A(LRDETL) yields another restricted model.

Definition 11 (RDETL Semantics)WewriteM, w |�RDETL ϕ tomean that (M, w) ∈
R∗ and M, w |� ϕ. We write |�RDETL ϕ to mean that M, w |� ϕ for every (M, w) ∈
R∗.

6.1.1 Proof system for RDETL

Definition 12 (RDETL Theory) The theory of Restricted Dynamic Epistemic Tem-
poral Logic, RDETL, is defined in Fig. 8. We write �RDETL ϕ to mean that ϕ is a
theorem of RDETL.

Theorem 6 (Soundness and Completeness for RDETL) �RDETL ϕ iff |�RDETL ϕ for
each ϕ ∈ LRDETL.

Proof Theorem 3 already establishes the soundness of the DETL schemes and rules.
Soundness for the remaining schemes is straightforward to prove.

The completeness proof can be divided into two stages. First, prove the Reduc-
tion Theorem: every LRDETL-formula is RDETL-provably equivalent to an action
model-free formula in LSETL. This follows by the proof of Theorem 2. Second, prove
completeness of action model-free formulas with respect to the class of restricted
Kripke models: �RDETL ψ for a given ψ ∈ LSETL implies there is a restricted situa-
tion (M, w) for which M, w �|� ψ . We outline a proof of the second stage.

To begin, fix ψ ∈ LSETL satisfying �RDETL ψ . For each LSETL-formula χ , we
define the [Y ]-nesting depth dY (χ) of χ by the following induction on the construction
of χ :
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dY (⊥)
def= 0

dY (p)
def= 0

dY (¬ϕ)
def= dY (ϕ)

dY (ϕ ∧ ψ)
def= max{dY (ϕ), dY (ψ)}

dY (�aϕ)
def= dY (ϕ)

dY ([Y ]ϕ)
def= 1+ dY (ϕ)

Let m
def= dY (¬ψ) be the [Y ]-nesting depth of ¬ψ . We construct the canonical model

Ω = (WΩ,→Ω, �Ω, VΩ) for the theoryRDETL: theworlds inWΩ are themaximal
RDETL-consistent sets of formulas, the binary relations are defined canonically (i.e.,
Γ →Ω

a Δ iff Γ a def= {χ | �aχ ∈ Γ } ⊆ Δ and Γ �ΩΔ iff Γ Y def= {χ | [Y ]χ ∈
Γ } ⊆ Δ), and the valuation is defined canonically as well (i.e., VΩ(p)

def= {Γ ∈ WΩ |
p ∈ Γ }). The Truth Lemma (i.e., the statement that ϕ ∈ Γ iff Ω,Γ |� ϕ for each
ϕ ∈ LSETL) is proved in the usual way, and hence we have Ω,Γ¬ψ �|� ψ for a world
Γ¬ψ ∈ WΩ obtained by a Lindenbaum construction as a maximalRDETL-consistent
extension of the RDETL-consistent set {¬ψ}. However, we cannot guarantee that
(Ω, Γ¬ψ) ∈ R∗. So to complete the argument, we perform a sequence of stepwise
truth-preserving transformations on the canonicalmodel in order to construct a pointed
model (F, A) ∈ R∗ satisfying the property that F, A �|� ψ .

Unraveling: We define the Kripke model Ω × Z as the following unraveling of
Ω in the temporal direction:

– WΩ×Z def= WΩ × Z.
– For each a ∈ A : (w, k)→Ω×Z

a (w′, k′) if and only if w →Ω
a w′ and k = k′.

– (w, k) �Ω×Z(w′, k′) if and only if w �Ωw′ and k′ = k − 1.
– VΩ×Z(p)

def= VΩ(p)× Z.

By induction on the construction of LSETL-formulas, we have Ω × Z, (w, k) |� ϕ if
and only if Ω,w |� ϕ for each k ∈ Z and each ϕ ∈ LSETL.

Generated submodel: Let M be the model generated by the world (Γ¬ψ,m) in
Ω × Z using the relations �Ω×Z and→Ω×Z

a for each a ∈ A :

– WM def= {(w, k) ∈ Ω × Z | (Γ¬ψ,m)( �Ω×Z ∪⋃
a∈A →Ω×Z

a )∗(w, k)}, where
R∗ denotes the reflexive-transitive closure of a binary relation R.

