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Chapter 1 

Using Computer Animation to Learn 
Physics 

1.1 What is computer animation? 

Computer animation is the process of drawing objects on a computer screen, that then appear 
to move around the screen. It can be anything from a simple bouncing ball, to something as 
complicated as characters in the movie “Toy Story.” Either way, the objects are not real and they 
are not actually moving. The objects and their motion are “virtual” (they’re just pixels) and 
computer programming techniques have been developed to make them appear to move. Rapid 
advances in computer technology have allowed for the production of computer animations with 
very lifelike realism, where one can easily forget the virtual nature of it all. 

1.2 Why computer animation with physics? 

Something has to drive the virtual motion of a computer animation. Even in the case of a simple 
red ball, how is the computer to know where the ball is supposed to be during each frame of the 
animation? Typically mathematical x, y, z coordinates can provide the position, but they must 
be calculated first, as the computer must know a precise position before it can start filling pixels 
on the screen. If the animation is supposed to mimic the way things move in real-life, then the 
laws of physics can be used compute these positions, and this is the theme of this book: using 
laws of physics to produce computer animations. It’s a very natural fit for the branch of physics 
called “mechanics,” as we’ll see. 

1.3 Why computer animation in a course on physics? 

1.3.1 To learn physics 

As far as learning physics goes, it turns out that students who learn physics concepts via static 
pictures (i.e. from the textbook alone), can be led to construct incomplete or incorrect men
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7 CHAPTER 1. USING COMPUTER ANIMATION TO LEARN PHYSICS 

tal models that hamper their understanding of physical concepts (see “Open Source Physics,” 
http://goo.gl/EuGml). Also, it is pretty well known that the typical physics student will solve 
problems by first trying to find an equation that seems to “fit” the problem. This is quicker 
and easier (and may lead to an answer) than trying to understand some underlying concept of 
physics. It is a extremely shallow way of “doing physics.” We often see students “reading the 
textbook in reverse,” meaning they start with the homework problem at the end of a chapter, 
then flip backward through the book until an example or equation seems to fit. 

Computer animation in this setting does two things remarkably well. First, it brings physics 
concepts to “life” by, for example, showing how a force can change an object’s velocity vector, 
how friction sucks energy out of a system, or how the spring force grows with compression 
length, all in realtime. The emphasis in this text will be to observe the wildly dynamic nature 
of velocity, force, and acceleration vectors, and how they interact with one another as an object 
moves under their influences. This alone is a much more compelling way of learning physics 
that viewing static pictures. Second, a computer animation will refuse to work (properly) if the 
physics concepts are not applied, or not applied correctly. It is not possible to produce a correct 
computer animation by, for example, reading the textbook in reverse. 

1.3.2 To test theories physics puts forth 

The first term physics class is typically about “mechanics” which has to do with the “nuts and 
bolts” of basic motion. So you’ll be studying the physics of motion. The concepts of force, 
velocity, acceleration, momentum, and energy dominate the theory of motion. Computers are 
really good at crunching numbers and making animations, but they need instructions on how 
to do so. In this case, the instructions will be the equations that come from the physics theory 
on how motion works. 

So using a computer to learn physics will be about you inputting physics equations into a 
computer, as instructions on how it should make an on-screen object move. If the theory is 
correct, then motion will illustrate the “motion theory” that you are studying. What of this 
theory? Where does it come from? It’ll come from a variety of concepts, but will always driven 
by two primary equations, which are 

1 
x = x0 + v0xΔt + axΔt2 (1.1)

2
 
and
 

vx = v0x + axΔt. (1.2) 

The “x’s” iin these equations are used to denote position (x) and speed (vx) along the x (or 
horizontal) axis. There are two other equations that look like these two for the y-coordinate, 
which are y = y0 + v0yΔt + 1

2 ayΔt2 and vy = v0y + ayΔt. These are used to denote motion along 
the y (or vertical) axis. 

These equations enable you to predict the motion of an object, given that you know its 
acceleration (ax and ay), current velocity (v0x and v0y), and Δt, which is how far in the future 
you’d like to look. “Predict” is a funny word; it implies knowing what’s going to happen in the 

http://goo.gl/EuGml
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future. This is not a safe business to be in, as no one can really predict the future, but it turns 
out that physics can do a wonderful job at predicting the motion of everyday objects, if you 
work carefully. Most of the hard work this in making computer animations is in figuring out 
what a (or acceleration) to put into these equations. It’ll come from a variety of sources this 
quarter, which will drive our studies. 

What do these have to do with motion? Well, take the x0 and y0, buried in the equations. 
They are an (x, y) coordinate that may be plotted on a coordinate system. If you plotted a 
point at (x0, y0), it would represent where some object is right now. The left hand side of the x 
and y equations give you a coordinate point (x, y), which may also be plotted on a coordinate 
system; this is the position of the object some time Δt in the future relative to when the object 
was at (x0, y0). See? The equations allow you to predict where an object will be in the future 
(x, y) relative to where it was in the past (x0, y0). 

For computer graphics, this ability to predict, or continually predict positions is the  key  
element in producing animations. If you start a ball at the left edge of the screen, and predict 
where it’ll be say a Δt later, then you can plot the ball at this new position. Next, this new 
position becomes the “current” position, so we make still another prediction based on this new 
position. Then again, and again. Pretty soon, the ball has moved across the screen, according 
the the (predictive) laws of physics. 

What about the v0x and v0y? They are the two components of the the object’s velocity, v. 
The first, v0x is how fast the object is moving horizontally along the x-axis. The other, v0y is 
how fast the object is moving along the vertical, or y-axis. 

What about the accelerations, ax and ay? They are more difficult to prescribe simply, as 
they can come from a variety of sources. To experiment, however, one may simply put in a 
numbers for these and see what happens. 

1.3.3 See motion 

So first term physics is about motion. You’ll see a lot of equations and a lot of algebraic 
manipulations. You’ll plug in a lot of numbers here and there. You’ll read a lot of problems 
from the end of your book’s chapter. You’ll put boxes around a lot of answers, then flip to the 
back of the book and see if your answer is correct. But considering physics is a class about 
motion, you typically don’t actually seevery much MOTION! It seems odd then that all of the 
connection points you’d like to make about physics must be constrained to a paper and pencil 
mode. 

As an example, find a picture of “projectile motion” in your physics text. Look at it for a 
bit. Are multiple objects drawn smeared across the same figure? Does this seem like motion to 
you? Is the only way to study motion to look at these “stroboscopic” images, while imagining 
(correctly or not) what the actual motion looks like? Or is there another way? What is a 
“stroboscopic” even mean? 

The trouble with learning physics on paper is that you never get any exposure to the Δt 
portion of the equations, which is the passage of time. This simply cannot be represented 
realistically on a piece of paper or a chalkboard. Both of these media are spatial. They are so 
many inches wide and high, for instance. They do not include any element of time. Computers 
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however, with their screens, can do a wonderful job of illustrating the passage of time, by 
producing frame-by-frame movies that actually evolve a real clock ticks on the wall. That is, 
sequential frames on a computer screen can illustrate the passage of real time. This why using 
computer animation to learn physics is so powerful. It elicits the very important aspect of time, 
which a piece of paper simply cannot do. 

1.3.4 Vector-centric visualization 

Answer this question: “What is a vector?” Your answer is likely “a quantity with a magnitude 
and direction,” and this is strictly true. Vectors, however, take on an entirely different “life” in 
the context of computer animation. In fact, they can be wonderfully dynamic quantities that 
stretch, shrink, and meander into predetermined directions as an animation unfolds. Go back 
to the stroboscopic view of projectile motion discussed in the above section. Can you draw the 
velocity vector on each ball? How about a block sliding along some frictionless ice that suddenly 
encounters a rough patch? What about a ball thrown vertically upward? Are you sure you got 
the sizes and directions right? Ok, now describe how the velocity vector would behave in these 
scenarios, as the motion unfolds. Most likely you’ll start using your fingers, perhaps using your 
fist as the object. 

In mechanics, the time evolution of vectors really tell the story of motion that you simply 
must see to appreciate. No drawing or or “hand acting’ will ever suffice. Throughout the projects 
here, drawing vectors on all of the moving objects is going to be a big deal, watching them in 
completed movies will be an even bigger deal. You’ll never be so delighted as to see the normal, 
velocity, and acceleration vectors on an object on a flat surface that is about to encounter and 
climb a hill that leads to another flat surface at a higher level. 

A special vector: the v-vector 

In addition to the idea of watching vectors evolve, computer animation highlights one vector in 
particular: the velocity vector. Why would this be? Take a look at the six balls in Figure 1.1. 

Each object in the figure has a different vector sticking out it; the vectors are common 
throughout elementary physics: v for velocity, a for acceleration, F for a force, T for tension τ 
for torque, x for position. The question is then, from which object/vector combination can you 
say something about where the object will be a small time in the future? In other words, which 
figure allows you to predict the subsequent motion of the object? 

As you’ll see in your animation studies, only the v-vector allows you to make this prediction 
(the object will generally be up and to the right a small Δt in the future). In other words, the 
v-vector is the indicator of future motion, at least for a small time step into the future. None of 
the other vectors offer this information. (Later we’ll see that the momentum vector, or pp also 
allows us to predict motion, but p is just the product of mass and the v-vector.) 

As you create computer animations based on physics, you’ll always be asked to render the 
v-vector on the moving objects. Try to pay close attention to this vector in your work and see 
if it’s indeed a predictor of an object’s motion. We claim that 
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Figure 1.1: Six objects with different vectors sticking out of each. 

If you know the v-vector, then you can make a very intelligent guess as to where the 
object will likely be a small Δt in the future. 

In other words, you can make a prediction, and the smaller Δt, the better your prediction. 
We stress that it isn’t a good idea to get too greedy with predictions. Keep your demands for 
“how far in the future” small, and your predictions will be just fine. 

To conclude then, take a look at Figure 1.2 that shows, an object with a velocity vector 
pointing from it. There is a twofold theme for this entire class that comes from this figure. 

1. The v-vector tells us the direction the object is currently moving and about where it will 
be a small interval of time in the future. 

2. This entire class is about different laws of physics that allow us to make the v-vector of 
an object change, either in direction or length, or both. 

v 

Figure 1.2: An object with its velocity vector.
 

Lastly, why is understanding how a v-vector is manipulated so important?
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•	 Because basic physics is about understanding how objects move. A key element in this 
understanding is in being able to predict where an object will be at a given time in the 
future, and to be correct in your prediction. All of this is contained in an object’s v-vector. 

•	 Changing the magnitude (or length) of the v-vector changes the speed of an object. Making 
the length grow means the object is moving faster. Shrinking the length means the object 
is moving slower. Changing the direction of a v-vector changes the direction in which 
the object will move over a small time interval into the future. The v-vector dictates 
the impending motion of an object. Manipulating it, or understanding it is the key to 
controlling or understanding an object’s motion, whether it be a car, spacecraft, or bicycle. 

•	 To really understand each lesson this quarter ask yourself: “Do I understand how the 
physics in this lesson can change the v-vector of an object?” 

1.3.5 Calculators are on the way out 

You are probably somewhat trained in science via the use of a calculator like in Figure 1.3. You 
can use it to crunch through numbers to obtain a result. Well, here’s the bad news: modern 
scientists rarely use calculators anymore. The screens are too small and hard to read. The 
keyboard are awkward. The overall form-factor is terrible, and they’re way overpriced. Results 
are hard to check, publish, put on the web, or share with anyone. Supposing you have a result, 
it is also hard to make a small change and see what new result might pop out. Some will move 
on to a spreadsheet, which is OK, but most scientists will find some specialty computational 
software they like to use, like Mathematica, Maple, Matlab, Octave, Scilab, etc. Indeed, science 
today is done on computers not calculators, and this spans the gamut of the sciences, from 
biology to chemistry to physics and engineering. Figure 1.4 shows a physics problem being done 
in Mathematica, where results can be easily printed, shared, or changed to produce new results. 

So why not start your own training on using computers in science as a way into using 
computers as scientific investigative tools. Why not start now? 

1.3.6 Pencil and paper physics: Why? 

The standard physics course experience in dominated by having students solve problems with 
pencil and paper. Exams are like this, as are regular homework assignments. You get frustrated 
when you can’t figure out how to solve to these problems (meaning write out the step-by-step 
solutions). The typical student rarely pursues such solutions to completion, often scraping tips 
or full solutions off of the Internet and just “following along” (if even that). Professors get upset 
when they “teach and teach” and their students can’t solve problems in this mode. So here we 
are, getting all frustrated and upset. As a student, you shouldn’t feel bad. It turns out, that 
very few people in the history of the human existence are successful in this mode of study. As 
professors, we should feel bad, because we need to change our instructional tools. 

An entire field of research called “physics education,” has existed for 20 or so years now, and 
is fairly consumed at studying and enhancing the teaching and learning of physics using “pencil 
and paper.” This field has given us things like “free body diagrams,” color in textbooks, “content 
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Figure 1.3: A student using a calculator to work on problems from a textbook. Scientists don’t 
really use calculators anymore. 

Figure 1.4: A physics problem being solved using Mathematica.
 



13 CHAPTER 1. USING COMPUTER ANIMATION TO LEARN PHYSICS 

rich problems,” “motion diagrams,” the “meter per second,” and thousands of problems that 
can result in an answer around which we can put a box and say “done.” All of these (and many 
more) are carefully thought out ideas that help one learn physics using a pencil and paper. Go 
to the library and find a physics book from the 1960s. It is very cold, unfriendly, and hard to 
even imagine using. 

This “pencil and paper” mode is formally known as “theoretical physics.” It is a mode 
of study where one has exceptional linkage between thought and expression. It is the mode 
in which Albert Einstein worked. It is a mode of working on problems with little more than 
paper, a pencil, and your mind. Wikipeda defines it as “...a branch of physics which employs 
mathematical models and abstractions of physics to rationalize, explain and predict natural 
phenomena.” The field of theoretical physics is known to be one of the most difficult of all 
human endeavors to penetrate (see Joao Magueijo, “Faster than the speed of light”). In fact, 
since the 1500s only 64 people are known to be theoretical physicists that have made a major 
contribution to the field of physics (Wikipedia). Now this fact isn’t quite fair, because there are 
likely people around you (like your professor) who can do some pretty amazing analysis (relative 
to your own skill set) with just a pencil and paper, but the bigger picture is still that pencil and 
paper physics is hard. 

The point here is that this mode of problem solving is difficult. Period. Most of us just 
aren’t Einstein, but it’s not that we can’t be; it would just likely take a lifetime of “practice” 
before you’d be proficient enough to get anything done. And, since the 1500s, only 64 people 
have really pursued this to the points where their work had long lasting effects. You’re just 
trying to learn something about basic physics. So why so much emphasis on this mode at such 
an early stage of your education? We don’t really know, but it has a lot to do with efficiency, 
cost, practicality, and “teaching inertia” (i.e. it has always been done this way). How else can 
one professor “teach” a class of 50-ish students? How else can we possibly agree that you “know 
physics” unless you can solve a problem that starts with “A car moving at 10 m/s...” all by 
yourself? 

We think this is perhaps where the computer can help. The computer is a much more 
interactive tool than a piece of paper. It is more visual and a more compelling medium for most 
of us for “playing around” with physics problems. 

1.3.7 Creativity 

Everyone, no matter what their level of science training, is creative. Tapping into your own 
creativity is a lifelong skill worth developing. Solving end-of-chapter homework problems do 
not require creativity. The problems themselves have value in the logic they might require to 
solve, but that is all. They are canned problems, with known solutions, having only one or 
two possible solutions paths. The pdf solutions book on the web is tempting to consult. The 
problems offer little to discover, explore or disseminate. 

Because the computer is such a creative tool, laws of physics can be studied with styles, colors, 
and perspectives that you find appealing. You can tap into your own creative motivations as 
you create a representation of the laws of physics. You can certainly “solve for” how long it 
takes a ball to fall from a building, or you can render a building and ball and watch the ball fall 
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on your screen. Why not then change gravity and pretend the scene is on Jupiter? Or maybe 
add a crosswind? Or a pedestrian walking on the sidewalk? Do they get hit? What about a 
drag force? All of this is possible and limited only by your own creativity. 

1.3.8 Projects 

Paper sheets of homework problems and spiral notebooks from your physics class become unim
portant, lost, or even thrown out as a school term ends. Years later, there is no evidence you 
even took a physics course, other than your vague memory and a grade on your transcript. By 
creating computer animations, you are producing electronic content perhaps for the first time. 
You are breaking out of a more typical role of consuming digital content. Your work can be 
posted on Youtube or submitted as part of a social-sharing site where its lifetime will be many 
times longer than your first paper homework assignment. You can show your “physics work” to 
friends, family, or even future employers. 

1.4 Like video games? 

Physics is actually “out there” more than you think. If you’ve ever played a video game, like 
a “first person shooter,” flying, driving, climbing, etc. game, then likely all of the motion is 
done using a “physics engine,” which is a large software tool that uses the laws of physics to 
handle the motion of animated objects like bullets, tanks, aliens, cars, and robots. In fact, the 
video-card maker NVIDIA maintains such an engine called “physx,” to get developers to use 
their hardware and tools. “Havok” is another. Underneath all of the glitter are basic physics 
equations predicting where the car, bullet, alien, or rocket should go next. These objects must 
be placed realistically on the screen, or the animation will not appear lifelike, severely hampering 
the quality of the final product. This goes for video games as well as computer-generated movies; 
they are all driven by physics. 



Chapter 2 

Installing Software to Study Physics 

2.1 Povray and Raytraced Computer Graphics 

We’ll need some computer software to create animations. The software must allow us to create 
physically-realistic motion using equations and theories that will come up along the way. To do 
this, the software must provide us with two core abilities. First it needs to be able to process 
the equations we give it that will come from our study of physics. Second, it must be able to 
draw objects, based on our equations, so we can visualize them and how are theories cause them 
to move. (It would be nice if the graphics produced looked compelling and professional.) 

2.1.1 Povray 

Software called Povray meets our two requirements, and creates stunning-looking graphics, 
fairly easily. Povray is a free, open source graphics package that renders drawings on the 
screen using a technique called “ray tracing.” Unlike drawing on the screen using a mouse 
and a palette of circles and lines (etc.), ray tracing is a drawing technique that “renders” 
images by simulating how light rays would interact with objects placed in a virtual scene. 
The ray-tracing technique often produces graphics that are quite stunning as you can see here 
http://en.wikipedia.org/wiki/File:Glasses 800 edit.png. Ray traced images are lifelike in quality 
with a high degree of realism, including shadows, shading, light intensity effects, and perspective. 
They can be hard to distinguish from actual photographs. In essence, Povray provides us with 
a virtual 3D world in which we can produce beautiful images with minimal effort. 

There are versions of Povray for both Windows and OSX computers. The Windows version is 
called “Povray.” The OSX version is called “MegaPOV.” Both are “open source” software pack
ages, freely available on the internet. Don’t visit these links right now (following the installation 
direction below), but for reference, the home of Povray can be found at http://www.povray.org, 
while that of MegaPOV can be found at http://megapov.inetart.net/. This chapter will lead 
you through the process of installing the software on the platform of your choice, and preparing 
it to visualize physics and create animations. 

15
 

http:http://megapov.inetart.net
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http://en.wikipedia.org/wiki/File:Glasses
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Figure 2.1: Three requirements for ray tracing: a camera, light source, and object (from 
http://en.wikipedia.org/wiki/File:Ray trace diagram.svg). 

2.1.2 Seeing a scene 

If you think about it, you are able to see a scene for three reasons. The first is that there is 
light, or light rays filling the area you wish to view. The second is that there are objects in the 
scene (boxes, balls, a floor, sky, etc.). The third is that there is a recording device, like your eye 
or a camera that takes a snapshot of the scene from some vantage point. 

Ray tracing takes these three items and calculates what a scene should look like. You can 
read more about ray tracing on Wikipedia. The three requirements for ray tracing can be seen 
in Figure 2.1. 

The useful feature in studying physics in specifying where the objects will reside in the scene. 
For us, these positions will come from the theory of motion we are trying to study. In other 
words, we will used physics theories and equations to instruct Povray where to draw objects. 
Using the realism of ray tracing, Povray will render our scene so we can then visualize the 
motion of our object. 

2.2 For a Windows 7, XP or Vista PC: Povray 

To install Povray on a Windows PC follow these two steps. 

http://en.wikipedia.org/wiki/File:Ray
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2.2.1 Installation 

Step 1: Download and Install Povray 

1. Install Povray on your computer by going to http://www.povray.org/download and scrolling 
down to the “Windows” tab. Click on the “Download 32-bit (12 MB) via the web.” This 
will download a file called povwin362-32bit.msi to your computer. 

2.	 For Windows XP or Windows 7: Double click on povwin362-32bit.msi this file to 
install Povray onto your computer. You can delete it when the installation has finished. 
Go to step #2. 

3.	 Windows Vista: 

(a) Double	 click on povwin362-32bit.msi, but don’t install POV-Ray in “Program 
Files” folder that the installer suggests. Install it somewhere else like “C:\POV
Ray3.6.” 

(b) After installation, find the POV-Ray binary file in “C:\ POVRay3.6\ bin\ pvengine.exe” 
(or wherever you installed Povray). 

(c) Right click on the icon then select “Properties” . 

(d) Click the “Compatibility” tab 

(e) Click the button “Run this program in compatibility mode for:”, 

(f) Select “Windows XP” (or	 “Windows 98/Windows Me” if that doesn’t work) and 
select lower on this tab “Disable visual themes” 

(g) Click on the “Security” tab and make sure that “all users” have “full control” selecting 
the “permissions” box accordingly. 

Step 2: Get the software “physics-ready” 

1. Download a file called “physics.inc” from this folder http://goo.gl/zTtuQ . 

2. When downloaded, this should produce a file on your computer called “physics.inc.” Put 
it on your Desktop where you can find it. 

3. Look in your “My Documents” folder. Click on “Povray,” then “v3.6.” You should now 
see a folder called “include.” Copy physics.inc into the folder called “include.” 

2.2.2 Make a simple still scene 

Run Povray by double clicking on the icon the installation program created. The first time you 
run Povray, a bunch of samples will auto-load. Do a “File→Close All” to get rid f these. Then 
follow these steps. 

1. Pull down “File→New.” 

http://goo.gl/zTtuQ
http://www.povray.org/download
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2. An text-edit window will come up called “Untitled.” 

3. Immediately pull down “File→Save As...” and call it something like sphere.pov. It  is  
very important that you have the extension of “.pov” at the end of your name. 

4. To render a simple still scene in Povray: 

5. Into the edit window, type in this Povray code: 

#include "physics.inc" 

camera { location <0,0,-20> look_at <0,0,0> } 
light_source { <0,0,-50> color White } 

sphere { <0,0,0>,1 pigment {Red} } 

draw_vector(<0,0,0>,<3,3,0>,Green,"hi") 

This will put a camera at (0,0,-20) and have it aim or “look” at the point (0,0,0). The 
scene is illuminated with a white light source at (0,0,-50). A red sphere will be the only 
object in the scene, centered at (0,0,0) with a radius of 1. 

6. To render (or build) the scene, click the “Run” icon in the toolbar at the top of the screen. 

7. You should see a new window pop up with the rendered sphere. 

You should experiment with the sphere position, radius, color, the camera location and 
look at point, etc. After making any changes to the code, click the “Run” icon again to re-render 
the scene. You can change the render size by pulling down “Render→Edit Settings/Render” 
and using the selection box to the right of the “Section:” label. 

2.2.3 Make an animation 

1. Start a new Povray window by pulling down “File→New” 

2. Immediately do “File→Save As...” and choose a new file name like spheremovie.pov. 

3. Type the following code into the spheremovie.pov window. 

http:sphere.pov.It
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#include "physics.inc" 

camera { location <0,0,-15> look_at <0,0,0> } 
light_source { <-0,0,-20> color White } 

#declare pos = <-5,0,0>; 
#declare vel = <5,0,0>; 

#declare dt = 0.1; 
#declare xtime = 0.0; 

#while(xtime <= clock) 
#declare a = <0,0,0>; 
#declare pos = pos + vel*dt + 0.5 * a * dt * dt; 
#declare vel = vel + a *dt; 
sphere { pos,0.1 pigment {Yellow} } 
#declare xtime = xtime + clock_delta; 

#end 

sphere { pos,1 pigment {Red} } 
draw_vector(pos,vel,Green,"v") 

4. Type Final Frame=10 into the white box that is directly below the “Queue, Rerun, and 
Show” icons, as shown in Figure 2.2. 

Tip: More frames provides for more detail and smoother animations. Feel free to change 
this as needed. Typing Final Frame=50 will make a 50-image run of your code, and will 
make Povray’s internal “clock” variable run from 0 to 1 in steps of 0.02 (1/50). Typing 
Final Frame=10 will make a 10-image run of your code. It will be coarser with animation 
that is a bit jumpier. 

5. Click “Render.” 

6. You will see your movie being calculated, slowly,	 scene by scene. Each scene is saved 
as a .bmp image file in the same folder as the source file, spheremovie.pov. The files are 
sequentially numbered, like spheremovie01.bmp, spheremovie02.bmp, spheremovie03.bmp, 
etc. 

2.2.4 Make a playable movie 

The individual files Povray produced now need to be stitched into a single movie file for viewing 
and/or uploading to Youtube. To stitch your movie together into a watchable movie, follow 
these steps. 
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Figure 2.2: How to tell Povray to render your frame multiple times (in this case 10), causing 
time to evolve from render to render. 
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1. Download another software packaged stitch windows.zip from this folder http://goo.gl/zTtuQ 
. 

2. When the download is complete, double click on the icon of the folder that is created.
 
This icon should have the image of a zipper running down the center of it.
 

!!STOP!! Stitch is not ready to use yet! Keep following 
these steps. 

3. When you double click on the icon of the folder, a list of files will be displayed, which are
 
the files in the stitch package.
 

