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ABSTRACT 

Transferability and Robustness of Predictive Models 
To Assess Real-Time Freeway Crash Risk 

Cameron Hunter Shew 
 

This thesis describes the development and evaluation of real-time crash risk as-
sessment models for four freeway corridors, US-101 NB (northbound) and SB 
(southbound) as well as I-880 NB and SB. Crash data for these freeway segments 
for the 16-month period from January 2010 through April 2011 are used to link his-
torical crash occurrences with real-time traffic patterns observed through loop detec-
tor data.  

The analysis techniques adopted for this study are logistic regression and classifica-
tion trees, which are one of the most common data mining tools. The crash risk as-
sessment models are developed based on a binary classification approach (crash 
and non-crash outcomes), with traffic parameters measured at surrounding vehicle 
detection station (VDS) locations as the independent variables. The classification 
performance assessment methodology accounts for rarity of crashes compared to 
non-crash cases in the sample instead of the more common pre-specified threshold-
based classification. 

Prior to development of the models, some of the data-related issues such as data 
cleaning and aggregation were addressed. Based on the modeling efforts, it was 
found that the turbulence in terms of speed variation is significantly associated with 
crash risk on the US-101 NB corridor. The models estimated with data from US-101 
NB were evaluated based on their classification performance, not only on US-101 
NB, but also on the other three freeways for transferability assessment. It was found 
that the predictive model derived from one freeway can be readily applied to other 
freeways, although the classification performance decreases. The models which 
transfer best to other roadways were found to be those that use the least number of 
VDSs–that is, using one upstream and downstream station rather than two or three. 

The classification accuracy of the models is discussed in terms of how the models 
can be used for real-time crash risk assessment, which may be helpful to authorities 
for freeway segments with newly installed traffic surveillance apparatuses, since the 
real-time crash risk assessment models from nearby freeways with existing infra-
structure would be able to provide a reasonable estimate of crash risk. These mod-
els can also be applied for developing and testing variable speed limits (VSLs) and 
ramp metering strategies that proactively attempt to reduce crash risk. 

The robustness of the model output is assessed by location, time of day and day of 
week. The analysis shows that on some locations the models may require further 
learning due to higher than expected false positive (e.g., the I-680/I-280 interchange 
on US-101 NB) or false negative rates. The approach for post-processing the results 
from the model provides ideas to refine the model prior to or during the implementa-
tion. 
 
Keywords: Real-time crash risk, data mining, classification tree, proactive traffic 
management, loop detector data, transferability, robustness 
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I. INTRODUCTION 

Much progress has been made in recent years in shifting from reactive (incident 

detection) to proactive (real-time crash risk assessment) traffic strategies as traf-

fic safety on freeways continues to be a growing concern.  Reliable models that 

can take in real-time loop detector information, and discern normal flow condi-

tions from crash-prone conditions, are keys to implementing crash preventative 

measures. This area of research has gained increased attention since the vehicle 

detector stations (VDS) on freeways have been able to gather real-time traffic 

data and the capabilities to collect, archive, and analyze these data have grown 

manifolds in the recent past.  

This thesis presents the findings of a study sponsored by the Mineta Transporta-

tion Institute (MTI), and carried out jointly by the California Polytechnic State Uni-

versity, San Luis Obispo (Cal Poly) and San Jose State University (SJSU). This 

research effort aims to not only develop statistical models relating traffic flow var-

iables to crash likelihood, but to test the transferability of these models on other, 

nearby freeway corridors. A few past studies have already demonstrated that sta-

tistical links between real-time traffic flow variables (such as average speed, vol-

ume, occupancy, and their respective standard deviations) and crash likelihood 

can be established.  However, all of these previous studies have mostly focused 

on one particular highway corridor.  This research advances the current body of 

knowledge by exploring whether driver characteristics and behavior are similar 

enough in close geographic proximity to accurately apply the estimated classifi-

cation models from one roadway segment onto another. 
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This thesis also explores model robustness, including patterns in misclassifica-

tion errors (false positives and negatives), as well as their potential causes. While 

the safety applications through intelligent transportation systems (ITS) need to be 

studied further, this study used the following steps towards estimating crash risk 

estimation models and assess their transferability: 

1. Assemble a database of archived loop detector data for four study 

segments (US-101 NB/SB, I-880 NB/SB), within the milepost range in 

the vicinity of San Jose metropolitan area for the 16-month study peri-

od (January 1, 2010 to April 30, 2011). 

2. Assemble a database of observed crash data for the same duration, 

including information on date, time, and location of crash. The infor-

mation was obtained from the Performance Measurement System 

(PeMS) database for the study period. 

3. Create a database of “normal” conditions, so that there are 10 “nor-

mal” observations for each crash observation.  The date, time, and lo-

cation of these non-crashes were randomly chosen from the range of 

all possible dates, times, and locations combinations for the 16-month 

period identified above. These were times/locations that did not ob-

serve any crash and using these data along with the crash information 

the database for binary classification was setup.  

4. Extract loop detector data for all crash and non-crash events, given 

the date, time, and milepost information from Performance Measure-
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ment System (PeMS) database.    

5. Perform statistical (logistic regression) and data mining (classification 

tree) based analysis to fit the most appropriate classification model 

that explains the effects of traffic flow variables on crash-risk.   These 

variables are measured at different locations upstream and down-

stream of the crash, from different time durations prior to the crash, to 

gain an understanding of spatiotemporal impact these variables have 

on crash risk. 

6. Select the best models estimated from the US-101 NB crash and non-

crash data, and use them to score the datasets (which include both 

crash and non-crash observations) for US-101 SB and I-880 NB and 

SB. 

7. Examine the classification performance of the models on these da-

tasets (transferability) and discuss the results in the context of a real-

time application. 

8. Assess the robustness of the models by analyzing false positive and 

false negative classifications of crash/non-crash by location, time of 

day, and day of week. 

This thesis is organized into seven chapters, including the Introduction.  The next 

chapter provides a thorough review of relevant past research efforts, including 

those aimed at real-time identification of crash prone conditions.  Chapter 3 pre-

sents background information about the study area, as well as the data prepara-
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tion process.  Chapter 4 presents the results of the logistic regression and data 

mining models and how well these models performed on nearby freeways. Chap-

ter 5 discusses the conclusions from these results and other relevant issues with 

regards to application of these results. Chapter 6 discusses the robustness of the 

models and presents ideas on refinements prior to or during implementation. 

Chapter 7 draws conclusions on the results and suggests topics of future work in 

the area of proactive crash risk assessment. 
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II. LITERATURE REVIEW 

This chapter reviews previous studies from the literature relevant to this re-

search. The literature review is divided into two sections. The first section is a 

summary of traffic safety studies with real-time identification of crash prone con-

ditions on the freeway as their objective. All of these studies are fairly recent; in-

dicating that the idea of using loop detector data for traffic safety applications is 

still in its early stages. These safety studies are further categorized into two 

groups: a) the exploratory studies and b) studies establishing statistical links. The 

second section of the review is the summary of data mining applications in the 

areas of incident detection and crash analysis. 

SAFETY APPLICATIONS OF ITS-ARCHIVED DATA 

Golob, Recker, and Alvarez (2004b) categorized traffic safety related studies into 

two groups. First, the aggregate studies, in which units of analysis represent 

counts of crashes or crash rates for specific time periods (typically months or 

years) and locations (specific roads or networks). The traffic flow in these studies 

is represented by the parameters of statistical distributions of traffic (e.g., Annual 

Average Daily Traffic (AADT)) for similar time and location (e.g., Zhou and Sisio-

piku 1997).The second group of studies consist of disaggregate analysis, in 

which the units of analysis are the crashes themselves and traffic flow is repre-

sented by parameters of traffic flow at the time and location of each crash. 

While determination of freeway crash patterns has been the stated focus of traffic 

safety literature, most of the studies belong to the former group. Disaggregate 
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studies are relatively new, and are made possible by the recent enhancements in 

capabilities to collect, store and analyze real-time traffic data through intelligent 

transportation system (ITS) applications. In this section such previous studies are 

summarized and critically reviewed since this research falls in the group of dis-

aggregate studies. 

Exploratory Studies  

Hughes and Council (1999) were one of the first authors to explore the relation-

ship between freeway safety and peak period operations using loop detector da-

ta. They concluded that macroscopic measures, such as AADT and even hourly 

volume, in fact, correlate poorly to real time system performance. Their work 

mostly relied upon the data coming from a single milepost location during the 

peak periods of the day, on which they tried to overlay the crash time at that par-

ticular location to infer about the changes in system performance as it approach-

es the time of the crash. The changes in the performance were also examined 

from “snapshots” provided by cameras installed on the freeway. 

One of their most important observations was that “design inconsistency,” that is 

the non-uniform application of geometric design standards, is a key factor of 

crash causation. Future research should consider “traffic flow consistency,” that 

is, the variability in traffic parameters (such as speed, volume, and occupancy) 

as an important variable from a human-factor standpoint. They also expressed a 

need for determining the exact time of the crash to avoid “cause and effect” falla-

cy. 
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Studies Establishing Statistical Links 

Madanat and Liu (1995) came up with an incident likelihood prediction model us-

ing loop data as input. The focus of their research was to enhance existing inci-

dent detection algorithms with likelihood of incidents. They actually considered 

two types of incidents a) crashes and b) overheating vehicles. Binary logit was 

the methodology used for analysis. They concluded that merging section, visibil-

ity and rain are statistically the most significant factors for crash likelihood predic-

tion. 

Lee, Saccomanno, and Hellinga (2002) introduced the concept of “crash precur-

sors” and hypothesized that the likelihood of crash occurrence is significantly af-

fected by short-term turbulence of traffic flow. They came up with factors such as 

speed variation along the length of the roadway (i.e. the difference between the 

speeds upstream and downstream of the crash location) and also across the 

three lanes at the crash location. Another important factor identified by them was 

traffic density at the instant of the crash. Weather, road geometry and time of the 

day were used as external controls. With these variables, a crash prediction 

model was developed using log-linear analysis. According to the authors the log-

linear model was chosen so that the exposure can be easily determined, which 

would have been difficult, if instead a logit model was used. In order to test the 

goodness of fit for the model, Pearson chi-square test was performed. The test 

measured how close the expected frequencies are to the observed frequencies 

for any combination of crash precursors and control factors. At 95% confidence 

level the model yielded a good fit.  
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In a subsequent study, Lee, Hellinga, and Saccomanno (2003) continued their 

work along the same lines and modified the aforementioned model. They incor-

porated an algorithm to get a better estimate of time of the crash and the length 

of time slice (prior to the crash), that is, duration to be examined. They concluded 

that variation of speed has a relatively longer term effect on crash potential than 

density and average speed difference between upstream and downstream ends 

of roadway sections. It was also observed that the average variation of speed dif-

ference across adjacent lanes doesn’t have direct impact on crashes and hence 

was eliminated from the model.   

The prediction models in both studies relied upon the log-linear models devel-

oped in the past to estimate crash frequencies on freeways using the aggregate 

measures of traffic flow variables. The main difference being that they deter-

mined the crash precursors included in the model in an objective manner and not 

based on their subjective categorization. In one of their most recent related stud-

ies, Lee, Hellinga, and Saccomanno (2004) proposed the application of these 

models and estimated real-time crash potential. The main focus of this study was 

to reduce the crash potential obtained from the model through different control 

strategies of variable speed limits (VSL). To mimic responses from the drivers to 

changes in speed limits, the microscopic simulation tool, PARAMICS, was used. 

At least on the simulated data the VSL showed significant safety benefits meas-

ured in terms of reduction in crash potential estimated from their model. 

A later study (Gayah et al. 2006) similarly used PARAMICS to assess the effec-

tiveness of various ITS strategies in mitigating crash-prone conditions on the 
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previously-studied Interstate-4 corridor in Orlando.  The authors also concluded 

that VSL had significant benefits in crash reduction in high-speed conditions pre-

ceding crashes, but that such a benefit could only be achieved by ramp metering 

in the congested regime. 

Continuing this trend of investigating advanced traffic management (ATM) strate-

gies, Nezamuddin et al. (2011) used VISSIM to model VSL, peak-period shoulder 

lane use, and both strategies together.  Their study assessed the effects of these 

strategies on speed, throughput, and safety on a section of the Missouri-Pacific 

Expressway in Austin, Texas.  Speed harmonization and a reduction in number 

of stops per vehicle and vehicle conflicts were achieved with VSL; however, this 

came at the expense of operating speed.  Shoulder use increased operating 

speed and decreased traffic density, but had the opposite effect of increasing 

speed variability and has many other safety considerations that must be ad-

dressed.  Ramp metering was not addressed in this study. 

Similar to the aforementioned studies, weather, environmental, and loop detector 

data were analyzed for association with different incident types (Songchitruksa 

and Balke 2006). It was found that 5-min average occupancy and coefficient of 

variation in speed had the strongest association with crash risk, and other factors 

such as visibility, time of day, and lighting condition strongly affected the type of 

incident that occurred. 

A study by Pande, Mohamed Abdel-Aty, and Hsia (2005) utilized within-stratum 

one-covariate logistic regression models to determine the relative risk of crash 

occurrence, measured by the hazard ratio.  This ratio represents the increase in 
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risk of crash occurrence (in log odds) by changing the covariate by one unit.  The 

study found that the log of coefficient of variation in speed and average occupan-

cy (expressed as percentage), and standard deviation of volume, most signifi-

cantly affected the likelihood of crash occurrence.  Additionally, it was determined 

that computing these parameters at a 5 minute time interval was more closely 

associated with crash risk than at 3 minute intervals. Contour plots of spatiotem-

poral variation of crash risk were created, and the one representing the log of the 

coefficient of variation in speed most clearly demonstrated increasing crash risk 

as the time and location of the crash were approached.  The authors also pro-

posed a methodology to identify crash-prone conditions in real time, for potential 

use in proactive traffic management. 

Oh et al. (2001) showed that five minutes standard deviation of 30-second speed 

measurements was the best indicator of “disruptive” traffic flow leading to a crash 

as opposed to “normal” traffic flow. They used the Bayesian classifier to catego-

rize the two possible traffic flow conditions. Since Bayesian classifier requires a 

probability distribution function for each competing class, the standard deviations 

of speed over crash and non-crash cases were used to fit non-parametric distri-

bution functions using Kernel smoothing techniques. The potential application of 

the model in real-time was also demonstrated. 