– For each a ∈ A :→M
a

def=→Ω×Z
a ∩ (WM ×WM ).

– �M
def= �Ω×Z ∩ (WM ×WM ).

– V M (p)
def= VΩ×Z(p) ∩WM .

By induction on the construction of LSETL-formulas, we have M, (w, k) |� ϕ if and
only if Ω × Z, (w, k) |� ϕ for each (w, k) ∈ WM and ϕ ∈ LSETL.

Trimming: For each LSETL-formula ϕ, we let Sub(ϕ) be the set of all subformulas
of ϕ. If S and S′ are sets of LSETL-formulas, we define the following sets of LSETL-
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formulas:

Sub(S)
def= ⋃

χ∈S Sub(χ)

¬S def= {¬χ | χ ∈ S}
�S

def= ⋃
a∈A {�aχ | χ ∈ S}

[Y ]S def= {[Y ]χ | χ ∈ S}
S→ S′ def= {χ → χ ′ | χ ∈ S ∧ χ ′ ∈ S′}
S ↔ S′ def= {χ ↔ χ ′ | χ ∈ S ∧ χ ′ ∈ S′}

For each k ∈ N and LSETL-formula ϕ, we let Subk(ϕ) be the set of subformulas of ϕ

with [Y ]-nesting depth at most k and we define the set of LSETL-formulas Clk(ϕ) by
the following induction:

Cl0(ϕ)
def= Sub0(ϕ) ∪ {⊥}

Clk+1(ϕ)
def= Subk+1(ϕ) ∪

Sub([Y ]Clk(ϕ)↔ (¬[Y ]Clk(ϕ)→ Clk(ϕ))) ∪
Sub(¬[Y ]Clk(ϕ)→ [Y ]¬Clk(ϕ)) ∪
Sub(¬[Y ]Clk(ϕ)→ �¬[Y ]Clk(ϕ)) ∪
Sub([Y ]Clk(ϕ)→ �[Y ]Clk(ϕ))

Observe that Clk(ϕ) contains LSETL-formulas of [Y ]-nesting depth at most k. Note
also that⊥ ∈ Clk(ϕ) for each k. We define a Kripke model M ′ consisting of all worlds
(w, k) ∈ WM satisfying 0 ≤ k ≤ m with all other components relativized to this set
of worlds:

– WM ′ def= {(w, k) ∈ WM | 0 ≤ k ≤ m}.
– For each a ∈ A :→M ′

a
def=→M

a ∩ (WM ′ ×WM ′
).

– �M
′ def= �M ∩ (WM ′ ×WM ′

).
– V M ′

(p)
def= V M (p) ∩WM ′

.

By an induction on k satisfying 0 ≤ k ≤ m with a subinduction on the construction
of LSETL-formulas of [Y ]-nesting depth at most k, we can show that for each ϕ ∈
Clk(¬ψ) and (w, k) ∈ WM ′

, we have M ′, (w, k) |� ϕ if and only if M, (w, k) |� ϕ.
Filtration: We define an equivalence relation ≡ on elements of WM ′

by setting
(w, k) ≡ (w′, k′) if and only if k = k′ and for all ϕ ∈ Clk(¬ψ), we have that
M ′, (w, k) |� ϕ iff M ′, (w′, k′) |� ϕ. For a world (w, k) ∈ WM ′

, we write [w, k] to
denote the equivalence class

[w, k] def= {(w′, k′) ∈ WM ′ | (w′, k′) ≡ (w, k)}

of (w, k) under ≡. We define a Kripke model F by the equivalence relation ≡ as
follows:
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– WF def= {[w, k] | (w, k) ∈ WM ′ }.
– For each a ∈ A : A →F

a B iff ∃(w, k) ∈ A and ∃(v, j) ∈ B with (w, k) →M ′
a

(v, j).
– A �F B iff ∃(w, k) ∈ A and ∃(v, j) ∈ B with (w, k) �M

′
(v, j).

– V F (p)
def= {A ∈ WF | p ∈ Clm(¬ψ) and ∀(w, k) ∈ A : M ′, (w, k) |� p}.

