
Software Architecture Improvement 
through Test-Driven Development 

David S. Janzen 
University of Kansas 

Electrical Engineering and Computer Science 
Lawrence, Kansas USA 

djanzen@ku.edu 

ABSTRACT 
This research involves empirical software engineering stud-
ies applied in academic and professional settings to assess 
the influence of test-driven development on software quality. 
Particular focus is given to internal software design quality. 
Pedagogical implications are also examined. Initial results 
and the study protocol and plans will be presented. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Evolutionary prototyping, object-oriented design meth-
ods 

General Terms 
Design, Verification 

Keywords 
Test-driven development, agile methods 

1. BACKGROUND AND PURPOSE 
Despite a half century of advances, the software construc-

tion industry still shows signs of immaturity [1]. Professional 
software development organizations continue to struggle to 
produce reliable software in a predictable and repeatable 
manner. While a variety of development practices are advo-
cated that might improve the situation, developers are often 
reluctant to adopt new, potentially better practices based on 
anecdotal evidence alone. Empirical evidence of a practice’s 
efficacy are rarely available or conclusive and adopting new 
practices is time-consuming, expensive, and risky. 

Test-driven development (TDD) is a new approach that 
offers the potential to significantly improve the state of soft-
ware construction. TDD is a disciplined software develop-
ment practice that focuses on software design by first writing 
automated unit-tests followed by production code in short, 
frequent iterations [2]. TDD focuses the developer’s atten-
tion on a software’s interface and behavior while growing 
the software architecture organically. 

TDD has gained recent attention with the popularity of 
the Extreme Programming (XP) [2] agile software develop-
ment methodology. Although TDD has been applied spo-

radically in various forms for several decades [7], possible 
definitions have only recently been proposed. While some 
XP practices like pair programming have enjoyed significant 
research [10], advocates of TDD rely primarily on anecdotal 
evidence of TDD’s benefits. A few studies have looked at 
TDD as a testing practice to remove defects [5, 11, 3, 9, 8, 
4]. However, there is no research on the broader efficacy of 
TDD, nor on its effects on internal design quality outside a 
pilot study for this work [6]. Further, no empirical research 
has examined the appropriate place or teaching techniques 
for introducing TDD in the undergraduate curriculum. 

2. RESEARCH GOALS 
This research will be the first comprehensive evaluation 

of how TDD effects overall software architecture quality be-
yond just defect density. Empirical software engineering 
techniques will be applied to evaluate the ability of TDD 
to produce better software designs than more traditional 
test-last approaches produce in terms of reusability, exten-
sibility, and maintainability. Further, this research will ex-
amine defect density and whether TDD takes more effort 
than traditional test-last approaches. 

In addition, this research will make important pedagogical 
contributions. The research will contribute a new approach 
to teaching that incorporates teaching with automated tests 
called “test-driven learning.” The research will demonstrate 
whether undergraduate computer science students can learn 
to apply TDD, and it will examine at what point in the 
curriculum TDD is best introduced. 

If TDD proves to improve software quality at minimal 
cost, and if this research shows that students can learn and 
benefit from TDD from early on, then this research can have 
a significant impact on the state of software construction. 
Software development organizations will recognize the ben-
efits of TDD as both a design and testing approach, and they 
will be convinced to adopt TDD in appropriate situations. 
New textbooks and teaching materials can be written apply-
ing the test-driven learning approach. As students learn to 
take a more disciplined approach to software development 
with TDD, they will carry this into professional software 
organizations and improve the overall state of software con-
struction. 

3. APPROACH AND EVALUATION 
This research will consist of designing and administer-

ing a series of longitudinal empirical studies with university 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19154076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


students and professional programmers. Controlled experi-
ments will be conducted in a set of undergraduate courses 
from introductory programming through upper-level soft-
ware engineering courses. A similar experiment will be con-
ducted in one graduate course which consists largely of pro-
fessional programmers. Finally a case study or controlled 
experiment will be conducted with more experienced pro-
grammers in a professional environment. 

Undergraduate programmers will be taught to write au-
tomated unit-tests integrated with course topics using a 
new approach called test-driven learning (TDL). The TDL 
approach involves modeling regular unit-testing in lecture 
and lab instruction through examples with automated tests. 
Most commonly, output statements are replaced with auto-
mated unit tests to demonstrate both the interface and the 
behavior of the code under investigation. Graduate and pro-
fessional programmers will be given more concentrated in-
struction on TDD and the use of automated unit-test frame-
works. 