4. Click on the “Extract All” button in the upper left corner of the window. Select a suitable
 
spot to extract the stitch files. This will install the stitch program on your computer, in
 
a folder called “stitch win.”
 

5. Inside of this folder is a program called “stitch.” this is the one to double click on and run
 
when needed. Always keep all of the stitch files together in a single folder. If you separate
 
them, the program will not work.
 

6. The stitch software is now installed and ready for use.	 Delete the folder that has the
 
zipper running through it.
 

To make the movie from your images, follow these steps. 

1. Run the stitch program in the stitch win folder. 

2. Click on the top “Browse” button and select the very first file, in the sequence of images
 
that Povray produced. In this case it should be just spheremovie01.
 

3. Click on the lower “Browse” button and tell “stitch” where to put your final movie file. 

4. Choosing 10 frames per second is fine.	 If you want your movie to run faster, choose a
 
higher number.
 

5. Click the “Stitch” button. It might take a few seconds to complete the stitching job. 

6. To watch your movie, click the “Watch movie” button that will become available when
 
the stitching is done.
 

7. If	 everything looks OK, then the same movie file created is what you can upload to
 
YouTube for sharing or submitting.
 

http://goo.gl/zTtuQ
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Figure 2.3: A configuration step for MegaPov. 

2.3 For Macintosh/OS X 

2.3.1 Installation: MegaPov 

For OSX, we’ll use ray tracing software called MegaPov. If you look in the folder at this link 
http://goo.gl/zTtuQ , download the file called Megapov.dmg. To install it, simply drag the 
Megapov folder out of the DMG file and onto your desktop (or Applications folder, or wherever 
you like to install software on your computer). 

Next, there are two configuration steps you must do as you run Megapov for the first time. 
Run MegaPov by clicking on its icon in the folder you pulled from the DMG file above. Then 
do the following two steps. 

1. Pull down the MegaPov→Preferences... menu. Click System includes, then the Add... 
button. A file selection box will pop up that look like Figure 2.3. 

Navigate to the same MegaPov folder that you dragged to your desktop above. Inside of 
this folder is another sub-folder called “include.” Select it then click “Ok.” Your window 
might look that shown in Figure 2.3. 

2. Next, be sure to set the	 “Image type” to “png” as shown in Figure 2.4. It defaults to 
“Don’t save image.” 

2.3.2 Make a simple still scene 

1. Run Megapov and pull down the “File→New” window. 

http://goo.gl/zTtuQ
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Figure 2.4: A configuration step for MegaPov. 

2. A window will come up that you can type into called “untitled.” Immediately pull down 
“File→Save As...” to call your work something like sphere.pov. It is very important that 
you have the extension of “.pov” at the end of your name. 

3. Into the edit window, input this MegaPov code: 

#include "physics.inc" 

camera { location <0,0,-20> look_at <0,0,0> } 
light_source { <0,0,-50> color White } 

sphere { <0,0,0>,1 pigment {Red} } 

draw_vector(<0,0,0>,<3,3,0>,Green,"hi") 

4. This will put a camera at (0,0,-20) and have it aim or “look” at the point (0,0,0).	 The 
scene is illuminated with a white light source at (0,0,-50). A red sphere will be the only 
object in the scene, centered at (0,0,0) with a radius of 1. 

5. To render (or build) the scene, press Command-R or pull down “Render→Render.” 

6. You should see a new window pop up with the rendered sphere. 
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You can experiment with the sphere position, radius, color, the camera location and look at 
point, etc. After making any changes to the code, press Command-R to re-render the scene 
(you might have to save your changes first). You can change the render size or output 
type by using the MegaPov “Preferences” window that should be visible on your screen 
somewhere. To do so, click on the output tab and select an “Image Size” and/or “Save 
Image As” setting as needed. The “image size” is the size (width and height, in pixels) 
that you want your image to have. The “output type” is the type of graphics image you 
want your output image to be formatted as. These are the usual graphics formats like 
jpg, png, bmp, etc. You should also experiment with the sphere position and radius, the 
camera location and look at point. 

2.3.3 Make an animation 

1. Start a new edit window by pulling down “File→New” 

2. Immediately do “File→Save As...” and choose a new file name like spheremovie.pov. You 
are advised to save your work in a new and separate folder. In this section, MegaPov is 
potentially going to generate many files and you should keep them organized in a folder 
(instead of scattering them all over your desktop). 

3. Type the following code into the spheremovie.pov window. 

#include "physics.inc" 

camera { location <0,0,-15> look_at <0,0,0> } 
light_source { <-0,0,-20> color White } 

#declare pos = <-5,0,0>; 
#declare vel = <5,0,0>; 

#declare dt = 0.1; 
#declare xtime = 0.0; 

#while(xtime <= clock) 
#declare a = <0,0,0>; 
#declare pos = pos + vel*dt + 0.5 * a * dt * dt; 
#declare vel = vel + a *dt; 
sphere { pos,0.1 pigment {Yellow} } 
#declare xtime = xtime + clock_delta; 

#end 

sphere { pos,1 pigment {Red} } 
draw_vector(pos,vel,Green,"v") 
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Figure 2.5: Tell MegaPOV to run through your code several times in sequence. In this case 
your code will be executed 50 times. The variable clock delta is internal to Povray will be set 
to 1/50 = 0.02, which controls the main #while loop to advance through 50 frames. Note the 
checkbox (“Animation Settings (Clock)”) and the “Final Frame” numbers. 

4. Click on the “Clock Settings” tab in the “Preferences” window.	 On this tab, check the 
“Animations Settings (Clock)” box see Figure 2.5). 

5. Then set the “Final Frame” number equal to 10 (or so), “Clock Initial” to 0, and “Clock 
End” to 1.0. This will render a series of 10 images with the “clock” variable changing in 
your code from 0 to 1 in steps of 0.1 (1/10). 

Tip: More frames provides for more detail and smoother animations. Feel free to change 
the “Final Frame” to a larger number for a final render. I would think your final renders 
should contain at least 50 frames. This will make the “clock” variable run from 0 to 1 in 
steps of 0.02 (1/50). 

Note: Be sure the Subset numbers are the same as the Frame numbers. So Subset Start 
should always be the same as Initial Frame and Subset end should always be the same as 
Final Frame. 

6. Render your movie by pressing Command-R. MegaPov will run your code N times, where 
N is the “Final Frame” number. Each run will generate a different image file, like sphere
movie01.jpg, spheremovie02.jpg, etc. Each image is what your scene looks like at different 

http:1/50=0.02
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points in time. 

2.3.4 Make a playable movie 

The individual files MegaPov produced now need to be stitched into a single movie file for 
viewing and/or uploading to Youtube. Go to this folder http://goo.gl/zTtuQ and download 
the file called stitch for mac.dmg. Those with newer (Intel, Lion, etc.) Macintosh computers 
can download the stich osx intel new macs.dmg version. 

After the download is complete, double click on the white stitch .dmg icon. Inside of it you 
should see a folder called “stitch osx.” 

!!STOP!! Stitch is not ready to use yet! Keep following these 
steps. 

Drag the “stitch osx” folder from the white DMG icon, to some other place on your computer, 
like into the “Applications” folder or on your desktop. You can now remove the white .dmg 
file icon. This completes installation of this program. The stitch program as it exists in the 
“stitch osx” folder is now ready for use. There are other files in the stitch package as well. Be 
sure to keep all of these files together. 

To stitch your movie together into a watchable movie, run the stitch program and follow 
these steps. 

1. Double click on the sewing machine in the “stitch osx” folder. 

2. Click the top “Browse” button to navigate to the folder where you saved you code, spher
emovie.pov. Click on the very first image, called spheremove01.png (or .jpg or .bmp, 
etc.). 

3. Click on the bottom “Browse” button to navigate to where you want your movie file to 
be stored. It is recommended that you have the movie stored in the same folder as your 
.pov file and your image sequence. 

4. Choosing 10 frames per second is fine.	 If you want your movie to run faster, choose a 
higher number. 

5. Click “Stitch.” All of your images will be stitched together into a self-contained mp4 movie 
(a recognized computer movie format). 

6. You	 can watch the movie by clicking on the “Watch movie” button that will become 
available when the stitching job is done. 

7. The saved .mp4 movie file is the last step in the animation job. This file can be played, 
emailed, and/or uploaded to Youtube. 

http://goo.gl/zTtuQ
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Preliminaries: Things you should know
 

Here are some preliminaries you should be comfortable with before studying physics or expecting 
to create computer animations. These are things that should be automatic to you. They don’t 
really have anything to do with physics, and aren’t necessarily something you’ll learn in physics, 
but should already know from your preparation to begin learning a technical field. 

3.1 Mathematics 

Variables. Variables are letters that stand for numerical values. Something like x2 means that 
is x is known, we should multiply it by itself. On paper, we could write x = 4, then 
know that x2 will evaluate to 16. Computers, calculators, and spreadsheets behave in the 
same manner; textual variables can hold values for later use. So on a computer we could 
type x=5 assigning the value of 5 to variable x. Variable names on computer are often 
longer, to make them more descriptive. So instead of x we might see sphere x, meaning 
the x-coordinate of the sphere. In a spreadsheet (like Excel) the variable name might be 
something like A9, representing the cell at column A, row  9. 

Basic Trigonometry. Know what a right triangle is and how sin, cos, and tan work with that 
right triangle. Know how the pythagorean theorem works with a right triangle. 

Basic Trigonometry. Know that sin 0 = 0◦ , cos  0◦ = 1,  sin  90◦ = 1 and cos 90◦ = 0.  

Basic Trigonometry. Know the difference between a radian and degree and how to intercon
vert between them. 

Basic Calculus. Given a function y(x), know how to find basic derivatives, such as dy/dx and 
d2y/dx2 . As an alternative notation, given y(x), know how to find y" (x) and  y"" (x). 

3.2 The idea of a function 

Functions in mathematics. In mathematics, you should be familiar with the use of a func
tion. For example if you know that f(x) =  x2, then you are free to use the function. You 
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can differentiate it: f " (x) = 2x. You can evaluate it at x = 5,  or  f(5) to get 25. Functions 
can also have different names, like g, and be functions of more than one variable, like 
g(x, y, t) =  x2 + y2 − t2 for example. 

Functions on your graphing calculator or a computer. With computer, calculators, or 
spreadsheets there are also functions, but instead of just returning a number, like sin(x) 
a function on a computer can cause something to happen, like to color the screen or draw 
a vector. Function names on a computer are typically longer than just f or g, such  as  
draw vector. Computer functions often have parameters too, in the same format as their 
mathematical counterparts, as in name then parenthesized list of parameters. So instead 
of f(x, y), we’d have draw vector(tip,tail,color,label) where tip and tail are the tip and 
tail coordinates of a vector to draw, with a color of color and a label of  label. Calling this 
function doesn’t return a number; it draws a vector on the screen. 

3.3 Vectors: More than “magnitude and direction” 

3.3.1 What’s a vector? 

When asked, most students will say that a vector is a “quantity with a magnitude and direction.” 
There is much more to vectors than this textbook meaning, and the sooner you “become friends” 
with vectors, the easier time you’re going to have in your core math and science classes. 

To start, think of a vector as a “container” for information about an object. To emphasize 
the container aspect, we’ll write vectors enclosed in a < and >, or the “ordered set” notation 
(see above). As an example, an object might be located at x = 5,  y = 3,  and  z = − 1. In vector −→form, this would be written as pr =< 5, 3, − 1 >, or  pos =< 5, 3, − 1 >. In both cases, the 5, 3, 
and − 1 are called the components (or parts) of the vector. The arrow over the symbol means 
it’s a vector (it has the three components). Notice how compact the vector is as a container. 
One look at < 5, 3, − 1 > and you can immediately see the x, y, and  z position of an object. 

A velocity vector can be stated in the same manner. Suppose an object has an x-velocity 
of 6 m/s and a y-velocity of 2 m/s. It’s v-vector could be written as pv =< 6, 2, 0 >, or  −−−→ 
speed =< 6, 2, 0 >. Acceleration vectors can be written similarly. For example, an object in 
free fall has pa =< 0, − 9.8, 0 >. 

The real convenience of vectors is in their algebraic operations. For example, a vector 
can be multiplied by a scalar, by simply multiplying all of its components by the scalar. So, 
5× < 6, 2, 0 >=< 30, 10, 0 >. This is useful in the physics equations v = v0 + aΔt and 

aΔt2, Because Δt is always a scalar (a time interval), but in these equations it’s x = x0 +v0Δt+ 
2
1 

multiplied by either a or v0, which can be vectors. This means that an a-vector of < 0, − 9.8, 0 > 
times a Δt of 2 seconds would be < 0, − 9.8, 0 > × 2 or  < 0, − 19.6, 0 >. But since v = aΔt, the  
< 0, − 19.6, 0 > is the object’s new v-vector. 

For a complete example, suppose vp0 =< 2, 1, 0 > and pa =< 0, − 9.8, 0 >. If you wish to 
know the object’s new velocity after 2 seconds has gone by, you can use pv = vp0 + paΔt, or  
pv =< 2, 1, 0 > + < 0, − 9.8, 0 > × 2. Working this, we’ll get pv =< 2, 1, 0 > + < 0, − 19.6, 0 > 
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or pv =< 2,−18.6, 0 >. In other words, after 2 seconds, the object is moving 2 m/s along the 
x-axis, 18.6 m/s along the −y-axis, and it is not moving at all along the z-axis. 

3.3.2 Vector “lingo” 

Vectors or Arrows.	 In physics we often draw arrows on objects to indicate that something 
is happening to it. The arrow is also called a “vector” and it’ll be labeled with some 
quantity, like F for force or v for velocity, etc. For example if you see a ball with an arrow 
pointing up and to the right, and the arrow is labeled v, you might be able to conclude 
that the ball is moving in that direction. 

Discussing Vectors. Vectors often need to be described in words. Know what it means for a 
vector to point at “30◦ with the +x-axis,” “16◦ north of east,” or “south east.” 

Operation on Vectors (1). If you have a vector, no matter what direction it is pointing, you 
should be able to find its x and y components. This is most easily done by drawing a 
small xy-coordinate system at the tail of the arrow. Next, treat the vector itself like the 
hypotenuse of a right triangle and draw in the legs, one along the x axis and the other 
along the y axis of your little coordinate system. Label in some angle and use sine and 
cosine as needed to find the lengths of the x and y components (the legs). 

Operation on Vectors(2). If you have the x and y components of a vector, you should be 
able to draw the vector itself and determine the angle the vector makes with respect to the 
x-axis. This is all done with basic trigonometry. Invariably this will involve using tan−1 

somewhere. You should also know how to find the magnitude of a vector, which comes 
from the Pythagorean Theorm; if you know the “legs” of a right triangle (the components), 
you should be able to find the hypotenuse (or the magnitude of the vector). 

Handling Vectors. There are many ways of representing vectors; here are the most common. 

•	 Magnitude and angle. Specify the magnitude (strength, length, etc.) and the angle. 
Like 10 m/s at 45◦ up from the +x-axis. 

• î, ĵ, k̂-notation (or engineering notation). Specify the components of the vector di
rectly. î stands for x, ĵ stands for y and k̂ stands for z. In this class the z-component 
will always be zero. So a vector written like 5̂i+2ĵ means a vector that has a strength 
of 5 units in the x-direction and 2 units in the y-direction. You should be able to find 
the magnitude and angle of this vector (if needed) directly from the 5 and the 2. 

•	 Ordered set notation. < x, y, z  >  where x, y, and  z are the components of the vector, 
so < 5, 2, 0 > would be the same as the vector above. 

3.3.3 The Common Manipulations: the “magnitude and direction” 

The notation < x, y, z  >  is a very succinct vector notation, as it explicitly shows the three 
components of a given vector. But regardless, this is what a vector is: a quantity that has 
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three components, one for x, one  for  y and one for z. All of the common vector results can be 
found by simply using these three bits of information. Two of the most important results are 
the magnitude of a vector and angle the vector makes in the xy-plane, relative to the z-axis. 

3.3.4 The magnitude of a vector 

The magnitude of a vector is how long its arrow is. At the risk of confusing physical terms, 
think of the magnitude of a vector as the “power” or “strength” of a vector. It is always found 
my squaring each component, then adding the squares together, and taking the square root of 
the final sum. 

For example, suppose pv =< 3, 2, −1 >. The magnitude of v can be found by |v| = J
32 + 22 + (−1)2, or  |v| = 3.7. 

The angle or direction of a vector 

The direction (most commonly needed in the xy-plane) is best classified as an angle with respect 
to some axis, perhaps the +x-axis. If you know the x and y components of a vector, say vx and 
vy of vector pv, you can always find the angle the vector is making (with the +x-axis) using 

−1 vytan . (3.1) 
vx 

For example, suppose pv =< 3, 2, −1 >. The angle the v vector is oriented at in the xy-plane 
is found from θ = tan−1(2/3) or 33.6◦ with respect to the +x-axis. 



Chapter 4 

Drawing with Povray 

4.1 Introduction 

Povray is a drawing tool. It is software that calculates and renders a scene for you, based on the 
mathematical relationship between the camera, light source and objects. Thus, once a camera 
and light source are placed, you have a virtual, three-dimensional world in which you can draw. 
This chapter will brief you on the coordinate system, examples of how to draw into Povray, and 
a list of Povray-defined colors you may choose from. 

4.2 Coordinate System 

The coordinate system is Povray is similar to the “cartesian coordinate system” that you are 
used to from your many years of math in school. It looks like that shown in Figure 4.2. The 
+x-axis runs right, −x is left, +y is up and −y is down. The only difference now is that the 
+z-axis is into the screen and −z-axis is out of the screen, into the direction of the viewer. 
Technically this is a “left-handed” coordinate system, instead of a “right-handed” coordinate 
system. The right handed system is the type you use in your math classes; the left handed 
system is useful for optimizing computer graphics, so it is pretty standard in this realm. 

Drawing in Povray is then simply a matter of visualizing the coordinate system, selecting an 
object, and telling Povray to draw into the coordinate system. 

4.3 Drawing Examples 

Povray is able to draw many “primitive” shapes, like spheres, boxes, cylinders, and cones. A 
whole list can be found here http://povray.org/documentation/view/3.6.1/273/. In our study 
of physics, we can get a lot done by using only a few. Let’s start with the sphere. 
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Figure 4.1: The Povray coordinate system: +x runs right, −x is left, +y is up and −y is 
down, +z is into the screen and −z is out of the screen, into the direction of the viewer (from 
http://www.povray.org/documentation/view/3.6.0/15/). 

4.3.1 Spheres 

Spheres are defined by a position and radius. This is also true in Povray, in addition to the 
color with which is should appear. The syntax for a sphere is: 

• sphere {<center-x,center-y,center-z>,radius pigment {color}} 

Note word sphere and all of the curly braces are required, as they’re part of the Povray 
syntax. Note the vector in ordered-set form specifying the center. Note the comma then the 
radius parameter, and the word pigment which specifies the color which is to be put the the 
curly brackets. Here are some examples: 

sphere {< 0, 0, 0 >,1 pigment {Blue}} Draws a blue sphere of radius 1 at the origin. 

sphere {< 0, 0, −5 >,1 pigment {Blue}} Draws a blue sphere of radius 1 at at x = 0,  y = 0,  
and z = −5. 

Of course drawing objects at fixed positions is nice for scenery, but not so for studying the 
physics of motion. But remember, we communicate with Povray via these simple, text-based 
commands, so the vector position of the sphere can be replaced by a variable (that itself is a 
vector). Consider this code: 

#declare pos=<5,1,0>; 
sphere {pos,1 pigment {Blue}} 

http://www.povray.org/documentation/view/3.6.0/15
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The sphere statement is complete, but the position vector doesn’t appear explicitly. It is 
instead contained in the variable called pos. Now granted this code draws a blue sphere at 
< 5, 1, 0 >, which is a fixed location. But, the advantage of doing this is that pos may be 
the result of a calculation, as in pos=pos+vel*dt+0.5*a*dt*dt, or in other words, a physics 
equation! This is the real power of using Povray for producing animations: 

Because Povray calculates images, based on the mathematical position of objects, 
we can use physics and its results to tell Povray where objects are to be drawn. This 
will give us a physically-realistic scene. 

4.3.2 Boxes 

Boxes can be useful for representing objects too. Drawing a box looks like this 

• box {< x1, y1, z1 >,< x2, y2, z2 > pigment {color}} 
where the two vector points < x1, y1, z1 > and < x2, y2, z2 > are any two opposite corners 

of the box. That is, if you tell Povray two corners of the box, it’ll fill in the rest with smooth 
sides having the color of color. Here is an example: 

box {< −1,−1,−1 >,< 1, 1, 1 > pigment {Green}} 

What about basing the position of a box on a variable, as in using pos in the sphere section 
above? It’s most convenient to use some position variable as the center of the box and calculate 
each corner relative to this position. Supposing again that pos is our position variable, one 
could do this 

#declare pos=<5,1,0>; 
box {pos-<1,1,1>,pos+<1,1,1> pigment {Blue}} 

where a vector displacement of < 1, 1, 1 > is explicitly subtracted and added to a base 
position of pos to defined the two corners. The box would have a side length of 2 in this case. 

Povray also has a vector shorthand notation where 1 means < 1, 1, 1 > (and 2 means < 
2, 2, 2 >, etc.), so this would work as well 

#declare pos=<5,1,0>; 
box {pos-1,pos+1 pigment {Blue}} 

4.3.3 Cylinders 

Cylinders are useful for a variety of drawing. Lines can be drawn using very thin cylinders, for 
example. Drawing a cylinder looks like this 

• cylinder {< x1, y1, z1 >,< x2, y2, z2 >, radius pigment {color}} 
where the two vector points < x1, y1, z1 > and < x2, y2, z2 > are the ends of the cylinder 

and radius is the radius of the cylinder, and of course the pigment construct is used to specific 
the color of the cylinder. The same rules apply for substituting the explicit vector ends with 
variables. 
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4.3.4 Planes 

Planes are useful for representing the ground in a physics problem. A plane in Povray has this 
syntax 

• plane { < nx, ny, nz >, level pigment {color}} 

where < nx, ny, nz > is a vector that you wish to be normal (or perpendicular) to your plane. 
This vector essentially sets the orientation of the plane. The level parameter is a number of 
how far the plane should be displaced along the normal vector. The pigment sets the color of 
the plane as in the above examples. The plane that is drawn to be very thin along the normal 
axis, while extending to infinity in all other directions. 

plane {< 0, 1, 0 >, 0 pigment { Blue }} Draws a blue plane whose normal is along the y-
axis, with the x and z axes in the plane. 

plane {< 0, 1, 0 >,−5 pigment { Yellow }} Draws a yellow plane whose normal is along the 
y-axis, with the plane being lowered 5 units below the x and z axes. 

plane {< 1, 1, 0 >, 0 pigment { Green }} A crooked green plane. 

plane {< 0, 1, 0 >, 0 pigment {checker color Red, color Blue }} A red and blue check
ered (or tiled) plane, which is somewhat of a “standard” in computer graphics. 

You have to think a bit about the positions of your camera and light source if your plane 
isn’t visible. 

4.4 Colors 

Colors are often linked to objects using the pigment {color} construct as in the examples 
above. For the color part here, you may substitute any of the following. Note that color names 
are case sensitive! So you can use Black, but black or BLACK won’t work. 

4.4.1 Stock Colors 

Aquamarine BakersChoc Black Blue BlueViolet Brass BrightGold Bronze Bronze2 Brown 
CadetBlue Clear CoolCopper Copper Coral CornflowerBlue Cyan DarkBrown DarkGreen 
DarkOliveGreen DarkOrchid DarkPurple DarkSlateBlue DarkSlateGray DarkSlateGrey DarkTan 
DarkTurquoise DarkWood DimGray DimGrey DkGreenCopper DustyRose Feldspar Firebrick 
Flesh ForestGreen Gold Goldenrod Gray Gray05 Gray10 Gray15 Gray20 Gray25 Gray30 
Gray35 Gray40 Gray45 Gray50 Gray55 Gray60 Gray65 Gray70 Gray75 Gray80 Gray85 Gray90 
Gray95 GreenCopper GreenYellow Grey HuntersGreen IndianRed Khaki Light Purple LightBlue 
LightGray LightGrey LightSteelBlue LightWood LimeGreen Magenta MandarinOrange Maroon 
Med Purple MediumAquamarine MediumBlue MediumForestGreen MediumGoldenrod MediumOrchid 
MediumSeaGreen MediumSlateBlue MediumSpringGreen MediumTurquoise MediumVioletRed 
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MediumWood Mica MidnightBlue Navy NavyBlue NeonBlue NeonPink NewMidnightBlue NewTan 
OldGold Orange OrangeRed Orchid PaleGreen Pink Plum Quartz RichBlue Salmon Scarlet 
SeaGreen SemiSweetChoc Sienna Silver SkyBlue SlateBlue SpicyPink SpringGreen SteelBlue 
SummerSky Tan Thistle Turquoise VLightGray VLightGrey Very Light Purple VeryDarkBrown 
Violet VioletRed Wheat White Yellow YellowGreen 

4.4.2 Make your own color 

If you don’t find a color you like from the above table, you can make your own color by mixing 
various amount of red, green, and blue. The fraction of each color is a number between 0 
and 1. Colors can be made by a construct like color rgb < r, g, b >, where  r, g, and  b are 
numbers between 0 and 1, or the fraction of red, green, or blue respectively. Instead of a 
color name, as in the above, the color rgb < r, g, b > construct would go inside of the curly 
braces of the pigment. Thus a pigment construct might be of the form pigment {color rgb 
< 0.5, 0.5, 0.5 >} would be a shade of gray. pigment {color rgb < 1, 0, 0 >} would be pure 
red, etc. 