By induction on k satisfying 0 ≤ k ≤ m with a subinduction on the construction
of LSETL-formulas of [Y ]-nesting depth at most k, we can show that for each ϕ ∈
Clk(¬ψ) and [w, k] ∈ WF , we have F, [w, k] |� ϕ if and only if M ′, (w′, k′) |� ϕ

for each (w′, k′) ∈ [w, k].
Truth preservation: By what we have shown above, it follows that for each

(w, k) ∈ WΩ × {0, . . . ,m} and each ϕ ∈ Clk(¬ψ), we have Ω,w |� ϕ if and only
if F, [w, k] |� ϕ. In particular, we have F, [Γ¬ψ,m] �|� ψ . So to complete the proof,
it suffices for us to show that F ∈ R (i.e., F is a restricted model).

F is a restricted model: Before we proceed, note that (x, k) →M ′
a (x ′, k′)

implies k = k′ and that (x, k) �M ′
(x ′, k′) implies k = k′ − 1. Thus if A →F

a B,
then all pairs in A and B have the same second coordinate. Also, if A �F B, then all
pairs in A have a second coordinate one less than the second coordinate of the pairs
in B.

– F satisfies uniqueness of the past:

([w′, k′]�F [w, k] ∧ [w′′, k′′]�F [w, k])⇒ ([w′, k′] = [w′′, k′′]).

Suppose not. From [w′, k′] �F [w, k] and [w′′, k′′] �F [w, k], we have k′ =
k′′ = k − 1. From [w′, k − 1] �= [w′′, k − 1], it follows that there exists ϕ ∈
Clk−1(¬ψ) such that, without loss of generality, F, [w′, k−1] |� ϕ and F, [w′′, k−
1] �|� ϕ. Defining

χ
def= ¬[Y ]ϕ → [Y ]¬ϕ,

we have χ ∈ Clk(¬ψ) and F, [w, k] �|� χ and hence that Ω,w �|� χ by Truth

preservation. But then it follows by the Truth Lemma that the maximal consis-
tent set w fails to contain an instance χ of the Uniqueness of the Past axiom, a
contradiction.

– F satisfies persistence of facts:

[w, k]�F [v, j] ⇒ ([w, k] ∈ V F (p)⇔ [v, j] ∈ V F (p)).

Suppose not. Then we have

¬([w, k] ∈ V F (p)⇔ [v, j] ∈ V F (p)). (6)

Let χ
def= [Y ]p ↔ (¬[Y ]⊥ → p). Since F satisfies uniqueness of the past, it

follows from (6) that F, [v, j] �|� χ . Since [w, k] �F [v, j], we have j ≥ 1.
Further, it follows by (6) that [w, k] ∈ V F (p) or [v, j] ∈ V F (p). Applying the
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definition of V F (p), we have that p ∈ Clm(¬ψ) and therefore that p ∈ Cl0(¬ψ).
So since j ≥ 1, we have χ ∈ Cl j (¬ψ). But then it follows from F, [v, j] �|� χ by
Truth preservation that Ω, v �|� χ . Applying the Truth Lemma, the maximal
consistent set v fails to contain an instance χ of the Persistence of Facts axiom, a
contradiction.

– F is depth-defined: d([w, k]) �= ∞.
For each [v, j] ∈ WF , we have 0 ≤ j ≤ m. Further, [w′, k′] �F [v′, j ′] implies
j ′ = k′ − 1. It follows that d([w, k]) �= ∞.

– F satisfies knowledge of the past:

([w′, k′]�F [w, k] →F
a [v, j])⇒ ∃[v′, j ′]([v′, j ′]�F [v, j]).

Suppose not. Letting χ
def= ¬[Y ]⊥ → �a¬[Y ]⊥, it follows that F, [w, k] �|�

χ . Further, from [w′, k′] �F [w, k], we have k ≥ 1 and therefore that χ ∈
Clk(¬ψ). But then it follows by Truth preservation thatΩ,w �|� χ . Applying
the Truth Lemma, the maximal consistent set w fails to contain an instance χ of
the Uniqueness of the Past axiom, a contradiction.

– F satisfies knowledge of the initial time:

[w, k] →F
a [v, j] ∧ ¬∃[w′, k′]([w′, k′]�F [w, k])

⇒ ¬∃[v′, j ′]([v′, j ′]�F [v, j]).

