

OPTIMAL SLEWING OF A CONSTRAINED TELESCOPE USING SEVENTH

ORDER POLYNOMIAL INPUT TORQUES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Julia Bush

September 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19153945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

© 2012

Julia Bush

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Optimal Slewing of a Constrained Telescope Using

Seventh Order Polynomial Input Torques

AUTHOR: Julia Bush

DATE SUBMITTED: September 2012

COMMITTEE CHAIR: Dr. Kira Abercromby

COMMITTEE MEMBER: Dr. Eric A. Mehiel

COMMITTEE MEMBER: David Levinson

iv

ABSTRACT

Optimal Slewing of a Constrained Telescope Using Seventh Order Polynomial Input

Torques

Julia Bush

Two-axis gimbals are frequently used to point cameras and telescopes at various points of

interest for surveillance, science, and art. The rotation of a two-axis gimbal system is

governed by nonlinear angular momentum equations of motion. This paper presents a

method for slewing a telescope in space with a gimbaled sensor attached to a nominally

non-rotating spacecraft using two seventh order polynomial input functions to

characterize torques. To accomplish this task, picking the optimal coefficients of the

seventh order polynomial was necessary. It was also desired to use constraint equations to

limit the excursion, angular velocity, angular acceleration, and jerk of the gimbal. A

Matlab code was developed for this purpose. Matlab’s fmincon was used to do the

optimization, and a comparison to a previously validated one-degree-of-freedom (DOF)

model was presented for validation of the nonlinear, two-degree-of-freedom model.

Results for a fully constrained 2 DOF slew maneuver were also shown. This thesis

demonstrates that seventh order polynomial torques can be used to accurately slew a

telescope in space using nonlinear equations of motion.

Keywords: 2-axis gimbal, nonlinear optimization, 7th-order polynomial, Matlab,

telescope

v

ACKNOWLEDGMENTS

I would like to thank David Levinson and Andy Peronto for their contributions to this

project. Without Dave’s crash course in Dynamics this project would not have gotten off

the ground and without Andy’s vast experience and familiarity with Control Systems and

Matlab this project would not have come to completion. Many thanks for the hours you

both put into this project.

vi

TABLE OF CONTENTS

LIST OF TABLES..vii

LIST OF FIGURES ...viii

Introduction... 1

Background... 2

Equations of Motion for a Two-Axis Gimbal System .. 4

System description:... 4

Direction cosine tables:... 5

Kinematical Equations: ... 6

Dynamical Equations: ... 8

Optimization Procedure .. 15

Results... 17

Conclusion .. 34

Bibliography ... 36

Appendix... 37

vii

LIST OF TABLES

Table 1. Direction Cosines Relating B1, B2, B3, to K1, K2, K3 .. 5

Table 2. Direction Cosines Relating K1, K2, K3 to A1, A2, A3... 6

viii

LIST OF FIGURES

Figure 1: Schematic Representation of Telescope and Gimbal .. 5

Figure 2: Angular Position vs. Time for slew rates of –5 to 5 degrees and earth-rate

velocities ... 19

Figure 3: Angular Velocity vs. Time for slew rates of –5 to 5 degrees and earth-rate

velocities ... 20

Figure 4: Simulated Input Torque vs. Time for slew rates of –5 to 5 degrees and earth-

rate velocities .. 21

Figure 5: Angular Position vs. Time for slew rates of –5 to 5 degrees and earth-rate

velocities with full state feedback... 22

Figure 6: Sensor Angular Velocity vs. Time for slew rates of –5 to 5 degrees and earth-

rate velocities with full state feedback.. 23

Figure 7: Torque vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

with full state feedback ... 25

Figure 8: Angular Position vs. Time for slew rates of –5 to 5 degrees and earth-rate

velocities with constrained Tau_max.. 26

Figure 9: Sensor Angular Velocity vs. Time for slew rates of –5 to 5 degrees and earth-

rate velocities with constrained Tau_max... 27

Figure 10: Torque vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

with constrained Tau_max.. 28

Figure 11: Yaw and Pitch Angular Position vs. Time for the fully constrained 2 DOF

example ... 30

Figure 12: Detailed view of Yaw and Pitch Angular Position vs. Time for the fully

constrained 2 DOF example.. 31

Figure 13: Yaw and Pitch Sensor Angular Velocity vs. Time for the fully constrained 2

DOF example .. 32

Figure 14: Yaw and Pitch Torque vs. Time for the fully constrained 2 DOF example.... 33

1

Introduction

Two-axis gimbals are frequently used to point cameras and telescopes at various points of interest

for surveillance, science, and art. The rotation of a two-axis gimbal system is governed by

nonlinear angular momentum equations of motion. They can often times be approximated as

linear, but the usefulness of models that use these equations is limited. The only situations when it

might be appropriate to linearize the angular momentum equations is if there is only rotation

about one axis, or if the body is symmetrical about all three axes (for example, a sphere or cube),

where the products of inertia are all equal to zero. Therefore, the fully nonlinear angular

momentum equations need to be the basis of a useful model for slewing a telescope on a two-axis

gimbal. There are many ways to slew a telescope from one orientation and angular velocity state

to another. This paper presents a method for slewing a telescope in space with a gimbaled sensor

attached to a nominally non-rotating spacecraft using two seventh order polynomial input

functions to characterize torques. A seventh order polynomial has eight coefficients, which is

enough to accommodate a wide range of slewing motions. To accomplish this task, picking the

optimal coefficients for the seventh order polynomial was necessary. It was also desired to use

constraint equations to limit the excursion, angular velocity, angular acceleration, and jerk of the

gimbal.

The equations of motion developed in this thesis lay the groundwork for a full control system

design that can stabilize the telescope (i.e., keep it pointing at a particular azimuth and elevation).

The dynamics model reveals what happens when either a pitch or yaw torque is applied. The

results from Matlab script show which seventh order polynomial torques are needed (in pitch and

yaw) to enable a telescope to slew from one orientation to another if the dynamics model were a

perfect representation of reality. However in the real world, no model is perfect. So ideally one

2

would design a control system that will keep the telescope stabilized by fighting any disturbances

that occur that cannot be perfectly accounted for, such as solar wind, aerodynamic effects at high

altitude, and internal vibrations [7].

The model presented in this thesis could be used to do a coarse slewing of the telescope from one

orientation to another (which is a large angular maneuver that a control system based on linear

models for small perturbations could have trouble executing); however, after the slew, some other

control system logic would take over that would correct the small errors that came up during the

coarse slew and would also keep the telescope pointing where the user wants it after the slew is

finished. The approach is similar to that employed by an airplane’s guidance and control system.

The pilot has to take off and land the plane, where there can be highly nonlinear dynamics

occurring, but once the plane is cruising in straight and level flight, an autopilot can be turned on

to keep it going straight and level. The equations of motion for an airplane about a trim condition

are well-approximated by linear models. Autopilots have no difficulty returning the plane to its

trim condition if the plane encounters turbulence [7].

Background

The work of Yoon and Lundberg [1] in modeling two-axis yaw-pitch gimbal configurations has

heavily influenced the mathematical model presented in this thesis. In their paper, Yoon and

Lundberg [1] examine the dynamics and derive the equations of motion for a two-axis gimbal

system. Simplified versions of these equations of motion are used in this thesis to model

mathematically a telescope mounted to a nominally non-rotating spacecraft in space. To solve the

equations numerically, a Matlab code was written and an optimizer iterates on the inputs to the

.code to find the optimal coefficients of two seventh order polynomials to drive the telescope

3

from one state to another.