A more detailed analysis of patterns in crash characteristics as a function of real-

time traffic flow was done by Golob and Recker (2003). The methodology used 

was non-linear (nonparametric) canonical correlation analysis (NLCCA) with 

three sets of variables. The first set comprised a seven-category segmentation 
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variable defining lighting and weather conditions; the second set was made up of 

crash characteristics (collision type, location and severity); and the third set con-

sisted of real-time traffic flow variables. Since NLCCA requires reducing colline-

arity in the data, principal component analysis (PCA) was performed to identify 

relatively independent measurements of traffic flow conditions. The results of the 

PCA are shown below. 

Table 1. Interpretation of Principal Components and Variable Selection  

Factor Interpretation Represented by 

1 Central tendency of speed Median volume/occupancy interior lane 

2 Central tendency of volume Mean volume left lane 

3 Temporal variation in volume—Left and interior 
lanes 

Variation in volume for left lane 

4 Temporal variation in speed—Left and interior 
lanes 

Variation in volume/occupancy interior 
lane 

5 Temporal variation in speed—Right lane Variation in volume/occupancy right lane 

6 Temporal variation in volume—Right lane Variation in volume right lane 

Source: Golob and Recker (2003) 

It was concluded that the collision type is the best-explained characteristic and is 

related to the median speed, and to left-lane and interior lane variations in speed. 

Moreover the severity of the crash tracks the inverse of the traffic volume, and is 

influenced more by volume than the speed.  

Based on these results, one of their later studies (Golob, Recker, and Alvarez 

2004a) used data for more than 1000 crashes over six major freeways in Orange 
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County, California and developed a software tool FITS (Flow Impacts on Traffic 

Safety) to forecast type of crashes that are most likely to occur for the flow condi-

tions being monitored. A case study application of this tool on a section of SR 55 

was also demonstrated.   

Golob and Recker (2004) also showed that certain traffic flow regimes are more 

conducive to traffic crashes than the others. Of the eight traffic flow regimes 

found to exist on the six freeways in Orange County (California), the study found 

that nearly 76% of all crashes occurred in the four traffic regimes that represent 

flow nearing or at congestion. This displays a correlation between the types of 

flow and crashes and indicates that understanding the patterns in real-time traffic 

flow might be the key to ‘predict’ crashes on urban freeways. It should be noted 

that none of the studies by Golob et al. included non-crash loop data as a meas-

ure of ‘normal’ traffic conditions. 

This link between traffic congestion and freeway crashes was also noted by 

Zhang et al. (2005) in a study that explored the relationship between crashes, 

weather conditions, and traffic congestion. The study showed that the relation-

ship between the “Relative Risk Ratio” (a measure of crash probability) resem-

bles an inverted U-shaped curve with a peak value during moderate congestion 

and low points at free flow and heavy congestion.   

Park and Ritchie (2004) showed that the lane-changing behavior and presence of 

long vehicles within a freeway section has significant impact on section speed 

variability. The section speed variance rather than the point speed variance was 

used to demonstrate the traffic changes more efficiently. The traffic data for their 
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study were not obtained from more conventional single or dual loop detectors. 

Instead, a state-of-the-art vehicle-signature based traffic monitoring technology 

providing individual vehicle trajectories as well as accurate vehicle classification 

was used. 

Pande & Abdel-Aty (2006) further correlated lane-changing maneuvers with both 

sideswipe and angle crashes on the inner lanes of a freeway.  Classification 

trees using data collected from loop detectors on the Interstate-4 corridor identi-

fied average speed upstream and downstream of the crash location, and differ-

ence in occupancy of adjacent lanes, as having significant association with the 

crash/non-crash binary variable.  Satisfactory classification accuracy indicated 

the potential for real-time application in identifying risk for lane change-related 

crashes. 

Another study by Pande and Mohamed Abdel-Aty (2006a) analyzed rear-end 

crashes occurring under two flow regimes, extended congestion and near free-

flow 5-10 minutes prior to a crash. It was observed that, in the first case, coeffi-

cient of variation in speed and average occupancy distinguished crash from ran-

domly selected non-crash cases.  In the second case of nearly free-flow condi-

tions preceding a crash, average speed and occupancy at downstream of the 

crash location were identified as significant factors.  The authors proposed a 

strategy for real-time identification of crash-prone conditions using neural net-

work-based classifiers. 

While almost all studies have indicated a relationship between crash occurrence 

and speed variability, a recent study by Kockelman and Ma (2004) found no evi-
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dence to the fact that speeds or their variations trigger crashes. The study was 

conducted for the same area as Golob, Recker, and Alvarez (2004b). Their sam-

ple size was limited to 55 severe crashes that occurred during January 1998 and 

with such a small sample their conclusions remain suspect. Similarly, Ishak and 

Alecsandru (2005) were unable to separate pre-incident, post-incident, and non-

incident traffic regimes from each other and it was indicated that conditions be-

fore a crash might not be discernible in real-time.  The study was performed us-

ing part of the ITS-archived data from Interstate 4 in Orlando, Florida that was 

used in the research by Pande (2003). However, data for only 116 crashes were 

used which raises concerns about the validity of the findings from this research. 

Various modeling methodologies have previously been explored by the re-

searchers, including Probabilistic neural network (PNN) (Mohamed Abdel-Aty 

and Pande 2005), matched case-control Logistic Regression(Mohamed Abdel-

Aty et al. 2004), split models (Mohamed Abdel-Aty, Uddin, and Pande 2005), 

multi-layer perceptron (MLP)/radial basis function (RBF) neural network architec-

tures (Pande 2003) and Generalized Estimation Equation (Abdel-Aty and Abdalla 

2004). The data for these studies were collected from a 13.2-mile central corridor 

of Interstate 4 in Orlando. All these studies made significant contributions to-

wards enriching the literature. However, as explained later in this chapter, it must 

be acknowledged that there remains sufficient scope for improvement. 

Critical Review  

It is evident that the idea of exploring the loop data in traffic safety research is still 

in its preliminary stages. Some of the aforementioned studies do have a potential 
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application in the field of real-time proactive traffic management, but they have 

not fully analyzed the “recipe” of crashes. This is besides the fact that the statisti-

cal analysis in some cases isn’t really sound from a theoretical point of view.  

The research conducted in Canada (Lee, Hellinga, and Saccomanno 2003) has 

an advantage over other research groups with dual loops placed close to each 

other (38 loops on a 10-km stretch of the freeway). Their analysis is based on a 

log-linear crash frequency model. As this is not based on classification, it cannot 

decipher whether or not conditions are risky in real-time. It is therefore unsuitable 

for real-time classification of the loop data patterns.  

Golob and Recker (2003) have established sound statistical links between envi-

ronmental factors, traffic flow as obtained from loop data, and crash occurrence 

but their findings are limited by the fact that the traffic data is obtained from single 

loop detectors and speed has to be estimated using a proportional variable (vol-

ume/occupancy). The FITS tool developed by Golob, Recker, and Alvarez 

(2004a) has limited application, due to a systematic pattern of missing values 

within the data used for development of this tool.  

The classification model developed by Oh et al. (2001) seems to have the most 

promising online application, but due to limited crash data (only 52 crashes) their 

model remains far from being implemented in the field. The only factor used for 

classification is the 5-minute standard deviation of speed; other significant factors 

such as geometry, weather and other traffic flow variables were not considered. It 

is also to be understood that if a crash prediction model has to be useful one 

must classify the data much ahead of the crash occurrence time and not just 5-
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minutes prior to the crash so that the Regional Transportation Management Cen-

ter (RTMC) has some time for analysis, prediction and dissemination of the in-

formation.  

The use of limited crash and traffic data is what causes concerns about the find-

ings by Ishak and Alecsandru (2005) as well.  In the study pre-incident, post-

incident, and non-incident traffic flow regimes were described by 30-second av-

erage speed and its variation depicted through spatio-temporal contour charts. 

Using second-order statistical analyses, the charts were measured for smooth-

ness, homogeneity, and randomness. No consistent pattern for any of the statis-

tical measures was found within three different categories of traffic regimes (i.e., 

the pre-incident, post-incident, and non-incident). Therefore, it was concluded 

that conditions belonging to these regimes could not be differentiated from each 

other based on loop data.  However, only 116 crashes were used in the analysis 

with speed and its variation as the only independent parameters. It is likely that 

more crash and non-crash data along with different flow parameters from a range 

of stations located around crash locations would have yielded better results to-

wards separating these three distinct traffic regimes. The findings from some of 

the previous studies by Abdel-Aty et al. (differentiating pre-crash from non-crash) 

and Al-Deek et al. (separating post-incident from non-incident) that used the loop 

data from the same corridor make this postulation all the more plausible. 

In this regard, the investigators deem that the most critical issue not addressed 

by past research is the issue of transferability. Since gathering data from different 

sources and combining them is a significant effort, it would be worthwhile to know 
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whether models developed from one freeway can be applied to the data from 

other freeways. While it may be unreasonable for models developed with data 

from a dense urban freeway environment to perform well on a rural freeway cor-

ridor; no studies have even tested models from the same geographical area to 

other freeways in close proximity. This study makes an effort in that direction.  

APPLICATIONS OF DATA MINING IN TRANSPORTATION 

Data mining is defined as the process of extracting valid, previously unknown 

and ultimately comprehensive information from large databases (Hand, Mannila, 

and Smyth 2001). Over the years data mining has emerged as a powerful new 

instrument offering value across a broad spectrum of information intensive indus-

tries involving huge amounts of data including banking, logistics, etc. The poten-

tial of various data mining techniques in the field of transportation engineering, 

however, remains underutilized with the exception of neural network applications 

for incident detection. 

Of all data mining applications in transportation engineering, the “incident detec-

tion” algorithms are the most relevant to this research problem, since detecting 

an incident also involves classification of traffic flow patterns emanating from loop 

detectors. The critical distinction being that while we are interested in ‘pre-crash’ 

data, detection algorithms involve analysis of ‘post-incident’ loop data. In the fol-

lowing section data mining based incident detection algorithms are reviewed. 

Incident Detection Algorithms 

Cheu and Ritchie (1995) developed three types of neural network models, name-
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ly multi-layer feed forward (MLF), the self-organizing feature map (SOFM) and 

adaptive resonance theory 2 (ART2) to classify traffic data obtained from loop 

detectors with the objective of using the classified output to detect lane-blocking 

freeway incidents.  

The Artificial neural network models (ANNs) were designed to classify the input 

data into one of the two states, an incident or incident-free condition. ANN mod-

els were trained using post-incident loop detector data generated from INTRAS, 

a microscopic traffic simulation model as, according to the authors, it would have 

been impractical to put extensive effort in collecting real life data. INTRAS initially 

generated the incident and incident free input vectors in a ratio of 1:4. The inci-

dent input vectors were later replicated to make the number of state 1 and state 2 

vectors equal in the training data set. The input vectors used were 16-

dimensional, consisting of upstream and downstream detectors’ volume and oc-

cupancy at 30-second slices after the time of the incident. Based on the perfor-

mance of these networks on field evaluation data, they reported that multi-layer 

perceptron (MLP) neural networks always produced consistently better results 

than the other two networks and that these results were also better than the tradi-

tional detection algorithms.   

Abdulhai and Ritchie (1999) tried to identify the requirements of a successful de-

tection framework and found that inability to address the issues of predicted 

probability of incident occurrence is one of the major shortcomings of detection 

algorithms. They proposed the concept of statistical distance and a modified 

probabilistic neural network model (PNN2) in addition to Bayesian based tradi-
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tional probabilistic neural network (PNN) model to detect the patterns in the loop 

data. They also reported that these two models were competitive with the more 

frequently used MLP neural networks for incident detection. 

Ishak and Al-Deek (1999) conducted a study which did not use simulation data 

and training and testing of the neural network models for incident detection but 

rather real-life loop data only. In this regard some more studies by Al-Deek, 

Ishak, and Khan (1996) and Al-Deek, Garib, and Radwan (1998) on incident de-

tection are remarkable. The data used by Ishak and Al-Deek (1999) were collect-

ed from the same Interstate 4 corridor for which the initial crash prediction mod-

els were developed by Pande and Abdel-Aty (2008). Input patterns of various 

dimensions were attempted and the network size was changed accordingly in 

order to achieve better performances. One of their interesting findings was that 

while using the MLF neural network, the incidents might be detected better with 

the speed patterns alone rather than using occupancy patterns or a combination 

of speed-occupancy patterns. 

Data Mining Applications in Traffic Safety 

A comparison between the fuzzy K-nearest neighbor algorithm and MLP neural 

network to identify crash-prone locations was made by Sayed and Abdelwahab 

(1998). Results showed that MLP produced slightly more accurate results and 

achieved higher computational efficiency than fuzzy classification. 

Awad and Janson (1998) applied an MLP to model truck crashes at interchanges 

in Washington State. Results of the neural network were compared with a linear 
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regression model. Comparison was based on the root mean squared error 

(RMSE). The trained neural network showed a better fit when the training data is 

presented. However, the ability of the trained ANN to predict “unseen” test data 

was unsatisfactory. 

Mussone, Ferrari, and Oneta (1999) adopted an MLP approach to analyze traffic 

crashes that occurred at intersections in Milan, Italy. Results showed that the 

neural network models could extract information, such as factors explaining 

crashes and contributing to a higher degree of danger.  

Through a sequential review of literature, it was observed that the only neural 

network architecture explored for traffic safety analysis was the MLP until Abdel-

wahab and Abdel-Aty (2001) developed Fuzzy ART neural networks to predict 

driver injury severity in traffic crashes at signalized intersections. These models 

were compared with the MLP architecture and it was concluded that MLP models 

were superior tools compared to the ordered logit model and Fuzzy ART. In a 

later work by the same authors (Abdelwahab and Abdel-Aty 2002), ANN models 

were used for traffic safety analysis of toll plazas. Driver injury severity (no injury, 

possible injury, evident injury, severe injury/fatal crashes) and location of the 

crash (before plaza, at the plaza and after the plaza) were analyzed using MLP 

as well as radial basis function (RBF) neural network. They reported that for ana-

lyzing crash location the nested logit model was the best, while RBF neural net-

work was the best model for driver injury severity analysis.  

Probabilistic neural networks (PNN), an implementation of the Bayesian classifi-

er, were explored (Pande and Abdel-Aty 2008) on the Interstate-4 corridor in Or-



21 
 

lando to identify rear end crash-prone conditions. These crashes were divided 

into those occurring under congested and relatively free-flow conditions preced-

ing the crash, and decision tree-based classification determined that while their 

frequencies are comparable, the first condition is much rarer and can hence be 

described as a “crash-prone” condition.  PNN-based classification models were 

also developed for the free-flow regime. 