Chapter 5 

Getting Started with Simple 
Programming 

5.1 Introduction 

In a word, “yes,” this approach to studying physics will require you to write simple computer 
programs. Most students do not like programming and do not know how to already. But as 
a budding scientist, knowing something about programming is a good idea, since computer 
software essentially runs the world (see “Software eating the world” here http://goo.gl/zTtuQ 
). Also, as you grow to need computers to do more and more sophisticated tasks (perhaps as 
part of a future research project), “point and click” software won’t always accomplish what you 
need. 

Luckily, Povray makes the programming work about as simple as it can possibly get. For 
us, it will really be a matter of putting together simple sequences of text lines that will enable 
you to study physics and make all kinds of interesting animations. 

5.2 Skeleton Code 

All movies you will create can be started with the following code, called the “skeleton code” be
cause it is pretty bare. If you want a copy of it, can you can find it in this folder http://goo.gl/zTtuQ 
. 

#include "physics.inc"
 
camera { location <0,0,-15> look_at <0,0,0> }
 
light_source { <-0,0,-20> color White }
 
#declare pos = <0,0,0>;
 
#declare vel = <0,0,0>;
 
#declare dt = 0.1;
 
#declare xtime = 0.0;
 
#while(xtime <= clock)
 

#declare a = <0,0,0>; 
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#declare pos = pos + vel*dt + 0.5 * a * dt * dt;
 
#declare vel = vel + a *dt;
 
sphere { pos,0.1 pigment {Yellow} }
 
#declare xtime = xtime + clock_delta;
 

#end
 
sphere { pos,1 pigment {Red} }
 
draw_vector(pos,vel,Green,"v")
 
draw_vector(pos,a,Yellow,"a")
 

This program is 17 lines long. If you type it into the Povray or MegaPov text window, then 
prepare the software for animation (see Section 2.2.3 for Windows, or Section 2.3.3 for OSX), 
you’ll see a red sphere drawn on the screen that will just sit there. Pretty boring, but you’ve 
created a working program for Povray/MegaPov that actually creates a scene. 

Look over the lines. Computers execute the lines one at a time from top to bottom. Here 
are some symbols you’ll find: 

•	 Notice the ordered set vector notation throughout, as in < 0, 0, 0 >. Constructs like this 
identify x, y and z components of a vector. 

•	 “pos” is a variable name short for “position,” or the position of the object. 

•	 “vel” is a variable name short for “velocity,” or the speed control of the object. 

•	 “a” is the acceleration. 

•	 “dt” is the time step, or Δt. 

•	 Notice the two physics equations. 

•	 Notice two lines that draw spheres on the screen. Sphere need a center point (pos), a 
radius (1 or 0.1 in this case), and a pigment or a color to be drawn with. 

•	 Notice placement of a camera and a light source, as required by raytracing. 

When rendered, why doesn’t the sphere move? Well, read the program. It looks like the 
variable vel (short for velocity) has all three components of it set equal to zero. Also, the 
variable a (acceleration) has all three components zero as well. Think physics now: if an object 
is at rest pv =< 0, 0, 0 > and has a zero acceleration pa =< 0, 0, 0 >, will it ever move? No. 
This is, in fact, of of Newton’s Laws (“an object at rest, stays at rest...”). To get this sphere 
to move, change the #declare vel=< 0, 0, 0 >; line to #declare vel=< 5, 0, 0 >;. Re-render 
the program. You should see the sphere moving right across the screen. See? You’re already 
testing physics theories using computer animation. 

If the red sphere is too big, you can make it smaller by changing its radius from 1 to something 
smaller in the line sphere { pos,1 pigment {Red} } . If the vector scales are too small (or 
large) for you, you can alter this in the line set vector scale(0.5). Label sizes and vector 
thicknesses can be changed in these lines. 
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set_vector_label_scale(0.5) 
set_vector_thickness(0.5) 

So you really have full control over all aspects of your movie by making small edits and 
tweaks to the skeleton code. Here are some things to try: 

•	 To make the sphere go faster, change the #declare a =< 0, 0, 0 >; line to #declare 
a =< 5, 0, 0 >; 

•	 To make it slow down, stop and turn around change the line to #declare a =< −2, 0, 0 >; 

•	 To change where the sphere starts on the screen, you can change the line #declare pos 
=< 0, 0, 0 >; to #declare pos =< −3, 0, 0 >; The Povray coordinate system is what 
you’d think: +x runs right and −x runs left; +y is up and −y is down. −z is straight at 
you as the viewer, where +z is into the screen. 

•	 You can also make the sphere travel along a different axis, since the ordered set notation 
contains information about the x, y and z axes. So try setting the velocity to #declare 
vel=< 0, 5, 0 > and #declare a =< 0, −3, 0 >; 

5.2.1 Making a movie 

Changing the code and re-rendering the scene is where most of your work will be. Today’s 
computers (and Povray) are just fast enough to allow you to see a “flickery” version of your ani
mation in the render window. This allows for a convenient edit→render→edit cycle. Remember 
that as Povray works, it creates one image file on your computer per scene you see rendered. 
Each image file represents your scene at a slightly later time. To make the final movie, you have 
to stitch these images together into one single movie file. Then you’ll see a beautiful, smooth 
animation that’ll look quite nice. See the software installation chapter on how to stitch these 
images together, but in sum, download stitching software, either for Windows or Macintosh here 
http://goo.gl/zTtuQ . 

5.3 Basic Povray Statements 

To create physics movies, you will not need to know or learn an endless list of programming 
statements, and this is not a programming class. But invariably as you use a computer as a 
tool in science, “point and click” software won’t always do just what you’d like. You’ll have 
to program some kind of macro or line-by-line list of instructions for the computer. The same 
applies here. With that, here are the few instructions you’ll have to be familiar with: 

#declare This statement is what allows you to set a variable equal to some value. In a math 
class, you’d write x = 5 to set the variable x to 5. In Povray, you need to start the line 
with “#declare” then a variable name, then an equal sign, then what you want to set it 
to, followed by a semi-colon. Here are some examples: 

http://goo.gl/zTtuQ
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• #declare a=5; 

• #declare Radius=10; 

• #declare velocity=< 5, 1, 0 >; 

Notice in these examples that Povray recognizes both scalar and vector numbers. The 
vector notation uses “ordered set notation” exclusively. 

#declare (again) **CAUTION** The #declare statement is the only Povray line 
that must be ended with a semi-colon. This is needed so Povray knows where the right 
hand side of a #declare action ends. It can be very frustrating to leave off such a semicolon. 
It will result in your movie scene not rendering. Be careful! 

sphere Most objects discussed in this class can be represented by round spheres. A sphere 
is characterized by its center position in 3D space, its radius, and a color. The sphere 
statement looks like this 

sphere {<center-x,center-y,center-z>,radius pigment {color}} 
where the first vector is the 3D center of the sphere. It can be a vector variable pre
viously declared, or a literal like < 5, 2,−1 >. The  radius is just a number and the 
color is what color you’d like to see the sphere appear with. Basic colors like Red, Blue, 
Green, White, and  Yellow are available. A complete list can be found in this folder: 
http://goo.gl/zTtuQ . 

box Boxes can be useful for representing objects too. Drawing a box looks like this 

box {< x1, y1, z1 >,< x2, y2, z2 > pigment {color}} 
where the two vector points < x1, y1, z1 > and < x2, y2, z2 > are any two opposite corners 
of the box. That is, if you tell Povray two corners of the box, it’ll fill in the rest with 
smooth sides having the color of color. 

cylinder Cylinders are useful for a variety of drawing, including objects that move or otherwise. 
Drawing a cylinder looks like this 

cylinder {< x1, y1, z1 >,< x2, y2, z2 >, radius pigment {color}} 
where the two vector points < x1, y1, z1 > and < x2, y2, z2 > are the ends of the cylinder 
and radius is the radius of the cylinder, and of course the pigment construct is used to 
specific the color of the cylinder. 

Other shapes Povray knows how to draw a variety of shapes. You can find documentation on 
them here http://www.povray.org/documentation/view/3.6.0/273/. 

Vector components Vector components of a variable can be accessed by adding a “.x,” “.y,” 
or “.z” to the end of a variable. So for instance, if you need just the x-component of 
position, you can use pos.x (given that pos is the name of your position vector). If vel 
is your velocity variable, then vel.y would be the y-component of the velocity. 

http://www.povray.org/documentation/view/3.6.0/273
http://goo.gl/zTtuQ
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Doing math. Povray (and most programming language) do not recognize “implied multipli
cation” like 5x. You have to explicitly tell it to multiply 5 and x using the * symbol, 
which means multiply. So, 5x would be programmed as 5 ∗ x wherever it’s needed. Signs 
like +, − do what you’d think. Divide is the forward slash or /. There is no convenient 
exponent, so for squaring or cubing quantities, just multiply them by themselves two or 
three times as needed. 

More math Other math-related items are pi (all lower case), and of course sin, cos, and  tan, 
which take radians (not degrees) as their arguments. Povray has a lot of built in functions 
which you can find here http://www.povray.org/documentation/view/3.6.1/228/. 

More math Square roots are done with sqrt, which is useful for finding the magnitude of a 
vector as in sqrt(vel.x*vel.x+vel.y+vel.y). As an example, suppose you needed the 
magnitude of a v-vector. We’ll call the result vmag (assuming your velocity vector is in a 
variable called vel), you could write 

#declare vmag = sqrt(vel.x*vel.x+vel.y+vel.y); 

More math The arctangent is normally used to find the angle a vector is making with respect 
to the +x-axis. Povray has a special version of arctangent called atan2 which works like 
this. Suppose you want to take the arctangent of Qy/Qx or atan(Qy/Qx), where Qx and 
Qy are the components of some vector. In Povray you’d do atan2(Qy, Qx). So suppose 
you wanted the angle a velocity vector is making (with respect to the +x-axis), assuming 
your velocity vector is in a variable called vel. To assign this angle into a variable called 
angle You could write 

#declare angle = atan2(vel.y,vel.x); 

5.4 Structure of the Skeleton Code 

If you’re not much of a programmer, then you’re in luck. The skeleton code (that will form 
the core of all work here ) is a highly structured roadmap, guiding you through your studies. 
It is almost “form like,” in that you need only fill in the relevant physics in order to create an 
animation. This structure is shown in Figure 5.4, and remember that the computer will process 
it line-by-line, from top to bottom. 

Most of the time, you will start a movie by thinking carefully about what physics you need 
to illustrate. Often in mechanics, this comes down to recognizing three things: 

1. Where should the object start? 

2. What velocity should it have when it starts? 

3. What acceleration should it have? 

http://www.povray.org/documentation/view/3.6.1/228
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#include "physics.inc"
 

camera { location <0,0,-15> look_at <0,0,0> } 
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light_source { <-0,0,-20> color White }     


#declare pos = <0,0,0>;
 
#declare vel = <0,0,0>; �������
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#declare dt = 0.1;
 
#declare xtime = 0.0;   


#while(xtime <= clock)
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#declare a = <0,0,0>;

    #declare pos = pos + vel*dt + 0.5 * a * dt * dt;

    #declare vel = vel + a *dt;


#end 
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    sphere { pos,0.1 pigment {Yellow} } 
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    #declare xtime = xtime + clock_delta;    

sphere { pos,1 pigment {Red} } 

draw_vector(pos,vel,Green,"v")
 
draw_vector(pos,a,Yellow,"a")
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Figure 5.1: The highly structured skeleton code, which serves as the core for all work here. 

4. What do I want to draw for my object? 

If you can answer these four questions, then you can fill in the skeleton code and produce 
an associated movie. Part 3, for example is where the initial position and velocity of your 
object should be set, in full vector form (of course). Part 5 is where you’d put in the needed 
acceleration, again in full vector form. As far as drawing your object, that would all go in Part 
10. If you can do this, without being tempted to change other parts of the code, then you should 
be able to quickly produce a working movie. 

Here are a few more notes about the skeleton code structure: 

•	 Part 1 always has to be there. Never change it. This makes drawable physics items 
available to you, like vectors, ropes, etc. What’s in this file is discussed in Section 8.3. 

•	 Part 2 can largely be left as-is throughout. However, if you want to change where the 
camera is located or at what position it is aimed (look at), feel free to experiment. The 



42 CHAPTER 5. GETTING STARTED WITH SIMPLE PROGRAMMING 

same goes with the position of the light source. The most popular change to Part 2 is in 
the z coordinate of the camera position. This allows you to zoom in or out on your scene 
(if things are too small or too large). 

•	 Two things happen in Part 4. First, the frame-to-frame time-step of your movie, or Δt 
(dt), is set. A dt = 0.1 works well most of the time. But if you want an ultra-smooth, 
finely timed movie, you’ll want to decrease dt maybe to 0.01. Second, the variable xtime 
is set equal to zero. This variable is the global “clock” in your movie, always holding the 
amount of time that has elapsed. 

•	 Part 6 never needs to be changed as they are immutable laws of physics. But if you look 
carefully, you have to satisfy what they need to work by the time this part of the code 
is reached. In particular, you have to have the acceleration needed defined and ready to 
go, so the equations can do their work. Luckily though, Part 5 is where any accelerations 
must be defined, so they may feed into the physics equations of Part 6. 

•	 If you want trails to be seen as your object moves, leave the sphere statement in Part 7. 
If you do not want trails, take it out. Feel free to alter the size or color of the trail spheres 
as well. 

•	 Part 10 is special because the code is about to end and what is certain is that the latest, up
to-date values of all physics variables are known in this part. In other words, pos contains 
the best known and latest position of the object, and vel contains the best known, and 
latest velocity. That’s why all final scene drawing happens in this part of the code, because 
you know where the object is, and what it’s velocity is. 

•	 Lastly, never change or alter any these lines: 

#include "physics.inc" 

#declare xtime = 0.0; 

#while(xtime <= clock) 

#declare xtime = xtime + clock_delta; 

or the 

#end 

line. They are needed to complete the logic that drives an animation to run. If you’re 
curious though, the variable xtime holds the simulated time over which the movie has 
been running; it’s like the internal “clock” for the movie. The #while-#end pair form a 
“while loop” (see http://en.wikipedia.org/wiki/While loop) that ensures each run through 
your code movie occurs at a later and later time. 

http://en.wikipedia.org/wiki/While
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5.5 The if statement 

If statements allow your program to make decisions as they run. The decision determines if a 
given section of your code will get visited by the computer or not. Here is an example. 

Suppose you were creating a movie showing a block is sliding horizontally along a table, 
toward the table’s edge. While on the table, the acceleration of the block along the y-axis is 
zero, since the block is sliding horizontally. Now suppose the table ends and the block ends 
up in free fall. The acceleration of the block now is now −9.8 m/s2 . So you really have two 
acceleration zones here. The acceleration along the y-axis, or ay = 0 if the block is on the table, 
and ay = −9.8 if the block is over the edge of the table. Read this last sentence again; the word 
“if” is used twice! Hence the “if” statement; logic dictates that a condition must be evaluated 
before a conclusion can be reached. In this case, the position of the block must be assessed (the 
condition) before a conclusion (on what ay should be) can be reached. 

5.5.1 An if statement in Povray 

In Povray, here’s how you would assign the acceleration to the block in Part 5 of the code, 
supposing that pos is the position vector of the block. Suppose also that the table extends from 
x = −5 to  x = 0:  

#if (pos.x < 0) 
#declare a=<0,0,0>; 

#end 

#if (pos.x >= 0) 
#declare a=<0,-9.8,0>; 

#end 

Note that we can’t just say “if” in Povray, but instead #if;  that is we need  the # symbol  
in front of the word “if.” This is just how Povray was made. 

Reading the code top to bottom, you see the first #if statement: it reads “if the x-component 
of pos is less than zero.” If this condition is true then the #if statement will execute all 
programming lines between the #if statement and the #end tag. If the condition is false, the 
computer will skip to the first line after the #end tag. Read the second #if statement: it 
reads “if the x-component of pos is greater than or equal to zero.” The same execution branch 
holds depending on if this condition is true or false. For both #if statements, you can see the 
associated assignment of an acceleration vector, (i.e. zero if it’s on the table, or −9.8 along the 
y-axis if it’s in free fall). 

In Povray, here is the general form of an #if statement, that you may play anywhere in your 
code: 

#if (condition)
 
These lines will be executed
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if condition is true. 
#end 

Again, if condition evaluates to true, the lines between the #if and #end will be executed. If 
condition is false, the code execution will skip to the first available line after the end statement. 

There’s even a more general form that has explicit groups of lines to be executed if condition 
is true or false. It looks like this 

#if (condition) 
These lines will be executed 
if condition is true. 

#else 
These lines will be executed 
if the condition is false. 

#end 

and is called an “if-else” structure. 

5.5.2 Conditions 

Now what about the “condition” mentioned above. How are these formed? Conditions that 
you’ve seen before are most like expanded searches you might do in the library. You might try 
to find a book about “computers,” so you could run a search for this term. But you might like a 
book about “computers” written by an author named “Doe.” Your search would then resemble 
“subject=computers and author=doe.” This is an example of a condition that might be used 
in programming. 

Generally speaking a condition must evaluate to either true or false. You can use symbols 
from math to test the values of variables, such as <, >, or = to test for less than, greater than, 
or equal to. Povray has more such as >= and  <=. Use ! = for “not equal.” These simple 
conditions may be tied together using & for “and” and | for “or.” 

Table 5.1 shows some example conditions that might be helpful when animating physics. It 
assume the position of an object is being held in the vector variable pos and its velocity in a 
variable vel. 

5.5.3 Testing where an object is 

As you might guess, testing where an object is located is best done by setting up conditions 
using the x, y, and/or z components of a variable that holds the object’s vector position. So if 
pos holds your object’s position, pos.x, pos.y, and  pos.z are the components that you may 
use to form some conditions to check where the object is located. 

To check if the box above is on the table, for example, we might write pos.x >= -5 & 
pos.x <= 0. This condition would evaluate to true if the x component of the object’s position 
is greater than or equal to −5 or less than or equal to 0 (which are the horizontal bounds of the 
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Condition Description Possible Use 
(pos.x > 0) True if the x-

component of the 
position is positive 

Check if an object has passed a 
certain point in space. 

(vel.x < 0 & pos.x True if vx is less than Check for an imminent collision 
< −3) zero (the object is with an object moving leftward 

moving left) and the into an object whose edge is at 
object has moved to x = −3. 
the left of x = −3 

(vel.y >= -2 |
pos.x = 1) 

True if the vy is 
greater than or equal  
to -2, and and the x-
component of pos is 
equal to one 

See if the object has exceeded 2 
units of speed in the downward 
direction, and if the x coordinate 
of the object is at 1. 

(vel.y < 0 & pos.y True if the object is See if the object is moving down 
<= 0) moving down (vy < 0) 

and the y-position is 
zero or lower. 

and has encountered the ground 
at y = 0. Good for now reversing 
the sign of vy, to make the object 
bounce off of the ground. 

(dist < R1+R2 With dist set to Collision detection between two 
& vel1.x> 0 & the center-to-center spheres. 
vel2.x< 0) distance between two 

spheres (of radius R1 
and R2), see if the dis
tance is less than the 
sum of their radii (i.e. 
closest approach), and 
if object 1 is moving 
right (vx > 0) and 
object 2 moving left 
(vx < 0). 

Table 5.1: Sample conditions, what they test, and where they might be used, assuming pos and 
vel are the position and velocity vectors of the object. 
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table). The condition itself would be written inside of the parentheses that is part of the #if 
statement construct described above. 

5.5.4 Testing the direction in which an object is moving 

The direction an object is moving in may be tested by examining the x, y, and/or z components 
of a variable that holds the object’s vector velocity. So if vel holds your object’s velocity, vel.x, 
vel.y, and  vel.z are the components that you may use to form some conditions. For example, 
an object is moving toward the right if vel.x > 0. It is moving up if vel.y > 0 and so on. 
The condition itself would be written inside of the parentheses that is part of the #if statement 
construct described above. 

5.5.5 Careful with = 

When crunching numbers for physics movies, be careful with expecting the “=” (equal) to be a 
robust condition. In the example of the box on the table, the edge of the table is at x = 0.  So  
suppose we were testing if the object reaches the edge by writing if (pos.x = 0). Would this 
work? Sometimes yes and sometimes no. Why? 

It’s because of how numbers work on the computer. As the computer crunches away in 
computing the position of your block using x = x0 + v0Δt + 1/2aΔt2, numbers might be non-
integers. Perhaps the box starts at −5 and moves toward the right. The next position might 
be −4.8 then  −4.63, then −3.225. As it approaches the edge, the position might be −0.005, 
−0.001, then 0.002. So it crossed the edge of the table between −0.001 and 0.002, but it never 
hit zero exactly so the condition of pos.x =0 would never become true. 

What does one do? Make the condition more accommodating. Never expect a bunch of 
computed decimal numbers to ever be anything exact. Instead check for a range, that will 
typically involve < and > than compares. Here are some most robust possibilities for checking 
on the edge of the table. 

pos.x >= 0 Will be true if the box is off of the table. 

pos.x <= 0 Will be true if the box is on the table. 

pos.x >= -0.1 & pos.x < 0.1 Will be true if the box is within |0.1| units of the table’s edge. 
You can hone in the 0.1 as needed, but this is about as good as condition as you’ll create 
for checking if the box is at the table’s edge. 

abs(pos.x) < 0.01 Checks if the absolute value of the box’s x component of position is less 
than 0.01. This will be true for −0.01 ≤ pos.x ≤ 0.01. A pretty nice edge condition! 

pos.x = 0 Not a robust condition. Hard to say if the computer’s predicted position will ever 
exactly be zero. 
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How do I...  

6.1	 Use a vector component of a vector variable? 

Use .x, .y, or  .z after the variable name. So if your vector variable is called pos, the  x-
component can be accessed via pos.x. The  y-component via pos.y. 

6.2	 Find the angle a vector is making with respect to the 
+x-axis? 

You need to take the arctangent of the y-component divided by the x-component, or θ = 
tan−1(x/y) of the vector. Use the Povray atan2 function. So if the vector is called vel, you  
would do #declare angle=atan2(vel.y,vel.x);. This will put the angle of the vector vel 
into the variable angle. 

6.3	 Draw a vector on an object? 

Use draw vector(tail,vector,color,"label") as outlined in Section 8.3. This will draw 
the vector in vector-variable vector with its tail at vector position tail. It’ll have the color 
color and be given a text label of label, which is the text you put in double quotes as the last 
parameter. See the set vector... functions in Section 8.3 to tweak the size of the vector as 
needed. 

6.4	 Draw just the x or y component of a vector on an 
object? 

Review the question above first. Now, for just a component, the “vector” part of the parameter 
list for draw vector is where you construct a vector that represents just the x or y component. 
If you want to draw vx given that your object’s velocity variable is vel, the vector parameter 
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would be < vel.x, 0, 0 >, since the x component of a vector has a zero y and z component. Just 
drawing vy would be < 0, vel.y, 0 > 

6.5 See if two objects have collided? 

Suppose you have two spheres of radius R1 and R2, where initially sphere 1 is to the left of sphere 
2. Suppose sphere 1 is moving right and sphere 2 is moving left, and the positions of each are 
in the vector variables pos1 and pos2. First you need to compute the distance between the two 
objects using the distance formula like this 

#declare d=sqrt((pos1.x-pos2.x)*(pos1.x-pos2.x)+(pos1.y-pos2.y)*(pos1.y-pos2.y)); 

or 
#declare d=vlength(pos1-pos2); 

An if statement to see if they collided would check three things. 1) if d is less than the sum 
of the two radii (which is their closest possible approach), 2) if sphere 1 is moving toward the 
right 3) if sphere two is moving toward the left, like this: 

#if (vel1.x>0 & vel2.x<0 & d<= R1+R2) 
do this if they collided 

#end 

6.6 See if an object has hit the ground? 

If the ground is at y = 0, see if the object is moving down and if its position is at or below 
y = 0, like this 

#if (vel.y<0 & pos.y <= 0) 
do this if the object hits the ground 

#end 

6.7 Add trails behind an object? 

Check the skeleton code, Figure 5.4, Part 7. Put in the sphere drawing statement to draw trails. 
If you have more than one object moving, you’ll need a sphere statement in Part 7 for each one. 

6.8 Remove trails behind an object? 

Check the skeleton code, Figure 5.4, Part 7. Remove the sphere drawing statement to draw 
trails. 
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6.9	 Draw an object as a sphere given that I know its 
position? 

If its position is in a position vector called pos, you can draw a sphere at its position with a line 
like 

sphere {pos,1 pigment {Red}} 

See Figure 5.4, and be sure you put this line in Part 10. 

6.10	 Draw an object as a box given that I know its po
sition? 

The easiest way is to use the draw box statement as outlined in Chapter 6, as in draw box(pos,2,Red) 
which will draw a red box at the position given by the vector variable pos, with a side length 
of 2. 

If you need a more general approach, then if a position is in a vector called pos, you  can  
draw a box centered at pos with a line like 

box {pos-<1,1,1>,pos+<1,1,1> pigment {Red}} 

Where the ± < 1, 1, 1 > are references to opposite corners of a box, which is what Povray 
needs to render a box. See Figure 5.4, and be sure you put this line in Part 10. 

6.11	 Draw something other than a box or sphere for my 
object? 

See draw car and draw rocket in Chapter 8. 

6.12	 Draw the ground or a big wall in a scene? 

If you want the ground at y = 0,  do  a  

plane{<0,1,0>,0 pigment {Green}} 

If you want the ground to be a checkerboard pattern, do this 

plane { <0, 1, 0>, 0 pigment {checker color Red, color Blue } } 

Note that the vector is the vector normal to the plane and the scalar number if how far to 
translate the plane up or down along the normal vector. 
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6.13	 Find the magnitude of a vector? 
J 

If a vector is called Ap, its magnitude is A = A2 + Ay
2 . In Povray this can be done two ways x 

1.	 #declare Amag=sqrt(A.x*A.x+A.y*A.y); 

2.	 #declare Amag=vlength(A); 

either statement will put the magnitude of Ap into the variable called Amag. 