Many others have done research in this area, using Yoon and Lundberg as a jumping off point,

although the majority of the work is related to Unmanned Aerial Vehicles (UAVs) rather than

spacecraft. The driving concern is to remove the need for a human being to be in an airplane

taking pictures (this would also be a driving concern for space-based telescopes). Automating the

function of pointing cameras/telescopes and capturing pictures means less risk and better use of

available resources.

In his paper, O’Connor [5] examines spacecraft control systems. According to O’Connor, a three-

axis spacecraft can be accurately simulated using independent motion on two axes, as long as

rotation around the third axis remains approximately zero. The unknown in this scenario is the

torque input required to satisfy the time boundary conditions. One relatively simple approach to

solving this problem is a least squares minimization. This requires that the input be some sort of

linear, definite, multivariate function that is simple to evaluate [5]. For this case, the easiest

solution is a polynomial, which when chosen with high order, can take most any form and thus

provide the least error in the final state. The goals of O’Connor’s exploration are to determine the

error and the time it takes his simulation to run and to calculate the polynomial input coefficients

required, given initial and final conditions of a two-state system as well as numerical values of

the system parameters.

In order to achieve these ends, O’ Connor linearized the equations of motion of one axis of a

spacecraft and put them into state-space form. He chose initial and final states in order to test the

accuracy of the calculated input. Additionally, he added full state feedback to the system to

4

simulate the spacecraft having closed loop damping on a level below the main command

algorithm. The input was modeled as a seventh order polynomial with variable coefficients.

From this, the time-domain analytic solution could be reduced to an over-determined Least

Squares Minimization (LSM) problem. The LSM solution was found, which consisted of the

coefficients for the polynomial input function. O’Connor coded the entire algorithm in Matlab,

and a Simulink model was created with the same equations of motion and initial state for

validation. From the calculated input the simulation determines the actual final state. He

compared the commanded final state in Matlab to the actual final state from Simulink to

determine the error between the two states, and the state time history from Simulink was used to

gain insight into system behavior.

Equations of Motion for a Two-Axis Gimbal System

System description:

Figure 1 is a schematic representation of the system under consideration, consisting of a rigid

spacecraft B, a gimbal K, and a telescope A. For purposes of this analysis, B is regarded as fixed

in a Newtonian reference frame N. K is connected to B by means of a revolute joint, and another

revolute joint connects A to K. The axes LBK and LKA of these joints are perpendicular to each

other and intersect, the point of intersection here taken to be both the mass center AO of A and the

mass center KO of K. B1, B2, B3 form a right-handed set of mutually perpendicular unit vectors

fixed in B, with B3 parallel to LBK. A second right-handed set of mutually perpendicular unit

vectors K1, K2, K3 is fixed in K with K3 = B3 and K2 parallel to LKA, as shown. Finally, a third

right-handed set of mutually perpendicular unit vectors A1, A2, A3 is fixed in A, with A1 parallel

to the optical axis of A, and A2 = K2. The angle between B2, and K2 (as well as between B1 and

K1) is denoted by ν1, and the angle between A1 and K1 (as well as between A3 and K3) is

designated as ν2.

5

1ν

2ν

2ν

K

A

B

22 A,K

33 K,B

1A

1K

3A
2B

OO K,A

BKL

KAL

1B

N

Figure 1: Schematic Representation of Telescope and Gimbal

Direction cosine tables:

Table 1 contains the direction cosines relating B1, B2, B3 to K1, K2, K3. Similarly Table 2 contains

the direction cosines relating K1, K2, K3 to A1, A2, A3.

Table 1. Direction Cosines Relating B1, B2, B3, to K1, K2, K3

6

 1K 2K 3K

1B 1cosν 1sin ν− 0

2B 1sin ν 1cosν 0

3B 0 0 1

Table 2. Direction Cosines Relating K1, K2, K3 to A1, A2, A3

 1A 2A 3A

1K 2cosν 0
2sin ν

2K 0 1 0

3K 2sin ν− 0 2cosν

Kinematical Equations:

The angular velocity
N
ω

K
 of K in N can be written as

 3K2K1K

KN
Kr+Kq+Kp=ω

 (1)

where Kp , Kq , and Kr are scalar functions of time, while the angular velocity
N
ω

K
 of B in N can

be expressed as

321

BN
Br+Bq+Bp=ω

 (2)

and the angular velocity
B
ω

K
 of K in B is given by (see Figure 1)

31

KB
Kν=ω &

 (3)

The Addition Theorem for Angular Velocities states that:

KBBNKN ω+ω=ω
 (4)

Substituting from Equations (1) – (3) into Equation (4) gives:

7

313213K2K1K KBr+Bq+BpKr+Kq+Kp ν&+=
 (5)

Dot multiplying Equation (5) successively with K1, K2, K3 yields, with the aid of Table 1, the

kinematical equations:

K1: 11K qsin+pcosp νν=
 (6)

K2: 11K qcos+psinq νν−=
 (7)

K3: 1K rr ν+= &
 (8)

The angular velocity
N
ω

A
 of A in N can be expressed as

3A2A1A

AN
Ar+Aq+Ap=ω

(9)

The angular velocity
K
ω

A
 of A in K is given by (see Figure 1)

22

AK
Kν=ω &

 (10)

The Addition Theorem for Angular Velocities states that

ANAKKN ω=ω+ω
 (11)

Substituting from Equations (1), (9), and (10) into Equation (11) gives

3A2A1A223K2K1K Ar+Aq+ApKKr+Kq+Kp =+ν&
 (12)

Dot multiplying Equation (12) successively with A1, A2, A3 yields, with the aid of Table 2, the

kinematical equations:

A1: 2K2KA insr-cospp νν=
 (13)

8

A2: 2KA qq ν+= &
 (14)

A3: 2K2KA oscr+sinpr νν=
 (15)

Dynamical Equations:

Pitch gimbal

The mass centers A0 of A and K0 of K are presumed to be coincident and located at the

intersection of LBK and LKA.

The inertia dyadic 0A/A
I of A for A0 can be expressed as

)AA+AA(D)AA+AA(D)AA+AA(D

AAJAAJ+AAJI

3113zx2332yz1221xy

33az22ay11ax

A/A 0

+++

+=

 (16)

where axJ , ayJ , and azJ are the moments of inertia of A about lines passing through 0A and

parallel to 1A , 2A , 3A , respectively, and xyD , yzD , and zxD are the associated products of

inertia.

The angular momentum of A for A0 in N is defined as

ANA/AA/AN 00 IH ω⋅=
∆

 (17)

Substituting into Equation (17) from (9) and (16) yields

() ()
() 3AazAyzAzx

2AyzAayAxy1AzxAxyAax

1Azx2Ayz3Aaz

3Ayz1Axy2Aay3Azx2Axy1Aax

A/AN

ArJqDpD

ArDqJpDArDqDpJ

ArDArDArJ

AqDAqDAqJApDApD+ApJH 0

+++

+++++=

+++

++++=

 (18)

9

The system of forces exerted by K on A is assumed to be equivalent to a couple of torque, T
A
,

given by:

3

A

Z2

A

Y1

A

X

A
ATATATT ++=

 (19)

The angular momentum principle states that

() AA/AN
N

TH
dt

d
0 =

 (20)

where dt

d
N

denotes time-differentiation in N.