In the recent past, data mining techniques other than neural networks have also 

appeared in the traffic safety literature. Vorko and Jovic (2000) used multiple at-

tribute entropy models to classify school-age injuries. Sohn and Shin (2001) em-

ployed neural networks and decision tree algorithms to develop classification 

models for road traffic crash severity (bodily injury or property damage) as a 

function of potentially correlated categorical factors. It was noticed that classifica-

tion accuracy of the individual models from both algorithms was relatively low. It 

was noticed that the use of data fusion or ensemble algorithms were able to in-

crease the classification accuracy. Data fusion techniques try to combine classifi-

cation results obtained from several individual classifiers and are known to im-

prove the classification accuracy when some results of relatively uncorrelated 

classifiers are combined. The resulting performance is usually more stable than 

that of a single classifier. 

A multiple model framework (Pande and Abdel-Aty 2007) was fairly recently pro-

posed, incorporating the findings of earlier studies on rear-end and lane-change-

related crashes on the Interstate-4 corridor in Orlando.  The developed models 

satisfactorily identified both of these cases, as well as related single-vehicle 
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crashes.  This work elaborates on a previous doctoral dissertation (Pande 2005), 

which was aimed at identifying the unique precursors to each crash type, and 

developing models which can be hybridized and applied in real time as part of a 

proactive traffic management strategy. 

Another study was conducted by Xu et al. (2011) on a 9.2 mile stretch of the I-

880 corridor in Hayward, California.  Using loop detector data gathered by re-

searchers at the University of California, Berkeley, the researchers classified traf-

fic into 5 homogeneous flow states using K-means clustering analysis.  The 

case-control study compared occupancy data for 1 crash case with four non-

crash cases, all occurring at the same time and location between loop detectors.  

The authors developed four logistic regression models, indicating odds ratios 4 to 

5 times higher for the “risky” scenarios of free flow upstream to a congested 

downstream regime and congested upstream flow to free flow downstream, and 

an odds ratio 2 times higher for flow in the transition region between uncongest-

ed and congested flow, when compared to the base case of free flow.  The case 

of congested, homogeneous flow was not statistically different in crash risk than 

the case of free flow.  The authors also developed discriminant functions using 

linear combinations of the lane occupancy variables; these were able to correctly 

categorize the type of flow with 97.2% accuracy, and can be deployed in real-

time. 

Researchers Pham, El Faouzi and Dumont (2011) considered not only the speed 

and variability in speed as explanatory variables to crash risk, but also meteoro-

logical conditions (namely precipitation).  Focusing on a 10 km stretch of the A1 



23 
 

motorway near Bern, Switzerland between 2002 and 2007, the authors analyzed 

120 rear-end and sideswipe crashes.  Data was collected for 30 minutes before 

each crash (in five-minute intervals), as well as for non-crash cases.  Principal 

component analysis (PCA) was used to normalize and transform traffic situations 

to self-organizing maps (SOMs), which partition the data points into clusters.  

Random Forests were then used to develop risk identification models for each of 

8 defined flow regimes.  6 of the 8 performed with acceptable accuracy (70% of 

crash and non-crash cases correctly identified).  The two that performed poorly 

did not have enough data to develop a good statistical model.  It was found that 

rain had a much stronger influence in medium-flow regimes than in either con-

gested or free-flow conditions.  For most of the traffic regimes, lane speed and 

lane variation in speed were the most significant factors in determining crash risk. 

CONCLUSIONS FROM THE LITERATURE REVIEW 

An extensive review of relevant literature is conducted in this chapter. Findings 

demonstrate the applications, albeit limited so far, of ITS archived data and/or 

data mining techniques in the field of traffic safety.  

The issues not addressed adequately by studies using real-time loop detector 

data for ‘predicting’ crashes, are referred to by Golob, Recker, and Alvarez 

(2004b) as disaggregate studies, (which was discussed in detail in section on 

Safety Applications of ITS-Archived Data). The most significant of these issues to 

be addressed in this research is that of transferability. Therefore, a sufficiently 

large database with crash and non-crash data is assembled for this study from a 

subset of the major freeways/expressways in the city of San Jose. Then the 
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models developed from US-101 NB data are applied to other three corridors for 

which data are assembled. Freeway Performance Measurement System (PeMS) 

managed by Caltrans was the source for the archived ITS data (collected and 

stored on a continuous basis) as well as for the incident data. In the next chapter 

these data sources and the details of the four corridors are provided in the con-

text of the present research problem. 
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III. STUDY AREA 

This study covers four freeway segments: US-101 NB, SB and I-880 NB, SB in 

the San Jose area of Santa Clara County, California.  These freeway corridors in 

the city of San Jose run through dense urban development, and are among the 

busiest in the South Bay Area. The logistic regression and data mining models 

are estimated using the US-101 NB data and then these models are applied on 

the three segments; US-101 SB, I-880 NB, and I-880 SB to evaluate transferabil-

ity of the models. This chapter provides details of these segments along with de-

tails of data collection and preparation.  

FREEWAY CORRIDORS 

US-101 Freeway 

US-101 (also known as the “Bayshore Freeway”) is the primary north-south cor-

ridor through the City of San Jose.  The route runs through southern Santa Clara 

County as a 6-lane freeway through the suburbs of Gilroy and Morgan Hill.  North 

of Morgan Hill, US-101 gains an HOV (High Occupancy Vehicle) lane in each di-

rection (expanding to an 8-lane freeway) through the rural area known as Coy-

ote.  The freeway wanders in and out of San Jose city limits and unincorporated 

land for approximately 8 miles.  At the junction of State Route 85, US-101 enters 

the area conventionally accepted as the boundary of the city of San Jose.  The 

route continues as an 8-lane freeway through the junctions of SR-82, I-280/I-680, 

I-880, and SR-87, then entering the City of Santa Clara.  The route continues 

through the South Bay cities of Sunnyvale, Mountain View, and Palo Alto, finally 
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running up the Peninsula through San Mateo County to San Francisco. 

The study segment of interest for US-101 northbound is 17.1 miles long, starting 

at milepost 375.31 and ending at milepost 392.37.The study segment for US-101 

southbound starts at milepost 392.45 and ends at milepost 375.81, for a total 

length of 16.6 miles.  See Figure 1 and Figure 2 below for schematic diagrams 

for location of the VDS (vehicle detector stations) along these routes. In the dia-

grams, VDS ID numbers are truncated to the last four digits, and superimposed 

on the route. 
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Figure 1. US-101 NB Corridor and VDS Locations 

 

 

Figure 2. US-101 SB Corridor and VDS Locations 

 

I-880 Freeway 

Interstate 880 (also known as the “Nimitz Freeway”) is a 6-lane freeway with no 

dedicated HOV lanes. Its officially designated beginning is located north of the I-
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280 junction. The freeway extends south of this interchange as State Route 17, a 

freeway running between Santa Cruz, CA and San Jose, CA.  Interstate 880 runs 

north through the city of San Jose for approximately 7 miles, connecting to SR-

82, crossing over the SR-87 freeway (with no interchange) and connecting to the 

US-101 freeway.  I-880 next enters the City of Milpitas, and finally crosses the 

Alameda County line, running up the East Bay to Oakland.  An improvement pro-

ject has been underway since 2010 to reconfigure the I-280/I-880 interchange.  

The goal is to provide a dedicated NB I-280 to NB I-880 ramp; the connection is 

currently shared with the busy Stevens Creek Boulevard interchange, causing 

merging and weaving issues. 

The study segment of interest for I-880 NB is 8.1 miles long, starting at milepost 

0.13 and ending at milepost 8.27.The study segment for I-880 SB starts at mile-

post 9.01 and ends at milepost 0.9, for a total length of 8.1 miles.  See Figure 3 

and Figure 4 below for schematic diagrams of the routes along with VDS loca-

tions. 
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Figure 3. I-880 NB Corridor and VDS Locations 

 

 

Figure 4. I-880 SB Corridor and VDS Locations 

 

Figure 5. Study Location 
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DATA COLLECTION AND PREPARATION 

Crash Data 

This study considers crashes that occurred during a 16-month period from Janu-

ary 2010 through and including April 2011.  These days were chosen due to a 

fairly recent installation of new loop detectors on US-101 in 2009.  Crash data 

was downloaded from the "CHP Incidents" section of Caltrans' Freeway Perfor-

mance Measurement System (PeMS) database. See Figure 6 for a sample of the 

downloaded data. Important variables for our analysis contained therein included 

the incident’s unique ID number, time of occurrence, and milepost. 

 

Figure 6. CHP Accident Data from PeMS 
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The predictive models were developed from the crash data from US-101 NB. 

There were 2176 crashes during the study period, the breakdown of which is 

shown below in Table 2. 

Table 2. Crash Breakdown for US-101 NB 

Crash Type Frequency Percentage 

1181 - Traffic Collision - Minor Injuries 38 1.7% 

1182 - Traffic Collision - Property Damage 754 34.7% 

1179 - Traffic Collision - Ambulance Responding 257 11.8% 

1144 - Possible Fatality 2 0.1% 

20002 - Hit and Run - No Injuries 182 8.4% 

20001 - Hit and Run - Injuries or Fatalities 5 0.2% 

1183 - Traffic Collision - No Details 938 43.1% 

Total 2176 100.0% 

 

Traffic Information 

Once the crash data were obtained based on the study area milepost boundaries 

of four freeway corridors, a list of all VDS locations on the study segments was 

compiled along with their respective mileposts.  A sample list is shown below in 

Figure 7. The variables of interest for this study include the VDS number and 

milepost. 
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Figure 7. VDS List by Milepost 

Traffic data from these VDS locations were downloaded from the "Data Clearing-

house" section of PeMS for the entirety of Caltrans District 4 (Bay Area) for the 

16-month study period.  The downloaded data included the following variables for 

each VDS: time and date, milepost and average speed, volume, and lane-

occupancy information measured every 30 seconds by corresponding VDS. It is 

worth mentioning that among these variables only volume and lane-occupancy 

are measured variables and the 30-second average speed is calculated (in the 

database) using these two measurements. Refer to Figure8 for a sample of the 
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downloaded raw loop detector data. 

The next step in the data collection process was to match the traffic data to the 

corresponding crash events. The crash time and locations were known from the 

crash database (see sample in Figure 6) as described above. Each crash event 

was merged with corresponding traffic data from six VDS locations. These six 

locations included three nearest VDS to the location of crash in the upstream di-

rection and three in the downstream direction. The spatial arrangement of loca-

tions is shown later in this chapter (See Figure 11). VDS stations were typically 

spaced between 0.5 and 0.8 miles apart. The time horizon for each event was 

the period up to 20 minutes before the crash and five minutes after the crash 

time. The period of 0-5 minutes after the crash was only used to verify the inci-

dent’s occurrence (and is typically only relevant for incident detection); it will 

therefore not be discussed further in this thesis. 

 

Figure 8. Raw Data from VDS, obtained through PeMS 
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Non-crash Events  

Since the modeling approach adopted here was binary classification we also col-

lected traffic data for non-crash cases. The traffic data corresponding to the ‘non-

crash’ cases would be representative of the ‘normal’ conditions on the freeways 

as opposed to the traffic data corresponding to the crash cases (described in the 

previous section) which represent crash prone conditions. To represent ‘normal’ 

traffic conditions for the freeway we generated a sample of random traffic condi-

tions. As the crashes occurred both on and off-peak, both on and off-peak non-

crashes were generated to sample overall traffic conditions. To generate random 

non-crash sample, the total study period was divided into one minute periods 

from which a random sample of times could be selected as the “time of non-

crash” event. Similarly milepost location for non-crash cases could also be drawn 

from any milepost from the beginning to the end of the corresponding corridor. 

From all possible combinations of date-time and mileposts a sample of non-crash 

cases were derived. To adequately represent ‘normal’ conditions for every crash 

event used in the analysis there were 10 "non-crash" events. A previous study 

tested different ratios of crash to non-crash events and found; it was found that 

the number of non-crashes included had no effect on the classification accuracy 

of the model (Pande, Mohamed Abdel-Aty, and Hsia 2005). A snapshot of the 

process generating the random non-crash sample can be seen in Figure 9. One 

may observe that the function “randbetween” from excel is used in the process.  

 



35 
 

 

Figure 9. Random Generation of “Non-Crash” Events 

The nearest three VDS in both upstream and downstream directions of the event 

location milepost were also identified for all of these non-crash events. Time 

horizon (from 20 minutes before the crash up to 5 minutes after the crash) was 

also the same as the crash events. See Figure 10 below for a sample spread-

sheet of this identification process. For any crash, the station arrangement con-

vention is depicted in Figure 11.  
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Figure 10. Identification of Nearest Three Upstream and Downstream VDS 

 

Figure 11. Arrangement of the Loop Detector Stations 

The upstream station ids in the order of increasing distance from the crash site 

are US1, US2, US3 while downstream stations in the order of increasing distance 

from the crash site are named DS1, DS2, DS3 (yellow highlighted cells in Figure 

10). In addition to the ids the spreadsheet snapshot also shows the mileposts 

Direction of Travel

DS3DS2DS1US1US2US3

Crash (or Non-crash) Location 
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that were identified for these VDS locations (brown highlighted in Figure 10). 

Data Aggregation  

One of the previous studies (Pande and Mohamed Abdel-Aty 2006a) noted that 

there is significant noise in the raw 30-second loop detector data and therefore 

they are not suited for modeling purposes. Hence, for each of the 6 VDS loca-

tions (3 upstream and 3 downstream) identified for both crash and non-crash 

events, individual variables were averaged across all lanes, and aggregated into 

five minute intervals.  These intervals are: 0-5 minutes after the crash (time slice 

0), 0-5 minutes before the crash (time slice 1), 5-10 minutes before the crash 

(time slice 2), 10-15 minutes before the crash (time slice 3), and 15-20 minutes 

before the crash (time slice 4). For these time slices, standard deviations of the 

variables were also calculated since past studies documented in the literature 

review noted variation in traffic parameters was critically associated with the 

freeway crash potential. 

As time slice 0 occurs after the crash, it is only relevant to incident detection and 

will not be further analyzed or discussed in this thesis. These four 5-minute inter-

vals preceding a crash were selected based on previous research by Pande. 