6.14	 Get a spring to look right as it pushes against a 
moving object? 

Here are some pointers about springs: 

•	 Springs have a fixed and and a free end. Do you know the position of the fixed end? 

•	 Springs have an equilibrium position. Do you know where the equilibrium position is to 
be? You should put this in a variable called s0. 

•	 Springs have a spring constant. Be sure to declare this in Part 3 of the skeleton code. 

•	 The position of the free end of the spring should be a variable because it will change. 
Let’s call it s. It’ll be the equilibrium position when your object is not in contact with 
the spring. When your object is in contact with the spring, it’ll be at the same position 
as the object. 

•	 Initially, supposing your object is not in contact with the spring, the free end will be at the 
spring’s equilibrium position. This means that in Part 3 of the skeleton code, you should 
declare a value for s0, the equilibrium position, then in a second declare statement, set s 
equal to s0. This sets the equilibrium position in s0 and puts the free end of the spring 
there too (s). 

•	 The interaction between the spring and your object can be tricky, but can be handled 
with one or two #if statements. The important task is to get the spring accelerations 
assigned for Part 5 of the skeleton code. Think about it all like this. Suppose your object 
starts to the right of s0 and is moving toward it. We’ll assume its position is held in a 
variable called pos. Assume everything is aligned along the x-axis. As long as pos.x>s0, 
the object is not in contact with the spring. The free end of the spring should be at s0 
or somewhere you should declare s=s0. If  pos.x <= s0 the object is in contact with the 
spring. The free end of the spring to now always be equal to the position of the object, 
and somewhere you should declare s=pos. The spring force can always be found using 
s − s0 as the displacement of the spring. 
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6.15	 How do I draw a spring? 

Use draw hspring for a horizontal spring or draw vspring for a vertical spring. See Chapter 8 
for a full description of these. 

6.16	 Have something other than the black sky in my im

ages? 

Use the sky sphere statement. It’s best to Google something like “povray sky sphere” for some 
examples. There are many examples out there of nice blue skies with scattered white clouds, 
etc. It takes more time to render, but is a nice effect. Adding a line like this (to Part 10) will 
make the black sky look light blue. 

sky_sphere {pigment {LightBlue}} 

6.17	 Paint an object with an image file? 

You can paint objects (spheres, boxes, etc.) with an image you may have (like a picture file from 
your camera). Here’s how it’s done. Put the image file (jpg, png, etc.) in the same folder as your 
Povray code (your .pov file). For this example, we’ll assume your image is called “Nebula.jpg.” 
This code will paint a box with the picture of the nebula on it. 

box {<0,0,0>,<1,1,1> pigment { image_map {jpeg "Nebula.jpg" map_type 0} }}
 

Note that the moral here is to draw your object at the origin, unit dimensions. For a box, 
the map type option is zero. If you need the box to be at a position other than the origin, you 
have to put it into an object statement, then translate it, like this, 

object 
{ 

box {<0,0,0>,<1,1,1> pigment {image_map {jpeg "Nebula.jpg" map_type 0}}} 
translate <-5,-2,2> 

} 

which will move the box to < −5, −2, 2 >. Note that you still need to draw the box at the 
origin for the image map painting to work. Here’s an example that paints a sphere, 

sphere {<0,0,0>,1 pigment { image_map {jpeg "earth_land.jpg" map_type 1} } }
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where you’ll note that the sphere is also drawn at at the origin with unit size (i.e. the 
radius is 1), and the map type has been changed to 1 for the spherical painting. You can move 
the sphere by again putting it into an object structure and translating it, after drawing it at 
< 0, 0, 0 >. 

If you use an image type other than a jpg, then you have to change the file description from 
jpeg to png, etc.  
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What to do if your movie  won’t render 
  

Two things can be frustrating. The first is when you code won’t render at all. The second is 
when it renders but doesn’t work properly. Here are some hints. 

7.1 My movie won’t render 

If your movie won’t render, then you won’t even get any graphics to come up. It is likely that 
you have a typo or error with some usage of a Povray line. Like your password to your favorite 
website, everything must be exactly right in order to work (computers are funny that way). 
Check the following, for the most common problems: 

•	 Do all of your #declare statements end in a semi-colon? 

•	 Do all of your open { and close } balance in a given line? That is, there must be as many 
{ as } in a given line. 

•	 Do all of your open ( and close ) balance in a given line? That is, there must be as many 
( as ) in a given line. 

•	 Does each #if statement have an #end statement that goes with it? You must have the 
#end statement no matter what (even if your #if block has only a single line in it). 

•	 Look at the bare skeleton code in Section 5.2. The core components in it must also be in 
your own work. Look carefully that you didn’t delete anything by accident during your 
editing. 

•	 If you start a render and the process never seems to end, you probably altered the while-
loop at the core of the skeleton code. Look at it in Section ?? .The #while statement 
must have a matching #end statement with it. Is this still there? Did you accidentally 
delete it? What about the #declare xtime=xtime+clock delta; line? 

•	 Do  you have the  # in front  of  any “if’s” Remember it’s  #if not just if. 
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•	 Do you have the # in front of any “declare” lines? Remember it’s #declare not just 
declare. 

•	 Do you have #declare at all for variable assignments? Remember you have to say 
#declare m=5; not just m=5. 

•	 Look at your formulas. Did you spell all variable names correctly? 

•	 Look at your formulas. Is each variable used in a given formula defined before it is used 
in a given line? 

A code scanner has been posted to help you along (if it can). You can access it here 

http://ocean.physics.calpoly.edu/povrayscan/ 

7.2 My movie doesn’t work right 

Good luck with this one. There any any number of reasons why your movie doesn’t work right, 
and likely it’s something you did wrong (as tempting as it is to blame it on the “physics” or 
“the computer.”) If implemented correctly, the physics equations will work beautifully. Here 
are a few things to consider: 

•	 Check your physics. Are your equations right? Logic correct? What about the signs of 
your vector components? 

•	 All final drawing is done in Part 10 after that final #end statement that goes with the 
#while line (neither of which you are supposed to touch). 

•	 There should be no drawing statements between the #while and #end statements, with 
the exception of a sphere statement that is used to plot the trails behind an object. 

•	 If vectors are too small or large, see the set vector... functions in Section 8.3. 

•	 Check that your accelerations are all set up in Part 5, before the physics equations. 

•	 Check your code versus the bare skeleton code in Section 5.2. Other than Part 10, this 
code is your core structure. Be sure your work has all of the elements in the skeleton code 
at minimum. Sometimes lines get accidentally deleted or moved as you work. 

http://ocean.physics.calpoly.edu/povrayscan


Chapter 8 

Drawing Physics 

8.1 Introduction 

Although Povray (and MegaPov) are very powerful drawing tools, we need them to do a bit 
more for our goal of visualizing physics. In particular, we’d like to easily draw vectors, energy 
bars, ropes, springs, and a few other salient items that will allow us to fully visualize the physics 
that will go into driving our animations. This all might sound very general, so let’s take an 
example. 

Suppose you wanted to draw a vector on a moving object. A vector is an arrow that has a tail, 
head, and length that is proportional to the quantity it is supposed to represent. Unfortunately, 
Povray does not have a native “arrow” drawing function. However, with Povray, you can make 
a vector from a thin cylinder, and use a cone as an arrow head. Since we’d like to focus on 
physics, definitions for vectors, springs, etc. have been created for you. 

For this reason, as part of adapting Povray and MegaPov installations discussed in the 
previous chapter, a small file called “physics.inc” (“inc” for include) has been created. This 
file contains several instructions for allowing you to easily add physics visuals to your movies. 
You’ll note that at the beginning of your Povray code is always reference to including a file 
called “physics.inc.” This line does just what you think: includes some physics definitions from 
the file called physics.inc for you to use. What is available is described here. 

8.2 Ideas on notation and usage 

Drawing physics objects like ropes, vectors and spring will come from predefined functions in 
the file called physics.inc. You’ve heard the word “function” before. Think from your math 
classes what functions do, something like f(x). When you write f(x) you are implying that if 
you put in an x, and out will come another value or expression that depends on x. In this case, 
f is the name of the function and x is the single parameter of the function; the parenthesis 
punctuate it all. So if f(x) =  x2, then  f(5) = 25, just as f(x) =  a2 . You put in a 5 and got out 
a 25. You put in a and got a2 . You can also have functions that involve more than one variable, 
like f(x, y, z), but it means the same thing. 
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With computers, functions are represented in the same way; that is, a name, some paren
thesis, then some parameters, separated by comma, but can given more meaningful names, like 
“draw vector” or “draw rope” (instead of “f” or “g”), since you have a keyboard, more storage, 
and a large screen, etc. 

With computers, functions are often used not just to return some new value, but to actually 
do something. So while f(5) returns 25 in your last math class, draw vector(< 1, 1, 1 >,< 
2, 2, 2 >,Red,"x") will draw a vector from x = 1, y  = 1, z  = 1  to  x = 2, y  = 2, z  = 2  in  a  red  
color and label it “x.” 

Read Wikipedia on “Vector Notation.” Vectors can be represented in many ways. The three 
most popular are 1) magnitude angle form, like “50 N at 30 degrees with the +x-axis.” 2) “i,j,k” 
or “Engineering notation” like 5̂i + 7ĵ or 3) “Ordered Set Notation” as in < 5, 7, 0 >. Povray 
uses “ordered set” notation to represent vectors, as you’ll see below. 

Below are the functions available for you to use, as defined in physics.inc. These become 
available to your Povray code by virtue of the line in your code #include "physics.inc’’. 
You don’t need to understand how they work how they do what they do. Just use them, get 
your work done, visualize physics, and move on. 

8.3 Useful functions in physics.inc 

draw vector : Drawing a vector on an object 

Usage: draw vector(<xt,yt,zt>,<Ax,Ay,Az>,color,"label") 

Description: Draws a vector whose tail is at the x,y,z coordinate of xt,yt,zt. The vector 
drawn has components Ax,Ay,Az. The vector will have a color of color, and the textual 
label label will be drawn near the vector’s head. 

Examples: 

draw_vector(<0,0,0>,<5,5,0>,Red,"v")
 
draw_vector(<0,0,0>,<F.x,0,0>,Blue,"Fx")
 
draw_vector(<sx,sy,0>,<ax,ay,0>,Red,"a")
 

In another setting you may have a vector variables, called pos that is the position vector 
of your object. Suppose also that your object has a velocity vector vel and an acceleration 
vector a. You can draw these vectors on the object in this way: 

• Draw the v-vector: draw vector(pos,vel,Red,"v") 

• Draw the a-vector: draw vector(pos,a,Yellow,"a") 

• Draw just vx: draw vector(pos,<vel.x,0,0>,White,"vx") 

• Draw just vy: draw vector(pos,<0,vel.y,0>,SpicyPink,"vy") 

set	 vector scale : Zoom (or unzoom) all vectors drawn in a scene 

Usage: set vector scale(n) 
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Description: Zooms all vector lengths by the factor n. At times, vectors drawn will be 
too long or too short and it would be nice (visually), if they could be rescaled. By making 
a call to this function, and passing it a real number, all vectors will be rescaled by the 
number.  Passing a 1 for  example will have no effect on the vector scaling. Passing a 0.5 
will reduce all vector lengths by 1/2. Passing a 2 will double the length of all vectors. 

Examples: 
set vector scale(0.5) 
set vector scale(2) 

set vector thickness : Zoom (or unzoom) the thickness of all vectors 

Usage: set vector thickness(n) 

Description: Zooms the thickness of all vectors by the factor n. Sometimes vectors 
drawn will be thick or too thin, and it would be nice (visually), if their thickness could be 
controlled. By making a call to this function, and passing it a real number, the thickness 
of all vectors be rescaled by the number. Passing a 1 for example will have no effect on 
the vectors’ thickness. Passing a 0.5 will reduce all vector thicknesses by 1/2. Passing a 2 
will double the thickness of all vectors. 

Examples: 
set vector thickness(0.5) 
set vector thickness(2) 

set vector label scale : Zoom (or unzoom) the size of the vector labels 

Usage: set vector label scale(n)
 

Description: Zooms the size of the vector labels by the factor n. Sometimes the textual
 
labels drawn by vector heads will be too large or too small, and it would be nice (visually),
 
if their size could be controlled. By making a call to this function, and passing it a real
 
number, the size of all vector labels will be rescaled by the number. Passing a 1 for example
 
will have no effect on the labels’ sizes. Passing a 0.5 will reduce all vector labels by 1/2.
 
Passing a 2 will double the labels’ sizes.
 

Examples: 
set vector label scale(0.5) 
set vector label scale(2) 

set vector label color : Sets the color of the label drawn on a vector 

Usage: set vector label color(color)
 

Description: Sets the drawing color of the vector labels to color. Use this to set what
 
color you’d like the textual label of a vector to be. Common colors are Red, Blue, Green,
 
Yellow, etc. You can find more colors in Section 4.4.
 

Examples: 
set vector label color(Red) 
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set vector label color(Yellow) 

draw text : Draw a text (i.e. words of your choice) on the screen 

Usage: draw text(the location“the text”,text color,text scale) 

Description: Draws the text the text at the vector location the location in color text color, 
with the size of the text being scaled by text scale. Use this to render any text you wish 
at some location on the screen. 

Examples: 
draw text(<5,1,3>,“hi there”,Blue,2)
 
Draws the text ”hi there” at location x=5, y=1, z=3 in blue, and double height.
 

draw text(<sx,sy,0>,”the object”,Yellow,0.25)
 
Draws the text ”the object” at the location (sx, sy, 0) in yellow, and 1/4 height.
 

draw variable : Draws the numerical value of a variable on the screen 

Usage: draw variable(the location,the variable,“the units”,text color,text scale) 

Description: Takes the internal numerical value of variable the variable and draws it on 
the screen at the vector location the location in color text color, with the size of the text 
being scaled by text scale. The number will be labeled with the units the units. Use this 
to render the value of any variable you wish at some location on the screen. 

Examples: 

•	 draw variable(<5,1,3>,r,“meters”,Blue,2) 
Draws the value of the variable r at location x=5, y=1, z=3 in blue, and double 
height with units of meters. 

•	 draw variable(<-5,-5,0>,xtime,“seconds”,Yellow,0.25) 
Draws the value of the variable xtime at the location (-5,-5,0) in yellow, and 1/4 
height. 

dump variable : Dumps the value of a variable into the big text window that Povray 
uses while rendering 

Usage: dump variable(“the name”,the variable) 

Description: Takes the internal numerical value of variable the variable and dumps it 
to the big text window you see while Povray/MegaPov are rendering. The value will 
be prefixed by the text contained in the variable the name. This function is useful for 
debugging your code and checking on the value of a variable during the rendering process. 

Examples: 
dump variable(“r=”,r)
 
Dumps the text “r=” followed by the numerical value of the variable r into the Povray
 
text window.
 

http:variable(<-5,-5,0>,xtime,�seconds�,Yellow,0.25
http:object�,Yellow,0.25
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draw real rope : Easy version for Drawing a real-looking rope between two points on 
the screen (courtesy of student T.W.W. Fall 2009). 

Usage: draw real rope(<x1,y1,z1>,<x2,y2,z2>,thick) 

Description: Draws a real-looking rope between the points <x1,y1,z1> and <x2,y2,z2> 
with a thickness of thick. A thickness of 1 is recommended; change from there as needed 
visually. 

Examples: 

•	 draw real rope(< 0, 0, 0 >, < 2, 2, 2 >,1)
 
Draws a rope of thickness=1 between the points (0,0,0) and (2,2,2).
 

•	 draw real rope(pos,pos+< 2, 0, 0 >, 0.5) 
Draws a rope of thickness=0.5 between the points at pos and pos with 2 added to 
the x-component. 

real rope : More user controlled function for drawing a real-looking rope between two 
points on the screen 

Usage: real rope(<x1,y1,z1>,<x2,y2,z2>,thick,color1,color2,amb,detail) 

Description: Draws a real-looking rope between the points <x1,y1,z1> and <x2,y2,z2> 
with a thickness of thick. A thickness of 1 is recommended; change from there as needed 
visually. color1 and color2 are the two intertwined colors of the rope. Parameters amb and 
detail are numbers you can pass to modify the overall look of the rope. It is recommended 
you start with amb=0.3 and detail=5 and adjust from there. 

Examples: real rope(<0,0,0>,<2,2,2>,1,Red,White,0.3,5) 
Draws a red and white rope of thickness=1 between the points (0,0,0) and (2,2,2). Visual 
affects of 0.3 and 5 are used. 

draw vspring : Draws a vertical spring 

Usage: draw vspring(y1,y2,x1,rad,thick) 

Description: Draw a vertical spring between the y-coordinates y1 and y2. It will be 
positioned horizontally at location x1. The spring will have a coil radius of rad and the 
”wire” used to make the coil will have a thickness of thick. A thickness of 0.2 and a radius 
of 1 are recommended to start; adjust from there. 

Examples: 

•	 draw vspring(10,15,0,1,0.2) 
Draws a metallic vertical spring between the y-coordinates 10 and 15, at an x-
coordinate of 0, which a coil thickness of 1 and a wire thickness of 0.2 

•	 draw vspring(by,0,0,1,0.2) 
Draws a metallic vertical spring between the y-coordinates by and 0, at an x-coordinate 
of 0, which a coil thickness of 1 and a wire thickness of 0.2 
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draw hspring : Draws a horizontal spring 

Usage: draw hspring(x1,x2,y1,rad,thick) 

Description: Draw a horizontal spring between the y-coordinates x1 and x2. It will be 
positioned vertically at location y1. The spring will have a coil radius of rad and the 
”wire” used to make the coil will have a thickness of thick. A thickness of 0.2 and a radius 
of 1 are recommended to start; adjust from there. 

Examples: 

•	 draw hspring(0,5,0,1,0.2) 
Draws a metallic vertical spring between the x-coordinates 0 and 5, at a y-coordinate 
of 0, which a coil thickness of 1 and a wire thickness of 0.2 

•	 draw hspring(bx,0,3,1,0.2) 
Draws a metallic vertical spring between the x-coordinates bx and 0, at a y-coordinate 
of 3, which a coil thickness of 1 and a wire thickness of 0.2 

draw bar : Draws a bar (as in an energy or momentum bar) 

Usage: draw bar(< xb, yb, zb >,height,the color,“the label”) 

Description: Draw a vertical bar with a base at the position < xb, yb, zb >. The bar 
will have a height of height, as drawn up from the base coordinate. It will have a color of 
the color and just below the base will have the textual label of the label. 

Examples: draw bar(< −3,−5,−2 >,KE,Red,“Kinetic Energy”) 

Draws a bar whose base is at the coordinate (vector position) < −3,−5,−2 > whose 
height will be the number contained in the variable KE. The bar will be red and will have 
the label ”Kinetic Energy” drawn just below the base point. 

set bar scale : Scales the overall length of all bars (as in an energy or momentum bar) 

Usage: set bar scale(n) 

Description: Sometimes energy or momentum bars can be too long, extending off of 
the screen, or too small, not showing much action. This function allows you to zoom the 
length of all bars by a factor n. If n > 1 bars will be magnified. If n < 1, bars will be 
reduced in size. 

Examples: 

•	 set bar scale(2)
 
All bars will be drawn and zoomed longer by a factor of two.
 

•	 set bar scale(0.1)
 
All bars will be drawn at one-tenth of their original size.
 

Note: Place such a line before any draw bar usage and only use once in a given program. 
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set	 bar zoom : Zooms the overall width 

Usage: set bar zoom(n) 

Description: Magnifies an entire bar. If n > 1 the bar will appear fatter and closer to 
the camera. If n < 1 it will appear skinnier and farther away. Used only for aesthetic 
reasons, if you think your bars do not look good in your movie. 

Examples: 

•	 set bar zoom(2)
 
All bars will be drawn twice and thick.
 

•	 set bar zoom(0.1)
 
All bars will be drawn at one-tenth as thick..
 

Note: Place such a line before any draw bar usage and only use once in a given program. 

set	 bar label zoom : Zooms just the textual label of a bar. 

Usage: set bar label zoom(n) 

Description: Magnifies just the label that appears near a bar. If n > 1 the text will 
appear larger. If n < 1 the text will appear smaller. 

Examples: 

•	 set bar label zoom(2)
 
All bar text labels will be twice as large.
 

•	 set bar label zoom(0.1)
 
All bars text labels will be one-tenth as large.
 

Note: Place such a line before any draw bar usage. 

plot curve : Plots a curve of some function supplied by the user. 

Usage: (two steps) 

•	 Define the function to plot using a #macro statement. The function name must be 
called curve as shown: 

#macro curve(xp) xp*xp #end 

•	 Make a call to plot curve(x0,x1,dx,color,scale) 

Description: Plots a curve assuming the x-axis contains the independent variable. Plots 
curve(x) for x0 ≤ x ≤ x1 with a step size of dx. The curve will be in a color color and 
its thickness can be scaled by the multiplicative factor scale 

Examples: 
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•	 These two lines will plot the function curve(x) =  x from −5 ≤ x ≤ 5 in Red, with a  
Δx = 0.01 at the default scaling. 

#macro curve(xp) xp #end 
plot_curve(-5,5,.01,Red,1) 

•	 These two lines will plot the function curve(x) = 1 +  tanh(x) from  −10 ≤ x ≤ 10 in 
Green, with a Δx = 0.1, with 3 times the thickness. 

#macro curve(xp) 1+tanh(xp) #end 
plot_curve(-10,10,.1,Green,3) 

draw car : Draws a simple car. 

Usage: draw car(position,scale,angle) 

Description: Draws a car in the xy-plane at vector position given by position. The  car  
will be scaled in size by the number given by scale and rotated about the z-axis by the 
angle angle (in radians). 

Examples: 

•	 draw car(< 0, 0, 0 >,1,0) 
Draws a car at at the origin (x = 0, y  = 0, z  = 0) with a scale of 1 and with no 
rotation about the z axis. 

•	 draw car(< 0, 1, 0 >,3,pi/2) 
Draws a car at (x = 0, y  = 1, z  = 0) with a scale of 3 and with a rotation of 45◦ 

about the z axis. 

•	 draw car(pos,2,atan2(vel.y,vel.x)) 
Draws a car at the position contained in the vector variable pos with a scale of 2. The 
car will be rotated as per the instantaneous angle of the velocity vector contained in 
vel using the atan2 statement, which is the Povray/MegaPov version of tan−1 . 

draw rocket : Draws a simple rocket. 

Usage: draw rocket(position,scale,angle) 

Description: Identical in usage to draw car (above), except that it draws a rocket in
stead. 

draw box : Draws a box. 

Usage: draw box(position,length,color) 

Description: Draws a box at the vector position given by position. The length of each 
side of the box is given by length and the box will be drawn with a color given by color 
(such as a color given in Section 4.4). 

Examples: 
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•	 draw box(< 0, 0, 0 >,1,Red) 
Draws a red box at the origin (x = 0, y  = 0, z  = 0) with a side length of 1. 

•	 draw box(pos,2,Blue)) 
Draws a blue box at the position contained in the vector variable pos with a side 
length of 2. 



Chapter 9 

One dimensional motion 

9.1 Introduction and Goals 

Your goal for these project is to demonstrate that you understand how an object moves in one 
dimension. 

•	 You’ll change an object’s v-vector by applying an arbitrary acceleration to an object either 
parallel or antiparallel to the object’s v-vector. 

•	 Demonstrate that you understand the interplay between x, v, and  a, in how an object 
moves while constrained to a single axis of motion, in this case either the x or y axis. 

•	 Show you understand what effect a has on v, and ultimately x, particularly when a and v 
have the same, then opposite signs. 

•	 Demonstrate understanding of one-dimensional vectors. 

•	 Demonstrate that seeing velocity and acceleration vectors on an object gives clues to the 
object’s subsequent motion. 

9.2 The Physics 

The v-vector of an object will be changed by: Applying an acceleration either 
parallel or anti-parallel to v. The goal of this week is to understand how acceleration, a, can  
be used to primarily change an object’s v-vector, and secondarily force changes in an object’s 
position (x), all in just one-dimension. An “object” means anything that can move, like a ball, 
car, truck, or person. One-dimensional means the object will only move along a straight line, 
typically along the x-axis if it’s moving left or right or y-axis if it’s moving up or down. There 
are two equations you need for this, x = x0 + v0Δt + 1

2 aΔt2, and the second is v = v0 + aΔt. 
If the object is at x0 with speed v0, then  x and v will be the object’s new position and speed 
at some time interval Δt later. These two equations allow you to compute the new position 
and speed of an object (x and v), based on its old position and speed (x0 and v0), given some 
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acceleration a that is acting on the object, over a time interval Δt. Δt is sometimes called the 
“time step” and is a small interval of time that separates when the object has x0 and v0, and  
when it will have x and v. We  said  that  a drives changes in v and x. Notice in these equations if 
a = 0,  then  v = v0, meaning that v doesn’t change between time steps; v is constant if a = 0.  In  
order for v to change, a must be nonzero. In other words, an object’s speed can change only if 
it has an acceleration. For the x-axis (left-right motion), we have that x = x0 + v0xΔt+ 

2
1 axΔt2 

and vx = v0x + axΔt. For  the  y-axis (up-down motion), we have that y = y0 + v0yΔt+ 1
2 ayΔt2 

and vy = v0y + ayΔt. These equations are the same, just the notation is different, being very 
specific as to the axis which axis it pertains. Suppose you have a sphere at x =  5  m with speed  
v = 1 m/s and an acceleration of a = 0.5 m/s2 . When the next frame comes up, say Δt = 0.1 
s later, where will the sphere be and what will its speed be? Use the equations to get that 
x = 5m  +  (1m/s)(0.1s) + (0.5)(0.5m/s 2)(0.1s)2 or x = 5.1025 m and v = 1m/s + (0.5m/s 2)(0.1s) 
or v = 1.05 m/s. You can iteratively use this new x and v as a new x0 and v0 (i.e. x → x0 

and v → v0) for computing still another x and v another Δt in the future. Can you find x and 
v after another Δt has gone by (ans: x = 5.208 m and v = 1.06 m)? Be very aware of signs. 
Think of a cartesian coordinate system with +x to the right, −x to the left, +y up and −y 
down (assume Δt is always positive). Positive values of position mean the object is to the right 
(x) (or up, y) relative to the origin. Negative means the object is left (x) (or  down,  y) relative  
to the origin. Positive values of speed mean the object is moving toward the right (vx) or up  
(vy), negative means to the left (vx) or down (vy). The sign of a alone doesn’t immediately help 
to characterize the object’s motion. If, however, a and v have the same sign, v = v0 + aΔt will 
predict an increase in v (that is if v and a have the same sign, an object will speed up). Likewise, 
an object will slow down if v and a have opposite signs. A case where opposite signs of v and 
a persist means v will get smaller and smaller, until eventually v = 0 at which case the object 
will stop. If a still persists, then v will begin to increase in the same direction as a; now  the  
object is speeding up, but in the opposite direction to its original motion. All told the object 
slowed down, stopped, then started speeding up in the opposite direction. All combinations of 
signs between v and a are possible. v > 0 and  a < 0 is a slow-down and potential turn-around 
case, as is v < 0 and  a > 0. v > 0 and  a > 0 or  v < 0 and  a < 0 are speed up cases, but in 
opposite directions. Lastly, you should be able to draw arrows on an object, representing its v 
and a and that instant. An arrow should point in the direction of the parameter it represents, 
and its length should be proportional to its amount (or strength). For example, if on an object 
the arrow for v and the arrow for a were opposite, you’d know the object was slowing down. 
An object going 2 m/s would have a v arrow half as long as one going 4 m/s. Book reading: 
1.3-1.6, 2.4, 2.5. 