Since
N
H

A/A0
 is expressed in terms of A1, A2, A3 [see Equation 18], it is convenient to rewrite

Equation (20) in terms of time-differentiation in A rather than N. To this end, note that, for any

vector z, the time derivative of z in a reference frame F1 is related to the time derivative of z in a

reference frame F2 in accordance with the formula

z
dt

zd

dt

zd
21

21

FF
FF

×ω+=
 (21)

where
F1
ω

F2
 is the angular velocity of F2 in F1. One can replace Equation (20) with

() 00 A/ANANA/AN
A

A
HH

dt

d
T ×ω+= (22)

Substituting from Equation (9) and (18) into Equation (22) leads to

10

()
() () ()

() ()[]
() ()[]
() ()[]

[]
[]
[]

3

A

Z2

A

Y1

A

X

3AAzx

2

AxyAAaxAAyzAAay

2

AxyAazAyzAzx

2

2

AzxAAxyAAaxAAazAAyz

2

AzxAyzAayAxy

1

2

AyzAAayAAxyAAaz

2

AyzAAzxAzxAxyAax

3AzxAxyAaxAAyzAayAxyA

2AzxAxyAaxAAazAyzAzxA

1AyzAayAxyAAazAyzAzxA

3AazAyzAzx2AyzAayAxy1AzxAxyAax

A/ANANA/AN
A

A

ATATAT

ArqDqDqpJrpDqpJpDrJqDpD

ArDrqDrpJrpJqpDpDrDqJpD

ArDrqJrpDrqJqDqpDrDqDpJ

ArDqDpJqrDqJpDp

ArDqDpJrrJqDpDp

ArDqJpDrrJqDpDq

ArJqDpDArDqJpDArDqDpJ

HH
dt

d
T 00

++=

−−−++++++

+++−−−+++

−−−+++++=

++−+++

++−++−

++−+++

++++++++=

×ω+=

&&&

&&&

&&&

&&&&&&&&&

(23)

The scalar equation of interest is obtained by dot-multiplying Equation (23) by A2

() () () () AAazax

2

A

2

AzxAAAyzAAAxyAay

A

Y rpJJprDqprDrqpDqJT −+−+−+++= &&& (24)

Yaw gimbal

The inertia dyadic 0K/K
I of K for K0 can be written as

)KK+KK(d)KK+KK(d)KK+KK(d

KKJKKJ+KKJI

3113zx2332yz1221xy

33kz22ky11kx

K/K 0

+++

+=

 (25)

where kxJ , kyJ , and kzJ are the moments of inertia of K about lines passing through 0K and

parallel to 1K , 2K , 3K , respectively, and xyd , yzd , and zxd are the associated products of

inertia.

The angular momentum of K for K0 in N is defined as

11

KNK/KK/KN 00 IH ω⋅=
∆

 (26)

Substituting into Equation (26) from Equations (1) and (25) yields

() ()
() 3KkzKyzKzx

2KyzKkyKxy1KzxKxyKkx

1Kzx2Kyz3Kkz

3Kyz1Kxy2Kky3Kzx2Kxy1Kkx

K/KN

KrJqdpd

KrdqJpdKrdqdpJ

KrdKrdKrJ

KqdKqdKqJKpdKpd+KpJH 0

+++

+++++=

+++

++++=

 (27)

The system of forces exerted by B on K is assumed to be equivalent to a couple of torque, T
K
,

given by

3

K

Z2

K

Y1

K

X

K
KTKTKTT ++=

 (28)

The angular momentum principle states that (recall that K0=A0):

() () ()0000 A/AN
N

K/KN
N

A/ANK/KN
N

K
H

dt

d
H

dt

d
HH

dt

d
T +=+=

 (29)

where dt

d
N

denotes time-differentiation in N.

Since
N
H

K/K0
 is expressed in terms of K1, K2, K3, it is helpful to use once again the formula

relating time derivatives of a vector in two reference frames, Equation (21), which gives

() 00 K/KNKNK/KN
K

K
HH

dt

d
T ×ω+= (30)

Substituting from Equations (27), (1), and (23) into Equation (30) leads to

12

() ()
() () ()

() ()[]
() ()[]
() ()[]

[]
[]
[]

[]
[]
[]
[]
[]
[]

3

K

Z2

K

Y1

K

X

3AAzx

2

AxyAAaxAAyzAAay

2

AxyAazAyzAzx

2

2

AzxAAxyAAaxAAazAAyz

2

AzxAyzAayAxy

1

2

AyzAAayAAxyAAaz

2

AyzAAzxAzxAxyAax

3KKzx

2

KxyKKkxKKyzKKky

2

KxyKkzKyzKzx

2

2

KzxKKxyKKkxKKkzKKyz

2

KzxKyzKkyKxy

1

2

KyzKKkyKKxyKKkz

2

KyzKKzxKzxKxyKkx

3AAzx

2

AxyAAaxAAyzAAay

2

AxyAazAyzAzx

2

2

AzxAAxyAAaxAAazAAyz

2

AzxAyzAayAxy

1

2

AyzAAayAAxyAAaz

2

AyzAAzxAzxAxyAax

3KzxKxyKkxKKyzKkyKxyK

2KzxKxyKkxKKkzKyzKzxK

1KyzKkyKxyKKkzKyzKzxK

3KkzKyzKzx2KyzKkyKxy1KzxKxyKkx

A/ANK/KNKNK/KN
K

K

KTKTKT

ArqDqDqpJrpDqpJpDrJqDpD

ArDrqDrpJrpJqpDpDrDqJpD

ArDrqJrpDrqJqDqpDrDqDpJ

KrqdqdqpJrpdqpJpdrJqdpd

KrdrqdrpJrpJqpdpdrdqJpd

KrdrqJrpdrqJqdqpdrdqdpJ

ArqDqDqpJrpDqpJpDrJqDpD

ArDrqDrpJrpJqpDpDrDqJpD

ArDrqJrpDrqJqDqpDrDqDpJ

KrdqdpJqrdqJpdp

KrdqdpJrrJqdpdp

KrdqJpdrrJqdpdq

KrJqdpdKrdqJpdKrdqdpJ

H
dt

d
HH

dt

d
T 000

++=

−−−++++++

+++−−−+++

−−−++++++

−−−++++++

+++−−−+++

−−−+++++=

−−−++++++

+++−−−+++

−−−++++++

++−+++

++−++−

++−+++

++++++++=

+×ω+=

&&&

&&&

&&&

&&&

&&&

&&&

&&&

&&&

&&&

&&&&&&&&&

(31)

The scalar equation of interest can be obtained by dot-multiplying Equation (31) by K3 (see Table

2):

() () () ()[]
() () () ()[]()
() () () ()[]()2AAaxay

2

A

2

AxyAAAzxAAAyzAaz

2AAayaz

2

A

2

AyzAAAzxAAAxyAax

kxkyKK

2

K

2

KxyKKKyzKKKzxKkz

K

Z

cosqpJJqpDrqpDrpqDrJ

sinrqJJrqDqprDrpqDpJ

JJqpqpdrpqdrqpdrJT

ν−+−+−++++

ν−−+−+++−++

−+−+++−+=

&&&

&&&

&&&

(32)

13

Since the spacecraft is assumed to be non-rotating, then p, q, r = 0. Equations (6)-(8) become:

0pK = (33)

0qK = (34)

1Kr ν= &
 (35)

Differentiating Equations (33) - (35) gives

0pK =&
 (36)

0qK =&
 (37)

1Kr ν= &&&
 (38)

Substituting from Equations (33)-(35) into Equations (13)-(15) yields

21A insp νν−= &
 (39)

2Aq ν= &
 (40)

21A oscr νν= &
 (41)

Differentiating Equations (39)-(41) results in

22121A cosinsp ννν−νν−= &&&&&
 (42)

2Aq ν= &&&
 (43)

22121A sinoscr ννν−νν= &&&&&
 (44)

14

Taking Equation (24) and setting the products of inertia to zero (a typical telescope gimbal is built

to make them as near zero as possible) produces

() AAaxaz

A

YAay rpJJTqJ −+=& (45)

Substituting from Equations (39), (41), and (43) into Equation (24) yields

()()22

2

1axaz

A

Y2ay oscins-JJTJ ννν−+=ν &&& (46)

which is a nonlinear differential equation governing the pitch motion.