Programmers will then be required to complete two pro-
gramming assignments. The study group will be asked to 
use test-driven development techniques while the control 
group will be asked to use a more traditional test-last ap-
proach. The assignments will be as large as possible within 
the constraints of the course or project, and the second as-
signment will build on or reuse significant parts of the first. 

At the beginning of the second project in lower-level aca-
demic settings, all programmers will be provided a solution 
to the first project that includes a full set of automated unit 
tests. In the second project, students may choose to build 
on either their own solution, or the solution provided. 

Code samples will be gathered at multiple points in the 
development process to determine the degree of testing, the 
degree of reuse, and the overall quality of code. Unit-test 
quantification and coverage metrics will be calculated for 
each programmer or project team. Software design qual-
ity will be measured by calculating a set of static metrics. 
Code samples will be examined with available software met-
rics tools. Traditional and object-oriented metrics will be 
examined including code size, cyclomatic complexity, and 
coupling measures such as fan-in, fan-out, and information 
flow. 

Reuse will be measured statically. Although many reuse 
metrics focus on reuse through inheritance, methods and 
classes reused with and without modification may be more 
useful measures particularly in the introductory courses. Such 
measures will be calculated between subsequent projects and 
when possible from one version to the next in the same 
project. This will help determine the degree to which the 
software evolves and the software’s stability. 

Final project submissions will be evaluated with a set of 
dynamic and static software metrics. Defect density will 
be measured through dynamic black-box acceptance tests. 
During the coding process, a random sample of program-
mers will be observed and interviewed regarding their use of 
test-driven development. Programmers will also be required 
to track the amount of time they spend on projects. Time 
spent extending the first assignment in the second assign-
ment will be an indicator of design quality in terms of reuse 
and extensibility. 

At the beginning and end of each study, programmers 
will be asked to complete a survey indicating their atti-
tudes toward testing and test-driven development. Student 

exam and course grades will be compared to determine if 
any correlation exists between test-driven development and 
academic performance. 

A sample of programmers from both the control and study 
groups will again be examined in subsequent courses or projects 
to determine voluntary use of test-driven development, long-
term attitude changes, and effects on software design quality. 

Results from all experiments will be compared and general 
conclusions may be drawn regarding the fit of TDD in the 
curriculum. Evidence of student ability to comprehend and 
apply TDD at certain levels, along with significant positive 
effects of TDD on software designs and student performance 
may provide strong motivation for introducing TDD in cer-
tain courses. 

Data collected from the experiments will be reported and 
analyzed statistically. Tests such as the two-sample t-test 
will be employed to determine if differences between the 
control and experimental groups are statistically significant. 
Initial results from a summer 2005 study in an undergradu-
ate software engineering course will be presented. 

4. REFERENCES 
[1] 2004 third quarter research report. Technical report, 

Standish Group International, Inc., 2004. 
[2] K. Beck. Aim, fire. Software, 18(5):87–89, Sept.-Oct. 

2001. 
[3] S. Edwards. Using test-driven development in the 

classroom: Providing students with automatic, 
concrete feedback on performance. In Proceedings of 
the International Conference on Education and 
Information Systems: Technologies and Applications 
EISTA’03, August 2003. 

[4] H. Erdogmus. On the effectiveness of test-first 
approach to programming. IEEE Transactions on 
Software Engineering, 31(1):1–12, January 2005. 

[5] B. George and L. Williams. A structured experiment 
of test-driven development. Information and Software 
Technology, 46(5):337–342, 2004. 

[6] R. Kaufmann and D. Janzen. Implications of 
test-driven development: a pilot study. In Companion 
of the 18th annual ACM SIGPLAN conference on 
Object-oriented programming, systems, languages, and 
applications, pages 298–299. ACM Press, 2003. 

[7] C. Larman and V. R. Basili. Iterative and incremental 
development: A brief history. IEEE Computer, 
36(6):47–56, June 2003. 

[8] M. Müller and O. Hagner. Experiment about test-first 
programming. IEEE Proceedings-Software, 
149(5):131–136, 2002. 

[9] M. Pančur, M. Ciglarič, M. Trampuš, and T. Vidmar. 
Towards empirical evaluation of test-driven 
development in a university environment. In 
Proceedings of EUROCON 2003. Computer as a Tool. 
The IEEE Region 8, volume 2, pages 83–86, 2003. 

[10] L. Williams and R. Kessler. Pair Programming 
Illuminated. Addison-Wesley Longman, Inc., 2002. 

[11] L. Williams, E. Maximilien, and M. Vouk. Test-driven 
development as a defect-reduction practice. In 
Proceedings of the 14th IEEE International 
Symposium on Software Reliability Engineering, pages 
34–45, Nov. 2003. 