Suppose [w, k] →F
a [v, j] and ¬∃[w′, k′]([w′, k′] �F [w, k]). If k = 0, then it

follows by [w, k] →F
a [v, j] that j = 0 and therefore that ¬∃[v′, j ′]([v′, j ′] �F

[v, j]) by Trimming. So let us assume that k > 0. Further, toward a contradiction,
we assume that ∃[v′, j ′]([v′, j ′] �F [v, j]). Letting χ

def= [Y ]⊥ → �a[Y ]⊥, it
follows that F, [w, k] �|� χ . But since k > 0, we have χ ∈ Clk(¬ψ) and hence it
follows by Truth preservation that Ω,w �|� χ . Applying the Truth Lemma,
the maximal consistent set w fails to contain an instance χ of the Knowledge of
the Initial Time axiom, a contradiction.

– F satisfies perfect recall:

([w, k]�F [v, j] →F
a [v′, j ′])⇒ ∃[w′, k′]([w, k] →F

a [w′, k′]�F [v′, j ′]).

Suppose [w, k] �F [v, j] →F
a [v′, j ′]. Then k + 1 = j = j ′. Now [v, k +

1] = [v, j] →F
a [v′, j ′] = [v′, k + 1] implies ∃(v∗, k + 1) ∈ [v, k + 1] and

∃(v′∗, k+1) ∈ [v′, k+1]with (v∗, k+1)→M ′
a (v′∗, k+1). Hence v∗ →Ω

a v′∗. Now
from [w, k] �F [v, j] = [v, k + 1], we have that F, [v, k + 1] |� ¬[Y ]⊥. Since
k + 1 ≥ 1, it follows that ¬[Y ]⊥ ∈ Clk+1(¬ψ) and therefore we have by Truth

preservation thatΩ, v∗ |� ¬[Y ]⊥. By the definition of truth, it follows that there
is a w∗ ∈ WΩ with w∗ �Ω v∗. But then [w∗, k] �F [v, j] = [v, k + 1], from
which it follows by uniqueness of the past for F that [w∗, k] = [w, k] and therefore
that (w∗, k) ∈ [w, k]. Now Ω satisfies perfect recall (for if it did not, we could
find a violation of an instance of the Perfect Recall axiom at a maximal consistent
set, a contradiction). Therefore, since we have w∗ �Ω v∗ →Ω

a v′∗, it follows by
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perfect recall for Ω that there is a w′∗ ∈ WΩ satisfying w∗ →Ω
a w′∗ �Ω v′∗. But

then [w, k] = [w∗, k] →Ω
a [w′∗, k]�Ω [v′∗, k + 1] = [v′, k + 1] = [v′, j]. ��

6.2 YDEL

In this section, we relate DETL to a more conservative approach to adding time to
DEL, which, as is generally studied in the literature (Baltag and Moss 2004; Baltag
et al. 1998, 2008; van Benthem et al. 2006; van Ditmarsch et al. 2007), does not use
� arrows in its action models. Further, the semantics of DEL does not use Kripke
models with designated time-keeping arrows �. In order to draw this comparison,
we will define an extension of DEL called “Yesterday Dynamic Epistemic Logic,” or
YDEL (see Sack 2008, 2010; Yap 2011), that records a history of the updates made.
We will then show that YDEL reasoning can be done within the DETL setting, since
(modulo translation) YDEL is sound and complete with respect to a particular class
of DETL models.

Definition 13 LYDEL is the atemporal fragment of LDETL. For reasons explained in
a moment, we assume that the special symbol 
 is used neither as a world nor as an
event in LYDEL.

We will evaluate YDEL formulas on restricted Kripke models (Definition 9).

Definition 14 (YDEL Semantics) We define a relation |�YDEL between pointed mod-
els inR∗ and LYDEL-formulas using standard Boolean cases and the following modal
cases.