9.3 Projects 

Learning outcomes: To understand how an object’s v-vector will be affected by an acceleration 
either parallel and anti-parallel direction v. 

Movie 1D.a: This movie can be made almost directly from the skeleton code which you can 
download here http://goo.gl/zTtuQ . Create a movie that shows a sphere moving from 

http://goo.gl/zTtuQ
http:1m/s)(0.1s
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the right edge of the screen to the left edge of the screen. The motion of the object should 
be for v0  = 0,  and  a = 0. Using the draw vector macro, render the velocity vector on the 
sphere at all times. Be sure the object leaves a “trail” behind it, indicating past positions 
of the object. See Figure 5.4, Part 7 for more on trails. See Chapter 5.4 for tips on drawing 
vectors. Why do this? To test your understanding of how an object with 
a constant velocity moves. 

Movie 1D.b: From the code used for the last movie, repeat the right-to-left motion for the 
object speeding up (v0   0). Using the draw vector macro, render both the = 0  and  a = 
velocity and acceleration vector on the sphere at all times. Be sure the object leaves a 
“trail” behind it, indicating past positions of the object. Why do this? To test your 
understanding of how an object moves when it has an acceleration acting 
on it in the parallel to its velocity. 

Movie 1D.c: Adapt the code again, but for an object that starts at the right and proceeds 
toward the left. It should have an acceleration on it that is opposite to the velocity; in 
other words v and a should have opposite signs. It should slow down, stop, then turn back 
around and go into the direction from which it came originally. Be sure your movie clearly 
shows the object obtaining good speed in the opposite direction. Using the draw vector 
macro, render both the velocity and acceleration vector on the sphere at all times. Be 
sure the object leaves a “trail” behind it, indicating past positions of the object. Why do 
this? To test your understanding of how an object moves when it has an 
acceleration that is opposite to its velocity; to see what makes an object 
stop; and to see what makes it turn around. 

Movie 1D.d: Show an object being launched upward, along +y at some speed v0y, under the 
downward (−y) acceleration of gravity, g. The object should move up, slow, stop, then 
turn around and fall back down again. Using the draw vector macro, render both the 
velocity and acceleration vector on the sphere at all times. Be sure the object leaves a 
“trail” behind it, indicating past positions of the object. Why do this? To test your 
understanding that 1D vertical motion is really the same as 1D horizontal 
motion, only all of the “action” is along the y-axis now. 

Movie 1D.e: Download the code called ball wall.pov here http://goo.gl/zTtuQ . If you  
render it straight out, it will show a ball being sent directly into a brick wall with v0x = 10  
(or pv = 10x̂). Without altering this initial pv, change only the x-component of pa in Part 7 of 
the skeleton code (Figure 5.4) so that the ball is just able to turn around before slamming 
into the wall. No calculations are necessary here. Do this by trial and error with values 
for ax in Part 7. 

Movie 1D.f: Download the code called balltower.pov here http://goo.gl/zTtuQ . If you  
render it straight out, it will show on the top of a very tall wooden tower, being sent 
directly toward the edge with v0x = 5  (or  pv = 10x̂). Without altering this initial pv, change 
only the x-component of pa in Part 7 of the skeleton code (Figure 5.4) so that the ball is 

http://goo.gl/zTtuQ
http://goo.gl/zTtuQ
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just able to turn around before falling over the edge. Do this by trial and error with values 
for ax in Part 7. 

Note: The object in all movies must have pv and pa vectors clearly labeled on it, using the 
draw vector function discussed in Section 8.3. 

9.4 Wrap-up Questions 

1. Draw a simple car.	 Indicate that it is moving at constant speed to the left, by drawing 
appropriate v and a vectors on it. 

2. Draw a simple car.	 Indicate that it is speeding up to the left, by drawing appropriate v 
and a vectors on it. 

3. Draw a simple car.	 Indicate that it is moving toward the right but slowing down, by 
drawing appropriate v and a vectors on it. 

4. Draw 5 circles evenly spaced apart. Each circle is different instant of time for a circle that 
is speeding up as it moves toward the right. The leftmost one is moving the slowest, and 
the rightmost one is moving the fastest. Draw v and a vectors on each sphere that reflect 
the observed motion. 

5. Draw the “trail” or dots an object would leave that was thrown straight up, to the point 
where it stops at the top of its flight. 

6. Draw the “trail” or dots an object would leave that is accelerating toward the right. 

7. Draw the “trail” or dots an object would leave that is moving at constant speed to the 
right. 

8. Describe how the v-vector behaves for an object that is slowing down, then stops briefly, 
then begins accelerating back in the direction from which it came. 

9. A sphere with a v-vector sticking out of it.	 Discuss what you can infer about its future 
motion. 

10. A sphere has a v-vector sticking out of it.	 A second sphere has its own v-vector sticking 
out of it, pointing in the same direction as the first, but twice as long. Discuss what you 
can infer about the future motion of both spheres. 

11. A sphere has a v-vector sticking out it and pointing to the right.	 It also has an a-vector 
sticking out of it, and pointing up and to the left. Where will the sphere be a very short 
time in the future? Sketch its trajectory from this initial condition for many seconds into 
the future. 

12. What acceleration value did you need in Movie 1D.6, that allowed the ball to turn around? 
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13. In Movie 1D.e or 1D.f, what would happen if you accidentally put your guess for ax into 
the 2nd position of the a=< 0, 0, 0 > definition? 



Chapter 10 

Two dimensional motion 

10.1 Introduction and Goals 

The goal of this project is to demonstrate that you understand how an object moves in two 
dimensions (projectile motion). 

•	 In this lesson, you’ll change an object’s v-vector by applying an acceleration to an object 
in such a way that the a- and v-vectors do not point along the same axis (the way they 
did last week). 

•	 Demonstrate that you understand the interplay between x and vx, y and vy as they simul
taneously evolve in time for an object. 

•	 Show you understand that acceleration directed along an axis has no effect on the motion 
along an orthogonal axis. In terms of symbols, you must show that ax does not affect y 
or vy and ay does not affect x or vx. 

•	 Demonstrate understanding of two-dimensional vectors. 

•	 Demonstrate understanding of the acceleration vector for a projectile in flight. 

•	 Demonstrate understanding of the velocity vector of a projectile in flight, as well vx and 
vy and all instants during flight. 

•	 Demonstrate understanding of how a drag force will affect the motion of a projectile. 

10.2 The Physics 

The v-vector of an object will be changed by: Applying a downward, vertical accel
eration to the object. The goal of this week is to understand how objects move in fully two 
dimensions. Last week you concentrated on motion strictly along the x or y axis. Two dimen
sional motion is where an object undergoes motion along the x and y axes at the same time. The  
position of an object in two-dimensional space can be plotted by its (x, y) coordinate. These 
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coordinates are found by the equations x = x0 + v0xΔt + 1
2 axΔt2 and y = y0 + v0yΔt + 1

2 ayΔt2 . 
Note that also evolving as an object moves are its speeds along two axes as well, vx = v0x +axΔt 
and vy = v0y + ayΔt. Remember that the x and y coordinates are perpendicular to each other, 
that is the x and y axes are orthogonal. This is a special relationship in math and physics, and 
means that processes along one axis do not affect processes along the other axis. Therefore, 
whatever happens along the x axis does not affect what happens along the y axis, and vice-
versa. This is a key concept to understand this week. Two-dimensional motion is sometimes 
called “projectile motion” which encompasses objects flying through space under the influence of 
gravity. Baseballs, cannon balls, basketballs moving through space are all examples of projectile 
motion. The movies this week will show projectiles in flight, restricted to motion where ax = 0  
and ay = −g = −9.8 m/s2 . You can immediately find forms of the x = and  y = equations above, 
given these restrictions. An any given time, your object will have four quantities describing its 
motion: x, y, vx, and  vy. Since position and speed now each have two components (or parts), 
position and speed will be “vectors,” called pr and pv respectively. pr will consist of two compo
nents, the x and y coordinates of the object. Similarly, pv will consist of the components vx and 
vy. As you will now see, the two components of both pr and pv gives them both a magnitude 
(strength, length, etc.) and direction, which you must know how to handle. There are two ways 
of dealing with vectors, and you should be proficient with both. The first way is in “magnitude
angle form,” where you report the magnitude of the vector and the angle at which it is pointing. √ 
For the position, the magnitude (or total distance from the origin) is r = x2 + y2 . The angle 
this vector will make relative to the +x-axis is given  by  θ where θ = tan−1 |y| . The absolute |x|
value signs are important to remove any negative values that might pop up and ensure the angle J 
is with respect to the +x-axis. The velocity vector is tracked similarly, namely v = vx 

2 + vy 
2 

with α = tan−1 |vy | , where  α is the angle the velocity vector makes with respect to the +x-axis,|vx|
and is essentially the direction the object is moving in at that instant of time. Be sure you 
understand why a vector has a magnitude and an angle, and be sure you can always compute 
both from a given vector’s components. The other way of handling a vector is in “component 
form.” In this form, you list each component directly, next to a unit vector specifying what axis 
the component goes to. So if an object is 5 meters along the x-axis and 2 m along the y-axis 
then pr = 5̂i + 2ĵ, where  ̂i and ĵ are unit vectors meaning x-axis and y-axis, respectively. The 
other type of two-dimensional motion that is important is circular motion, which describes how 
an object moves in a circle. In this type of motion, the object is always has an acceleration 
that points toward the center of the circle around which it traveling. If you choose a circle of 
radius r and want the object to move around the circle with a speed v, then the strength of 
the acceleration, called the “centripetal acceleration” must be a = v

r 

2 
, and it must always point 

toward the center of the circle. Book reading: 4.2-4.3,4.5. 

10.3 Projects 

Learning outcomes: To understand how an object’s v-vector will be affected by an acceleration 
applied on an axis different than that of v’s. 

twod.a: Start with the code 2D.1 movie.pov which you can find online. This movie should 
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show a sphere starting near the right edge of the screen. After being launched with some 
speed v0 at some angle θ relative to the horizontal, it should fly across the screen to the 
left, much like a basketball, baseball or cannon ball would. Your Povray code should 
clearly show how the object is given a particular initial velocity (v0 and θ). That is your 
initial v0 should resemble v0 =< v0 cos θ, v0 sin θ, 0 >, after θ and the magnitude v0 have 
been declared. All told, these are the “launch conditions” for your particle. The projectile 
should also be given an initial position < x0, y0, 0 >. The movie should end right about 
the time your object hits the ground again, and it would be nice if your launch and landing 
positions were not at the same vertical level. Be sure trails are left, showing your object’s 
overall trajectory. Attach the following 4 vectors on your object: a, v, vx, and  vy. All  
told, your object should have four vectors sticking out of it as it flies. Put a “ground” in 
your movie using Povray’s plane statement as in plane {<0,1,0>,0 pigment {Green}}. 
Here the <0,1,0> is the vector normal to the plane and the lone 0 is how far up or down 
along the normal to move the plane. Since there’s a “1” in the y-position of the normal, 
the plane is normal to the y-axis. You can use the Movie1.1.pov code found online to start 
this project. 

twod.b: Start with code online called basketball.pov. If you render it you’ll see a basketball 
hoop and a ball. In Part 2 of the code, set v0 and θ so that the ball goes into the hoop 
with “nothing but net.” Feel free to adjust the camera position if the ball goes off of the 
screen, or to make the view more appealing. 

twodd.c: Start with your completed Movie twodim.a code. Suppose that when your movie is 
60% done, a strong horizontal wind develops that gives the ball an ax to the left of 15 m/s2 

and up of 3 m/s2 . You can put this into the movie by tapping into the xtime variable, 
which is the simulated time in your movie. In Part 5 of your skeleton code you can put 

#if (xtime > 0.6)
 
#declare a=..the acceleration with the wind included...;
 
#end
 

Note that the variable xtime is the simulated time of the movie. It always runs from 0 to 
1, so 0.6 is the 60% mark. The #if statement, covered in Section 5.5 is used to trigger 
the wind. Don’t forget about g throughout! 

twod.d: Imagine a ball sliding across a table with some horizontal speed (parallel to the table) 
< vx, 0, 0 >. As it slides, a =< 0, 0, 0 >. When it comes to the edge of the table, it gets 
launched off of the edge with the same < vx, 0, 0 >, but now a =< 0,−9.8, 0 >. Using the 
code movie2D.3.pov at http://goo.gl/zTtuQ to get you started, you’ll see that the ball 
starts on the table in the region where x > 0. It moves left toward x = 0, where the edge 
of the table exists. So if x > 0, a =< 0, 0, 0 > and if x ≤ 0 then  a =< 0,−9.8, 0 >. Using 
the #if statement (see Section 5.5) in Part 5 of your code, create a movie that shows 
the ball across the table, then leaving the edge of the table and flying through the air in 
projectile motion. Adjust the initial speed of your ball so that it flies through the hoop 
shown. Be sure ay, vx, vy, and  v vectors are rendered on the ball throughout. 

http://goo.gl/zTtuQ


72 CHAPTER 10. TWO DIMENSIONAL MOTION 

twod.e: Here is another form of two-dimensional motion. Choose a value for the radius of a 
circle, R. Place a ball at the starting position < R,  0, 0 > and choose an initial velocity 
for it, pv. Initially, place the entire magnitude of pv along the y-axis, as in pv0 =< 0, |v|, 0 >. 
This essentially starts an object at < R,  0, 0 > with an upward velocity. Now place 
an acceleration on the object that has a magnitude of a = v2/R, so  that  a is always 
perpendicular to v. How? At a particular instant in your movie (at the start of Part 5 
of the skeleton code), find the angle the v-vector is making with respect to the x-axis. 
You can do this using the arctangent idea described in Section 3.3.3, Section 3.3.4, and 
Chapter 6. Suppose this angle is called A. An angle that is always perpendicular to A is 
would be found by adding 90◦ or π/2 to  A as in A + π/2, or A+pi/2 in Povray. Now, you 
can find ax and ay using ax = a cos(A + pi/2) and ay = a sin(A + pi/2). Your ball should 
being moving in a perfect circle, and this is how circular motion works: when pa is always 
perpendicular to pv. Be  sure  pv and pa are drawn on the ball at all times. 

twod.f: If you added a plane to Movie 2D.1, did you wonder why the ball didn’t bounce off of 
the ground? This is an interesting aspect of making computer movies: limits of motion. 
To the computer, the ball and the ground are nothing but pixels, that it is happy to draw. 
There is no reason to expect that the computer will automatically handle something like 
a bounce. You have to program in such interactions yourself. One way is as follows. 

Would it seem reasonable that when an object collides with the ground, reversing the sign 
of vy should cause it to bounce. In other words, an object with a negative vy (downward 
moving ball) that encounters the ground at y = 0, should immediately be given a +vy, to  
send it back in the direction from which it came. This should cause it to bounce. This 
argument is an abrupt change in the ball’s velocity, and so should go into Part 8 of the 
skeleton code (see Figure 5.4). Reversing vy can be accomplished with a redefinition of 
the velocity variables as in 

#declare vel=<vel.x,-vel.y,0>; 

to reverse vy. You can add coefficients of restitution (see Wikipedia) to simulate imperfect 
bounces by adding a decimal in front of the component being reversed, like this: 

#declare vel=<vel.x,-0.7*vel.y,0>; 

Lastly, the #if statement (in Part of the skeleton code) that would check for a collision 
must see if the object is moving down (vy < 0) and if the object is in contact with, or even 
embedded into the ground pos.y <= 0, as in) 

#if (vel.y < 0 & pos.y <= 0)
 
...reverse vy
 
#end
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See Section 5.5.2 for more on handling such #if statements and nuances about using a 
strict equality in such conditions. 

twod.g: Start with the basic skeleton code. Set the camera at < −1, 5, −25 > and the light 
source at < 0, 10, −50 >. Start an object at < 0, 0, 0 >. Next launch it toward the 
camera, in projectile motion, so that it brushes right by the camera on the right, almost 
hitting the camera itself. The v-vector should appear to “poke you in the eye” as it passes. 
Pedagogical goal: motion that includes the z-axis. 

twod.h: Find code called balltower.pov at http://goo.gl/zTtuQ . You might have used it 
in a project from the previous chapter. If you render this code, it’ll show a ball going 
over  the edge of a tower.  The edge of the  tower is at  x = 0. Assign the proper free fall 
acceleration so that the ball actually falls when it’s over the edge of the tower. Adjust 
your camera/view so that we see a nice, long, dramatic fall “into nowhere.” 

twod.i: Take your code from twod.a, but instead of drawing a red sphere, draw a rocket using 
the statement draw rocket(pos,scale,theta) where pos is the position to draw the 
rocket, scale is a zoom factor (try 1), and theta is the orientation angle, in radians at 
which to draw the rocket. Your movie should show the rocket flying in projectile motion, 
with its nose always pointing in the direction that it is moving. Why? This movie is 
to test your understanding of how to find the angle a vector makes with 
the horizontal at any given moment. 

10.4 Wrap-up Questions 

1. A ball is launched in the vacuum of outer space with no planets or stars nearby at all, 
with some v0 at some θ0 relative to some axis you call the horizontal. List the acceleration 
or acceleration(s) acting on the ball as it flies and describe its trajectory. 

2. A ball is launched through the air, back here on earth with some v0 at some θ0 relative to 
the horizontal. List the acceleration or acceleration(s) acting on the ball as it flies. 

3. Draw the parabolic path a ball would take in a vacuum given that it was launched with 
some v0 at some θ0 relative to the horizontal. On the path (and all on the same figure), 
draw the ball and its a and v vectors when the ball is at: 

(a) It’s peak (highest) point. 

(b) At a position midway between its launch point and the peak point. 

(c) At a position midway between the peak point and it’s landing point. 

4. A ball is launched straight up with v = 10 m/s from y = 0 (the ground). Compute how 
long it takes the ball to reach the ground again. Another ball is launched with vx = 10  
m/s and vy = 10 m/s from y = 0. How long does it take this ball to reach the ground? 
Compare/contrasts/discuss the two answers. 

http://goo.gl/zTtuQ
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5. What are your thoughts on how air resistance works? 

6. Watch your movie from last week about the object that is launched straight upward. Pay 
attention to the vy vector. Now watch your movie 2.1 again, paying attention to the vy 

vector. Compare and contrast the two vy vectors. Discuss. 

7. Describe the behavior of vy as the projectile flies through the air. 

8. Describe the behavior of vx as the projectile flies through the air. 

9. Discuss: An object’s v-vector will continually change its orientation until it points along 
the same direction as the a-vector. 

10. Discuss the last question as it might pertain to circular motion where a ⊥ v. 

11. In project	 twodim.b, the ball started 25 horizontal meters away from a hoop 8 meters 
high. What v0 and θ did you find in your animation made the ball go through the hoop? 
Rework with problem with pencil and paper (like a textbook problem) and see if you get 
the same result. 



Chapter 11 

Forces and Newton’s Laws (Part I) 

11.1 Introduction and Goals 

The goal of this project is to demonstrate that you understand how the superposition of forces 
on an object directs its ultimate motion. 

•	 In this lesson, we’ll change an object’s v-vector by applying one or more forces to an object. 
That is, we’re going to use forces to change v-vectors. 

•	 Demonstrate that you understand what Σ Fp means. 

•	 Demonstrate that you understand the meaning of Fnet or “net force” on an object. 

•	 Demonstrate that in order to use Σ Fp you must actually use ΣFx and ΣFy. 

•	 Demonstrate that you know how to find an object’s pa from its Σ Fp , and  that  ax ↔ Fx and 
ay ↔ Fy. 

•	 Demonstrate that you understand how to sum two-dimensional forces applied to an object. 

•	 Demonstrate that you know how the net force on an object can be used to find the object’s 
acceleration. 

•	 Demonstrate that you know how forces can be used to change an object’s v-vector. 

11.2 The Physics 

The v-vector of an object will be changed by: Applying a force or a net-force on 
an object. The goal of this week to use Newton’s Laws to see that accelerations actually come 
from forces applied to an object. In the past two weeks, a was simple a “given” quantity. It 
simply existed in the equations of motion and you were allowed to give it any value. This week 
we will see that accelerations come from forces. Forces are pushes or pulls on objects that you 
witness everyday (push a door to open it, pull on your book to lift it, push a cell phone button 
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to click it). With the exception of gravity, forces are always “contact forces” meaning a force 
must actually touch an object to exert its influence on it. Forces also require an agent, meaning 
that you should always be able to identify what (the agent) is producing the force. Forces are 
also vectors, meaning their strength (push or pull) can be in any direction. You probably know 
that Newton’s Law says F = ma, but this is a horrible equation to ever try and use in a physics 

F ΣF course. a = 
m is better, but still isn’t quite right. It is more correct to say that a = 

m , which 

still isn’t fully correct. The best version is pa = Σ
m
F , stressing the vector property of forces. Be 

sure you fully understand what this last version means and how to use it. pa is the acceleration, 
m is the object’s mass and Σ Fp is the sum of all forces acting on the object. Mass is the amount 
of “stuff” an object is made from and never changes unless portions of the object are somehow 
broken off. We will only be concerned with five forces: weight, tension, normal, friction, and 
drag. Weight is w = mg, where  m is an object’s mass and g is the earth’s acceleration of gravity 
of 9.8 m/s2 . Do not confuse mass and weight; they are not the same thing and be sure you 
know the difference between them. Mass is also known as object’s inertia, or resistance to want 
to change its current state of motion. It would hurt if you placed a bowling ball on the floor 
in front of you and kicked it as hard as you can. Would it also hurt to kick the bowling ball 
in the middle of outer space where g = 0? Tension is the tug an object feels when pulled by a 
rope attached to it. Normal is the force an object feels when it is sitting on a surface, is always 
perpendicular to the surface, and is not always equal to mg. Friction is a force that always 
opposes all motion; it always acts in a direction exactly opposite to that in which an object is 
moving (or trying to move), and typically comes when the object rubs or drags against another 
object as it moves. It is defined as fp = μNp where μ is the coefficient of friction (p. 150 in your 

pbook), and N is the normal force acting on the object. Drag is like friction in that it always 
acts in a direction opposite to that in which an object is moving, but comes from air or water, 
through which an object might be moving. Drag, D = Cv2, where  C depends on the shape and 
size of the object, and v is the object’s speed. Air resistance is a type of drag force. The crux 
of this entire week is the part, Σ Fp , because it requires three hard steps. The first, which most 
students have great difficult with, is to identify all forces acting on an object. The second is 
to correctly draw these forces, each pointing in the proper direction, as they act on the object 
(even more difficult for most students). The third is to realize that Σ Fp which is only useable 
when you break it up into component form, or ΣFx and ΣFy. Your working equations for this 
week are then ax = ΣFx/m and ay = ΣFy/m. The connection points with weeks 1 and 2 then 
are that these accelerations, which come from forces, are the same a’s that go into the equations 
of motion for x and y. Thus,  x = x0 + v0Δt + ΣFxΔt2/(2m) and  vx = v0x + ΣFxΔt/m. Be  
sure these make sense to you and do not causally read over the ΣFx and ΣFy. Know what they 
mean: Using Newton’s law really means that all forces acting on an object need to be broken 
up into their x and y components, properly signed (+ or −), then added together along a given 
axis. Book reading: 5.1, 5.2, 5.3, 5.7, 6.2, 6.3, 6.6. 

http:�Fx�t/m.Be
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11.3 Projects 

(Note: NL in the movie names stands for “Newton’s Laws.” The “I” stand for “one” as in “Part 
1.” Next week will be part 2.) 

NLI.a: Have a box start near the left edge of your screen. Give it an initial vx that is > 0 (that 
sends it rightward). Next, apply two x-forces to the box so that the forces cancel each 
other. The movie should show the subsequent motion. Be sure to draw a trail behind the 
box, both force vectors, the net force vector, and the v-vector. Part 5 of your code should 
show explicit definitions of forces, F1 and F2. Part 5 should end with a line like #declare 
a=(F1+F2)/m. 

NLI.b: Same as MovieNLI.a, but make the leftward force larger than the rightward force. 

NLI.c: Same as MovieNLI.b, but make the rightward force larger than the leftward force. 