Taking Equation (32) and again setting the products of inertia to zero results in

() () () ()[]
()[]() ()[]()2AAaxayAaz2AAayazAax

kxkyKK

2

K

2

KxyKKKyzKKKzxKkz

K

Z

cosqpJJrJsinrqJJpJ

JJqpqpdrpqdrqpdrJT

ν−++ν−−++

−+−+++−+=

&&

&&&

(47)

Substituting from Equations (33)-(38) into Equation (47) gives

() ()[]() ()[]()2AAaxayAaz2AAayazAax1kz

K

Z cosqpJJrJsinrqJJpJJT ν−++ν−−++ν= &&&&

(48)

Substituting from Equations (39)-(44) into Equation (48) produces

() ()()()[]
() ()()()[]221axay22121az2

212ayaz22121ax21kz

K

Z

insJJsinoscJcos

oscJJcosins-JsinJT

ννν−−+ννν−ννν+

ννν−+ννν−ννν−ν=

&&&&&&

&&&&&&&&

(49)

and simplification yields

() ()()azax2212

2

az2

2

axkz1

K

Z JJ2sinoscJinsJJT −ννν+ν+ν+ν= &&&&
 (50)

Equations (24) and (50) are the desired nonlinear pitch and yaw equations of motion. These

equations are identical to Equations (6) and (14) in Yoon and Lundberg [1].

15

Optimization Procedure

Nonlinear optimization problems arise in many different application areas from engineering,

economics, finance, statistics, management science, and medicine [6]. The goal is to minimize

some nonlinear function, such as cost or energy, often subject to constraints on the variables. For

purposes of this project, a root sum of squares of the error state was used. The root sum of

squares, which forces a positive value as its output, is used to avoid the optimizer picking a

solution with a large negative error. In the code developed for this project, the cost function is:

() () () ()2222

FyCyFzCzFCFC ωωωωθθψψ −+−+−+− (51)

where ψC = commanded yaw angle, ψF = final yaw angle, θC = commanded pitch angle, θF = final

pitch angle, ωzC = commanded yaw angular rate, ωzF = final yaw angular rate, ωyC = commanded

pitch angular rate, and ωyF = final pitch angular rate. The cost function stems from trying to

minimize the norm of the error between the commanded and final states of the system. The cost

function is the simplest way to tell how close the code gets the user to the desired angles and

rates. If that function is zero, then the telescope is at exactly the commanded angles and rates. If it

is not zero (which is usually the case) then there is some error. The process continues by finding

the coefficients of the seventh order polynomials iteratively until this cost function is lower than

some pre-defined tolerance (i.e. telescope arrives sufficiently close to the commanded state).

The optimizer used in this thesis is Matlab’s built-in FMINCON function that finds the minimum

of constrained nonlinear multivariable functions. Fmincon allows the user to find the optimized

coefficients of the seventh order polynomial torque, given certain constraint equations.

16

 FMINCON attempts to solve problems of the form

 min F(X) subject to: A*X ≤ B, Aeq*X = Beq (linear constraints)

 C(X) ≤ 0, Ceq(X) = 0 (nonlinear constraints)

 LB ≤ X ≤ UB (bounds)

X = FMINCON(FUN,X0,A,B) starts at X0 and finds a minimum X to the function FUN, subject

to the linear inequalities A*X ≤ B. FUN accepts input X and returns a scalar function value F

evaluated at X. X0 may be a scalar, vector, or matrix. In the case of this thesis, X0 is a vector.

The inputs to the code are the initial states of the two-axis gimbal, the commanded state,

constraints on positions, velocity, acceleration, and torque, a given time in which to complete the

maneuver, and an integration time step. The outputs of the code are the coefficients of the seventh

order input torque polynomials, and the final pitch and yaw states that were obtained using those

polynomial coefficients.

Constraints were added in an attempt to model the physical limitations of a real-world system. A

telescope may have limits on the angles it can slew. It may physically come upon a hard stop. A

motor can only output so much torque, which is represented by the torque constraint. There could

be an angular acceleration limit for structural reasons. The code can accept a constraint on

angular velocity, although this can be redundant with an already constrained torque and angular

acceleration. The designer needs to take these real world constraints on a telescope into account

to determine feasible slewing maneuvers. The constraints present in this thesis are simple upper

and lower bounds on all these variables.

17

Results

A 2 DOF nonlinear model was created based on the 1 DOF linear model in [5]. The initial and

final conditions are a specified angle and angular velocity. To compare the 2 DOF model to the 1

DOF model, the yaw moment of inertia is set artificially high. As the moment of inertia in that

axis gets arbitrarily large, no response will be obtained in the yaw channel, and it is an equivalent

result to having a pure 1 DOF model. Consequently, the results that follow show the output in the

yaw channel is close to zero.

To show that this model produced similar results to [5], the same inputs are used:

Initial state 








−
=

0042.0

5
x 0t

Final state 








−

−
=

0.0042

5
x tf

with a time-step, dt = 0.0001 (s), initial time t0 = 0 (s), and final time tf = 5 (s). In this example,

the Matlab code rotates the telescope from 5 degrees to –5 degrees, while initial and final angular

velocities are the same rate at which the Earth rotates. The 2 DOF nonlinear model results are

shown in Figures 2-4.

Figure 2 shows the telescope going from the initial state of 5 degrees to the commanded final

state of –5 degrees in five seconds. The pitch angle remains relatively constant early in the

motion, but then decreases, beginning at approximately 2 seconds, and the curve is smooth

18

throughout the maneuver. This is as expected because the path is a polynomial. The system

cannot go to the commanded orientation early and remain constant thereafter. It has to arrive

smoothly at its commanded orientation at the exact specified time and cannot be discontinuous.

Figure 2 shows that model working successfully.

Note that there is no motion in the yaw direction because of an artificially high yaw gimbal

moment of inertia. That was added to force a 1 DOF comparison to [5]. O’Connor’s final state

was










−

−
=

61853750.00419932

48158465.00000038
x tf

and the nonlinear, 2 DOF model’s final state was










−

−
=

25012100.00405407

54240575.00005373
x tf .

19

Figure 2: Angular Position vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

Figure 3 shows the telescope speeding up and then slowing down to its commanded state. This

result is expected because the commanded angle is negative, requiring the system to produce a

negative angular velocity, and then the system begins to slow to reach its final state with no

overshoot. There will not be overshoot at the end of the 5 second slewing period. In a real control

system, this is impossible and some overshoot would be expected and may even be desirable

because it is faster to command the system to its final state and then correct the overshoot after

the maneuver. To recover from overshoot, another control system would be needed to make

minor adjustments after this open-loop slew maneuver finished.