Generally, the model will predict more accurately the closer the analysis interval 

to the crash time. However, there must also be sufficient time for a traffic man-

agement center to identify crash-prone conditions and deploy countermeasures; 

it is therefore likely that only the time slice 2, 3, and 4 models will be relevant, 

considering the overarching aims of this research (proactive crash management). 
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The nomenclature for these average and standard deviations is of the form 

‘XYZα_β’. ‘X’ takes the value A or S for average and standard deviation, respec-

tively; while ‘Y’ takes the value S or V or O for speed or volume or lane-

occupancy, respectively. ‘Zα’ takes the value of U1, U2, U3 or D1, D2, D3 de-

pending on the station to which a traffic parameter belongs (nearest up-

stream/downstream station relative to the crash location being U1/D1 and sub-

sequent detectors being U2/D2 and U3/D3, respectively). ‘β’ takes up the values 

1, 2,3, or 4 referring to aforementioned four time slices. Hence, ‘ASD1_2’ and 

‘AVU1_2’ represent average speed on station DS1 over time slice 2 and average 

volume on station US1 over time slice 2, respectively. It should be noted that all 

these averages and standard deviations were calculated for crash as well as 

non-crash cases.  

CONCLUDING REMARKS 

This chapter described the process of gathering traffic data corresponding to 

crash and non-crash events from four different freeway corridors, I-880 NB/SB 

and US-101NB/SB in the city of San Jose. The chapter also included information 

about the VDS locations along the freeway corridors as well. In the next chapter 

these data are used to estimate and test statistical (binary logistic regression) 

and data mining (classification trees) models for classifying crash prone vs. nor-

mal conditions on the freeways.  
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IV. MODELING TOOLS, ANALYSIS, AND RESULTS 

This study applies two different modeling tools, namely, logistic regression and 

classification trees, to identify crash prone conditions. These tools are applied to 

data from US-101 NB section in order to estimate the models. The models esti-

mated from US-101 NB data are then applied to US-101 SB and I-880 NB/SB 

segments. This chapter first provides the details of the statistical and data mining 

methods and then the analysis and results.  

LOGISTIC REGRESSION 

In a logistic regression setting the function of dependent variables yielding a line-

ar function of the independent variables would be the logit transformation. 

0 1
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g x x
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         (1) 

Where π (x) = E (Y|x) is the conditional mean of Y (dependent variable repre-

senting crash occurrence; Y=1 in this case) given independent variable x when 

the logistic distribution is used. Under the assumption that the logit is linear in 

continuous covariate x, the equation for the logit would be g (x).Once the model 

(i.e., the coefficient βs) is estimated for the binary target variable it can be used 

to score any dataset that contains the required input variable to the model (i.e., 

x). The output of the model is in the form of a posterior probability of crash occur-

rence, lying between 0 and 1. Note that the same formulation may be extended 

to multiple independent variables as would be the case in this research. In case 

of multiple independent variables, a standard stepwise variable selection method 
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will be used to finalize the set of variables that are significantly associated with 

the crash occurrence. The details of logistic regression and stepwise variable se-

lection procedure may be found in standard text on logistic regression and binary 

data modeling (e.g. Collett (1991) and Hosner and Lemeshow (1989)). 

DECISION TREES 

A classification tree represents segmentation of data created by applying a series 

of simple rules. Each rule assigns an observation to a group based on the value 

of an input. One rule is applied after another, resulting in a hierarchy of groups 

within groups. The hierarchy is called a tree, and each group is called a node. 

The final or terminal nodes are called leaves. For each leaf, a decision is made 

and applied to all observations in that leaf. Decision trees are one of the most 

widely utilized tools in data mining applications besides neural networks and may 

be used for classification of categorical variables as well as for continuous tar-

gets. The latter application, of course, is not relevant here. The advantage of 

classification tree over other modeling tools, such as neural networks, is that it 

produces a model that may represent interpretable English rules or logic state-

ments. The other advantage associated with trees, compared to logistic regres-

sion models, is that no assumptions are necessary about the data and the model 

form. In the next subsection theoretical details of the classification trees are de-

scribed. Since we would invariably deal with binary target variable (Y=1 for crash 

and Y=0 for non-crash) in this study the details of the methodology are provided 

in the context of a binary target. Neural networks and decision tree algorithms 

have been successfully used to develop classification models for crash severity 
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as a function of potentially correlated categorical factors Sohn and Shin (2001), 

and more recently, to demonstrate significant correlation between speed differen-

tials upstream/downstream and crash risk (Pande & Abdel-Aty 2006). 

Decision Tree Methodology for Binary Classification 

The basic element in classification tree construction is to split each (non-terminal) 

node such that the descendant nodes are ‘purer’ than the parent node. A com-

pletely ‘pure’ node would be one that has all its observations belonging to the 

same class.  To achieve this, a set of candidate split rules is created, which con-

sists of all possible splits for all variables included in the analysis. For example, 

for a dataset with 200 observations and 5 input variables there would be up to 

200*5=1000 splits available at the root node. These splits are then evaluated 

based on a criterion to choose amongst various available splits at every non-

terminal node (including the root node). Gini Index is used as the measure (i.e., 

‘purity’ functions) to rank candidate splits for a binary target variable. This meas-

ure was proposed by Breiman et al. (1984). 

One of these criteria is applied recursively to the descendants, which become the 

parents to successive splits, and so on. The splitting process is continued until 

the criteria of minimum reduction in impurity (i.e., reduction in Gini Index) and/or 

minimum size of a node are satisfied. To stop the splitting process one may also 

choose the classification accuracy over the validation dataset (i.e., the dataset 

not used for estimating the splits) as the criterion. The classification accuracy 

may be assessed after every split and the process may be terminated if the clas-

sification accuracy declines after a particular split. The output from the classifica-
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tion tree model is also the posterior probability of an observation being a crash (a 

number lying between 0 and 1).   

Note that these tools are selected since they can provide not only a measure for 

crash vs. non-crash classification but also the variables included in the model 

can be explained. Neural networks were also considered as a tool but were not 

used due to their ‘black box’ nature. In other words, neural networks were not 

used here since the results are not transparent in terms of the effect of individual 

independent variables on the output.  

METHOD FOR ANALYSIS OF CLASSIFICATION PERFORMANCE 

There were some critical issues that needed to be addressed before proceeding 

with the modeling exercise. The crashes, however frequent on the corridors un-

der consideration, are still rare events. Sampling their actual proportion in the da-

taset would mean that the sample would almost exclusively consist of non-crash 

cases (crash cases would be even less than 0.001 %). It is reasonable to as-

sume that the crash prone conditions, which would be worth issuing warnings, 

are more frequent than the crashes themselves. For any model intended to be 

applied in real-time the ideal sample composition for modeling would have pro-

portion of the two competing events same as that in reality. However, there is no 

way, at this stage anyway, to estimate the proportion of crash prone conditions 

on the freeway. Also, since the number of warnings beyond a certain point would 

mean “unreasonable” number of false alarms; the decision from the models can-

not be positive (i.e., a crash) in the vicinity of 50% of the time. Hence, a sample 

with equal number of crash and non-crash cases would not make an ideal sam-



43 
 

ple. At this point, 10% was deemed to be an appropriate ratio for crash vs. non-

crash cases.  Therefore, in the sample there were 10 non-crash cases for each 

crash.  

Due to imbalance in the proportions of crashes vs. non-crash cases model per-

formance evaluation issue becomes complicated. The output of these models 

(for any observation) is the posterior probability of the crash. As mentioned Pos-

terior probability is a number between 0 and 1. The closer it is to unity the more 

likely, according to the model, it is for that observation to be a crash. Usually the 

overall classification accuracy based on a pre-selected threshold is an appropri-

ate measure to judge the performance of the model. However, with only 9.1% of 

the crashes in the sample (1 crash for 10 non-crash cases) used for modeling, 

90.9% overall classification accuracy could be achieved by a model that merely 

classifies every data point as non-crash. Such a model would of course be use-

less for crash prone conditions identification. Also, since the classification per-

formance of the models would vary based on the cut-off set on the output from 

the models (i.e., the posterior probability) even the classification accuracy over 

each individual class (at a certain cut-off) would not be appropriate to compare 

performance of competing models. It will only reflect the performance of the 

model at a predetermined threshold on output posterior probability.  It is especial-

ly true here since we have two different classes of models and their outputs are 

calibrated differently. The same threshold can potentially produce varying results 

for these two different classes of modeling techniques. Therefore, a well-

calibrated measure of performance evaluation was needed instead and it is pre-
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sented below.  

Performance Evaluation Measure 

To evaluate, the performance of the estimated models were applied to a dataset 

consisting of the input variables. The output of these models (for any observa-

tion) is the posterior probability of the crash. The closer posterior probability is to 

unity, the more likely, according to the model, it is for that observation to be a 

crash. To assess the performance of any model observations, the output dataset 

were sorted by the estimated posterior probability. In the sorted group, the top 

10% of observations would be those that are most likely to be a crash, according 

to the model. The performance of a model may be measured by determining the 

proportion of crashes captured within various deciles1 of posterior probability. 

Since these models are intended to identify an event as rare as crashes, to 

choose among competing models the proportion of crashes captured within the 

first few deciles must be critically examined. It was decided that the best model 

among a set of competing models would be the one capturing the highest per-

centage of crashes within the first three deciles (i.e., 30th percentile). As men-

tioned earlier due to imbalance in the proportions of crash and non-crash cases 

in the sample, overall classification accuracy over validation dataset would not be 

a good measure for model performance evaluation. In the next section the mod-

                                                 

 

1Decile is defined as any of nine points that divide a distribution of ranked scores 
into equal intervals with each interval containing one-tenth of the scores 
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eling and results are discussed for logistic regression followed by classification 

tree based analysis.  

LOGISTIC REGRESSION ANALYSIS 

Overview 

The analysis was conducted by estimating multivariate logistic regression model-

ing using US-101 NB data. The statistical analysis software package SAS (SAS 

Institute, 2001) was used to fit the regression models. The target variable for the-

se logistic regression models was Y taking value 0 for non-crash cases and 1 for 

crash cases.  The independent variables of interest were: average speed, stand-

ard deviation of speed, average volume, standard deviation of volume, average 

lane-occupancy, and standard deviation of lane-occupancy calculated over each 

VDS location and time slice. It should be noted that all three of these traffic pa-

rameters (speed, volume, and lane-occupancy) were not included simultaneously 

in any model and speed-based models were created separately from the volume 

and occupancy-based models, as the study VDS were all based on single loop 

detectors.  This implies that speed was calculated from the volume and occupan-

cy data and not independently measured.  Including them in the same regression 

model would have led to unacceptable level of correlation in independent varia-

bles. A stepwise selection process was used to identify the most significant vari-

ables, and the model coefficients were estimated for these significant variables.   

In all, a total of 30 different logistic regression models were estimated. These 

models were estimated with traffic information from 4time slices (ranging from 0-
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20 minutes before the crash in 5 minute intervals) and three different sets of VDS 

locations. For each VDS and time slice combination there were two models: one 

model based on Caltrans’ derived speed information, and the other model based 

on independently measured volume and lane-occupancy information. The crash 

risk estimation models are identified as predX_Y_Z; where  

 X represents the number of VDS stations upstream and downstream 

of the crash (or non-crash) location (1, 2, or 3) contributing traffic in-

formation to the model 

 Y represents the time slice number (1,2,3, or 4) as described in the 

previous chapter 

 Z represents whether the model uses speed information (s) or volume 

and lane-occupancy information (v) 

For example: 

pred1_4_s represents that the model is developed from dataset of speed obser-

vations from the one nearest VDS both upstream and downstream of the crash, 

over the period of 15-20 minutes before the crash occurred. Note that this model 

utilized traffic data from a total of two VDS locations 

pred3_4_s represents the dataset of speed observations from the nearest three 

loop detectors both upstream and downstream of the crash, over the period of 

15-20 minutes before the crash occurred.  Note that this model utilized traffic da-

ta from a total of six VDS locations, with two of the VDS locations being the same 

as pred1_4_s.  
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These 30 models were then applied to the dataset used to estimate the models 

containing observations (both crash and non-crash events for US-101 NB), and 

the posterior probability of the observation being a crash was estimated for each 

observation.  These models were then compared with each other in terms of the 

cumulative proportion of crashes correctly identified within 30% observations 

which according to the model were most likely to be a crash. It is the criterion se-

lected based on the discussion provided in the previous section. It is worth men-

tioning that the percentage of crashes identified by each model can also be ex-

amined in the context of the “performance” of a random baseline ‘model’ which 

represents the percentage of crashes identified in the sample if one randomly 

assigns observations as crash and non-crash. Of course in any set of 30 percent 

observations such a ‘model’ would be able to correctly identify 30% of crashes in 

the dataset. Any model can be assessed for its classification based on the differ-

ence between crashes it identifies within the first three deciles vs. 30%. 30% is 

the percentage of crashes that can be identified by the random baseline ‘model’.   

Following this criterion the best model was selected from subsets of one, two, 

and three upstream/downstream VDS models.  Traffic parameters from time-slice 

1,being too close to time of the crash used in a model, would leave absolutely no 

leeway in terms of time available to process, analyze and disseminate the infor-

mation that may in turn be used to avoid crashes. Hence, in the following section 

the models from variables measured only during time slice 2, 3, or 4 are given 

further consideration.  

The single loops analyzed in this study collect raw volume and occupancy data 
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and use a predetermined effective vehicle length (g-factor) to calculate average 

speed; this stands in contrast with dual loops which can measure speeds directly. 

Acknowledging that this g-factor will vary by lane, time of day, and loop sensitivi-

ty, PeMS calculates a g-factor for each loop for every 5-minute period during an 

average week to improve the accuracy of the speed estimates. The smoothened 

g-factor factor is then applied to the real-time VDS data to obtain speeds. These 

real-time reported speeds are then smoothened with an exponential filter, which 

is weighted based on traffic flow to produce reasonable estimates of speed (that 

is, lower flow conditions require more smoothening). 

In general, it was found that the volume and occupancy (v) models had a much 

higher classification accuracy at the 30th percentile than the speed (s) models. 

This is understandable, as the speeds derived by the PeMS algorithm are inher-

ently less reflective of field conditions than looking at the actual VDS data. Addi-

tionally, only the volume and occupancy data are reported live by Caltrans dis-

tricts (in a variety of methods, including XML feed over TPC, SQLnet, and raw 

controller packets over RPC); speeds must be post-processed from this transmit-

ted data. Only the volume and occupancy models will be further considered in 

this thesis, for reasons of model reliability and applicability in a real-time frame-

work. The following section described the US101 NB models for all crashes and 

non-crash data available from the freeway. 