M, w |�YDEL �aϕ iff M, v |�YDEL ϕ for each v ←M
a w

M, w |�YDEL [Y ]ϕ iff M, v |�YDEL ϕ for each v �M w

M, w |�YDEL [U, s]ϕ iff M, w |�YDEL preU (s) implies M ⊕U, (w, s) |�YDEL ϕ

where

WM⊕U def= (WM × {
}) ∪ {(v, t) ∈ WM

×WU | M, v |�YDEL preU (t)}
(v, t)→M⊕U

a (v′, t ′) iff ((t, t ′ �= 
) & v →M
a v′ & t →U

a t ′) or
((t = t ′ = 
) & v →M

a v′)
(v, t) �M⊕U (v′, t ′) iff (t = 
 & t ′ �= 
 & v = v′) or

((t = t ′ = 
) & v �M v′)
(v, t) ∈ V M⊕U (p) iff v ∈ V M (p)

The forthcoming Corollary 1 shows that M ⊕ U ∈ R whenever M ∈ R and
U is atemporal. The function of the symbol 
 is to serve as an epistemic past state,
preserving a copy of M in M ⊕ U (Lemma 1). Since YDEL uses atemporal action
models, which contain no� arrows, themechanism for preserving the previousmodel
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Fig. 9 A situation (M, w) and a YDEL action model (U, s)

Fig. 10 The situation
(M ⊕U, (w, s)) resulting from
application of (U, s) to (M, w),
both from Fig. 9. Agent arrows
→x are here implicitly closed
under transitivity
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M is “hardcoded” in the semantics. However, by defining a translation from LYDEL
to LDETL (Definition 15), we will be able to show that “atemporal” YDEL reasoning
can be captured in DETL.

Lemma 1 Let (M, w) be a situation and (U, s) be an atemporal action satisfying
M, w |� preU (s). The function f : WM → WM⊕U defined by f (w)

def= (w, 
) is a
bisimulation.

Proof w and (w, 
) have the same valuation. If f (w) = (w, 
) →M⊕U
a (v, t), then

t = 
 and w →M
a v. If w →M

a v, then (w, 
)→M⊕U
a (v, 
). ��

Before defining the translation fromYDEL toDETL, we will first show howYDEL
works by illustrating the way in which M ⊕U is constructed.

Example 6 Figure 9 pictures an initial situation and a YDEL action. In the initial
situation, neither agent knows whether p is true. The action informs a that p is true
but tells b only that a was either informed of p or provided with trivial information.
After applying the action to the situation, we obtain the resultant situation in Fig. 10.

We now show how YDEL reasoning is captured in DETL.

6.2.1 Translation of LYDEL into LDETL

We define a translation from YDEL formulas and action models to DETL formulas
and action models. This translation acts on action models by adding a new epistemic
past state 
 along with an arrow 
 � s to each action s. See Fig. 11 for an example.

123



Synthese (2016) 193:813–849 843

Fig. 11 The action (U �, s)
obtained by applying the
translation � to the YDEL action
model U from Fig. 9

ps t

a, b

b

a, b

a, b

U

Definition 15 (� Translation) We define a function

� : LYDEL ∪ Aa(LYDEL)→ LDETL ∪ A(LDETL)

as follows: ⊥� = ⊥, p� = p, � commutes with unary Boolean connectives and
with non-[U, s] modal connectives, � distributes over binary Boolean connectives,
([U, s]ϕ)� = [U �, s]ϕ�, and U � is defined by taking

WU � def= WU ∪ {
}
s →U �

a s′ iff s →U
a s′ or s = s′ = 


s �U �
s′ iff s = 
 and s′ ∈ WU

preU
�
(s)

def= preU (s)� for s ∈ WU

preU
�
(
)

def= �

The function � transforms the atemporal action models used by YDEL into DETL
action models having epistemic past states. As it turns out, such action models are in
fact RDETL action models (Definition 10).

Lemma 2 If U is an atemporal action model, then U � ∈ A(LRDETL).

The proof of this lemma is straightforward. It follows that the image of � is contained
in LRDETL ∪A(LRDETL). This containment is strict: every history inU � has length 1,
while the length of histories in RDETL action models is unbounded.

The situation (M ⊕U, (w, s)) from Fig. 10 was produced by applying the YDEL
action (U, s) to the initial situation (M, w), both from Fig. 9. It is not difficult to verify
that we obtain the same final situation by applying theRDETL action (U �, s); that is,

(M ⊕U, (w, s)) = (M[U �], (w, s)).

The following theorem shows that this result holds in general.