20

Figure 3: Angular Velocity vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

Figure 4 depicts the output of the optimizer, which is the seventh order polynomial for gimbal

torque. The gimbal is being commanded from a positive angle to a negative one. The torque also

goes negative to cause the gimbal to undergo a negative angular acceleration, and then the torque

switches direction to slow the gimbal as it approaches the commanded state.

21

Figure 4: Simulated Input Torque vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

It was noted (see figure 4) that the input torque the 2 DOF nonlinear model produced was

approximately 400 N*m after 5 seconds, whereas the torque produced by O’Connor’s model was

around 1000 N*m. Further examination showed that O’Connor’s model used full-state feedback,

which was modeled by O’Connor as just a damping term that acts like viscous friction [5].

Normally there is more to full-state feedback than simply adding a viscous friction term to the

equations of motion, but in O’Connor’s case a damping term was sufficient to produce the desired

system response. The absence of this damping term was causing the discrepancy in simulated

input torques between O’Connor’s model and the 2 DOF nonlinear model. The results of adding

the full-state feedback term to the 2 DOF nonlinear model are shown in Figures 5-7.

22

Figure 5 shows the telescope going from the same initial state to the same commanded state as in

the previous example in five seconds with the damping term added. There is a slight difference in

the path of the pitch angle. The previous example without the damping term has the angle

crossing zero degrees at approximately 3.75 seconds and Figure 5 shows the angle crossing zero

degrees at approximately 3.85 seconds. This result is expected because the damping term (i.e.

friction) slows the slewing maneuver. Figure 5 shows that the damping term has a small effect on

the gimbal’s pitch angle.

Figure 5: Angular Position vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities with

full state feedback

Figure 6 shows the telescope speeding up and then slowing down to its commanded state with the

damping term added. The angular velocity ranges from 0 to approximately –6.5 deg/s with the

minimum coming at a time of approximately 4.3 seconds. The commanded values are likely to

23

appear in a typical-use case study on a spacecraft. The angular rates calculated are small enough

to be appropriate for a spacecraft to experience in operations.

As with the pitch angle, there is a slight difference in the angular velocity curve from the example

without damping added. In the previous example, the minimum angular velocity is reached at

approximately 4 seconds, whereas in Figure 6, the minimum angular velocity occurs at

approximately 4.3 seconds. Additionally there is a difference in the value of the minimum angular

velocity. The damping term causes an increase in the magnitude of the angular velocity. This is

expected because the system has to overcome friction in order to get to the commanded state at 5

seconds. The system has to use greater angular velocity to accomplish this. Figure 6 shows a

more pronounced effect of the damping term on the model than with the angle.

Figure 6: Sensor Angular Velocity vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

with full state feedback

24

Figure 7 shows the output of the optimizer that is the seventh order polynomial for gimbal torque

with the damping term added. The 2 DOF nonlinear model now has similar torque to the 1 DOF

linear model in [5]. The gimbal is once more being commanded from a positive angle to a

negative one. Correspondingly, the torque also goes negative to cause the gimbal to experience a

negative angular acceleration, and then the torque switches direction to slow the gimbal as it

approaches the commanded state.

With the damping term added, the torque is now greater in both directions. In the previous

example without the damping term, the minimum torque was approximately –150 N*m and the

maximum torque reached was approximately 400 N*m. With the damping added, the minimum

torque reached was –650 N*m and the maximum was approximately 1000 N*m. These numbers

now closely match the results obtained with the model in [5]. The resulting larger torque is

expected because the system needs it to overcome the torque due to friction.

The close agreement between the results in [5] and the results shown in Figures 5-7 provide good

evidence that the code developed for this thesis is accurate. To illustrate that the 2 DOF nonlinear

model is a higher fidelity model than the model in [5], the input torque (Tau_max) was next

constrained to 700 N*m, while the other inputs remain unchanged. The results are shown in

Figures 8-10.

25

Figure 7: Torque vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities with full state

feedback

Figure 8 shows the telescope going from the initial state used previously to the same commanded

state in five seconds with a constraint placed on the input torque. The time that the angle departs

from 5 degrees is occurring sooner (at 1 second vs. 1.75 seconds in Figure 5) and the time the

telescope crosses zero degrees is occurring slightly sooner (at approximately 3.8 seconds vs. just

after 4 seconds in Figure 5). This result is expected because with less actuator capability the only

way to achieve the commanded state in the same amount of time is to start the maneuver sooner.

Figure 8 shows that the effect of the constrained torque on the pitch angle is minor.

26

Figure 8: Angular Position vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities with

constrained Tau_max

Figure 9 shows the telescope speeding up and then slowing down to its commanded state with a

constraint placed on the input torque. The angular velocity departs from zero degrees/sec sooner

and reaches minimum sooner than in the previous examples (Figure 6). This earlier response is

similar to that observed in the pitch angle of Figure 8 vs. its previous response seen in Figure 5.

Additionally, the magnitude of the angular velocity is decreased due to decreased available torque

(see –5.5 degrees/sec vs. –6.5 degrees/sec in Figure 6). This result is expected because decreased

available torque does not permit the system to move as fast as when the torque is unconstrained.

Figure 9 shows a more noticeable effect on the model than Figure 8.

27

Figure 9: Sensor Angular Velocity vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities

with constrained Tau_max

Figure 10 shows that an input torque below the constrained Tau_max (700 N*m) is found, and

that the system begins pushing approximately 0.5 seconds sooner than in Figure 7. This example

illustrates that the 2 DOF nonlinear model is of higher fidelity than the one put forth in [5]

because the linear 1 DOF model does not handle constraints. The Least Squares Method

presented in [5] permits arbitrarily large input torques (which may not be practical or physically

possible) and provides no way to limit orientation or angular velocity in the 1 DOF linear model.

There are typically limitations on angular acceleration for structural reasons. Orientation might

also need to be constrained if there is a hard stop on the gimbals.

28

A typical telescope needs to be able to point with two degrees of freedom (azimuth and elevation)

so a 1 DOF model is not as useful as a 2 DOF model in the case of pointing a telescope in space.

Unfortunately 2 DOF models are nonlinear by the nature of the nonlinearity of the angular

momentum equation except for certain trivial cases like perfectly spherical bodies. Additionally,

constraints on a system are a form of nonlinearity, and any real world system is going to have

constraints. The model presented in [5] may not be useful for real world spacecraft applications.

The 2 DOF nonlinear Matlab optimizer will inform the user if it cannot find a solution for the

given constraints.

Figure 10: Torque vs. Time for slew rates of –5 to 5 degrees and earth-rate velocities with

constrained Tau_max

29

2 DOF example using full constrained optimized solution

The final case is a 2 DOF example that would show a fully 2 DOF nonlinear, constrained,

optimized solution. The data presented are not necessarily representative of an actual spacecraft

slew maneuver. The initial state for pitch is 5 degrees at a rate of 0 degrees/second; yaw is –5

degrees at a rate of 0 degrees/second. The commanded state for pitch is –5 degrees at a rate of 0

degrees/second and yaw is 5 degrees at a rate of 0 degrees/second, with a time-step, dt = 0.001

(s), initial time t0 = 0 (s), and final time tf = 5 (s). The results are shown in Figures 11-14.