All Crash Model Comparison 

The best models for the former case, using the 30 percentile selection criteria, 

are summarized below in Table 3. 
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Table 3. Selection of Best Models for All Crashes 

Model Name 
 

Time Slice 
 

Cumulative % Of Crashes Captured Within 
first three deciles (30th percentile) 

1-VDS Upstream and Downstream Models 

pred1_4_v 4 53.463 

pred1_3_v 3 52.276 

pred1_2_v 2 50.069 

2-VDS Upstream and Downstream Models 

pred2_4_v 4 56.546 

pred2_3_v 3 56.711 

 pred2_2_v 2 57.524 

3-VDS Upstream and Downstream Models 

pred3_4_v 4 61.749 

pred3_3_v 3 61.264 

pred3_2_v 2 60.000 

 

It was found that the best 1-VDS model used volume and occupancy data from 

the fourth time slice, pred1_4_v.  The best 2-VDS model used volume and oc-

cupancy data from the second time slice, pred2_2_v. The best 3-VDS model 

used volume and occupancy data from the fourth time slice, pred3_4_v. These 

models are in ‘bold’ in Table 3 above. It is noteworthy that when one uses data 

from more VDS locations the classification accuracy increases. The model from 

3-VDS upstream and downstream is able to identify more than 61% of the crash-

es on US-101 NB segment, which is a noticeable (31%) improvement over the 

random baseline ‘model’.  

Model Details 

This section provides the coefficients of the best 1-VDS, 2-VDS, and 3-VDS lo-

gistic regression models. Tables 4, 5, and 6 show the best 1-VDS, 2-VDS, and 3-

VDS model, respectively. The tables only show the variables included in the 
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models based on the stepwise selection procedure. In addition to the model pa-

rameters, the tables also provide the corresponding p-value for the model coeffi-

cients. A p-value less than 0.05 indicates that the variable is significant at 95% 

confidence level. Positive (negative) coefficient means that as the value of the 

corresponding variable increases the crash risk measure increases (decreases). 

Table 4. Model Coefficients for the Best 1-VDS Model 

Parameter Estimate Pr > ChiSq 

AVDS1_4 0.1 
<.0001 

AVUS1_4 0.08 
<.0001 

AODS1_4 1.72 
<.0001 

AOUS1_4 0.87 
0.0058 

SVDS1_4 0.05 
0.1355 

SVUS1_4 -0.1 
0.0035 

SODS1_4 -0.57 
0.2157 

aSyntax: 
Column 1:   A = average;   S = standard deviation 
Column 2:  O = occupancy;  V = volume   S = speed 
Columns 3&4: DS = downstream; US = upstream 
E.g.:  AODS = average occupancy downstream 
Red text denotes statistical significance at the 95% confidence level. 
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Table 5. Model Coefficients for the Best 2-VDS Model 

Parameter Estimate Pr > ChiSq 

AVDS1_2 0.05 
0.0138 

AVUS1_2 0.04 
0.027 

AODS1_2 0.91 
0.0171 

AOUS1_2 1.5 
0.0443 

SVDS1_2 0.07 
0.0997 

SOUS1_2 -0.93 
0.2134 

AVDS2_2 0.05 
0.0442 

AVUS2_2 0.08 
0.0013 

AODS2_2 1.45 
0.0158 

AOUS2_2 -1.49 
0.139 

SVDS2_2 -0.22 
<.0001 

SVUS2_2 -0.08 
0.081 

SODS2_2 -1.85 
0.0061 

SOUS2_2 2.87 
0.0024 

 



52 
 

Table 6. Model Coefficients for the Best 3-VDS Model 

Parametera Estimate Pr > ChiSq 
(p-value) 

AVUS1_4 0.13 
<.0001 

SVDS1_4 0.08 
0.0407 

SVUS1_4 -0.18 
0.0017  

AVUS2_4 0.06 
0.0318 

AODS2_4 -1.24 
0.0389 

SVDS2_4 -0.09 
0.0454 

SVUS2_4 -0.1 
0.068 

SOUS2_4 2.7 
<.0001 

AVDS3_4 -0.11 
<.0001 

AVUS3_4 0.11 
<.0001 

AODS3_4 1.87 
0.0112 

AOUS3_4 3.04 
0.0003 

SVDS3_4 0.16 
0.0023 

SODS3_4 -1.82 
0.0169 

SOUS3_4 -1.32 
0.1416 

 

It can be observed from the model coefficients that the standard deviation of oc-

cupancy downstream of a freeway location is negatively associated with crash 

risk; i.e., if standard deviation of lane-occupancy decreases the crash risk in-

creases.  Also, variables representing average occupancy downstream 

(AODS*_*) have a positive coefficient in all models indicating if there is increased 

lane-occupancy (i.e., congestion) downstream of a site then the crash likelihood 
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increases. Since the specific crash type is not known it is not possible to relate 

these coefficients with the relevant crash mechanism. However, it can be said 

that these coefficients might be more readily associated with conditions prone to 

rear-end crashes, which are the most common crash type on urban freeways.  

Model Application for Assessing Transferability 

Transferability evaluation is one of the biggest contributions of this research pro-

ject, that is the potential to apply the predictive model developed on one freeway 

segment to other similar facilities in the nearby area. As was discussed in the lit-

erature review, previous studies have either failed to address the issue (which is 

critical to real-time application in a network) or tried to apply the model on dis-

similar facilities (such as in a different study area) and subsequently failed to at-

tain good classification accuracy. 

To assess transferability, coefficients of regression models shown in Tables 4, 5, 

and 6 were used to score the combined crash and non-crash data for the other 

three corridors on US-101 SB, I-880 NB, and I-880 SB.  Again, for each observa-

tion in these datasets a posterior probability output was obtained. We then exam-

ined the proportion of crashes in the dataset correctly identified within the 30% 

observations having the highest posterior probability. The cumulative percent-

ages of identified crashes for each model on each of the three corridors are de-

picted in Figure 12. Note that the model which identifies higher proportion of 

crashes within 30th percentile is considered a better model. 
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Figure 12. Transferability Analysis for the Three Models 

Tables showing this same data for each model are presented below in Tables 7 

to 9. These tables also show the information used by the model in terms of up-

stream/downstream stations as well as time slice.  
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Table 7. Classification Accuracy of Best 1 VDS Model applied to Other 
Freeways, All Crashes 

Best 1 VDS Model Name:  pred1_4 

VDS US/DS: 1 

Time Slice: 4 

Mins Before Crash: 15-20 

Selection Criteria: 30% 

Segment Percent Captured Within 

US-101 NB (Estimation 
baseline) 53.463 

US-101 SB 53.846 

I-880 NB 52.439 

I-880 SB 53.898 

Table 8. Classification Accuracy of Best 2 VDS Model applied to Other 
Freeways, All Crashes 

Best 2 VDS Model Name: pred2_2 

VDS US/DS: 2 

Time Slice: 2 

Mins Before Crash: 5-10 

Selection Criteria: 30% 

Segment Percent Captured Within 

US-101 NB (Estimation 
baseline) 57.524 

US-101 SB 51.083 

I-880 NB 55.340 

I-880 SB 55.844 

Table 9. Classification Accuracy of Best 3 VDS Model applied to Other 
Freeways, All Crashes 

Best 3 VDS Model Name:  pred3_4 

VDS US/DS: 3 

Time Slice: 4 

Mins Before Crash: 15-20 

Selection Criteria: 30% 

Segment Percent Captured Within 

US-101 NB (Estimation 
baseline) 61.749 

US-101 SB 43.700 

I-880 NB 37.838 

I-880 SB 52.660 
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It can be clearly seen that both the 1-VDS and 2-VDS models work comparably 

well on nearby freeways, as on the same roadway for which they were devel-

oped.  The 3-VDS model developed for US-101 NB is a much less accurate pre-

dictor of crashes on the nearby roadway segments. In other words, the 1-VDS 

and 2-VDS models are easily transferable while 3-VDS model does not seem to 

be transferable. 

It appears that the 3-VDS model is overfitting; we believe that traffic conditions 

that far away from the crash location (approx. 1.5 miles in each direction) do not 

have a real relationship with crash risk 15-20 minutes later. This is why the over-

fitting is happening on the training data; when tested with an unseen dataset, the 

model is not performing very well. 

In the next section, the analysis is repeated for crashes that occurred on the 

weekdays between the hours of 5:00 AM through 10:00 PM. 

Daytime-Only Models 

Daytime only models were estimated since late night crashes were postulated to 

be more likely to occur due to driver error or driving conditions (e.g., under influ-

ence), rather than measurable traffic conditions. The modeling process and 

model comparison was identical to above except for the fact that the regression 

models were estimated using data only for crashes and non-crash cases be-

tween the weekday hours of 5:00am and 10:00pm.  A summary of the model re-

sults is shown below in Table 10. 
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Table 10. Selection of Best Models for Daytime-Only Crashes 

Model Name 
Time Slice Cumulative % of Crashes Captured 

within 30th Percentile (US-101 NB) 

1-VDS Models 

pred1_4_v 4 52.362 

pred1_3_v 3 51.866 

pred1_2_v 2 50.000 

2-VDS Models 

pred2_4_v 4 57.724 

pred2_3_v 3 56.873 

pred2_2_v 2 55.285 

3-VDS Models

pred3_4_v 4 60.324 

pred3_2_v 3 59.438 

pred3_3_v 2 59.438 

 

Again, it was found that the volume-occupancy models’ performance was better 

than those based on calculated speed information in almost every case. So the 

speed models were dropped from the analysis.  The best 1, 2, and 3 VDS mod-

els all used volume and occupancy data from the fourth time slice. 

A comparison of the daytime-only results to the all-crash results is shown below 

in Table 12. Note that Tables 10 and 11 show the performance of the models on 

the US-101 NB dataset, which was also used to estimate the model. 

Table 11. Best Three Models for All Crashes and Daytime-Only Crashes 

All Crashes Daytime-Only Crashes 

Model Name 
Time 
Slice 

Cum. Pct. 
Captured Model Name Time Slice 

Cum. Pct. 
Captured 

1-VDS 

pred1_4_v 4 53.463 pred1_4_v 4 52.362 

2-VDS 

pred2_2_v 2 57.524 Pred2_4_v 4 57.724 

3-VDS 

pred3_4_v 4 61.749 pred3_4_v 4 60.324 
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It can be observed that there is not an appreciable difference in the performance 

of the all-crash models compared to the daytime-only crash models. Hence, it is 

not advantageous to estimate the model only for daytime crashes. This is the 

reason why the transferability analysis for daytime only crashes is also not dis-

cussed here. In the next section, models are estimated using classification trees, 

which is a data mining tool.  

CLASSIFICATION TREE ANALYSIS 

Overview 

Classification tree models are one of the more often utilized data mining tools. 

One concern with these models is that they tend to over-fit the data which affects 

their future performance on the unseen datasets. Therefore, standard practice in 

data mining analysis is to estimate a model with a “training dataset” using 70% of 

the available observations, and then validate the model using the remaining 30%. 

Validating them with the unseen dataset helps identify a more robust model in 

terms of its performance on new datasets.  

Similar to the logistic regression approach there were 30 different classification 

tree models that were estimated. From the 30 models, those using data from 

time slice 1 were excluded based on the reasons discussed in the last section. In 

the case of classification tree models it was observed that the speed models 

were generally better than the volume-occupancy models. These classification 

tree models were compared using the same metric used for the logistic regres-

sion models, which is the proportion of validation dataset crashes identified within 
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the top 30 percentile.  

Selection of Best Model 

In addition to different 1-VDS, 2-VDS, and 3-VDS models from different time slic-

es we estimated a classification tree model with just time of crash (and non-

crash) as input. This model was estimated in order to ensure that the models are 

providing real differentiation between crash prone and normal traffic conditions. If 

the models using traffic data are providing valuable information about crash risk 

then these models should perform much better than the model with just time of 

crash/non-crash information. It turns out that these models do in fact perform 

much better than the time of crash information only model. Table 12 shows the 

classification performance of best 1-VDS, 2-VDS, and 3-VDS models along with 

time of crash model. It is clear that while time of the crash model performs better 

than the random baseline ‘model’ (i.e., identifies more than 30% crashes); the 

model is significantly worse than the models using traffic information. It is worth 

mentioning that the model performance in Table 12 is on the 30% validation set 

aside from the whole US-101 NB dataset.  The results shown below in Table 12 

and Figure 13 identify the 2-VDS, time slice 3 model as the most accurate clas-

sifier on the validation dataset. 
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Table 12. Classification Accuracy of Classification Tree Models 

Model Name US/DS VDS Lo-
cations 

Time 
Slice 

Cumulative % of 
Crashes Captured 

Within 30th Percentile 
(Validation dataset) 

Pred1_4_s 1 4 56.662 

Pred2_3_s 2 3 58.647 

Pred3_3_s 3 3 56.309 

Time of Crash 
Model 

- - 43.771 

 

Model Details 

Classification tree models are a series of “if-then” rules to classify the observa-

tions. The exact set of rules for the best model is provided in the Appendix. The 

variables analyzed through classification trees for crash vs. no-crash classifica-

tion can be ranked by combination of the number of times they appear in various 

rules and number of observations they contribute in classifying. For the best 

classification tree model (Pred2_3_s) variables included in the model were 

ranked as follows: 

1. SSDS2_3     

2. ASDS2_3    

3. ASUS1_3    

4. SSUS1_3   

5. ASUS2_3     

6. SSDS1_3     

7. ASDS1_3     
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According to the list above, standard deviation and averages of speed at the se-

cond downstream VDS are the two most significant variables, respectively. The 

results are consistent with the past studies which have found the turbulence in 

speed downstream of a location is significantly associated with crash risk on ur-

ban freeways. It is worth mentioning that the standard deviation of speed at the 

second upstream VDS (SSUS2_3) was the only variable that was found to be not 

associated with the crash likelihood.  