Theorem 7 For each (M, w) ∈ R∗, each ϕ ∈ LYDEL, and each U ∈ Aa(LYDEL):
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(a) M ⊕U = M[U �], and
(b) M, w |�YDEL ϕ iff M, w |�RDETL ϕ�.

Proof Set L0
def= LSETL. Once Li is defined, define the language Li+1 and the set

Aa∗(Li+1) of pointed atemporal action models over Li+1 by the following grammar:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | �aϕ | [Y ]ϕ | [U, s]ϕ
ψ ∈ Li , a ∈ A , (U, s) ∈ Aa∗(Li )

Note that the preconditions of any U ∈ Aa(Li+1) all come from Li . Further,
LYDEL =

⋃
i∈N Li . We prove by induction on i that we have Si , which we define

as the conjunction of the following two statements:

1. For each M ∈ R and each U ∈ Aa(Li ): M ⊕U = M[U �].
2. For each (M, w) ∈ R∗ and each ϕ ∈ Li :

M, w |�YDEL ϕ iff M, w |�RDETL ϕ�.

The base case i = 0 is immediate. For the induction step, we assume that Si holds (the
“induction hypothesis”) and prove that Si+1 holds. We begin with Statement 1. We

must show that WM⊕U = WM[U �], that→M⊕U
a =→M[U �]

a , that �M⊕U = �M[U �],
and that V M⊕U = V M[U �]. Proceeding, we have

WM⊕U = (WM × {
}) ∪ {(v, t) ∈ WM ×WU | M, v |�YDEL preU (t)}
= (WM × {
}) ∪ {(v, t) ∈ WM ×WU | M, v |�RDETL preU (t)�}
= {(v, t) ∈ WM ×WU � | M, v |�RDETL preU (t)�}
= {(v, t) ∈ WM ×WU � | M, v |�RDETL preU

�

(t)}
= WU �

The first equality follows by definition ofWM⊕U . The second follows by the induction
hypothesis. The third follows by the definition of U �; in particular, 
 ∈ WU �

has
precondition�. The fourth equality follows by the definition ofU �. The fifth equality
follows by the definition of WM[U �].

Next, we have (v, t)→M⊕U
a (v′, t ′) by definition if and only if v →M

a v′ and either
– t, t ′ �= 
 and t →U

a t ′; or
– t = t ′ = 
.

Further, we have (v, t) →M[U �]
a (v′, t ′) by definition if and only if v →M

a v′ and
t →U �

a t ′. Thus “(v, t) →M[U �]
a (v′, t ′) if and only if (v, t) →M⊕U

a (v′, t ′)” (which
we aim to show) is equivalent to “t →U �

a t ′ if and only if t = t ′ = 
 or both t, t ′ �= 


and t →U
a t ′.” But this follows because 
 /∈ WU by assumption (Definition 13) and

we have t →U �

a t ′ if and only if t →U
a t ′ or t = t ′ = 
 (Definition 15). Conclusion:

→M⊕U
a =→M[U �]

a .
Next, we have (v, t) �M⊕U (v′, t ′) by definition if and only if
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– t = 
, t ′ �= 
, and v = v′; or
– t = t ′ = 
 and v �M v′.

Further, we have (v, t) �M[U �] (v′, t ′) by definition if and only if

– v �M v′, t = t ′, and t is a past state; or
– v = v′ and t �U �

t ′.

In the action modelU �, event 
 is the unique past state, the only event with an outgoing
� arrow, and has an outgoing � arrow to every other event. It follows that we have
(v, t) �M[U �] (v′, t ′) if and only if “v �M v′ and t = t ′ = 
” or “v = v′, t = 
,
and t ′ �= 
.” But this is equivalent to the conditions defining (v, t) �M⊕U (v′, t ′).
Conclusion: �M⊕U = �M[U �].

Finally, we have (v, t) ∈ V M⊕U (p) if and only if v ∈ V M (p) if and only if
(v, t) ∈ V M[U �](p). Here we made tacit use of the fact that WM⊕U = WM[U �].
Conclusion: V M⊕U = V M[U �].