Figure 11 shows both yaw and pitch channels of the telescope going from the initial state to the

commanded state in five seconds. Since the telescope’s yaw and pitch commands were in

opposite directions from one another, their plot paths are nearly the negatives of each other. It is

important to note that since the moments of inertia in pitch and yaw are different from each other

(pitch is 2400 kg*m
2
 and yaw is 2000 kg*m

2
) that these two plots are not exact negatives of each

other. The pitch result is exactly as in Figure 8 since the pitch gimbal is the inner gimbal and is

not dependent on yaw motion. The yaw result is expected since the telescope moves smoothly

from –5 degrees to 5 degrees and is nearly the opposite of the pitch curve. Figure 11 shows the

model working successfully in two dimensions.

30

Figure 11: Yaw and Pitch Angular Position vs. Time for the fully constrained 2 DOF example

Figure 12 is an enlarged section of Figure 11 where the pitch and yaw curves cross the x-axis.

Figure 12 shows that the pitch and yaw curves cross the x-axis at different points, indicating they

are two different and distinct curves, not merely the same curve reflected about the x-axis.

31

Figure 12: Detailed view of Yaw and Pitch Angular Position vs. Time for the fully constrained 2 DOF

example

Figure 13 shows the pitch and yaw rates increasing and then decreasing to their commanded

states. As in Figure 11, yaw and pitch rates are nearly reflections of each other due to comparable

moments of inertia in both pitch and yaw axes. The pitch result is identical to Figure 9, as none of

the conditions have changed. The yaw result is expected because of the similar moments of

inertia, initial conditions, and final commanded conditions of pitch. Figure 13 further shows the

model working successfully in two dimensions.

32

Figure 13: Yaw and Pitch Sensor Angular Velocity vs. Time for the fully constrained 2 DOF example

Figure 14 shows the pitch and yaw seventh order polynomial input torques both constrained to

700 N*m. As in Figure 13, the yaw and pitch curves are nearly reflections of each other due to

their very similar moments of inertia in both axes. However in Figure 14, the differences are more

apparent with the pitch torque going to a minimum of –550 N*m and the yaw going to a

maximum of approximately 450 N*m. Additionally, the pitch torque goes to a maximum of 700

N*m and the yaw torque only reaches a minimum of just over –600 N*m at 5 seconds.

The pitch result is identical to Figure 10 as none of the conditions have changed. The lower yaw

torque result compared to pitch is expected because of the lower yaw moment of inertia compared

to pitch. Figure 14 shows the nonlinear constrained 2 DOF model working successfully.

33

Figure 14: Yaw and Pitch Torque vs. Time for the fully constrained 2 DOF example

34

Conclusion

The goal of the thesis was to develop a technique to optimally slew a telescope in 2 DOF using

seventh order polynomial commands, subject to constraints, and taking into account the full

nonlinear equations of motion of the two-axis gimbal system in which the telescope is mounted.

Matlab’s FMINCON was used to do the optimization, and the results were compared to a

previously validated 1 DOF model for validation of the nonlinear, 2 DOF model. Results for a

fully constrained 2 DOF slew maneuver were also shown. This thesis demonstrated that seventh

order polynomial torques can be used to accurately slew a telescope in space using nonlinear

equations of motion.

There are some limitations to the code developed for this thesis. The Matlab optimizer, the inner

workings of which are proprietary to Mathworks, can sometimes take several minutes to several

hours to run and converge to an answer. Matlab can also be unpredictable as to which problems it

takes a longer amount of time to solve. Without knowing the inner workings of Matlab’s

optimizer, it is difficult to predict which problems Matlab will solve quickly and which ones it

will take much longer to solve. This could be a problem for onboard operations if they are time-

sensitive. Perhaps this time could be improved upon by developing an optimizer tailored to this

particular problem.

Also, if this control system were employed on an actual telescope, there would be no Matlab

onboard because Matlab is not designed for the types of computers that are onboard satellites and

telescopes. Those computers do not have the same processing power as a desktop computer. In

35

that case one would have to code an optimizer specifically designed to run on the satellite’s

computer.

Another change to the optimizer would be to let it select the time required to perform the slew

maneuver in addition to the seventh order polynomials that it finds. Currently the user specifies

the time as an input (5 seconds for the results shown). Perhaps an actual telescope user would

want to slew as fast as possible and 5 seconds would be too slow, so the code could be extended

to also try to minimize that slew time. Selecting a cost function for that problem however would

require additional study.

In theory this model should be useful for slewing a telescope in space; however actual testing

would be necessary to validate the model and assess how sensitive it is to disturbances or errors

in predicted vs. actual moments of inertia and torque. Further work could be done on improving

the optimizer so that it converges to a solution more rapidly and consistently. Additionally, it

should be noted that this is an open loop control system and that a closed loop system could be

developed to improve accuracy and robustness in the presence of modeling errors and

disturbances.

36

Bibliography

1.) Yoon, Sungpil and John. B. Lundberg, “Equations of Motion for a Two-Axes Gimbal

System,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, July

2001, pp. 1083 – 1091.

2.) Wongkamchang, Prasatporn, and Viboon Sangveraphunsiri. "Control of Inertial

Stabilization Systems Using Robust Inverse Dynamic Control and Adaptive Control."

Thammasat International Journal of Science and Technology 13.2 (2008): 20-32.

Thammasat University, Thailand. Web. <http://www.tijsat.tu.ac.th/>.

3.) Quigley, Morgan, Michael A. Goodrich, Stephen Griffiths, Andrew Eldredge, and Randal

W. Beard. “Target Acquisition, Localization, and Surveillance using a Fixed-Wing Mini-

UAV and Gimbaled Camera.” Proceedings of the IEEE International Conference on

Robotics and Automation, April 2005, Barcelona,

Spain, pp. 2600–2605

4.) Lee, DongBin, Vilas K. Chitrakaran, Timothy C. Burg, Darren M. Dawson, Bin Xian ,

and Enver Tatlicioglu. “Integrated Control of a Remotely Operated Quadrotor UAV and

Camera Unit by Fly-The-Camera Perspective.” Control and Robotics (CRB) Technical

Report, Jan. 2009, 01–39

5.) O'Connor, Cory. Finding the Input Polynomial Coefficients Satisfying the Time-domain

Analytic Solution to a Linear Dynamic System Using the Least Squares Method. Thesis.

California Polytechnic State University, 2006. Print.

6.) Ruszczyński, Andrzej P. Nonlinear Optimization. Princeton, NJ: Princeton UP, 2006.

Print.

7.) Peronto, Andy. "Re: Full State Feedback Term Added to Code." Message to the author.

27 Jan. 2012. E-mail.

37

Appendix A

The Matlab code developed for this thesis follows below. It consists of four functions:

optimizePolynomial.m, myfun.m, mycon.m, and propagate.m.

function optimizePolynomial

% Start with an initial guess at a vector of polynomial coefficients.

% X is the vector of 7th order polynomial torque coefficients.

% There are two input torques, one for pitch and one for yaw, so there

% needs to be 2 7th order polynomials.

% Let the pitch torque, Ty, be:

% Ty = a + b*t + c*t^2 + d*t^3 + e*t^4 + f*t^5 + g*t^6 + h*t^7

% Let the yaw torque, Tz, be:

% Tz = i + j*t + k*t^2 + l*t^3 + m*t^4 + n*t^5 + o*t^6 + p*t^7

% Thus, X = [a b c d e f g h i j k l m n o p]

X = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';

% Set some parameters for the simulation.

% Define the state of the slewing motion as:

% x = [pitch; yaw; pitchdot; yawdot] or

% x = [nu2; nu1; nu2dot; nu1dot*cos(nu2)]

% The commanded final state is xc.