Transferability Analysis 

The best classification tree model (Pred2_3_s) was applied to complete sets of 

data from the US-101 SB and I-880 NB/SB. In addition to these three nearby 

freeway corridors, the model was also applied on the complete set of US-101 NB 

data itself. It was done since the results shown in Table 12 are based on applying 

the tree model on the validation dataset (i.e. 30% of observations from US-101 

NB). Note that the classification accuracy is higher in Table 13 (61.897%) for US-

101 NB than over the validation dataset (58.657%; Table 12) since the complete 

set also includes the 70% training data as well. Applying the model on US-101 

NB dataset allows us to compare the tree model performance with the logistic 

regression model from the previous section.   
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Table 13. Classification Accuracy of Best US-101 NB Classification Tree 
Model on Other Freeways 

Facility 

Proportion of Crashes 
Identified within 30 percen-

tile (Classification tree 
model) 

Proportion of Crashes 
Identified within 30 percen-

tile (Logistic regression 
model) 

US-101 NB 
(Estimation 
Baseline) 

61.897 61.749 

US-101 SB 46.505 43.700 

I-880 NB 40.674 37.838 

I-880 SB 50.368 52.660 

 

 

Figure 13. Transferability of the Best US-101 NB Model 

Note that the best classification model performs slightly worse on the other free-

ways as was the case with best logistic regression model. I-880 SB is the corri-

dor where the model estimated from US-101 NB data seems to be most readily 

transferable based on the classification performance. In the next chapter, the 

conclusions from this analysis are discussed in terms of the real-time crash risk 

implementation framework. 
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V. REAL TIME APPLICATION FRAMEWORK 

PROCEDURE 

The models developed here may be applied in real-time, as they are capable of 

classifying the traffic patterns measured at VDS into posterior probability. A step-

by-step procedure is shown graphically in Figure 14, and described below. 

We first try to obtain data from three VDS upstream and downstream of the loca-

tion of interest, as the 3-VDS models are the best estimators of crash risk (on the 

corridor for which the original model was developed). If all the VDS are in good 

health after a data check, the 5-minute averages and standard deviations of traf-

fic variables are calculated for each location. Estimated model coefficients (for 

logistic regression models) or if—then rules (for the classification tree) models 

can be applied to obtain the measure of crash risk at the middle of the section. 

If data from all 6 VDS stations are not available due to intermittent loop failures, a 

check for data availability is applied for the 2-VDS model (total of 4 VDS need-

ed). Using the same procedure as described above for the 3-VDS application, 

traffic parameters are calculated an input into a model. As was noted in the trans-

ferability discussion, models developed using 2 VDS on nearby freeways are 

transferable to other roadways. If models have not yet been developed specifical-

ly for the segment of interest (which indeed perform the best), a 2 VDS model 

from a nearby roadway can be applied by the system and used to estimate crash 

risk. 

If there is only enough good data to run a 1-VDS model, the same procedure is 
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applied as was for the 2-VDS model. Traffic parameters are calculated from the 

VDS data and input into the calibrated 1-VDS model for the segment (if availa-

ble). If a model has not yet been specifically developed for the location, a 1-VDS 

model from another freeway can be applied to produce a reasonably accurate 

assessment of crash risk. 

 

Figure 14. Real-time Application Procedure 
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If the output posterior probability for a segment of freeway is consistently high 

then the traffic management authorities can keep their crash mitigation squad on 

alert so that the impacts of crash occurrence may be minimized. Also, if there are 

some freeway segments where the models trigger the warning more often than 

the other locations, these segments may be closely watched through the freeway 

cameras. This will help recognize any problems associated with these locations. 

Another application for the findings of this research could be formulation of VSL 

(variable speed limit) and/or Ramp metering strategies that can reduce the esti-

mated likelihood of crashes. These strategies can be tested using microscopic 

traffic simulation models. 

REAL-TIME APPLICATION ISSUES 

1-VDS vs. 2-VDS vs. 3-VDS Models 

It should be noted that even though the 1 VDS models may not always achieve 

classification accuracy as well as the 3 VDS model for the same corridor, the ad-

vantage of using those models is that they have more tolerant data requirements. 

Since the 3-VDS models require that the data be available from 6 simultaneous 

VDS locations. If even one of the VDS is malfunctioning then the 3 VDS model 

cannot be applied. 1-VDS model on the other hand, requires data from only 2 

VDS locations.  

False-Alarms 

The formulation of the problem along with the solution approach adopted here is 

similar to incident detection. In fact, the authors did estimate some models that 
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used the data 0-5 minutes after the crash. However, the objective of the analysis 

is to identify crash prone conditions i.e., the conditions in which drivers are more 

likely to make errors resulting crashes, rather than pinpoint the occurrence of a 

crash. Conditions prior to crashes (present research problem) are not as readily 

identifiable (possibly due to significant human factor involvement) as the condi-

tions following the crashes (approach for incident detection).  Crashes being 

such rare events, it is not possible to avoid the false alarms.  

Adopting the approach used here for assessing classification models (cases with 

highest 30% crash risk measure output) even the modest 30% positive decisions 

would result in a significant number of ‘false alarms’ throughout the day. One 

may bring it down to an extent by using a higher threshold (e.g., 20 percentile 

value for the posterior probability), it would still remain significant. Traffic parame-

ters from time-slice 1, if used as inputs instead of the parameters from time-slice 

2, can also be expected to provide slight improvement. However, time-slice 1 be-

ing too close to time of the crash would leave absolutely no leeway  in terms of 

time available to process, analyze and disseminate the information that may in 

turn be used to avoid crashes. Hence, it is our opinion that the warning of crash 

prone is provided, if at all, not as an event prediction but as a heightened meas-

ure of crash risk.  

It is also worth mentioning that ‘false alarms’ are not as detrimental in the present 

application as they are in case of incident detection algorithms. In fact, the ulti-

mate goal of this research would, or at least should be, to ‘achieve’ a ‘false alarm’ 

every time a crash warning is issued. The goal would be based on the expecta-
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tion that with some form of proactive countermeasure or warnings to the motor-

ists, potential crashes following the crash prone conditions may be avoided. The 

justification or inevitability of false alarm does not mean that an unlimited number 

of warnings could be issued; especially if the information based on the model 

output is being transferred to the drivers on the freeway. The reason for being 

judicious about the number of warnings would be to ensure that the drivers do 

not perceive the number of warnings to be “too many” and become immune to 

them. The whole notion of warnings and drivers’ reaction to them are beyond the 

scope of the present work and require further investigation. 
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VI. MODEL ROBUSTNESS 

No model will classify an event as a crash or non-crash with perfect accuracy. 

However, it is important to identify situations in which a model performs better 

than in other situations. Hence, these models’ outputs for US-101 NB, as well as 

to data from the three other freeway segments, were then assessed for their 

classification performance in a variety of situations. This analysis of robustness 

has not been carried out in the similar studies and may help in identifying location 

and times of day/days of week for which additional training of the neural network 

may be warranted.  To study the robustness of the models, for each model (1-

VDS and 2-VDS models discussed above), all cases (crash and non-crash) were 

sorted in descending posterior probability output so the ones most likely to be a 

crash were at the top and the least likely ones at the bottom. All non-crashes in 

the top 10% observations (most likely to be crashes according to the model) 

were labeled as “false positives” and all crashes in the bottom 10% of observa-

tions (least likely to be crashes according to the model) were labeled as “false 

negatives.” This process was repeated for events on all four freeway segments.  

To examine the robustness of the model, we examined patterns in these “false 

positives” and “false negatives”: day of week/time of day (off-peak, morning peak, 

or afternoon peak), and location of the crash/non-crash case. While potentially 

significant, incident duration could not be analyzed in this framework since the 

California Highway Patrol database from PeMS was missing this information for 

most of the cases. The findings for the false positives and false negatives for 

each model were compared to the model performance on all crash and non-
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crash cases. It should be noted that the false negative (crash cases deemed safe 

by the model) is less conclusive due to the smaller sample size, although there 

are clearly observable trends. The trends shown below are from 2-VDS model for 

US-101 NB. 

TIME OF DAY AND DAY OF WEEK 

Figure 15 shows that while more than 80% of overall data was from the off-peak 

locations, among the “false positives” and “false negatives” off-peak periods rep-

resented a smaller proportion. The morning peak is overrepresented in “false 

positives”. It indicates that while the model deems the morning peak conditions to 

be crash prone, there are fewer crashes. It may be caused by the fact that the 

drivers are more attentive during morning peak periods and are able to succes-

sively navigate through crash prone conditions. 

While the trends is not as pronounced in the afternoon, it appears that there are 

more false negatives indicating that in the afternoon drivers end up in crashes 

even when the model is not detecting these conditions. While drivers’ fatigue 

may play a role here, it could also be caused by the fact that congestion in the 

afternoon can back up much faster and those conditions are not captured by the 

model, since it uses data from up to 10 minutes before the crash. 



70 
 

 

Figure 15. Robustness of the Best Model 

LOCATION 

We next evaluated whether there are any locations that were overrepresented in 

the misclassifications. The first upstream VDS location for all “false positives” and 

“false negatives” was determined as a subset of the original spatial distribution of 

all incidents. While most locations had the false positives and false negatives 

consistent with their proportion in the overall data, there were three locations that 

were noteworthy on US-101 NB: 

VDS 401890: Higher percentage of “false positives”: Figure 16 shows that this 

VDS is located at the US-101/I-280/I-680 interchange, where a large amount of 

weaving, merging activity may lead to higher speed variations. Higher level of 

turbulence prevailing in this location means that the drivers need to carefully nav-

igate through this section, since the model deems this location to be crash prone 

more often than others.  
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VDS 400858 and 400195: Higher percentage of false negatives: Figures 17 and 

18 show that these locations are on long, straight US-101 NB segments, where 

other factors (driver errors at high speed) are likely to be responsible for more 

crashes. 

It is worth mentioning that while results from all freeways demonstrated these 

trends; the trends from the other freeways mirror US-101 NB results to the de-

gree of how well the original predictive US-101 NB model fit the other data. For 

example, I-880 NB was closest to the US-101 NB in terms of crash identification 

and hence the trends on I-880 matched most closely to the US-101 NB trends. 

 

Figure 16. Location Map of VDS 401890 (High False Positives) 
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Figure 17. Location Map of VDS 400858 (High False Negatives) 

 

Figure 18. Location Map of VDS 400195 (High False Negatives) 
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VII. CONCLUSIONS 

The objective of this research was to develop and assess transferability of a 

methodology to link ITS-archived data with historical crashes on instrumented 

corridors in the San Jose metropolitan area. A detailed database was assembled 

for all crashes that occurred on four major corridors in the area for a 16-month 

duration and linked them to the archived loop detector data from the surrounding 

VDS locations.  The analysis of the models’ classification results showed that the 

continuous output of the models (i.e., posterior probability) can in fact be related 

to real-time crash risk.  

TRANSFERABILITY ANALYSIS 

While crash risk assessment models have been developed for freeways in US (I-

4 in Orlando, FL), Canada, and Netherlands, this research advances the body of 

knowledge with regards to transferability of the models. Specifically, this project 

critically examined the performance of models estimated with data from the US-

101 NB corridor on nearby corridors (US-101 SB, I-880 NB, and I-880 SB).  It 

was found that the model from one corridor can be applied to other corridors, alt-

hough the classification performance of the models is not as good as it is on the 

same corridor. 

Answering the question of transferability is important since uninterrupted flow fa-

cilities from the same region tend to have similar types of data collection infra-

structure. The conclusion from this study on the transferability of the same model 

can be beneficial to freeways where such infrastructure is either currently under 
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development or has been recently put in place. The crash risk on such sections 

can be estimated from a transferable model from the freeways nearby. 

Another interesting finding was that the models that use data from smaller sec-

tion surrounding the crash location (1-VDS) transfer better to the nearby corridors 

and provide performance comparable to US-101 NB. 3-VDS logistic regression 

models did not transfer as well to the other corridors. One possible reason is that 

including traffic data from a larger segment leads to crash risk being influenced 

by variability in geometric factors. Over a smaller segment the geometrical fac-

tors do not vary as widely and therefore the model transfers better to corridors 

that may have different geometric design.  

As logistic regression models include more and more VDS locations, the classifi-

cation accuracy increases for the freeway segment from which they were esti-

mated. However, it seems to come at a trade-off since these models perform 

worse when applied to other nearby freeways compared to models that use data 

from fewer VDS locations. The modeling with data only from weekdays did not 

change the classification results in any significant way and hence the proposed 

models used data for all crashes. The classification tree models have compara-

ble classification accuracy to the logistic regression models. The US-101 NB 

classification tree model was again a more accurate predictor of I-880 SB crash-

es than for the other two roadways, though not nearly as accurate as for the US-

101 NB crashes (as was the case for regression models). 
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MODEL ROBUSTNESS 

As was the case with transferability, the other previously unanswered question 

pertained to whether the misclassifications from crash risk estimation models are 

concentrated on certain situations of time of day/day of week or locations. 

It is worth noting that, while this research establishes that models for most loca-

tions may be transferable from one freeway to the other, some locations on the 

same freeway may require additional training for crash risk estimation (e.g., the 

US-101 NB section near the I-680/I-280 interchange). This study provided a 

framework to flag these locations for additional model training, through analysis 

of “false positives” and “false negatives” by locations.  On a system of freeways, 

these locations with higher “false positives” or “false negatives” may be combined 

together from different facilities by not restricting the freeway crash risk estima-

tion model by the corridor. 

FUTURE WORK 

Improvements to this Research 

This research used random generation of both times and locations in order to 

generate non-crash events. In order to reduce variability in the modeling effort, 

fixing the location to the actual crash location and then randomizing times should 

be considered. In addition, using the lasso (instead of stepwise) selection proce-

dure for logistic regression has been suggested to reduce bias in the coefficient 

estimates. 
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Additional Topics of Study 

For the purposes of this study, all detectable incidents were treated the same in 

the modeling procedure. It would be an interesting topic of future work to analyze 

incidents in terms of intensity. Potential measures of severity might include the 

number of lanes closed, incident duration, and resulting effects on traffic flow. 
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ABBREVIATIONS AND ACRONYMS 

AADT: Annual Average Daily Traffic 

Cal Poly: California Polytechnic State University, San Luis Obispo 

CHP: California Highway Patrol 

ITS: Intelligent Transportation System 

HOV: High Occupancy Vehicle 

MTI: Mineta Transportation Institute 

PeMS: Performance Measurement System, an online database containing both 
real-time and archived traffic data collected on state facilities. 