NLI.d: Have a box start near the top edge of your screen. Give it an initial vy that is < 0 (that 
sends it downward). Next, apply two y-forces to the box so that the forces cancel each 
other. The movie should show the subsequent motion. Be sure to draw a trail behind the 
box, both force vectors, the net force vector, and the v-vector. Part 5 of your code should 
show explicit definitions of forces, F1 and F2. Part 5 should end with a line like #declare 
a=(F1+F2)/m. Why do this? To test your understanding of how a net force 
of zero changes an object’s velocity. 

NLI.e: Same as MovieNLI.d, but make the upward force larger than the downward force. Why 
do this? To test your understanding of how a non-zero net force changes 
an object’s velocity. 

NLI.f: Same as MovieNLI.d, but make the downward force larger than the upward force. Why 
do this? To test your understanding of how a non-zero net force changes 
an object’s velocity. 

NLI.g: The Force-Maze. Look online and get the code called forcemaze.pov. Set your final 
frames equal to some big number like 200 or so. If you render this movie outright, you will 
see a red sphere at the entrance to a maze. For this movie, start by sending the sphere up 
into the maze. You can change the mass to whatever you want (in the #declare m=... 
statement. The golden bars are a maze. Your job here is to apply forces to the sphere that 
will steer it through the maze, so that comes out through the exit opening to the right 
of where it started. The sphere may not touch the golden bars making the maze. 
You will do this by applying a succession of forces in Part 5 of the code, that are based 
on the system time variables xtime, as discussed in class. The #if statements you supply 
must only define a force vector, in the form #declare F=<Fx,Fy,0>;. Part 5 of your code 
should end with a = F/m. Draw the force and velocity vectors on the sphere at all times. 
You will likely complete this work by rendering your move over and over again, keeping 
watch on the time variable rendered in the lower left corner of the screen, grabbing this 
number and using it in successive #if statement in Part 5. Good luck. 
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NLI.h: The Force-Well. Look online at http://goo.gl/zTtuQ and get the code called forcewell.pov. 
Set your final frames equal to some big number like 200 or so. If you render this movie 
outright, you will see a red sphere moving into the entrance to a path that leads down into 
a well. A green bar is at the bottom of the well. You can change the mass to whatever 
you want (in the #declare m=... statement in Part 2 of your code. The golden bars are 
walls. Your job here is to apply forces to the sphere that will steer it through the walls, 
down to the bottom of the well. The sphere must just barely touch the green bar, then 
return to leave, back out of the path again. We must see the red sphere pass leftward 
through the yellow star as the movie ends. The sphere may not touch the golden bars 
making the maze, and must just barely touch the green bar at the bottom 
of the well before during around again. You will do this by applying a succession 
of forces in Part 5 of the code, that are based on the system time variables xtime, as  
discussed in class. The #if statements you supply must only define a force vector, in the 
form #declare F=<Fx,Fy,0>;. Part 5 of your code should end with a = F/m. Draw the 
force and velocity vectors on the sphere at all times. You will likely complete this work 
by rendering your move over and over again, keeping watch on the time variable rendered 
in the upper left corner of the screen, grabbing this number and using it in successive #if 
statement in Part 5. Good luck. Why do this? To test your understanding of 
how a 2D force can change a 2D velocity; this is a force→ Δv study. 

NLI.i: Lunar Lander. Look online at http://goo.gl/zTtuQ and get the code called lander.pov. 
Set your final frames equal to some big number like 200 or so. If you render this movie 
outright, you will see lunar lander (rocket) falling toward the surface of a strange planet. 
A green landing pad is at the bottom of a valley. You have to apply thrusts (i.e. forces) 
on your rocket to guide it to a soft (|v| < 1 m/s) landing on the landing pad, without 
the lander touching the mountains at all. You can change the mass to whatever you want 
(in the #declare m=... statement in Part 2 of your code. You can apply a succession 
of thrusts in Part 5 of the code, that are based on the system time variables xtime, as  
discussed in class. The #if statements you supply must only define a force vector, in 
the form #declare F=<Fx,Fy,0>;. Hint: for quick rendering while you are working on 
your thrusts, comment out the mountains by putting // (two slashes) in front of the cone 
statements found in Part 10 of the code. Draw the force and velocity vectors on the sphere 
at all times. Be sure the rocket is always oriented in the direction of the F-vector (use 
atan2 etc. for this), so it looks like the rocket is going in the direction of the thrust (but be 
sure F is never complete zero or atan2 will fail). It must land upright as well (do not send 
it into a nose-dive into the landing pad). You will likely complete this work by rendering 
your move over and over again, keeping watch on the time variable rendered in the upper 
left corner of the screen, grabbing this number and using it in successive #if statement 
in Part 5. Happy landing! Why do this? To test your understanding of how 
a superposition of forces in 2D can change a velocity, also in 2D. The 
superposition here is the addition of the (persistent) weight (downward) 
and the thrust of your choosing. 

NLI.j: The rocket. Get the code called rocket.pov at http://goo.gl/zTtuQ . If you render 

http://goo.gl/zTtuQ
http://goo.gl/zTtuQ
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it outright, a small rocket will be at the bottom and just sort of sit there. Go into the 
code now, and in Part 2, give it a mass of 10 kg. Next, in Part 5 of the code, give it a net 
downward force that is equal to its weight. The last line of Part 5 should be a declaration 
that a = F/m. Render the movie now and the rocket should fall downward under its own 
weight. Next, go back to Part 5 and under the line where you assigned it a force of its 
weight, start an #if statement that checks if the y-coordinate of the rocket (pos.y) is less 
than −20. (This line will mean if the rocket is between it starting position of −25 and 
−20, then give it an upward thrust. If so, in addition to its weight, give the rocket an 
upward thrust of 600N. Set your final frames to some big number, like 200 and render the 
movie. Draw F and v vectors on the rocket at all times. 

NLI.k: Inertia. Start an object with m = 1 at an initial position of < 0, −10, 0 > with an initial 
velocity of < 0, 10, 0 >. If the the y-coordinate of the object (i.e. pos.y) becomes greater 
than 0, apply a force of Fp =< 10, 10, 0 >. Part 2 of your code should end with a = F/m. 
Render the movie with F and v-vectors on the object at all times. Why do this? To 
test the statement: “Inertia is a measure of the amount of time that must 
pass before an object exhibits some desired response to a force.” 

NLI.L: Inertia. Repeat NLI.k only with m = 10. 

NLI.m: Start an object at position < 0, 0, 0 > and moving toward the right. Apply the 
following force on it at the beginning of Part 5 of your code. 

 −5 if  x ≥ 5 
F (x) = 	 (11.1)

5  if  x ≤ −5 

Be sure Part 5 ends with a statement like #declare a=F/m. Render many frames of this 
movie so you can fully understand what the force does to the speed of the object. 

NLI.n: Drag. Launch a projectile above the ground at some angle θ with some velocity pv as 
you did in the last chapter. Next, apply a drag force to the object of the form D = cv2 , 
where c = 0.1, and v is the magnitude of the velocity at any instant. The drag force should 
always be exactly anti-parallel with respect to pv, or at 180◦ with respect to v. So  in  Part  
5 of the skeleton code, these steps should help in applying the drag force: 

1. Compute the magnitude of pv. Finding the magnitude of a vector is covered in Chap
ter 6 and Section 3.3.4. 

2. Compute the magnitude of the drag force using D = cv2 or D = 0.1v2, where  v2 is 
the square of the magnitude of the velocity. 

3. Compute the angle the v vector makes with respect to the xy-axis. You can do this 
using the arctangent idea described in Section 3.3.3, Section 3.3.4, and Chapter 6. 

4. Find the components of the drag force as follows.	 Suppose this angle the v-vector 
makes is called A. An angle that is always antiparallel to A is would be found by 
adding 180◦ or π to A as in A + π, or  A+pi in Povray. Now, you can find Dx and Dy 

using Dx = D cos(A + pi) and  Dy = D sin(A + pi). 
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5. Use your newly found drag force to define the net force on the object as Part 5 of 
your skeleton code comes to a close. 

NLI.o Start an object in the lower left corner of your screen. Put a speed of vx = 5 on it. After 
some time has gone by, in Part 5 of the code, apply a force on it in any direction you like. 
Here is an example. 

#if (xtime > 0.2)
 
#declare F=<1,1,1>;
 
#end
 

After some more time has gone by, apply a different force (by adding more #if statements 
like the one above, after the one above). Keep doing this until you apply a total of 5 
difference forces on the object, all at different times. Apply the forces so that you keep 
the object on the screen for as long as possible. 

NLI.p: Start an object at position < 0, 0, 0 > and moving upward. Apply the following force 
on it at the beginning of Part 5 of your code. 

⎧	 ⎫ ⎪	 < 0, −5, 0 > if y ≥ 5 ⎪ ⎨	 ⎬ 
pF	 = < 0, 5, 0 > if y ≤ −5 (11.2) ⎪	 ⎪ ⎩	 ⎭< 0, 0, 0 > otherwise 

Be sure Part 5 ends with a statement like #declare a=F/m. Render many frames of this 
movie so you can fully understand what the force does to the speed of the object. Be sure 
F and v-vectors appear on the object at all times. 

11.4 Wrap-up Questions 

1. Suppose an object (at rest) has an	 Fnet vector pointing up and to the left. Sketch the 
object’s subsequent motion as time ticks onward. 

2. Suppose an object has an	 Fnet vector pointing up and to the left, and it has an initial 
velocity which is directly rightward. Sketch the object’s subsequent motion as time ticks 
onward. 

3. Discuss: As time ticks forward, the v vector always orients to align with the Fnet vector. 

4. Suppose v is aligned with the Fnet vector. What does the v vector do now? 

5. Same question as above, but for Fnet antiparallel to v. 

6. Suppose an object has a v vector on it pointing to the right. The Fnet vector on it is zero. 
What does the v vector do now? 
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7. An object has a v-vector on it pointing toward the right. There are 113 forces on it, and 
after a bunch of work you notice that ΣFx = 0  and  ΣFy = 0. What does the v vector do 
now? 

8. Discuss: accelerations come from forces. 

9. In NLI.a (or d), how did the v-vector change when two forces are applied to an object that 
cancel each other? 

10. In NLI.j, describe how the	 v-vector changes when the rocket is subjected to its weight, 
and then its weight + the thrust. 

11. In NLI.p, the rocket should oscillate up and down. Why does it do this? 

12. Compare and contrast the motion you see in movies NLI.k and NLI.L in the context of a 
concept called “inertia.” 

13. One of Newton’s Laws says “An object at rest stays at rest unless acted on by an external 
force.” Discuss this statement in light of NLI.a or NLI.d. 

14. What would happen in NLI.g (or NLI.h) if you doubled the mass of your object? Why? 

15. Summarize how a force can change a velocity vector. 



Chapter 12 

Forces and Newton’s Laws (Part II) 

12.1 Introduction and Goals 

The goal of this project is to demonstrate that you understand how forces, tied to an identifiable 
agent, direct an object’s motion. 

•	 This week, we’ll change an object’s v-vector by allowing forces with a clearly identifiable 
agent to act on an object. These forces will change v-vectors. 

•	 Demonstrate you understand the force a spring imparts to an object including the “equi
librium position.” 

•	 Demonstrate that you understand how a pulley and rope can be used to link the motion 
of two otherwise independent objects. 

•	 Demonstrate that you can simulate the motion of simple mechanical systems (i.e. ma
chines) driven by Newton’s Laws. 

•	 Demonstrate that you understand the forces experienced by an object on a sloped surface. 

12.2 The Physics 

The v-vector of an object will be changed by: Identifying the net-force on an object, 
that is likely linked to another object. Objects connected by ropes and pulleys. 
Ropes in freshman physics are always massless and these rules apply. 1) Ropes always pull away 
from their points of contact. That is, tensions in ropes are always drawn pointing away from 
the point where an the rope connects to an object, along the rope itself. 2) You cannot push 
on a rope. Ropes may only be pulled on. 3) Objects connected by ropes will always have the 
same magnitude of v (velocity) and a (acceleration), although the algebraic signs of v and a 
might be different for each object. 4) The tension in a rope connecting two objects is the same 
throughout the rope. 5) Tensions on opposite ends of a rope must have opposite algebraic signs 
for use in any equations. That is, the tensions on either ends of a rope that are pulling on their 
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respective objects, always point toward each other, along the rope. This is the only way in 
which both ends can pull on the objects to which they are connected. 6) If a rope passes over 
a massless pulley, the magnitude of its tension will not change. A massless pulley just changes 
the direction of the rope, hence tension. That is tension on one side of a pulley will be the 
same on the other side, save for the opposite algebraic signs required. 7) If a rope passes over 
a real pulley (with a defined mass and radius), then the tension on one side of the pulley does 
not in general equal to the tension on the other side of the pulley, and you should not assume 
it is. The opposite sign rule applies to the different tensions. Objects on sloped surfaces. 
If an object is on a surface sloped at an angle θ, there will be a downward “sliding force” on 
the object of magnitude mg sin θ, in a direction pointing down and parallel to the slope. This 
sliding force is what causes objects on sloped surface to want to slide or roll downhill. Gravity 
g is the originator of this force. Objects that interact with springs. Suppose a spring has a 
free end and a fixed end. The free end can “spring along” the direction of the spring itself, and 
the fixed end cannot move at all. Suppose also when nothing is touching the spring (when the 
spring is in equilibrium), the free end is physically located at position s0. When the free end of 
the spring is displaced to a position s, the force the spring exerts on an object connected to its 
free end is F = −k(s − s0). This is Hooke’s Law. The minus sign indicates that the spring force 
always opposes the direction of s relative to s0, and  k is the “spring constant” or the stiffness of 
the spring (the larger k the stiffer the spring). Weight. When an object that has a mass m is in 
a gravitational field, it will have a force on it called weight, which is W = mg. This force always 
points straight down, no matter what other orientation or situation the with which the object 
might be involved. Normal force. When an object with weight W is placed on a surface, it 
disrupts the equilibrium position of the molecular structure forming the surface on which the 
object is placed. The desire of these molecules to want to return to equilibrium causes them 
to push back on the object with a force called the normal force. The normal force is always 
perpendicular to the surface on which the object is sitting. It is tempting to call the magnitude 
of the normal force mg, or the weight of the object, but this only true when the object is sitting 
on a flat surface. In other situations, the magnitude of the normal force can only be found by 
summing forces perpendicular to the surface and setting the sum equal to zero, then solving for 
N . Friction. Kinetic friction is a force that is always oriented exactly opposite to an object’s v 
and has a magnitude of f = μN , where  μ is the coefficient of kinetic friction and N is the normal 
force on the object, due to the surface on which it sits. Centripetal force. If a situation arises 
where a force F is locked at 90◦ with respect to an object’s v-vector, then the force is called 
a centripetal force. The force will cause the object to move in a circle of radius R if the force 
magnitude is mv2/R, where  m is the mass of the object. Book reading: 7.4, 7.5. 

12.3 Projects 

NLII.a. Friction: Show how a block is slowed by friction.] Start with the skeleton code online 
and put these lines into Part 10 of your code (after the last #end statement). 

box { <10,-1,-10>,<30,-2,10> pigment {Green}}
 
box { <10,-1,-10>,<-10,-2,10> texture{Brown_Agate}}
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box { <-10,-1,10>,<-30,-2,-10> pigment {Green}} 

This will draw two frictionless green surfaces around a central rough friction surface. Next, 
give a box, starting at x0 =< 30, 0, 0 >, some initial v0 =< −vx, 0, 0 > toward the right. 
Start this movie with the skeleton code found online. You can find help drawing boxes in 
Section 4.3. 

Your block must move from right to left in this movie. The ground from 10 ≤ x ≤ 30 is 
frictionless. From −10 ≤ x ≤ 10 it has friction with coefficient μ. In Part 2 of your code, 
declare values for m, g, and  μ. Your block should slide appropriately across the frictionless 
surface. When it hits the friction, compute and apply the proper frictional force to the 
block. You can complete this work by declaring needed variables in Part 2, placing proper 
#if-#end statements in Part 5 to apply the proper forces based on pos.x, then drawing 
the object at pos in Part 10. Render both v and the given F on the block at all times. 

NLII.b Friction: Start with the code frict01.pov at http://goo.gl/zTtuQ . If you render 
the code, a block will be shown moving from left to right. There middle section is rough 
(with friction) and the outer regions are smooth with no friction. You job is to apply 
friction on the block when it passes over the rough patch. Choose your block’s vx and μ 
so that the block goes over the right edge of the surface, enters free fall, and goes through 
the hoop. See Figure 12.1 for the spatial outlay of the objects in this scene. You’ll need 
to use an #if statement to assign the friction force and to test for freefall. Draw F and v 
vectors on the block at all times. 

Figure 12.1: Spatial outlay of objectsfor NLII.b 

NLII.c Friction: Start with the code frict spring.pov at http://goo.gl/zTtuQ . If you  
render it, a block is heading left toward a brick wall. There is a patch of friction in the 
scene too. Insert a spring (with proper spring physics) between the block and the brick 
wall, so that the spring will send the block back toward the right, over the friction, then 
over the edge of the platform. Adjust μ (of friction), k (of the spring), and v0x of the block 
so that the block eventually goes through the hoop, after it falls over the right edge of 
the platform. The spring should have its fixed end attached to the brick wall. The spatial 
outlay is the same as that shown in Figure 12.1. The brick wall starts at x = −5 and  
extends toward the left. Draw F and v vectors on the block at all times. 

NLII.d Friction: Start with the code frict hang.pov at http://goo.gl/zTtuQ . If you  ren
der it, it’ll show two blocks, a table, some friction, and a pulley. Your job is to connect 

http://goo.gl/zTtuQ
http://goo.gl/zTtuQ
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the blocks with a rope, and make the hanging block more massive than the block on the 
table. When run, we should see the hanging block move down, and pull the block on the 
table over the patch of friction. The spatial outlay of the objects in the scene is shown in 
Figure 12.2. Draw F and v vectors on the block at all times. 

Figure 12.2: Spatial outlay of objectsfor NLII.d 

NLII.e. Friction: This movie is to have you show how a block is slowed by friction. Start 
with the skeleton code (online) called friction.pov which has these lines into Part 10 of 
it (after the last #end statement). 

box { <15,-1,-5>,<30,-2,5> pigment {Green}}
 
box { <15,-1,-5>,<5,-2,5> texture{Chrome_Metal}}
 
box { <5,-1,5>,<-5,-2,-5> pigment {Green}}
 
box { <-5,-1,-5>,<-10,-2,5> texture{Cherry_Wood}}
 
box { <-10,-1,5>,<-15,-2,-5> pigment {Green}}
 
cylinder { <-22,-5,0>,<-22,-5.3,0>,3 open pigment {Yellow}}
 

These lines will draw frictionless green surfaces with a section of metal between 5 ≤ x ≤ 15 
and a section of wood between −10 ≤ x ≤ −5. The leftmost edge is at x = −15. Start a 
box at x0 =< 25, 0, 0 >, some initial v0 =< −vx, 0, 0 > toward the right. Color the box 
with a pigment of Pine Wood to make the box look wooden. You can find help drawing 
boxes in Section 4.3. 

Your block must move from right to left in this movie. The metal has a coefficient of 
friction μm and the wood μw. Since the block is wood, find values for the two μ " s and 
declare them in Part 2 of your code. Also in Part 2, declare values for m and g. Your  
block should slide across the entire surface from right to left. When it hits either friction 
patch, compute and apply the proper frictional forces to the block. You can complete this 
work by declaring needed variables in Part 2, placing proper #if-#end statements in Part 
5 to apply the proper forces based on pos.x, then drawing the object at pos in Part 10. 
Render both v and the given F on the block at all times. Choose all values so the box 
falls through the yellow hoop just off of the left edge. 
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NLII.f. Spring launcher: Start with the code online called spring launch.pov. Render it 
and you’ll see a box sliding toward a spring on a table. Program in both the spring force 
and the free fall force so that the box will hit the spring, recoil off of it slide off the edge 
of the table. #if-#end statements in Part 2 will handle the whole thing. Draw F and v 
vectors on the box at all times. 

Your code should explicitly define k for the spring, the equilibrium position of spring, and 
the position of the “active” edge of the spring (the edge of the spring that will touch the 
box). For the spring to work properly on the computer, you must use a dt = 0.01. If 
your step size is larger, the speed at which the block leaves the spring will be larger than 
the speed at which it initially impacted the spring, which is not correct here. With this 
small dt, you will need to render several hundred frames to see the full motion. Be sure 
to stitch this movie together at no less than 30 frames per second. As you watch your 
finished movie, try to understand how a spring, and its Hooke’s Law force, changes an 
object’s v-vector. 

You can find help with springs in Chapter 6. Drawing your spring (in Part 10) should 
resemble draw hspring(-20,x s,0,1,0.3), where  −20 is the fixed end of the spring, way 
off to the left. If you so desire you can draw a nice “spring plunger” by also drawing a 
thin horizontal block on the free end of the spring. 

NLII.g. Vertical spring: Draw a vertical spring between y = −10 and y = 0,  at  x = 0.  See  
draw vspring in Chapter 8 for help drawing springs. From a position of < 0, 10, 0 > allow 
a red ball to fall onto the spring. Program just the weight on the ball if y >  0 and  the  
weight + the spring force if y <= 0. The ball should fall into the spring, compress the 
spring to some stopping point, then be relaunched upward by the spring. Work carefully 
and you’ll see that as complicated as this sounds, it’s really just a matter of adding two 
#if statements setting up your forces in Part 5. Draw F and v vectors on the box at all 
times. 

Your code should explicitly define k for the spring, the equilibrium position of spring, and 
the position of the “active” edge of the spring (the edge of the spring that will touch the 
box). For the spring to work properly on the computer, you must use a dt = 0.01. If 
your step size is larger, the speed at which the block leaves the spring will be larger than 
the speed at which it initially impacted the spring, which is not correct here. With this 
small dt, you will need to render several hundred frames to see the full motion. Be sure 
to stitch this movie together at no less than 30 frames per second. As you watch your 
finished movie, try to understand how a spring, and its Hooke’s Law force, changes an 
object’s v-vector. 

You can find help with springs in Chapter ??. Drawing your spring (in Part 10) should 
resemble draw vspring(0,-10,y s,0,1,0.3), where  −10 is the fixed end of the spring 
and ys is the free end of the spring. If you so desire you can draw a nice “spring plunger” 
by also drawing a thin horizontal block on the free end of the spring. 

NLII.h. The Atwood Machine: Start with the skeleton code. An Atwood Machine can be 
drawn as shown in Figure 12.3. 
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Figure 12.3: A guide in helping you to draw at Atwood machine using Povray. 

It consists of a cylinder as a pulley and two ropes extending from the edges of the pulley 
down to the active position of each object. The pulley and ropes are important parts of 
this movie. In Part 10, draw the Atwood using a cylinder as the pulley as in cylinder{< 
0, 3, 1 >, < 0, 3, −1 >, 1 pigment{Gray}}. You’ll have to declare an m1 and m2 in Part 2. 
This movie is also a bit different because two objects will be moving around, instead of the 
usual single object. So instead of just a pos and vel, in Part 2, you’ll need a left pos, 
left vel, right pos and right vel to set and track the positions and speeds of both 
blocks. You’ll need to fix Part 6 to have the two physics equations for both objects. Ropes 
can be drawn as described in Chapter 8 with the draw real rope statement. 

Make the left block more massive than the right block and initially have the right block 
moving down and the left block moving up. Run your movie so that we can see the blocks 
move, stop and reverse direction. Be sure the size of the hanging objects are indicative of 
their relative masses. That is, if the left object has more mass than the right block, make 
the left appear larger. The acceleration of this system will be derived in class. Render 
the v and F vectors on both blocks at all times. See the sketch under the help section for 
this project (online), which suggests how your Atwood might be oriented. For this movie, 
the blocks will have constant x-coordinates throughout their motion. Their y-coordinates 
will be calculated using the physics equations. With this movie, try to understand how the 
blocks, coupled by the rope, change each others’ v-vectors. 

NLII.i: The “arctan” hill. This project is meant to “test your belief” that accelerations are 
what drive motion. This movie will allow you to observe the nature of the normal force 
exerted by a surface by showing you an object moving along a sloped surface. Start with the 
code online called “arctan.pov.” A good sloped surface is the function y(x) = 1−arctan(x), 
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as shown in class, which makes a nice flat ground, a gentle upward slope, followed by a 
flat plateau. In this movie, start a sphere on the right (flat) portion of the function and 
send it toward the  right with some  v =< −vx, 0, 0 >. Animate the subsequent motion of 
the sphere as it moves. Choose the initial vx to the left so that your object doesn’t quite 
make it all the way up the sloped portion, and that it’ll stop on the slope and slide back 
down. Render the v, a and N vectors on the sphere at all times. The components of the 
Normal force (needed to draw the N-vector) can be found from N = m < ax, ay + g, 0 >. 
Notes: 

•	 For y(x) = 1  − arctan(x), find y " and y "" (this will be your answer to question #1 
below). 

•	 Start with some vx that you choose. From this, you can find ax and ay from 

−y " (y "" v2 + g) 
ax = x ,	 (12.1)

1 +  y "2 

and 

""	 2 " ay = y vx + y ax.	 (12.2) 

•	 With your ax and ay, you can now compute your net acceleration vector at the end 
of Part 5, for feeding into Part 6 from a =< ax, ay, 0 >. 

•	 You’ll probably have to render a lot of frames for this, something like 200 or so. Stitch 
your movie together at a nice fast frame rate, like 25 frames per second. We don’t 
want to watch and grade a movie that takes 2 minutes to run! 

•	 Organize your variables. Declare two variables called yp and ypp to set what 
y " "" and y are at that instant, that you can later use in subsequent calculations. 

•	 When your movie is done, just watch it. I hope you can appreciate two things. First, 
watch how the a vector “struggles” to keep v moving along the track. Second, watch 
where N gets big and small; can you think of why it behaves like it does? There is 
much more to N that “is is a force perpendicular to the surface, etc.” 