% The initial state in degrees and degrees per second:

% 1-D example: xi = [5 0 -360/60/60/24 0]';

xi = [5 -5 0 0]';

% And the commanded state in degrees and degrees per second:

xc = [-5 5 0 0]';

38

% Convert to radians and radians per second

xi = deg2rad(xi);

xc = deg2rad(xc);

% Define the initial and final times, and the time step of the

simulation in seconds.

t0 = 0;

tf = 5;

dt = 0.001;

% Define the moments of inertia in kg*m^2.

Jax = 100;

Jay = 2400;

Jaz = 100;

Jkx = 0; % Drops out of equations

Jky = 0; % Drops out of equations

% 1-D example: Jkz = 1000000000; arbitrarily large yaw

Jkz = 2000;

% Define viscous friction coefficients in 1/s

cy = 2;

cz = 2;

% Define constraints.

% Maximum torque in N*m.

Tau_max = 700;

% Max angle displacement in degrees.

Theta_max = deg2rad(60);

% Max angular velocity in degrees/second.

Omega_max = deg2rad(7);

39

% Max angular acceleration in degrees/second^2.

Alpha_max = deg2rad(30);

% Call Matlab's fmincon optimizer to minimize the cost function.

options = optimset('fmincon');

options.Algorithm = 'active-set';

options.Display = 'iter';

options.MaxFunEvals = 10000;

options.MaxIter = 10000;

options.TolFun = 1e-7;

options.TolX = 1e-7;

[Xopt,Fval] = fmincon(@(X)

myfun(X,xi,xc,t0,tf,dt,Jax,Jay,Jaz,Jkx,Jky,Jkz,cy,cz),X,[],[],[],[],[],

[],@(X)

mycon(X,xi,Tau_max,Theta_max,Omega_max,Alpha_max,t0,tf,dt,Jax,Jay,Jaz,J

kx,Jky,Jkz,cy,cz),options);

% Print out the results.

disp('The minimized function value is:');

disp(Fval);

disp('The input that minimizes the function is:');

disp(Xopt);

% Make some plots.

% Declare vectors.

t = (t0:dt:tf);

nTimes = length(t);

nu1 = zeros(nTimes,1);

nu2 = zeros(nTimes,1);

nu1dot = zeros(nTimes,1);

nu2dot = zeros(nTimes,1);

qa = zeros(nTimes,1);

40

ra = zeros(nTimes,1);

nu1dotdot = zeros(nTimes,1);

nu2dotdot = zeros(nTimes,1);

qadot = zeros(nTimes,1);

radot = zeros(nTimes,1);

% Set the torques based off of the output from the optimizer.

Ty = Xopt(1) + Xopt(2)*t + Xopt(3)*t.^2 + Xopt(4)*t.^3 + Xopt(5)*t.^4 +

Xopt(6)*t.^5 + Xopt(7)*t.^6 + Xopt(8)*t.^7;

Tz = Xopt(9) + Xopt(10)*t + Xopt(11)*t.^2 + Xopt(12)*t.^3 +

Xopt(13)*t.^4 + Xopt(14)*t.^5 + Xopt(15)*t.^6 + Xopt(16)*t.^7;

% Initialize the first data point.

x = xi;

% With this input torque, propagate everything from t = t0 to t = tf.

% This is the same code as propagate.m except now it's storing all of

the

% state information into vectors.

for i=1:nTimes

 % x = [pitch; yaw; pitchdot; yawdot]

 nu2(i) = x(1);

 nu1(i) = x(2);

 nu2dot(i) = x(3);

 nu1dot(i) = x(4)/cos(x(1));

 qa(i) = x(3);

 ra(i) = x(4);

 % Calculate the gimbal angular accelerations, nu1dotdot and

nu2dotdot,

 % and sensor angular accelerations, qadot and radot, from that paper

as

41

 % given in symbolic_project_equations.m.

 qadot(i) = 1/Jay*(Ty(i)+(Jax-

Jaz)*nu1dot(i)^2*sin(nu2(i))*cos(nu2(i))) - cy*nu2dot(i);

 nu2dotdot(i) = qadot(i);

 radot(i) = 1/(Jkz+Jax*sin(nu2(i))^2+Jaz*cos(nu2(i))^2)*(Tz(i)-

nu2dot(i)*(Jax-Jaz)*nu1dot(i)*sin(2*nu2(i)))*cos(nu2(i)) -

nu1dot(i)*nu2dot(i)*sin(nu2(i)) - cz*nu1dot(i);

 nu1dotdot(i) = 1/(Jkz+Jax*sin(nu2(i))^2+Jaz*cos(nu2(i))^2)*(Tz(i)-

nu2dot(i)*(Jax-Jaz)*nu1dot(i)*sin(2*nu2(i))) - cz*nu1dot(i);

 % Update the pointing states.

 x = x + [.5*nu2dotdot(i)*dt^2 + nu2dot(i)*dt; .5*nu1dotdot(i)*dt^2 +

nu1dot(i)*dt; qadot(i)*dt; radot(i)*dt];

end

% Plot the torques.

figure;

plot(t,Ty,t,Tz);

xlabel('Time (sec)');

ylabel('Torque (N*m)');

legend('Pitch','Yaw','Location','NorthWest');

grid on;

% Plot the angles.

figure;

plot(t,nu2*180/pi,t,nu1*180/pi);

xlabel('Time (sec)');

ylabel('Angle (deg)');

legend('Pitch','Yaw','Location','NorthWest');

grid on;

% Plot the gimbal angular velocities.

42

figure;

plot(t,nu2dot*180/pi,t,nu1dot*180/pi);

xlabel('Time (sec)');

ylabel('Gimbal Angular Velocity (deg/sec)');

legend('Pitch','Yaw','Location','NorthWest');

grid on;

% Plot the sensor angular velocities.

figure;

plot(t,qa*180/pi,t,ra*180/pi);

xlabel('Time (sec)');

ylabel('Sensor Angular Velocity (deg/sec)');

legend('Pitch','Yaw','Location','NorthWest');

grid on;

% Plot the gimbal angular accelerations.

figure;

plot(t,nu2dotdot*180/pi,t,nu1dotdot*180/pi);

xlabel('Time (sec)');

ylabel('Gimbal Angular Acceleration (deg/sec^2)');

legend('Pitch','Yaw','Location','NorthWest');

grid on;

% Plot the sensor angular accelerations.

figure;

plot(t,qadot*180/pi,t,radot*180/pi);

xlabel('Time (sec)');

ylabel('Sensor Angular Acceleration (deg/sec^2)');

legend('Pitch','Yaw','Location','NorthWest');

grid on;

43

% Print out some more results.

disp('The initial state was:');

disp(xi*180/pi);

disp('The commanded state was:');

disp(xc*180/pi);

disp('The final state was:');

disp(x*180/pi);

function F = myfun(X,xi,xc,t0,tf,dt,Jax,Jay,Jaz,Jkx,Jky,Jkz,cy,cz)

% X is the vector of 7th order polynomial torque coefficients.

% There are two input torques, one for pitch and one for yaw, so there

% needs to be 2 7th order polynomials.

% Let the pitch torque, Ty, be:

% Ty = a + b*t + c*t^2 + d*t^3 + e*t^4 + f*t^5 + g*t^6 + h*t^7

% Let the yaw torque, Tz, be:

% Tz = i + j*t + k*t^2 + l*t^3 + m*t^4 + n*t^5 + o*t^6 + p*t^7

% Thus, X = [a b c d e f g h i j k l m n o p]

% F is the norm of the difference between some commanded final state

and

% the actual final state of the slewing motion.