SJSU: San José State University 

VDS: Vehicle Detection Station, the controller cabinets at a fixed milepost which 
process incoming loop detector data from across all lanes 

VSL: Variable Speed Limit 
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APPENDIX A: SAMPLE CODE 

BUILD MODELS FROM 101 NB CRASH AND NON-CRASH DATA 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_0 AVDS1_0SVUS1_0 SVDS1_0 AOUS1_0 AODS1_0 
SOUS1_0 SODS1_0 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_0_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_0_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_1 AVDS1_1SVUS1_1 SVDS1_1 AOUS1_1 AODS1_1 
SOUS1_1 SODS1_1 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_1_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 
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run; 

 

proc sort data=dayonly.pred1_1_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_2 AVDS1_2SVUS1_2 SVDS1_2 AOUS1_2 AODS1_2 
SOUS1_2 SODS1_2 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_2_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_2_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_3 AVDS1_3SVUS1_3 SVDS1_3 AOUS1_3 AODS1_3 
SOUS1_3 SODS1_3 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 
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details 

lackfit; 

output out=dayonly.pred1_3_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_3_vo; 

by descending IP_1; 

run; 

 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_4 AVDS1_4SVUS1_4 SVDS1_4 AOUS1_4 AODS1_4 
SOUS1_4 SODS1_4 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_4_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_4_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 
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model y(event='1')=AVUS1_0 AVDS1_0SVUS1_0 SVDS1_0 AOUS1_0 AODS1_0 
SOUS1_0 SODS1_0 AVUS2_0 AVDS2_0 SVUS2_0 SVDS2_0 AOUS2_0
 AODS2_0 SOUS2_0 SODS2_0 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_0_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_0_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_1 AVDS1_1SVUS1_1 SVDS1_1 AOUS1_1 AODS1_1 
SOUS1_1 SODS1_1 AVUS2_1 AVDS2_1 SVUS2_1 SVDS2_1 AOUS2_1
 AODS2_1 SOUS2_1 SODS2_1 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_1_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_1_vo; 
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by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_2 AVDS1_2SVUS1_2 SVDS1_2 AOUS1_2 AODS1_2 
SOUS1_2 SODS1_2 AVUS2_2 AVDS2_2 SVUS2_2 SVDS2_2 AOUS2_2
 AODS2_2 SOUS2_2 SODS2_2 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_2_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_2_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_3 AVDS1_3SVUS1_3 SVDS1_3 AOUS1_3 AODS1_3 
SOUS1_3 SODS1_3 AVUS2_3 AVDS2_3 SVUS2_3 SVDS2_3 AOUS2_3
 AODS2_3 SOUS2_3 SODS2_3 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 
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output out=dayonly.pred2_3_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_3_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_4 AVDS1_4SVUS1_4 SVDS1_4 AOUS1_4 AODS1_4 
SOUS1_4 SODS1_4 AVUS2_4 AVDS2_4 SVUS2_4 SVDS2_4 AOUS2_4
 AODS2_4 SOUS2_4 SODS2_4 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_4_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_4_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

   model y(event='1')=AVUS1_0 AVDS1_0 SVUS1_0 SVDS1_0 AOUS1_0 AODS1_0 
SOUS1_0 SODS1_0 AVUS2_0 AVDS2_0 SVUS2_0 SVDS2_0 AOUS2_0
 AODS2_0 SOUS2_0 SODS2_0 AVUS3_0 AVDS3_0 SVUS3_0 SVDS3_0 
AOUS3_0 AODS3_0 SOUS3_0 SODS3_0 
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                / selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_0_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_0_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

   model y(event='1')=AVUS1_1 AVDS1_1 SVUS1_1 SVDS1_1 AOUS1_1 AODS1_1 
SOUS1_1 SODS1_1 AVUS2_1 AVDS2_1 SVUS2_1 SVDS2_1 AOUS2_1
 AODS2_1 SOUS2_1 SODS2_1 AVUS3_1 AVDS3_1 SVUS3_1 SVDS3_1 
AOUS3_1 AODS3_1 SOUS3_1 SODS3_1 

                / selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_1_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_1_vo; 

by descending IP_1; 

run; 
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proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

   model y(event='1')=AVUS1_2 AVDS1_2 SVUS1_2 SVDS1_2 AOUS1_2 AODS1_2 
SOUS1_2 SODS1_2 AVUS2_2 AVDS2_2 SVUS2_2 SVDS2_2 AOUS2_2
 AODS2_2 SOUS2_2 SODS2_2 AVUS3_2 AVDS3_2 SVUS3_2 SVDS3_2 
AOUS3_2 AODS3_2 SOUS3_2 SODS3_2 

                / selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_2_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_2_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

   model y(event='1')=AVUS1_3 AVDS1_3 SVUS1_3 SVDS1_3 AOUS1_3 AODS1_3 
SOUS1_3 SODS1_3 AVUS2_3 AVDS2_3 SVUS2_3 SVDS2_3 AOUS2_3
 AODS2_3 SOUS2_3 SODS2_3 AVUS3_3 AVDS3_3 SVUS3_3 SVDS3_3 
AOUS3_3 AODS3_3 SOUS3_3 SODS3_3 

                / selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_3_vo p=phat lower=lcl upper=ucl 
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predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_3_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

   model y(event='1')=AVUS1_4 AVDS1_4 SVUS1_4 SVDS1_4 AOUS1_4 AODS1_4 
SOUS1_4 SODS1_4 AVUS2_4 AVDS2_4 SVUS2_4 SVDS2_4 AOUS2_4
 AODS2_4 SOUS2_4 SODS2_4 AVUS3_4 AVDS3_4 SVUS3_4 SVDS3_4 
AOUS3_4 AODS3_4 SOUS3_4 SODS3_4 

                / selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_4_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_4_vo; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_0 ASDS1_0SSUS1_0 SSDS1_0 

/ selection=stepwise 

slentry=0.3 
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slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_0_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_0_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_1 ASDS1_1SSUS1_1 SSDS1_1 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_1_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_1_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_2 ASDS1_2SSUS1_2 SSDS1_2 
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/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_2_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_2_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_3 ASDS1_3SSUS1_3 SSDS1_3 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_3_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_3_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 
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where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_4 ASDS1_4SSUS1_4 SSDS1_4 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred1_4_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred1_4_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_0 ASDS1_0SSUS1_0 SSDS1_0 ASUS2_0 ASDS2_0 
SSUS2_0 SSDS2_0 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_0_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_0_s; 

by descending IP_1; 
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run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_1 ASDS1_1SSUS1_1 SSDS1_1 ASUS2_1 ASDS2_1 
SSUS2_1 SSDS2_1 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_1_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

 

proc sort data=dayonly.pred2_1_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_2 ASDS1_2SSUS1_2 SSDS1_2 ASUS2_2 ASDS2_2 
SSUS2_2 SSDS2_2 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_2_s p=phat lower=lcl upper=ucl 
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predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_2_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_3 ASDS1_3SSUS1_3 SSDS1_3 ASUS2_3 ASDS2_3 
SSUS2_3 SSDS2_3 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_3_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_3_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_4 ASDS1_4SSUS1_4 SSDS1_4 ASUS2_4 ASDS2_4 
SSUS2_4 SSDS2_4 

/ selection=stepwise 

slentry=0.3 
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slstay=0.35 

details 

lackfit; 

output out=dayonly.pred2_4_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred2_4_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_0 ASDS1_0SSUS1_0 SSDS1_0 ASUS2_0 ASDS2_0 
SSUS2_0 SSDS2_0 ASUS3_0 ASDS3_0 SSUS3_0 SSDS3_0 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_0_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_0_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 
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model y(event='1')=ASUS1_1 ASDS1_1SSUS1_1 SSDS1_1 ASUS2_1 ASDS2_1 
SSUS2_1 SSDS2_1 ASUS3_1 ASDS3_1 SSUS3_1 SSDS3_1 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_1_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_1_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_2 ASDS1_2SSUS1_2 SSDS1_2 ASUS2_2 ASDS2_2 
SSUS2_2 SSDS2_2 ASUS3_2 ASDS3_2 SSUS3_2 SSDS3_2 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_2_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_2_s; 

by descending IP_1; 
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run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_3 ASDS1_3SSUS1_3 SSDS1_3 ASUS2_3 ASDS2_3 
SSUS2_3 SSDS2_3 ASUS3_3 ASDS3_3 SSUS3_3 SSDS3_3 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_3_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

proc sort data=dayonly.pred3_3_s; 

by descending IP_1; 

run; 

 

proc logistic data=sas_sjsu.us101nb_crash_nocrash; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=ASUS1_4 ASDS1_4SSUS1_4 SSDS1_4 ASUS2_4 ASDS2_4 
SSUS2_4 SSDS2_4 ASUS3_4 ASDS3_4 SSUS3_4 SSDS3_4 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=dayonly.pred3_4_s p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 
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run; 

 

proc sort data=dayonly.pred3_4_s; 

by descending IP_1; 

run; 
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COMPARE MODELS TO FIND BEST THREE 

%inc "E:\code\gainlift_mac.sas"; 

ods graphics on; 

 

%GainLift(data=dayonly.pred1_0_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_0_vo); 

datadayonly.pctile_pred1_0_vo; set dayonly.pctile_pred1_0_vo; modelname='pred1_0_vo'; run; 

 

%GainLift(data=dayonly.pred1_1_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_1_vo); 

datadayonly.pctile_pred1_1_vo; set dayonly.pctile_pred1_1_vo; modelname='pred1_1_vo'; run; 

 

%GainLift(data=dayonly.pred1_2_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_2_vo); 

datadayonly.pctile_pred1_2_vo; set dayonly.pctile_pred1_2_vo; modelname='pred1_2_vo'; run; 

 

%GainLift(data=dayonly.pred1_3_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_3_vo); 

datadayonly.pctile_pred1_3_vo; set dayonly.pctile_pred1_3_vo; modelname='pred1_3_vo'; run; 

 

%GainLift(data=dayonly.pred1_4_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_4_vo); 

datadayonly.pctile_pred1_4_vo; set dayonly.pctile_pred1_4_vo; modelname='pred1_4_vo'; run; 

 

%GainLift(data=dayonly.pred2_0_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_0_vo); 

datadayonly.pctile_pred2_0_vo; set dayonly.pctile_pred2_0_vo; modelname='pred2_0_vo'; run; 

 

%GainLift(data=dayonly.pred2_1_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_1_vo); 

datadayonly.pctile_pred2_1_vo; set dayonly.pctile_pred2_1_vo; modelname='pred2_1_vo'; run; 
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%GainLift(data=dayonly.pred2_2_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_2_vo); 

datadayonly.pctile_pred2_2_vo; set dayonly.pctile_pred2_2_vo; modelname='pred2_2_vo'; run; 

 

%GainLift(data=dayonly.pred2_3_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_3_vo); 

datadayonly.pctile_pred2_3_vo; set dayonly.pctile_pred2_3_vo; modelname='pred2_3_vo'; run; 

 

%GainLift(data=dayonly.pred2_4_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_4_vo); 

datadayonly.pctile_pred2_4_vo; set dayonly.pctile_pred2_4_vo; modelname='pred2_4_vo'; run; 

 

%GainLift(data=dayonly.pred3_0_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_0_vo); 

datadayonly.pctile_pred3_0_vo; set dayonly.pctile_pred3_0_vo; modelname='pred3_0_vo'; run; 

 

%GainLift(data=dayonly.pred3_1_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_1_vo); 

datadayonly.pctile_pred3_1_vo; set dayonly.pctile_pred3_1_vo; modelname='pred3_1_vo'; run; 

 

%GainLift(data=dayonly.pred3_2_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_2_vo); 

datadayonly.pctile_pred3_2_vo; set dayonly.pctile_pred3_2_vo; modelname='pred3_2_vo'; run; 

 

%GainLift(data=dayonly.pred3_3_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_3_vo); 

datadayonly.pctile_pred3_3_vo; set dayonly.pctile_pred3_3_vo; modelname='pred3_3_vo'; run; 

 

%GainLift(data=dayonly.pred3_4_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_4_vo); 

datadayonly.pctile_pred3_4_vo; set dayonly.pctile_pred3_4_vo; modelname='pred3_4_vo'; run; 

 

%GainLift(data=dayonly.pred1_0_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
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event=1,out=dayonly.pctile_pred1_0_s); 

datadayonly.pctile_pred1_0_s; set dayonly.pctile_pred1_0_s; modelname='pred1_0_s'; run; 

 

%GainLift(data=dayonly.pred1_1_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_1_s); 

datadayonly.pctile_pred1_1_s; set dayonly.pctile_pred1_1_s; modelname='pred1_1_s'; run; 

 

%GainLift(data=dayonly.pred1_2_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_2_s); 

datadayonly.pctile_pred1_2_s; set dayonly.pctile_pred1_2_s; modelname='pred1_2_s'; run; 

 

%GainLift(data=dayonly.pred1_3_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_3_s); 

datadayonly.pctile_pred1_3_s; set dayonly.pctile_pred1_3_s; modelname='pred1_3_s'; run; 

 

%GainLift(data=dayonly.pred1_4_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_4_s); 

datadayonly.pctile_pred1_4_s; set dayonly.pctile_pred1_4_s; modelname='pred1_4_s'; run; 

 

%GainLift(data=dayonly.pred2_0_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_0_s); 

datadayonly.pctile_pred2_0_s; set dayonly.pctile_pred2_0_s; modelname='pred2_0_s'; run; 

 

%GainLift(data=dayonly.pred2_1_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_1_s); 

datadayonly.pctile_pred2_1_s; set dayonly.pctile_pred2_1_s; modelname='pred2_1_s'; run; 

 

%GainLift(data=dayonly.pred2_2_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_2_s); 

datadayonly.pctile_pred2_2_s; set dayonly.pctile_pred2_2_s; modelname='pred2_2_s'; run; 

 

%GainLift(data=dayonly.pred2_3_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_3_s); 
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datadayonly.pctile_pred2_3_s; set dayonly.pctile_pred2_3_s; modelname='pred2_3_s'; run; 

 

%GainLift(data=dayonly.pred2_4_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_4_s); 

datadayonly.pctile_pred2_4_s; set dayonly.pctile_pred2_4_s; modelname='pred2_4_s'; run; 

 

%GainLift(data=dayonly.pred3_0_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_0_s); 

datadayonly.pctile_pred3_0_s; set dayonly.pctile_pred3_0_s; modelname='pred3_0_s'; run; 

 

%GainLift(data=dayonly.pred3_1_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_1_s); 

datadayonly.pctile_pred3_1_s; set dayonly.pctile_pred3_1_s; modelname='pred3_1_s'; run; 

 