With this movie, try to see how the normal force exerted by a surface is an ultra 
dynamic process resulting in variable length N-vectors that are always perpendicular 
to the surface. Also try to see how the slope of a surface changes an object’s v-vector. 

NLII.j: Do you believe that “a” drives motion? This project is meant to “test your be
lief” that accelerations are what drive motion. This movie will allow you to observe the 
nature of the normal force exerted by a surface by showing you an object moving along a 
sloped surface. Start with the code online called poly start.pov. This will draw a sphere 
at the center bottom of a parabolic track. In this movie, start the sphere going left or right 
some v =< vx0, 0, 0 >. Animate the subsequent motion of the sphere as it moves. The dt 
in your movie must be small, like around 0.01. Don’t make vx0 much bigger than 5 or so. 
Render the v, a and N vectors on the sphere at all times. The components of the Normal 
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force (needed to draw the N-vector) can be found from N = m < ax, ay + g, 0 >. Notes: 
For y(x) =  Ax2, start by finding y " and y "" . Read the bullet notes under the previous 
problem for more hints. 

12.4 Wrap-up Questions 

1. For the y(x) = 1  − arctan(x) hill, or y = Ax2 (whichever you did) find y " (x) and  y "" (x). 

2. What happens to a of an Atwood machine if one of the masses is cut off? 

3. Fully describe your observation of the spring force while the block is in contact with the 
spring, from first contact to final release. 

4. How does friction change an object’s v-vector? 

5. How does a spring change on object’s v-vector? 

6. How does “the other mass” change a given mass’s v-vector in the Atwood machine? 

7. How does the slope of a surface change on object’s v-vector? 

8. Draw a wildly curved surface. Draw several points along the surface and draw the normal 
force that would be exerted by the surface on an object at that point. Careful with the 
magnitude of your normal vectors noting that |N | ∼ cos θ, where  θ is the inclination angle 
of the surface. 

9. Sketch the 1 − arctan(x) hill or the y = Ax2 track (whichever you did). Where is N 
the largest and under what circumstances? Smallest? If this were a roller coaster, what 
portions of the track would you need to build to be very strong? 

10. Fill out the study grid found in the ”out of class work” document for the 7 days extending 
from 1/25-1/31. How many hours did you put in for this course, and how does it compare 
with what the 25/35 program recommends? 



Chapter 13 

Energy: Work, Kinetic, Potential, and 
Conservation 

13.1 Introduction and Goals 

The goal of this project is to demonstrate that you understand kinetic energy, potential energy, 
work and the conservation of energy. 

•	 You’ll change an object’s v-vector by allowing kinetic energy to flow into or out of an 
object. 

•	 Demonstrate that you understand how to compute and use KE and PE  using the kine
matic variables x, y and v. 

•	 Demonstrate that you understand that KE + PE  = a  constant.  

•	 Show how “energy bar charts” can be used to illustrate the instantaneous energy distri
bution of an object. 

•	 To see how the instantaneous energy distribution of an object depends on its speed and 
position. 

13.2 The Physics 

The v-vector of an object will be changed by: Adding or removing kinetic energy 
from an object. No one know what energy is, but it can be compared to money and time (you 
can lose, gain, save, waste, or spend them, etc.), and we all “know” what energy, money, and 
time are until someone asks us to tell them what they are! We’ll focus on two types of energy, 
Kinetic energy (KE) and Potential energy (PE), a way of “processing” energy, called “work,” 
(W) and a guiding principle, called “conservation of energy.” The units of energy (KE, PE, and 
W) are in Joules, or J . KE is energy something (of mass m) has because it it moving with some 
speed v, or  KE = 1

2 mv2 . If an object is moving it has KE;  if it is at rest,  it doesn’t.  PE is stored  
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energy that has not been released yet to do something. Our society is usually concerned with 
chemical or nuclear PE (oil/gasoline, natural gas, nuclear power plants), but in this class we’ll 
only concern ourselves with mechanical PE, and further, only three types of it. Gravitational 
PE, or Ug = mgh, spring PE, or Usp = 1 

2
k(x− xn)

2, and pendulum PE, Upend = mg(1 − cos θ). 
Ug is PE an object has because it is not trapped at some lowest possible position to which it 
may fall. This lowest PE position can be tricky to identify and is not always at ground level. 
You must examine an object’s position and ask yourself: “If the object was carefully placed at 
rest, at this position, would be able to fall down any farther if given a small nudge?” In Ug, 
mg is the weight of the object and h is its vertical distance above the lowest possible position. 
Usp is energy a compressed or expanded spring may store, where k is the spring constant, x is 
how far the end of the spring has been expanded or compressed past its “natural” position at 
xn. If  x = xn, then the spring is neither expanded or compressed, and Usp = 0.  If  x > xn or 
x < xn then Usp = 0. Pendulums are any mass that can swing from a very light rope attached 
to some higher point and are great examples of objects whose PE is zero when the mass is not 
on the ground. In the equation for Upend above, θ is the angle the pendulum makes with respect 
to the vertical (where the mass is directly below the upper attachment point of the rope, when 
θ = 0). Work is a way of using a force to inject or remove energy to or from an object. For 
us, W = F · Δr cos θ, where  F is a force applied to the object, Δr is how far the object moved 
while the force was applied, and θ is the angle between the force and the direction of Δr. if  
W >  0 then energy will be added to the object, if W <  0 then energy will be taken from the 
object. For us, F and Δr will always positive; the sign of cos θ will determine the sign of W . 
Friction always results in energy loss or W <  0. Lastly, we have the law of “conservation of 
energy” (CE). CE states that the sum of KE and PE is always a constant. This means if PE 
goes up, KE must go down and if PE goes down, KE must go up, both in such a way to keep 
KE + PE  = a constant. The “constant” is the total energy of the system. The most useful 
form of this law is that in realizing that if the sum of KE and PE  are constant, then the sum 
of KE and PE, say at some point A in the object’s motion will be the same as the sum of KE 
and PE  at some point B in the object’s motion, or KEA + PEA = KEB + PEB. Also, since 

22 
2

KE is always 1 
A + PEA B + PEB , which, if you just fill in your associated 

PE  function begins to form a useful “physics equation” that can be used to solve problems. 
Work ties into this all by showing where energy is injected or is lost by the object. Here’s a 

2, then 1 1 mv
 mv
 =
 mv

2 2

22 
A + PEA + W = B + PEB, which shows how if W >  0 

(energy into the object) will lead to a greater total energy represented on the left side of the 
equation. W <  0 would lead to a smaller total energy on the left hand side. Book reading: 
p. 270 starting at “Kinetic Energy,” 10.5, 11.2, 11.3, 11.8. 

13.3 Projects 

In these projects, you’ll be having the computer calculate energies, like KE, PE  and E. These 
can be handled in Part 10 of your code with lines like 

#declare vmag=vlength(vel); 
#declare KE=0.5*m*vmag*vmag; 

1 1useful form that includes work:
 mv
 mv

2 2
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#declare PE=m*g*pos.y; 
#declare E=KE+PE; 

Energy.a: Using your projectile (2D) motion movie (twodim.a, in Chapter 11), add “energy 
bars” to it that show the total energy (E), kinetic energy (KE), and potential energy 
(PE) of the object as it flies. Use the draw bar functionas described in Section 8.3, to 
draw your energy bars. Also, find a place on your screen to draw the numerical values 
of E, KE and PE, using the draw variable function (see Section 8.3) . As an example 
draw variable(<-5,1,0>,E,"J",Yellow,1) will draw the current numerical value of the 
variable E at < −5, 1, 0 > with the label of “J” (for Joules) in a yellow color with an 
overall zoom factor of 1. Draw v on the object at all times. All energy computations 
and bar drawing should occur in Part 10. Use pos0.y for the instantaneous height of the 
object, and use vmag=vlength(vel) to compute the magnitude of the object’s velocity, 
needed for KE calculations. Bars that are too long or too short can be scaled with the 
set bar scale and set bar zoom functions (see Section 8.3). 

Energy.b: Using your spring movie from last week (NLII.d), add total energy E, KE, spring 
potential energy (PEspring), and gravitational PE  bars to the movie as the block moves. 
Draw v and F vectors on the project at all times. Use draw variable to draw numerical 
values of E, KE, and  PE  as well. 

Energy.c: Using your arctan movie from last week (NLII.f.), add total energy E, KE, and 
gravitational potential energy (PEgravity) bars to the movie as the object movies up and 
back down the hill. Draw v and F vectors on the project at all times. Use draw variable 
to draw numerical values of E, KE, and  PE  as well. 

Energy.d: Using your friction movie (NLII.b), add E, KE, and  PE  bars to the block as it 
slides. The effects of the friction patch must be very noticeable in your movie. This means 
we should see the total E bar drop with each pass over the friction patches. 

Energy.e Start with your code for Energy.d, but remove part 5 entirely, and replace it with 
an a=<0,0,0> line. Let’s use the work done by friction explicitly to slow the block down 
as it rubs over the friction surface, not accelerations. For this, we’ll put code into Part 8 
of the skeleton code. See Section 5.4 to review this part, which involves abrupt changes in 
velocity. 

To start, put a line like this #declare pos0=pos; right at the  end of Part 5.  A  line  like  
this will save the current position of the block in the variable pos0, just before the physics 
equations advance it to the next position. We need this because work involves a Δr, which 
the net displacement of the object. 

Now, in Part 8, start an #if statement to check if you are on a patch of friction. If true, 
follow these steps to suck a bit of energy from the block, as per the “work done by friction.” 

Wf ← −μmg|x − x0| (compute work due to friction; this is Wf = −fΔx.) J 
v ← vx 

2 + vy 
2 (compute the magnitude of velocity) 
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KE ← 1
2 mv2 (compute the KE) 

KE1 ← KE + Wf (compute the new KE after work due to friction) J 
2KE1pv =< ± 
m , vy, 0 > (compute the new velocity-vector from the lower KE) 

Next to the energy bars, draw a “work bar,” which shows the totality of work done by 
friction in slowing down the block (i.e. this bar should grow and grow as the block slides 
over friction). Computing the magnitude of the velocity is discussed in Chapter 6 under 
“finding the magnitude of a vector.” You’ll have to think about on which root to choose 
(±) when computing the new velocity-vector. 

Energy.f: A skateboarder dude is riding up and back in a “half-pipe.” The pipe is described √ 
by the function y(x) = 10  − 100 − x2. Use  the  code  skateboarder start.pov online to 
get started. Place the dude (in the form of a lame-looking sphere) at the bottom of the 
half-pipe < 0, 0, 0 > with some initial vx0 = 0 that will send him toward the right. The 
movie should show him ride up and down the half pipe a few times, going up the “arms,” 
where he’ll slow, stop, then slide back down again, only to start up the opposite “arm.” 
Draw KE, PE, and E bars at all times as well as the v and F vectors. Physically, you √ 
are sending an object to ride on a surface y(x) = 10  − 100 − x2, like last week with the 
arctan hill. So, you’ll need the acceleration equations from last week’s work on the arctan 
movie to get your object moving properly. Recompute y " and y "" and use your results in 
your code. Putting y "" or ypp into your code is kind of a pain in the neck, so here’s a line 
that should do it 

#declare ypp=pos0.x*pos0.x/pow(100-pos0.x*pos0.x,1.5)+1/sqrt(100-pos0.x*pos0.x); 

In your final render, you’ll have to make dt very small, like 0.01, and render about 500 
frames to see the energy bars work out properly. Your total energy bar must remain nearly 
constant throughout the motion! Important! With so many frames, you final movie will 
run very slowly if stitched together at 10 frames per second. Be sure to stitch it at 30 
frame per second minimum! Points will be deducted for movies that run too slowly. 

Energy.g: Same as Energy.e, but add a patch of friction for −1 ≤ x ≤ 1, so the skate
boarder dude drags over it both on his way up the and back down. Use the code 
skateboarder friction start.pov online to get started. Friction should do negative 
work on the skateboarder with each pass. We should see the KE and total energy bars 
decrease with each pass over the friction. Draw the v and a vectors on the object at all 
times. Use the same dt = 0.01 considerations as in the last movie. Removing energy due 
to work involves direct speed changes of the object. This logic should be in Part 7 (first 
time this quarter) of your code and should help you to handle friction from the energy 
standpoint, given that the block’s current position is x, last known position is x0 and it 
has components of speed of vx and vy: 

if (fstart ≤ x ≤ fend) THEN 
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Wf ← −μmg|x − x0| (compute work due to friction) J 
v ← vx 

2 + vy 
2 (compute the full velocity) 

KE ← 1
2 mv2 (compute the KE)
 

KE1 ← KE + Wf (compute the new KE after work due to friction)
 

if (vx < 0) THEN (get signs right on new post-friction KE)
 J 
2KE1vx ← −  
m (moving to the left)
 

ELSE
 J 
← 2KE1 (moving to the right) vx m 

END
 

END
 

Note: The effects of the friction patch must be very noticeable in your movie. This means 
we should see the total E bar drop with each pass over the friction and we should see the 
skateboarder’s ride get lower and lower and lower. In a nutshell: please run your movie 
run long enough for the effects of the frictional patch to become apparent. 

Energy.h: Take your basketball movie (twod.b) from a few weeks back and add KE, PE, E 
bars to it. Use draw variable to show the numerical values of these energies as well. 

Energy.i: Take your NLII.j movie and add KE, PE, and E bars to it. Use draw variable to 
show the numerical values of these energies as well. 

Energy.j: Get the code spring energy.pov from online. If you render it, a block will run into 
a spring and be pushed back in the other direction. Add KE, PEs, PEg, and E bars to it. 
Use draw variable to show the numerical values of these energies as well. 

Energy.k: Take your friction movie NLII.b. Add KE, PE, E, and Wf bars. Use draw variable 
to show the numerical values of these energies as well. 

13.4 Wrap-up Questions 

1. Discuss the similarities between time, energy, and money. 

2. Draw a parabolic path of a projectile in flight.	 Label point B on the path at the peak. 
Label A on the upward slant and B on the downward slant. Draw E, PE, and KE bars 
for points A, B, and  C.  

3. Discuss the exchange of energy between KE and PE for a skateboarder on a half-pipe. 

4. Discuss the exchange of energy between KE and PE for a block sliding on a flat (frictionless) 
surface that runs into a spring. 



CHAPTER 13. ENERGY: WORK, KINETIC, POTENTIAL, AND CONSERVATION 95 

5. Look up the mass of the car that you drive. Compute how many Joules it takes you to go 
from 0 mph to 55 mph. There are about 21, 000 Joules of energy in a gram of chocolate 
chip cookies. Careful with units. Miles and hours do not mix with Joules. How many 
grams of cookies are you using to get to this speed? 

6. There are about 27, 000 Joules of energy is a gram of coal. Think of a single charcoal 
briquet for your BBQ as almost pure coal. Find out how much mass a single briquet has 
and compute how many charcoal brickets you burn up each time you accelerate from 0 to 
55 mph in your car. Imagine throwing this many briquets out of the window each time 
you accelerate like this. What would the roadside look like? 

7. Draw a sketch illustrating how work due to friction slows an object by sucking energy out 
of it as it rubs across the rough surface. 



Chapter 14 

Momentum and Conservation of 
Momentum 

14.1 Introduction and Goals 

The goal of this project is to demonstrate that you understand what happens when two objects 
collide. 

•	 This week, we’ll change an object’s v-vector by changing it directly with a Δv found by 
considering the momentum of a system. 

•	 Demonstrate that you understand how to compute and use momentum. 

•	 Demonstrate that you understand that Σpp = a  constant.  

•	 Show how “momentum bars” can be used to illustrate the instantaneous momentum dis
tribution of a system. 

•	 Demonstrate how the momentum bars show that total momentum is constant for a closed 
system. 

•	 Demonstrate you understand how Newton’s 3rd law and “equal of opposite” reaction 
forces. 

14.2 The Physics 

The v-vector of an object will be changed by: Causing an object to interact (or 
collide) with another object. In all of the previous weeks, we concerned ourselves only with 
isolated objects. This week, we’ll see what happens when two (or more) objects interact which 
each other, in the form of contact between the two bodies (as in a collision, or in the sudden 
motion of two or more objects due to a need for them to separate due to an explosion). When 
two bodies come in contact with each other, each exerts a pushing force on the other (think of 
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the last time you bumped into someone in a crowded place: you felt a push, and so did they). 
Further, the force that one exerts on the other is always exactly the same. This is 
Newton’s third law of “equal and opposite reaction forces.” For example, if two cars collide, 
during the collision, car A will exert a force on car B (FAB ), and car B will exert the exact same 
force on car A (FBA). The two forces will have the same strength, but be in exactly opposite 
directions to one another. In other words, FAB = −FBA. It doesn’t matter is one car is heavier 
(more massive) than the other. The push force from one car will equal the push force from 
the other. What if one car is a small Honda and the other car a huge SUV? If so, when in 
contact, the force the Honda exerts on the SUV will be equal to the force the SUV exerts on 
the Honda, only in the opposite direction. What about a bug hitting a car windshield? The 
force of the bug on the windshield is equal to the force of the windshield on the bug, only in 
the opposite direction. Why then does the bug get crushed and the SUV doesn’t even feel the 
collision? Because the resulting motion after the collision is driven by the acceleration the body 
takes from the collision, while in contact with the other object. Suppose the equal and opposite 
force of the bug-windshield collision is 0.1 N. The bug has a mass of 0.001 gram, or 1 × 10−6 kg. 
It’s resulting acceleration will be a = F/m  = 0.1 N/1 × 10−6 kg = 100, 000 m/s2 . The SUV, 
with  a mass of about  4, 000 kg gets an acceleration of a = 0.1 N/4000 kg = 0.000025 m/s2 . 
Collisions are typically very brief, say 1 ms, or 0.001 s. During this time, a parameter called 
“impulse” exists, defined as J = Δp, which is the change in an object’s momentum. How far 
does each move in this time? The bug will move 5 cm, the SUV will “move” about the diameter 
of of an atom making up the windshield. The bug get crushed because its internal structure 
cannot sustain an acceleration of about 10, 000g. This equal and opposite force idea leads to 
momentum, which is defined as p = mv or more correctly, pp = mpv. Notice  pp involves velocity 
directly. We also have “conservation of momentum” that says that ppbefore = ppafter. The “before” 
and “after” refer to before and after a collision. This law itself allows us to ignore the physics 
of the collision and instead focus on the physics just before and just after the collision. More  
correctly, the law is Σppbefore = Σppafter, indicating that the law means add all objects carrying 
momentum before a collision and set equal to the sum of all momenta carrying objects after the 
collision. Since p is a vector, so you must sum the momenta of all objects in the x direction, 
then in the y direction, both before and after the collision in order the the conservation law to 
be helpful. Lastly, there are two types of collisions, elastic and inelastic. In elastic collisions, 
the colliding objects bounce off of each other, while in inelastic, they all stick together creating 
a new “conglomerate mass” which is the sum of the individual masses that stuck together. 
In applying the conservation law for an inelastic collision, you typically have something like 
m1pv1before +m2pv2before + m3pv3before + ... = (m1 + m2 + m3 + ...)pvafter. Notice that there’s only one 
velocity after the collision (pvafter) because only the “big blob” is moving after they all collided 
and stuck together. For an elastic collisions, where two objects (1 and 2) collide along a single 

m1−m2 2m2 2m1axis, we’ll have v1after = v1before+ v2before and v2after = v1before+ m2−m1 v2before. m1+m2 m1+m2 m1+m2 m1+m2 

Book reading: 9.1, 9.2, 9.3., 9.4, 10.6. 



98 CHAPTER 14. MOMENTUM AND CONSERVATION OF MOMENTUM 

14.3 Projects 

•	 These movies involve objects colliding just once. To ensure the collision response only 
occurs once, be sure to direct the sign of the component of velocity involved in the collision. 

•	 You’ll have two objects colliding, which means you will have two objects moving in each 
movie. This means two sets of initial variables (position and velocity) for both objects, 
and physics equations for each. Review what you did in the Atwood movie. Some might 
even require separate accelerations for each. 

•	 Objects of differing masses are required in these movies. You must make more massive 
objects appear larger than less massive objects. Points will be deducted if you do not 
do this, as this really degrades the physics-based visuals of your movie, in how collisions 
work. 

(Note: in these problems, “mom” stands for momentum.) 

mom.a: Start with the projectile code twodim.a from week #2, which launches a projectile 
across the screen. Change the launch angle to something steep like 65◦ . When the hits 
the ground, make it bounce, by reversing the sign vy. You logic condition for detecting 
a downward collision with the ground should be something like “if vy < 0 and  y <= 0  
then reverse the sign of vy.” It is important in the collision detection to check both the 
position and direction of travel of the object. Add a coefficient of restitution of 0.85 
with each bounce. See hints in problem momentum.c for help reversing signs of velocity 
components. Your animation should show the complete life of the ball, from launch to 
becoming more-or-less motionless on the ground after bouncing a few times. 

mom.b Starting with the code ballwell.pov which you can find online, cause the ball coming 
out of the tube to fall into the red well. Make it bounce off of both the horizontal walls 
and vertical floor. Put a coefficient of restitution on bounces from the floor. Render the 
movie until the ball appears to stop bouncing. See hints in problem momentum.c for help 
reversing signs of velocity components. Draw v, vx and vy on the ball at all times. 

mom.c: Starting with your projectile code from week #2, add the following lines to Part 10 

box { <30,0,30>,<32,30,-30> pigment { brick pigment{White}, pigment{Red} }} 
box { <-30,0,30>,<-32,30,-30> pigment { brick pigment{White}, pigment{Red} }} 
plane { <0,1,0>,0 pigment {Green}} 

which will add two large brick walls at x = ±30. Let your projectile fly as usual, but have 
it bounce off of the floor and brick walls by reversing the component of velocity that is 
along the axis where the collision occurs. Such reversals are to be put into Part 8 of your 
code and can be done with 

#declare vel=<-vel.x,vel.y,0>; 
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to reverse vx or 

#declare vel=<vel.x,-vel.y,0>; 

to reverse vy, as needed. Remember to refer to variables pos and vel in Part 8. You can 
add coefficients of restitution (see Wikipedia) to simulate imperfect bounces by adding a 
decimal in front of the component being reversed, like this: 

#declare vel=<vel.x,-0.7*vel.y,0>; 

Draw the v-vector, vx and vy on the ball at all times. Draw KE ad p (= mv) bars  
somewhere in the scene too. Your movie must show several bounces off of the floor and 
both walls. Make your collisions look realistic by not letting the ball “bury” itself into 
the walls or ground. More realism will include the coefficient of restitution in the collision 
response. 

mom.d: Start two balls (A and B) moving toward each other. One starts near the top of the 
screen and moves down. The other starts near the bottom of the screen and moves up. 
Keep all motion along the y-axis. This is not a free fall movie, just the top view of two 
balls colliding. Each sphere should be assigned different masses that are reflected in their 
size on the screen. When they collide, compute the impulse, J that moderates the collision 
from Jp = (1+  e)mamb(pvAi −pvBi)/(ma + mb), where e is the coefficient of restitution, which 
is a number between 0 and 1 (say like e = 0.7). Also choose a Δtcollision, then compute 
p pFcollision = J/Δtcollision. Your animation should show the entire collision, from approach, 
to collision, to motion after the collision. Your code must explicitly compute set Δtcollision 

and e in part 2, followed by the calculation of J from the above formula. Make your dt 
smaller if the balls appear to collide before they touch. 

Important requirements: 

1.	 Draw the force vectors on both objects during the collision. This is very important to 
see and understand! 

2. Draw momentum vectors on the objects at all times. 

3. Draw v vectors on the balls at all times. 

4. Put your momentum bar charts in each frame. There should three total momentum 
bars. One for each sphere and one for the total momentum of the system, which is 
the sum of the individual momenta from each sphere. 

The discussion above allows you to handle the collision response. You’ll need to place 
an #if statement in Part 8 of your code to handle the collision detection. This will be 
discussed in class. Draw the p vector (= mv) on both balls at all times. 
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mom.e: Start two balls (A and B) moving toward each other. One from the left and the other 
from the right. Keep all motion along the x-axis. Each sphere should be assigned different 
masses that are reflected in their size on the screen. When they collide, compute the 

pimpulse, J that moderates the collision from J = (1 +  e)mamb(pvAi − pvBi)/(ma + mb), 
where e is the coefficient of restitution, which is a number between 0 and 1 (say like 

pe = 0.7). Also choose a Δtcollision, then compute Fpcollision = J/Δtcollision. Your animation 
should show the entire collision, from approach, to collision, to motion after the collision. 
Your code must explicitly compute set Δtcollision and e in part 2, followed by the calculation 
of J from the above formula. 

Important requirements: 

1.	 Draw the force vectors on both objects during the collision. This is very important to 
see and understand! 

2. Draw momentum vectors on the objects at all times. 

3. Draw v vectors on the balls at all times. 

4. Put your momentum bar charts in each frame. There should three total momentum 
bars. One for each sphere and one for the total momentum of the system, which is 
the sum of the individual momenta from each sphere. 