% Define the state of the slewing motion as:

% x = [yaw; pitch; yawdot; pitchdot]

% The commanded final state is xc.

% The initial time is t0 and the final time is tf.

% dt is the time step of the simulation in seconds.

44

% Propogate the pointing state of the system forward to the final time.

xf = propagate(X,xi,Jax,Jay,Jaz,Jkx,Jky,Jkz,cy,cz,t0,tf,dt);

% Return F.

F = norm(xf-xc);

function [C,Ceq] =

mycon(X,xi,Tau_max,Theta_max,Omega_max,Alpha_max,t0,tf,dt,Jax,Jay,Jaz,J

kx,Jky,Jkz,cy,cz)

% X is the vector of 7th order polynomial torque coefficients.

% There are two input torques, one for pitch and one for yaw, so there

% needs to be 2 7th order polynomials.

% Let the pitch torque, Ty, be:

% Ty = a + b*t + c*t^2 + d*t^3 + e*t^4 + f*t^5 + g*t^6 + h*t^7

% Let the yaw torque, Tz, be:

% Tz = i + j*t + k*t^2 + l*t^3 + m*t^4 + n*t^5 + o*t^6 + p*t^7

% Thus, X = [a b c d e f g h i j k l m n o p]

% The initial time is t0 and the final time is tf.

% dt is the time step of the simulation in seconds.

% C is the nonlinear constraint function of X that must be less than or

% equal to zero.

% Ceq is the nonlinear equality constraint Ceq(X) = 0.

% Get the vector of times.

t = (t0:dt:tf);

45

nTimes = length(t);

nu1 = zeros(1,nTimes);

nu2 = zeros(1,nTimes);

nu1dot = zeros(1,nTimes);

nu2dot = zeros(1,nTimes);

nu1dotdot = zeros(1,nTimes);

nu2dotdot = zeros(1,nTimes);

% Compute the pitch and yaw torques.

Ty = X(1) + X(2)*t + X(3)*t.^2 + X(4)*t.^3 + X(5)*t.^4 + X(6)*t.^5 +

X(7)*t.^6 + X(8)*t.^7;

Tz = X(9) + X(10)*t + X(11)*t.^2 + X(12)*t.^3 + X(13)*t.^4 + X(14)*t.^5

+ X(15)*t.^6 + X(16)*t.^7;

% Initialize the first data point.

x = xi;

% With this input torque, propagate everything from t = t0 to t = tf.

% This is the same code as propagate.m except now it's storing all of

the

% state information into vectors.

for i=1:nTimes

 % x = [pitch; yaw; pitchdot; yawdot]

 nu2(i) = x(1);

 nu1(i) = x(2);

 nu2dot(i) = x(3);

 nu1dot(i) = x(4)/cos(x(1));

 % Calculate the gimbal angular accelerations, nu1dotdot and

nu2dotdot,

 % and sensor angular accelerations, qadot and radot, from that paper

as

46

 % given in symbolic_project_equations.m.

 qadot = 1/Jay*(Ty(i)+(Jax-Jaz)*nu1dot(i)^2*sin(nu2(i))*cos(nu2(i))) -

cy*nu2dot(i);

 nu2dotdot(i) = qadot;

 radot = 1/(Jkz+Jax*sin(nu2(i))^2+Jaz*cos(nu2(i))^2)*(Tz(i)-

nu2dot(i)*(Jax-Jaz)*nu1dot(i)*sin(2*nu2(i)))*cos(nu2(i)) -

nu1dot(i)*nu2dot(i)*sin(nu2(i)) - cz*nu1dot(i);

 nu1dotdot(i) = 1/(Jkz+Jax*sin(nu2(i))^2+Jaz*cos(nu2(i))^2)*(Tz(i)-

nu2dot(i)*(Jax-Jaz)*nu1dot(i)*sin(2*nu2(i))) - cz*nu1dot(i);

 % Update the pointing states.

 x = x + [.5*nu2dotdot(i)*dt^2 + nu2dot(i)*dt; .5*nu1dotdot(i)*dt^2 +

nu1dot(i)*dt; qadot*dt; radot*dt];

end

% Return C.

C = [Ty-Tau_max;Tz-Tau_max;-Ty-Tau_max;-Tz-Tau_max;nu2-Theta_max;nu1-

Theta_max;-nu2-Theta_max;-nu1-Theta_max;nu2dot-Omega_max;nu1dot-

Omega_max;-nu2dot-Omega_max;-nu1dot-Omega_max;nu2dotdot-

Alpha_max;nu1dotdot-Alpha_max;-nu2dotdot-Alpha_max;-nu1dotdot-

Alpha_max]';

% Return Ceq.

Ceq = [];

function xf = propagate(X,x,Jax,Jay,Jaz,Jkx,Jky,Jkz,cy,cz,t0,tf,dt)

% This propogates the slewing motion of the telescope from an initial

time

% and initial pointing state to a final time and final pointing state

by

% marching the equations of motion forward in time.

% Begin the simulation.

47

time = t0;

for t=t0:dt:tf

 % x = [pitch; yaw; pitchdot; yawdot]

 nu2 = x(1);

 nu1 = x(2);

 nu2dot = x(3);

 nu1dot = x(4)/cos(x(1));

 % Define the input torques from X where X = [a b c d e f g h i j k l

m n o p]

 % Let the pitch torque, Ty, be:

 % a + b*t + c*t^2 + d*t^3 + e*t^4 + f*t^5 + g*t^6 + h*t^7

 % Let the yaw torque, Tz, be:

 % i + j*t + k*t^2 + l*t^3 + m*t^4 + n*t^5 + o*t^6 + p*t^7

 Ty = X(1) + X(2)*time + X(3)*time^2 + X(4)*time^3 + X(5)*time^4 +

X(6)*time^5 + X(7)*time^6 + X(8)*time^7;

 Tz = X(9) + X(10)*time + X(11)*time^2 + X(12)*time^3 + X(13)*time^4 +

X(14)*time^5 + X(15)*time^6 + X(16)*time^7;

 % Calculate the gimbal angular accelerations, nu1dotdot and

nu2dotdot,

 % and sensor angular accelerations, qadot and radot, from that paper

as

 % given in symbolic_project_equations.m.

 qadot = 1/Jay*(Ty+(Jax-Jaz)*nu1dot^2*sin(nu2)*cos(nu2)) - cy*nu2dot;

 nu2dotdot = qadot;

 radot = 1/(Jkz+Jax*sin(nu2)^2+Jaz*cos(nu2)^2)*(Tz-nu2dot*(Jax-

Jaz)*nu1dot*sin(2*nu2))*cos(nu2) - nu1dot*nu2dot*sin(nu2) - cz*nu1dot;

 nu1dotdot = 1/(Jkz+Jax*sin(nu2)^2+Jaz*cos(nu2)^2)*(Tz-nu2dot*(Jax-

Jaz)*nu1dot*sin(2*nu2)) - cz*nu1dot;

 % Update the pointing states.

 x = x + [.5*nu2dotdot*dt^2 + nu2dot*dt; .5*nu1dotdot*dt^2 +

nu1dot*dt; qadot*dt; radot*dt];

48

 % Update the time.

 time = time + dt;

end

% Set the final state to xf.

xf = x;