This completes the proof of Statement 1. The proof of Statement 2 then proceeds by
a sub-induction on the construction of Li+1-formulas. Most cases are obvious, so we
only address the case for Li+1-formulas [U, s]ϕ. Proceeding, we have M, w |�YDEL
[U, s]ϕ if and only if M, w �|�YDEL preU (s) or M ⊕ U, (w, s) |�YDEL ϕ. By State-
ment 2 of the induction hypothesis, the latter is equivalent to “M, w �|�RDETL preU (s)�

or M⊕U, (w, s) |�RDETL ϕ�,” which is itself equivalent to “M, w �|�RDETL preU
�
(s)

or M[U �], (w, s) |�RDETL ϕ�” (by the definition of U � for the left disjunct and
Statement 1 of the induction hypothesis for the right). But this is equivalent to
M, w |�RDETL [U �, s]ϕ� by the RDETL semantics. Since [U �, s]ϕ� = ([U, s]ϕ)�,
the result follows. ��

A corollary of Theorem 7 is that restricted models are closed under the YDEL
update operation M �→ M ⊕U .

Corollary 1 If M ∈ R,U ∈ A(LYDEL), and WM⊕U �= ∅, then M ⊕U ∈ R.

Proof Fix M ∈ R andU ∈ A(LYDEL)withWM⊕U �= ∅. SinceU ∈ A(LYDEL) if and
only if U is atemporal (Definition 13), it follows by Lemma 2 that U � ∈ A(LRDETL).
Applying Preservation (Theorem 5) and the definition of LRDETL (Definition 10), we
have M[U �] ∈ R. By Theorem 7, M ⊕U = M[U �] ∈ R. ��

6.2.2 Connecting the theories of YDEL and RDETL

Definition 16 The theory YDEL is defined in Fig. 12. Note that all axioms and rules
refer to formulas in LYDEL and hence to action models in A(LYDEL).

Theorem 8 The theory of YDEL is sound and complete with respect to R∗.

Proof Soundness for most of the axioms is straightforward. As such, we will only go
through the proofs for the [Y ]-reduction axiom and (UN).
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Fig. 12 The theory YDEL; formulas are all in LYDEL

– Soundness for [U, s][Y ]ϕ ↔ (preU (s)→ ϕ).
We first prove the left-to-right direction of the equivalence. Suppose M, w |�
[U, s][Y ]ϕ and M, w |� preU (s). This implies that for every (v, t) �M⊕U (w, s),
we haveM⊕U, (v, t) |� ϕ. By definition ofM⊕U , we have (w, 
) �M⊕U (w, s),
and so M ⊕U (w, 
) |� ϕ. By Lemma 1, M, w |� ϕ.
Nowwe prove the right-to-left direction. SupposeM, w |� preU (s) andM, w |� ϕ

(the case where M, w �|� preU (s) is immediate). By definition of M ⊕ U and
uniqueness of the past, (w, t) �M⊕U (w, s) implies t = 
. By the fact that
M, w |� ϕ and Lemma 1, we haveM⊕U, (w, 
) |� ϕ. HenceM, w |� [U, s][Y ]ϕ.

– Soundness for (UN) follows from the fact that restricted models are closed under
the operation M �→ M ⊕U (Corollary 1).

Completeness follows a similar argument as was used for RDETL (Theorem 6). ��
Corollary 2 For each ϕ ∈ LDETL, we have:

�YDEL ϕ iff �RDETL ϕ�.

Proof By Theorems 8, 7, and 6. ��

7 Conclusion

We have presentedDynamic Epistemic Temporal Logic (DETL), a general framework
for reasoning about transformations on Kripke models with a designated timekeeping
relation �. Our “temporal” action models are a generalization of the atemporal action
models familiar from Dynamic Epistemic Logic. We showed by way of a number of
examples how temporal action models can be used to reason about and control the
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flow of time. We also highlighted some key design choices that allow this framework
to avoid conceptual complications relating to time and that enable us to define actions
that preserve a complete copy of the past state of affairs. This leads to one natural
choice for understanding time: the time of a world is the depth of that world (i.e.,
the maximum number of “backward” temporal steps one can take from that world,
whenever this maximum exists).