%GainLift(data=dayonly.pred3_2_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_2_s); 

datadayonly.pctile_pred3_2_s; set dayonly.pctile_pred3_2_s; modelname='pred3_2_s'; run; 

 

%GainLift(data=dayonly.pred3_3_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_3_s); 

datadayonly.pctile_pred3_3_s; set dayonly.pctile_pred3_3_s; modelname='pred3_3_s'; run; 

 

%GainLift(data=dayonly.pred3_4_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_4_s); 

datadayonly.pctile_pred3_4_s; set dayonly.pctile_pred3_4_s; modelname='pred3_4_s'; run; 

 

datadayonly.final_compare; 

set dayonly.pctile_pred1_0_s 

dayonly.pctile_pred1_1_s 

dayonly.pctile_pred1_2_s 

dayonly.pctile_pred1_3_s 

dayonly.pctile_pred1_4_s 



104 
 

dayonly.pctile_pred2_0_s 

dayonly.pctile_pred2_1_s 

dayonly.pctile_pred2_2_s 

dayonly.pctile_pred2_3_s 

dayonly.pctile_pred2_4_s 

dayonly.pctile_pred3_0_s 

dayonly.pctile_pred3_1_s 

dayonly.pctile_pred3_2_s 

dayonly.pctile_pred3_3_s 

dayonly.pctile_pred3_4_s 

dayonly.pctile_pred1_0_vo 

dayonly.pctile_pred1_1_vo 

dayonly.pctile_pred1_2_vo 

dayonly.pctile_pred1_3_vo 

dayonly.pctile_pred1_4_vo 

dayonly.pctile_pred2_0_vo 

dayonly.pctile_pred2_1_vo 

dayonly.pctile_pred2_2_vo 

dayonly.pctile_pred2_3_vo 

dayonly.pctile_pred2_4_vo 

dayonly.pctile_pred3_0_vo 

dayonly.pctile_pred3_1_vo 

dayonly.pctile_pred3_2_vo 

dayonly.pctile_pred3_3_vo 

dayonly.pctile_pred3_4_vo; 

run; 

 

procgplot data=dayonly.final_compare; 

whereSelectedPct=30; 

plotCumPctCaptured*modelname; 
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run; 
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SCORING US-101 SB AND I-880 DATA FOR BEST 1 VDS MODEL 

proc logistic data=SAS_SJSU.us101nb_crash_nocrashoutmodel=results2.pred1_4_vo_model; 

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200); 

model y(event='1')=AVUS1_4 AVDS1_4SVUS1_4 SVDS1_4 AOUS1_4 AODS1_4 
SOUS1_4 SODS1_4 

/ selection=stepwise 

slentry=0.3 

slstay=0.35 

details 

lackfit; 

output out=results2.pred1_4_vo p=phat lower=lcl upper=ucl 

predprob=(individual crossvalidate); 

run; 

 

/*pred1_2 name convention for the input to the model*/ 

 

proc logistic inmodel=results2.pred1_4_vo_model; 

score data=sas_sjsu.crash_nocrash_us101sb out=results2.us101sb_pred1_4_vo; 

run; 

 

proc logistic inmodel=results2.pred1_4_vo_model; 

score data=sas_sjsu.crash_nocrash_880nb out=results2.i880nb_pred1_4_vo; 

run; 

 

proc logistic inmodel=results2.pred1_4_vo_model; 

score data=sas_sjsu.crash_nocrash_880sb out=results2.i880sb_pred1_4_vo; 

run; 
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COMPARING BEST MODELS FOR EACH DATASET 

%inc "E:\code\gainlift_mac.sas"; 

ods graphics on; 

 

%GainLift(data=results2.us101sb_pred1_4_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_us101sb_pred1_4_vo); 

dataresults2.pctile_us101sb_pred1_4_vo; set results2.pctile_us101sb_pred1_4_vo; mod-
elname='us101sb_pred1_4_vo'; run; 

 

%GainLift(data=results2.i880nb_pred1_4_vo, groups=10, oneplot=CCAPT , response=y, p=P_1, 
event=1,out=results2.pctile_i880nb_pred1_4_vo); 

dataresults2.pctile_i880nb_pred1_4_vo; set results2.pctile_i880nb_pred1_4_vo; mod-
elname='i880nb_pred1_4_vo'; run; 

 

%GainLift(data=results2.i880sb_pred1_4_vo, groups=10, oneplot=CCAPT , response=y, p=P_1, 
event=1,out=results2.pctile_i880sb_pred1_4_vo); 

dataresults2.pctile_i880sb_pred1_4_vo; set results2.pctile_i880sb_pred1_4_vo; mod-
elname='i880sb_pred1_4_vo'; run; 

 

%GainLift(data=results2.us101sb_pred2_1_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_us101sb_pred2_1_vo); 

dataresults2.pctile_us101sb_pred2_1_vo; set results2.pctile_us101sb_pred2_1_vo; mod-
elname='us101sb_pred2_1_vo'; run; 

 

%GainLift(data=results2.i880nb_pred2_1_vo, groups=10, oneplot=CCAPT , response=y, p=P_1, 
event=1,out=results2.pctile_i880nb_pred2_1_vo); 

dataresults2.pctile_i880nb_pred2_1_vo; set results2.pctile_i880nb_pred2_1_vo; mod-
elname='i880nb_pred2_1_vo'; run; 

 

%GainLift(data=results2.i880sb_pred2_1_vo, groups=10, oneplot=CCAPT , response=y, p=P_1, 
event=1,out=results2.pctile_i880sb_pred2_1_vo); 

dataresults2.pctile_i880sb_pred2_1_vo; set results2.pctile_i880sb_pred2_1_vo; mod-
elname='i880sb_pred2_1_vo'; run; 
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%GainLift(data=results2.us101sb_pred3_1_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_us101sb_pred3_1_vo); 

dataresults2.pctile_us101sb_pred3_1_vo; set results2.pctile_us101sb_pred3_1_vo; mod-
elname='us101sb_pred3_1_vo'; run; 

 

%GainLift(data=results2.i880nb_pred3_1_vo, groups=10, oneplot=CCAPT , response=y, p=P_1, 
event=1,out=results2.pctile_i880nb_pred3_1_vo); 

dataresults2.pctile_i880nb_pred3_1_vo; set results2.pctile_i880nb_pred3_1_vo; mod-
elname='i880nb_pred3_1_vo'; run; 

 

%GainLift(data=results2.i880sb_pred3_1_vo, groups=10, oneplot=CCAPT , response=y, p=P_1, 
event=1,out=results2.pctile_i880sb_pred3_1_vo); 

dataresults2.pctile_i880sb_pred3_1_vo; set results2.pctile_i880sb_pred3_1_vo; mod-
elname='i880sb_pred3_1_vo'; run; 

 

data results2.final_compare_3_best; 

set results2.pctile_us101sb_pred1_4_vo 

results2.pctile_i880nb_pred1_4_vo 

results2.pctile_i880sb_pred1_4_vo 

results2.pctile_us101sb_pred2_1_vo 

results2.pctile_i880nb_pred2_1_vo 

results2.pctile_i880sb_pred2_1_vo 

results2.pctile_us101sb_pred3_1_vo 

results2.pctile_i880nb_pred3_1_vo 

results2.pctile_i880sb_pred3_1_vo; 

run; 

 

procgplot data=results2.final_compare_3_best; 

whereSelectedPct=30; 

plotCumPctCaptured*modelname; 

run; 
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BEST CLASSIFICATION TREE MODEL RULES 

 

IF  ASDS2_3  <        13.64 

AND 27.750069233 <= SSDS2_3  

THEN 

  NODE    :       6 

  N       :      29 

  0       :   79.3% 

  1       :   20.7% 

 

IF  34.787389945<= SSDS1_3  

AND        13.64 <= ASDS2_3  

AND 27.750069233 <= SSDS2_3  

THEN 

  NODE    :      13 

  N       :     590 

  0       :   98.8% 

  1       :    1.2% 

 

IF  14.902777778<= ASUS2_3  

AND SSDS2_3  < 3.2564497325 

AND ASDS2_3  <      62.4125 

THEN 

  NODE    :      15 

  N       :     644 

  0       :   94.6% 

  1       :    5.4% 

 

IF       62.4125 <= ASDS2_3  <       76.825 

AND SSDS2_3  < 5.2618221829 
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THEN 

  NODE    :      18 

  N       :     123 

  0       :   85.4% 

  1       :   14.6% 

 

IF        76.825 <= ASDS2_3  

AND SSDS2_3  < 5.2618221829 

THEN 

  NODE    :      19 

  N       :      85 

  0       :   65.9% 

  1       :   34.1% 

 

IF  46.647222222<= ASUS2_3  

AND SSDS1_3  < 34.787389945 

AND        13.64 <= ASDS2_3  

AND 27.750069233 <= SSDS2_3  

THEN 

  NODE    :      23 

  N       :    1017 

  0       :   95.8% 

  1       :    4.2% 

 

IF  SSUS1_3  < 30.757920412 

AND ASUS2_3  < 14.902777778 

AND SSDS2_3  < 3.2564497325 

AND ASDS2_3  <      62.4125 

THEN 

  NODE    :      26 
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  N       :     191 

  0       :   77.0% 

  1       :   23.0% 

 

IF  30.757920412<= SSUS1_3  

AND ASUS2_3  < 14.902777778 

AND SSDS2_3  < 3.2564497325 

AND ASDS2_3  <      62.4125 

THEN 

  NODE    :      27 

  N       :     120 

  0       :   92.5% 

  1       :    7.5% 

 

IF        51.675 <= ASDS2_3  <      62.4125 

AND 21.013899321 <= SSDS2_3  < 27.750069233 

THEN 

  NODE    :      33 

  N       :     327 

  0       :   90.5% 

  1       :    9.5% 

 

IF  SSDS1_3  < 6.7492863341 

AND 16.562533892 <= SSUS1_3  

AND 5.2618221829 <= SSDS2_3  < 27.750069233 

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      38 

  N       :     252 

  0       :   99.6% 
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  1       :    0.4% 

 

IF  ASDS1_3  <        34.65 

AND ASUS2_3  < 46.647222222 

AND SSDS1_3  < 34.787389945 

AND        13.64 <= ASDS2_3  

AND 27.750069233 <= SSDS2_3  

THEN 

  NODE    :      40 

  N       :     548 

  0       :   94.0% 

  1       :    6.0% 

 

IF  ASDS2_3  <      11.6375 

AND ASUS1_3  <      31.6375 

AND 3.2564497325 <= SSDS2_3  < 21.013899321 

THEN 

  NODE    :      50 

  N       :      41 

  0       :   78.0% 

  1       :   22.0% 

 

IF       11.6375 <= ASDS2_3  <      62.4125 

AND ASUS1_3  <      31.6375 

AND 3.2564497325 <= SSDS2_3  < 21.013899321 

THEN 

  NODE    :      51 

  N       :     125 

  0       :   48.0% 

  1       :   52.0% 
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IF  ASDS1_3  <       25.185 

AND      31.6375 <= ASUS1_3  

AND 3.2564497325 <= SSDS2_3  < 21.013899321 

AND ASDS2_3  <      62.4125 

THEN 

  NODE    :      52 

  N       :      67 

  0       :   89.6% 

  1       :   10.4% 

 

IF        25.185 <= ASDS1_3  

AND      31.6375 <= ASUS1_3  

AND 3.2564497325 <= SSDS2_3  < 21.013899321 

AND ASDS2_3  <      62.4125 

THEN 

  NODE    :      53 

  N       :     228 

  0       :   71.9% 

  1       :   28.1% 

 

IF  ASDS2_3  <      20.2625 

AND 21.013899321 <= SSDS2_3  < 27.750069233 

THEN 

  NODE    :      54 

  N       :      63 

  0       :   95.2% 

  1       :    4.8% 

 

IF       20.2625 <= ASDS2_3  <       51.675 
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AND 21.013899321 <= SSDS2_3  < 27.750069233 

THEN 

  NODE    :      55 

  N       :     124 

  0       :   71.8% 

  1       :   28.2% 

 

IF  SSUS1_3  < 5.4405194116 

AND ASUS1_3  < 66.672222222 

AND 5.2618221829 <= SSDS2_3  < 27.750069233 

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      58 

  N       :     449 

  0       :   89.5% 

  1       :   10.5% 

 

IF  5.4405194116<= SSUS1_3  < 16.562533892 

AND ASUS1_3  < 66.672222222 

AND 5.2618221829 <= SSDS2_3  < 27.750069233 

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      59 

  N       :     339 

  0       :   77.9% 

  1       :   22.1% 

 

IF  SSDS1_3  < 20.613077874 

AND 66.672222222 <= ASUS1_3  

AND SSUS1_3  < 16.562533892 
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AND 5.2618221829 <= SSDS2_3  < 27.750069233 

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      60 

  N       :    1586 

  0       :   93.4% 

  1       :    6.6% 

 

IF  20.613077874<= SSDS1_3  

AND 66.672222222 <= ASUS1_3  

AND SSUS1_3  < 16.562533892 

AND 5.2618221829 <= SSDS2_3  < 27.750069233 

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      61 

  N       :     433 

  0       :   86.4% 

  1       :   13.6% 

 

IF  5.2618221829<= SSDS2_3  < 5.7513568455 

AND 6.7492863341 <= SSDS1_3  

AND 16.562533892 <= SSUS1_3  

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      64 

  N       :      20 

  0       :   80.0% 

  1       :   20.0% 

 

IF  5.7513568455<= SSDS2_3  < 27.750069233 
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AND 6.7492863341 <= SSDS1_3  

AND 16.562533892 <= SSUS1_3  

AND      62.4125 <= ASDS2_3  

THEN 

  NODE    :      65 

  N       :    1074 

  0       :   95.0% 

  1       :    5.0% 

 

IF         13.64 <= ASDS2_3  <      39.7875 

AND        34.65 <= ASDS1_3  

AND ASUS2_3  < 46.647222222 

AND SSDS1_3  < 34.787389945 

AND 27.750069233 <= SSDS2_3  

THEN 

  NODE    :      68 

  N       :      66 

  0       :   80.3% 

  1       :   19.7% 

 

IF       39.7875 <= ASDS2_3  

AND        34.65 <= ASDS1_3  

AND ASUS2_3  < 46.647222222 

AND SSDS1_3  < 34.787389945 

AND 27.750069233 <= SSDS2_3  

THEN 

  NODE    :      69 

  N       :      85 

  0       :   94.1% 

  1       :    5.9% 