Kripke models with a designated timekeeping relation are essentially the models
of Epistemic Temporal Logic. Therefore, one way of understanding our work is as
follows: we extend the domain of action model operations from those on (atemporal)
Kripke models to (what are essentially) the models of Epistemic Temporal Logic. We
showed that a number of properties that may arise in the latter models—such as Persis-
tence of Facts, Perfect Recall, and Synchronicity—are preserved under the application
of temporal actionmodels that themselves satisfy certain related properties. Thismakes
it possible to use our DETL framework to develop Dynamic Epistemic Logic-style
theories of temporal Kripke models. Such logics can be used to reason about objective
changes in time along with the agents’ basic and higher-order knowledge and beliefs
about changes in this structure. As an example, we showed how the DETL approach
can be used to define the logic RDETL of “restricted” Dynamic Epistemic Temporal
Logic, which is essentially the Dynamic Epistemic Logic of synchronous actions with
the “yesterday” temporal operator [Y ]. We proved thatRDETL reasoning captures the
reasoning of YDEL, the first Dynamic Epistemic Logic of synchronous time with the
yesterday modal.

TheDETL approach is not, however, limited to synchronous systems.We presented
one example where a synchronous model is transformed into an asynchronous one,
leaving one agent sure that two clock ticks occurred, and the other uncertain as to
whether it was one or two. We contrasted this with a synchronous variant in which
the agents’ knowledge about atemporal information is the same, but the knowledge
change is compressed into a single clock tick that is common knowledge. Here we
see that the difference is easily discernible by a simple examination of the temporal
action models involved. In essence, our theory extends the types of knowledge change
describable by atemporal action models to the temporal setting, which gives us a great
deal of control as to the relationship between how much time passes and what the
agents perceive of this passage. And we of course also inherit many features (and
drawbacks) of the atemporal action model approach.

One direction for future work is to extend our temporal language to include more
than just the one-step “yesterday” operator Y . For example, it would also be interesting
(and challenging) to consider backward-looking “since” operator and other operators
familiar from temporal logic (Goldblatt 2006).10

In closing, we mention a recent study of time in Dynamic Epistemic Logic that
looks at asynchronous systems (Dégremont et al. 2011). The basic idea is that an
atemporal action model operates on a temporal Kripke model in such a way that
an agent experiences a single clock tick if her knowledge of atemporal information
changes, butwill otherwise be uncertain as towhether the clock ticked. So, for example,

10 Thanks to an anonymous reviewer for this suggestion.
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if agent a does not know p, a public announcement of p will transform her knowledge
in a synchronous manner: the clock will tick once, she will learn p, and she will know
that the clock ticked once. But if the public announcement of p then occurs again, the
clock will tick but, since she already knows p and hence her atemporal knowledge
will not change, she will be uncertain as to whether the clock ticked once or not at all.
The result is an asynchronous situation.

Though we have shown (by way of an example) that DETL can reason about some
asynchronous updates, we have not proved that it can reason about every such update.
Nor have we shown that it can reason about a certain class of asynchronous updates
that can be independently identified according to some desirable properties it satisfies.
In particular, it is not clear if there is a DETL action model for all the updates that
can be produced by the framework of Dégremont et al. (2011). Moreover, the latter
approach is based on “protocols” constraining the sequences of actions that can occur,
something we have left out of the present study for simplicity. Another complication
is that the asynchronous updates of Dégremont et al. (2011) essentially insert agent
arrows→a based on whether a certain knowledge condition is satisfied, whereas our
temporal action models do not allow us to conditionally insert arrows. This suggests
that there may be connections with “arrow update logics” (Kooi and Renne 2011a, b)
that allow such conditions on arrows. In particular, it has been shown that generalized
arrowupdates are equivalent to atemporal actionmodels in termsof update expressivity
(Kooi and Renne 2011b). Therefore, an arrow update version of DETL might suggest
a natural way to represent asynchronous updates like those of Dégremont et al. (2011),
and this may turn out to be equivalent in update expressivity to our present approach,
just as in the atemporal case. If this is so, then it may be the case that “conditional”
arrow changes are already within the scope of our current approach, albeit indirectly.

In conclusion, we believe that DETL presents a viable option for developing
Dynamic Epistemic Logic-style theories of Epistemic Temporal Logic. While this
paper [and its early predecessor (Renne et al. 2009)] present the first steps of this
study, there is clearly still much more work to be done.
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