The discussion above allows you to handle the collision response. You’ll need to place 
an #if statement in Part 8 of your code to handle the collision detection. This will be 
discussed in class. Draw the p vector (= mv) on both balls at all times. 

mom.f: Download the code elastic coll.pov from http://goo.gl/zTtuQ . If you render 
this, you’ll see two boxes on a surface moving toward each other and surrounded by bricks 
walls on both sides (at x = ±10). Call them the blocks 1 and 2. For this movie make block 
1 (the left block) more massive than block 1 (the right block). See the mass statements in 
Part 2 of the code. Using collision detection in Part 8, program in an elastic collision 
response, making both blocks bounce off of each other. The elastic equation response 
equations can be found in the physics discussion above. When each block reaches the edge 
a brick wall, have it make a “hard collision” and bounce off of it (i.e. reverse vx). Your 
movie should end just after each block has its collision with a wall, and moves noticeable 
away from it. Show total energy and total momentum bars in the movie at all times. 
Note: Do not use any of the techniques in this movie that you may have used 
in mom.d or mom.e The point of this movie is to learn about and make use 
of the elastic collision equations. Remove all references to J (impulse), etc. in 
this work. The only collision response equations you can use are the ones in 
the very last sentence of Section 14.2 

mom.g: Rerender mom.f but make m2 > m1. 

mom.h: Rerender mom.f, but make m1 = m2. 

http://goo.gl/zTtuQ
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mom.i: Repeat Movie mom.f, but make the collision inelastic. Inelastic means the collision 
response will assign the same velocity to both blocks after the collision. Make the blob of 
boxes bounce off any brick wall it hits. End the movie just as the blob of boxes bounces 
off a wall, and moves noticeable away from it. 

mom.j: Draw a large table (a box) in the middle of your screen and place two blocks of differing 
mass on the table’s surface. Call them the “left” and “right” blocks. For this movie make 
the left block more massive than the right block and make the size of each block indicative 
of its mass. Make the leftmost block initially move toward the right and the rightward 
block move toward the left. Using collision detection in Part 8, program in an elastic 
collision response, making both blocks bounce off of each other. The elastic equation 
response equations can be found in the physics discussion above. When a block reaches 
the edge of the table, have it enter free fall. Draw total KE and total p bars on the screen 
at all times. 

The table might be drawn with a statement like this in Part 10: 

box { <-10,-10,-10>,<10,10,10> pigment {Red}} 

As for drawing your boxes, see Section 4.3. The top of this box is at y = 10 and it extends 
between ±10 along the x-axis. You’ll need one box statement for each of the two boxes 
in this project. Note: Do not use any of the techniques in this movie that you 
may have used in mom.d or mom.e The point of this movie is to learn about 
and make use of the elastic collision equations. Remove all references to J 
(impulse), etc. in this work. The only collision response equations you can use 
are the ones in the very last sentence of Section 14.2 

mom.k: Rerender mom.h but make the mass of the left block less than the mass of the right 
block (remember: make the size of each box indicative of its mass). 

mom.L: Rerender mom.h, but make the masses of both blocks the same (remember: make the 
size of each box indicative of its mass). 

mom.m: Repeat mom.h, but make the collision inelastic, where the two stick together after 
the collision. Make the left block more massive than the right. Making the blocks stick 
together is done by simply causing them to each have the same v (and a) after the collision. 
Draw total KE and total p bars on the screen at all times. Note that getting the KE and 
p right for this in Part 10 is a bit hard, so here are some hints: 

•	 Declare a variable in Part 2 called has collided and set it equal to false. This 
variable means “before the collision happens an indicator called “has collided” is 
false. 

•	 In Part 8, be sure that this variable gets set to true when your collision detection 
#if statement fires. 
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•	 In Part 10, use an #if statement to properly handle calculating KE and p. Before 
the collision when has collided=false, KE is the sum of the individual KEs of 
the blocks and p is the sum of individual momenta of the blocks. After the collision 
when has collided=true, KE is the KE of the blob, and p is the momentum of the 
blob. 

Note: Do not use any of the techniques in this movie that you may have used 
in mom.d or mom.e. The point of this movie is to learn about and make use 
of the inelastic collision response, where there is a “blob” of mass after the 
collision with a single speed. Remove all references to J (impulse), etc. in this 
work. 

mom.n: Repeat mom.i, but make the left block less massive than the right. 

14.4 Wrap-up Questions 

1. It is critical in mom.e or mom.d that you understand the following concept, so discuss it 
here: No matter if the colliding objects are as different as a car and mosquito or as similar 
as a car and car, the collision force one exerts on the other is always the same, while 
they are in contact. This leads to an equal and opposite impulse, J experienced by both 
objects. This is Newton’s Third Law. The resulting motion after the collision results 
from the acceleration acquired by a given body because of the collision force. And, as you 
know by now, a = F/m, so the smaller the mass, the larger the acceleration. 

2. Discuss Newton’s Third law. 

3. Discuss “who feels what” when a tennis ball moving toward the right collides and bounces 
off of an SUV moving toward the left. Work with the fact that the force imparted on the 
SUV by the tennis is the same as the force imparted by the SUV on the tennis ball. Why 
does the SUV barely feel the impact, but the tennis ball goes flying off in the opposite 
direction? Discuss all of this. A simple numerical example would be nice. 

4. Discuss the outcome of	 an elastic collision between mass m1 and m2 when m1 = m2, 
m1 > m2 and m1 < m2. 

5. Fill out a study grid outlining the time and topics you studied for this class between Wed 
2/15 and Wed 2/22. What are you thoughts/feelings on the 25/35 idea on campus? 
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Rotational Motion 

15.1 Introduction and Goals 

•	 The goal of this project is to have you experience why and how objects can be made to 
rotate. 

•	 Demonstrate that you understand the rotational variables θ, ω, and  α. 

•	 Demonstrate that you see the analogies between the kinematic variables x and θ, v and 
ω, and  a and α. 

•	 Demonstrate that you understand the kinematic equations for rotations. 

•	 Demonstrate that you understand what moment of inertia. 

•	 Demonstrate that you understand toque. 

•	 Demonstrate that you understand the “a=F/m” for rotations, which is α = τ/I. 

15.2 The Physics 

The v-vector will now become an ω vector. ω will be changed by: Applying an 
angular acceleration either parallel or anti-parallel to ω. Thus far, we’ve discussed 
objects moving in straight lines, or “linear motion.” Now we’ll discuss “rotational motion,” 
or how an object rotates or spins. Think of a merry-go-round, rolling wheel, or a pulley that 
actually turns as it guides a rope. For the rotating object, you should always be able to identify 
the axis about which it rotates, called the “axis of rotation,” which might be through its center, 
but not always. Given what you know by now about straight line motion (x, y, F , etc.), much 
of the core concepts here can be taught by analogy. Linear motion, has three working variables: 
x (or y), v, and  a, with units of m, m/s, and m/s2 . In rotational motion we aren’t concerned 
with how many meters an object has moved, but how many degrees (or radians) it has rotated 
through, so for angular position we’ll have θ, angular speed ω, and angular acceleration, α. 
By analogy, x ↔ θ, v ↔ ω, and  a ↔ α, so instead of x = x0 + v0Δt + 

2
1 aΔt2 , we’ll have 
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1 αΔt2, and instead of v = v0 + aΔt, we’ll have ω = ω0 + αΔt. These are your θ = θ0 + ω0Δt + 
2 

core time-stepping equations for rotational motion. Here’s an example (same numbers from 
week #1): A wheel has spun through θ = 5 rad with an angular speed ω = 1 rad/s and an 
acceleration of α = 0.5 rad/s2 . How far will the wheel have spun Δt = 0.1 s later? Use the 
equations above to get that θ = 5rad + (1rad/s)(0.1s) + (0.5)(0.5rad/s 2)(0.1s)2 or θ = 5.1025 
rad and ω = 1rad/s + (0.5rad/s 2)(0.1s) or ω = 1.05 m/s. Like week #1’s equations, you can 
compute a new θ and ω over the time step Δt, and can iteratively put θ → θ0 and ω → ω0 and 
use the equations again to compute the next θ and ω of the spinning object another Δt in the 
future. Also like week #1, be very aware of signs. θ can be positive or negative. Arbitrarily, we’ll 
interpret a positive θ as a clockwise rotation and a negative θ as a counterclockwise rotation. 
With this sign convention, you can also place signs on ω and α. A  positive  ω means the object is 
rotating clockwise; a negative ω counterclockwise. If ω and α have the same sign, the object is 
spinning faster and faster. If ω and α have different signs, the object is spinning, but slower and 
slower. It may reach ω = 0 in which case ω will start building up again in the same direction as 
α and acquire the same sign as α. The object will start rotating, faster and faster in the same 
direction as the original α. There is one last confusing point about the rotational world of θ, ω, α 
and the linear world of x, v, a. Think of the wheel on a car. A carbon atom (in the rubber) near 
the outer edge of the tire and one very close to the axle have the same ω, since they both rotate 
by the same amount in a given Δt. If they didn’t the tire would warp and break apart. But 
the atom near the outer edge must have a linear speed (v) which is larger than the inner atom 
since it has a larger circle (2πr) to travel through on its way around. So although the atoms in 
the rubber have the same rotational speed ω, their linear speeds (v) are different. In fact, the 
v’s scale with the distance from the axis of rotation, or, v = rω, where  r is the distance from 
the axis of rotation. That is, if an atom is 5 cm from the axle, and the other is 10 cm from 
the axle, the latter has a v that is twice as large as the former. Similarly, x = rθ and a = rα; 
linear distance and acceleration scale with r too. So you can describe a rotating object using 
the linear parameters x, v, a, but they aren’t the most convenient, so we use θ, ω, and  α. But  
each is related to the other via linear-variable = r(angular-variable), so they’re really one in the 
same. To close, θ, ω, and  α are the parameters that allow you to observe an object rotating. 
You’ll see it rotate so far (θ) at some speed  (ω). If the speed seems to be changing (speeding up 
or slowing down), then you can conclude that the object must have some α. Book reading: 
12.1, 12.7, 12.9. 

15.3 Projects 

Project Descriptions 

(Note: In these projects, “RM” stand for “rotational motion.”) 

RM.a: Use rotate skeleton.pov at http://goo.gl/zTtuQ to get started. This will render 
a wheel on the center of the screen. Make a movie that shows this wheel spinning at 
some constant ω clockwise. Hint: the rotate line in the wheel object might look like this 
rotate 180/pi*Theta where Theta is your computed angular position of the wheel. Draw 

http://goo.gl/zTtuQ
http:1rad/s)(0.1s
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the ω and α vectors on the wheel at all times using the “right hand rule” sign convention 
discussed in class. The tail of each vector should be at the center of the wheel, and the 
vectors should extend along the z axis (given that the wheel face is in the xy plane). 

RM.b: Same as RM.1, but counterclockwise. 

RM.c: Same as RM.2, but with ω >  0 and  α >  0. 

RM.d: Same as RM.2 but with ω >  0 and  α <  0. Be sure we can see the wheel stop and start 
turing in the opposite direction from how it started. 

RM.e: Same as RM.4, but make it spin along the y−axis, instead of the z-axis. 

RM.f: Get out the code you wrote for the arctan hill, or the skateboarder on the parabola 
(choose one, it’s your choice). Get rid of all energy bars and associated calculations. Now, 
change the object and code so that we see a wheel rolling along the surface, not just sliding 
on it. Show as much motion as possible, for example, up the incline, back down the incline, 
and onto the flat surface again. It is imperative that we see the details of your rolling 
wheel. You should already have the instantaneous v available in your code from previous 
weeks (or you can find it from vmag=vlength(vel)). All you have to do is recognize that 
v = ωr or ω = v/r, and it is with this ω that you use to compute θ = ωΔt to make your 
wheel rotate as it moves. Draw the ω and α vectors on the wheel at all times. The tail of 
each vector should be at the center of the wheel, and the vectors should extend along the 
z axis (given that the wheel face is in the xy plane). You should know where the ω vector 
comes from. What about α? Well, just like ω = v/R, α = a/R, so you can use: 

#declare amag=vlength(a);
 
#declare Alpha=<0,0,amag/R>;
 

to compute Alpha which may be used to draw the α vector. This code in Part 10 can be 
used, instead of your sphere, to draw the wheel (assuming Theta and pos are the needed 
rotation amount and position of the wheel and R is the wheel’s radius: 

object
 
{
 
union
 
{
 
cylinder {<0,0,-1>,<0,0,1>,R pigment { checker Red, Blue scale <.5,1,.05> }}
 
cylinder {<R/2,R/2,0>,<R/2,R/2,-1.2>,R/4 pigment {Yellow}}
 
cylinder {<-R/2,-R/2,0>,<-R/2,-R/2,-1.2>,R/4 pigment {Yellow}}
 
cylinder {<0,0,2>,<0,0,-2>,0.1 pigment {Green}}
 
}
 
rotate Theta*180/pi
 
translate pos
 
}
 

Optional note: Povray always rotates objects about the point (0,0,0); this is the way its 
rotate function works. So to make an object look like it is rotating about a central axis, 
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you have to draw the object so that its axis is at (0,0,0). Once done, rotate it, then 
translate it out to where it needs to actually be placed. Thus the steps in the object 
statement above; draw, rotate, then translate. 

RM.g: Go the http://goo.gl/zTtuQ and download the code called kickoff.pov. If  you  
render this, it’ll show a football and some goal posts. Choose a launch pv and θ0 that’ll 
cause the football to go through the goal posts. Additionally, just like in field goal kicks in 
real football, make the football rotate in the opposite direction to which it is moving. To 
do this, set up a Theta and Omega variable for the football. The code renders the football 
at the rotation state given by the variable Theta. 

RM.h: Get our your code from momentum work of the two blocks making an elastic collision 
on the high table from last week. Instead of blocks, make your code into rolling cylinders. 
The cylinders should roll both into and out of the collision. Draw the ω vector on both 
cylinders at all times. 

15.4 Wrap-up Questions 

1. Discuss the analogies you see between x and θ, v and ω and a and α. 

2. Discuss what it means for θ to be a vector. 

3. Discuss what it means for ω to be a vector. 

4. Discuss the possible directions that ω and α can have. Discuss sign conventions. 

5. Draw a wheel with ω and α vectors that would indicate the wheel is slowing down. 

6. Draw a wheel with ω and α vectors that would indicate the wheel is speeding up. 

http:kickoff.pov.If
http://goo.gl/zTtuQ
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Torque, Angular Acceleration and 
Momentum 

16.1 Introduction and Goals 

The goal of this project is to have you experience how a collision between an object with linear 
momentum can be transferred into a rotatable object, giving it angular momentum (causing it 
to rotate). 

•	 Demonstrate that you understand that L = rp, where  L is angular momentum. 

•	 Demonstrate that you understand that angular momentum is conserved. 

•	 Demonstrate that you understand how linear momentum can be recast at angular momen
tum. 

•	 Demonstrate how linear momentum can be transferred into angular momentum. 

16.2 The Physics 

The v-vector is now an ω vector. ω will be changed by: Applying a torque or net-
torque to an object. α drives rotations, since if you have α = 0, over successive Δt’s, the 
α can lead to changes in ω, which together can lead to changes in θ. Here we address where 
α comes from. Just like a = F/m, here we’ll have that α = τ/I, where  τ is the torque on on 
object and I is the moment of inertia of the object. m is the mass of an object, or a measure of 
its resistance to want to change its state of motion, I is the resistance of an object to change its 
state of rotation (if it’s not rotating, it wants to stay not rotating, etc.). Where mass is usually 
given for an object (so many kg’s), I comes from simple formulas that resemble I = cmR2 , 
where m is the mass of the rotating object, R is the maximum extent of an object away from 
its axis of rotation, and c is a number like 1/2, 2/5, etc. Don’t think of R as “radius;” an object 
doesn’t have to be round in order to rotate. Look in your book for a chart of I’s for objects 
rotating in various ways. Torque (τ) is like a “rotational force.” From the discussion above, 
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α drives rotational motion, because with α, a  ω will develop, which will develop a θ. Since 
α = τ/I, you  must  have  a  τ in order to get an α. So where do torques come from? Forces. 
You must ultimately apply a force to an object to get it to rotate, but it matters 1) where you 
apply the force 2) at what angle you apply the force. This is all seen in the equation for torque, 
τ = rF sin φ, where  F is the force you apply to the object you wish to rotate, r is the length of 
a line that directly connects the axis of rotation and the spot where the force is applied. φ is the 
angle between the direction the force is applied and the axis-force connector line. This torque 
equation can be wholly understood by thinking of how one opens a door. If you push near the 
hinges the door won’t open since r ≈ 0, meaning τ ≈ 0 meaing α ≈ 0. If α ≈ 0 and  the door is  
not already rotating then ω0 = 0 and  ω = ω0 + αΔt will never give any appreciable ω, no matter 
how long you wait (Δt), since α ≈ 0. Lastly, if ω ≈ 0 and  α = 0,  then  θ will always equal to θ0, 
meaning the door will remain in the same rotational position. In other words “the door won’t 
open.” You can also push on the edge of the door, farthest from the hinges, maximizing r, but 
if you push directly on the narrow edge of the door (toward the hinges), φ = 180◦, once again, 
giving τ = 0 (since sin 180◦ = 0). This also gives α = 0, like above, meaning that getting the 
door to swing (or allowing it to acquire some ω or θ = θ0) will simply never happen. The best 
place to push on a door is farthest from the hinges, maximizing r, and perpendicular to the 
door, making φ = 90◦ . This will give some non-zero value of τ , which will give a non-zero value 
for α(= τ/I). With a non-zero α, an  ω of the door will start to develop as θ will begin to become 
different that θ0: the door will rotate. So certainly θ, ω and α track the observable rotation of 
an object, driven by α. But  α must come from somewhere, and it comes from a torque, which 
ultimately comes from a force applied to an object (at some distance at some angle). I factors 
in to how hard it is to get the door to swing. A heavy, solid wooden door (front door of your 
house) is harder to open than a similarly sized light hollow door (on your bathroom) because m 
is larger and I ∼ m. Thus  for  a  given  τ (your hand), α would be smaller since α = τ/I. Now  
say you had two doors that had the same mass, but one was two times wider than the other. 
Since I ∼ R2, where  R is the maximum extent of the door, the door that is twice as wide would 
be four times harder to swing for a given torque applied, for the same reason. α = τ/I. The  
wider door, with the larger I, gives a smaller α. So  α’s, which drive all rotations, come from 
torques, just like a’s, which drive all motion, come from forces. Book reading: 12.5, 12.6, 
12.11, and problem 12.93. 

16.3 Projects 

torque.a: A rod (like a yardstick) of length L is attached at its top by a frictionless nail at its 
topmost edge. Make an animation that shows the subsequent (rotational) motion of the 
object if it were let go from ω0 = 0. Here is the code that will draw the rod in part 10 (a 
red rod with a yellow nail). 

object {
 
union
 
{
 
cylinder {<0,0,2>,<0,0,-2>, 0.1 pigment {Red}}
 
cylinder {<0,0,0>,<L,0,0>,0.25 pigment {Yellow }}
 
}
 

http:0,0,0>,<L,0,0>,0.25
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rotate 180/pi*Theta
 
}
 
}
 

Your Δt should be small for this work, at 0.01. You should plan on rendering about 1000 
frames, so we can see several swings of the rod. Draw the ω and α vectors through the axis 
of rotation at all times. Stitch this movie together at no less than 60 frames per second. 

You should start this work with rotate skeleton.pov, found online. In part 2 of your 
code you should define the rod’s mass, length, and moment of inertia (from a suitable 
chart). In part 5 of the code, you should define the instantaneous τ and α = τ/I  on 
the rod, so the physics equations in part 6 can adjust θ and ω of the rod appropriately. 
The instantaneous τ will be a function of θ, the rod’s instantaneous orientation. The θ 
computed by the physics equations is the θ by which the rod should be rotated, as per the 
Theta variable in the part 10 drawing code given above. 

torque.b: Repeat torque.a but with a non-zero ω0 that sends the rod in such a direction that 
opposes that demanded by gravity. In other words, we want to see the rod rotate a bit 
against gravity, stop, then turn back around again, and start falling as per gravity. 

torque.c: Render the Atwood machine again, but this time with a real pulley that has a 
momentum of inertia, I. We should see the pulley rotating, in unison with the rising and 
falling masses. 

torque.d: Place two children (spheres) on a seesaw and show the subsequent motion. Center 
the the seesaw over the pivot, so the seesaw’s weight does not produce a torque. The 
net torque should only come from the childrens’ weight and their positions relative to the 
pivot point. Explicitly show in your code how the torque leads to angular acceleration. 
Be sure you run this movie long enough so we can really take in the full motion, including 
any turn-arounds or rocking. Your seesaw/pivot/children object might look like this: 

object{ union
 
{
 
//the main rod
 
cylinder {<-15,0,0>,<15,0,0>,0.1 pigment {Red}}
 
//thet axis of rotation
 
cylinder {<0,0,-1>,<0,0,1>,0.2 pigment {Yellow}}
 
//the two weights on the rod (the children)
 
sphere {<s1r,0,0>,radius1 pigment {Blue}}
 
sphere {<s2r,0,0>,radius2 pigment {Green}}
 
//rotate the value of Theta given (in radians)
 
rotate <0,0,Theta*180/pi>
 
}
 
}
 

torque.e: A block of mass m is moves with speed v toward a vertical rod that is hinged at the 
very top. The rod has a length of D between its end and the hinged point, and a mass 
M . The block collides with the end of the rod and sticks to it, causing the rod to begin 
rotating. Your movie should show the block moving toward the rod, then the motion 
after the collision, when the block/rod combination begins swinging. Note that because 
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of the hinge, p is not conserved by the rod+block system, but L (angular momentum) is 
conserved. Here’s how it works. 

The block, while moving, has a momentum p = mv. When it sticks to the rod, it brings 
an angular momentum to the rod of (using L = rmv) 

Lblock = Dp = Dmv, (16.1) 

which is a direct use of L = rp, where  r is the length of the rod and mv is the momentum of 
the block. That is, the block, due to it linear momentum (p) also has  angular momentum 
with respect to the hinge-point of the rod. 

Since L is conserved, it means that Lblock → Lrod during the collision. Since we know 
L = Iω, then for  the rod,  

Lrod = Iωrod (16.2) 

where I is the moment of inertia of the rod+block combination and ω is the angular speed 
of the rod+block combination after the collision. Thus 

Irod+blockω = Dmv (16.3) 

or 

Dmv 
ω = (16.4)

Irod+block 

giving you the initial angular speed of the rod+block after the collision. 

From Wikipedia (http://en.wikipedia.org/wiki/List of moments of inertia), use Irod = 1
3 MD2 . 

The contribution to I from the block is mD2, so  Irod+block = 
3
1 MD2 + mD2 . Knowing the 

initial ω of the rod+block combination or ω0 should allow you to launch the rotational 
motion of the rod+block combination. 

To animate the system after the collision, you’ll also need α, the angular acceleration of 
the rod+block combination. If the rod+block is at some angle θ (where θ = 0 is when the 
rod is vertical) then the net torque on it is 

D 
τ = Mg  sin θ + Dmg sin θ (16.5)

2 

where the first term is torque due to the rod’s weight and the second is due to the block’s 
weight, as it sticks on the rod. The angular acceleration of the rod is τ/Irod+block or 

D 
2 Mg  sin θ + Dmg sin θ 

α = . (16.6)
Irod+block 

http://en.wikipedia.org/wiki/List


111 CHAPTER 16. TORQUE, ANGULAR ACCELERATION AND MOMENTUM 

So you have ω0 and α of the rod+block system, which is all you need to complete the 
movie. 

What about drawing the block and rod? Assuming the block is at coordinates bx,by with 
a side length of 1 and a rod of length D, this will handle drawing them separately before 
the collision: 

cylinder {<0,0,0>,<0,D,0>,0.25 pigment {Gold} }
 
box { <bx-0.5,by-0.5,-0.5>,<bx+0.5,by+0.5,0.5> pigment {Red} }
 

and stuck together, rotated by an angle θ0 (Theta0) after the collision. 

object { 
union { 

cylinder {<0,0,0>,<0,-D,0>,0.25 pigment {Gold} } 
box { <-0.5,-D-0.5,-0.5>,<0.5,-D+0.5,0.5> pigment {Red}} 

}
 
rotate <0,0,Theta0*180/pi>
 
translate <0,D,0>
 
}
 

Povray note: do you see in the after collision drawing how the rod+block combination is 
drawn so that the hinge point of the rod is at (0, 0) as needed by the Povray rotate logic? 

You can use some kind of #if statement to handle and track the “before” and “after” 
collision scenarios. Hint: Think of the has collided logic used in the collision movies. 

torque.f: The Indiana Jones Door. Let’s animate the rotating tomb door from the Indiana 
Jones clip shown in class. Make Indy (a block of mass m) move from end to end across a 
big cylindrical door. For this, getting a block to move along the x axis will be fine. Do 
the normal stuff with  pos0 and vel0 in Part 2. At the instantaneous position of the mass, 
your movie should compute the torque on a big door. From this torque will come α, then  
ω, then  θ. Of  course  θ is the amount of rotate the door. The moment of inertia of the 
door is Idoor = mr2/4, where m and r are the mass and radius of the door. If Indy is at 
position pos and the door is to be rotated through an angle Theta, then this group in 
Part 10 will draw the door/Indy graphics 

object{ union
 
{
 
cylinder {<0,-0.5,0>,<0,0.5,0>,L/2 pigment {Red}}
 
box {pos-1,pos+1 pigment { Orange} }
 
rotate <0,0,Theta*180/pi>
 
}
 
}
 

http:0,0,0>,<0,-D,0>,0.25
http:0,0,0>,<0,D,0>,0.25
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assuming L is the diameter of the door, and it all needs to be rotated by an angle Theta. 
Draw the ω and α vectors on the door at all times. Draw the Indy’s weight at all times. Your 
animation must show the door reversing it’s ω due to Indy’s position. This might require some 
if statements and adjustments of Indy’s acceleration in Part 5 to cause him to tip the door 
accordingly. You have to keep dt small (0.01 maximum) and use several hundred frames to get 
this to work out. 
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Final Project 

Project Theme 

A “Rube Goldberg Machine” is a machine that does a simple task in the most complicated 
possible manner. Search Youtube for “rube goldberg” and watch a few. In this final project, 
your assignment is to use what you know about creating physics-driven animations to create an 
animated Rube Goldberg machine. The simple task your animation must complete is to turn 
on a lightbulb. 

Note that this project has three deadlines and is worth 50 points to the “computer work” 
portion of your grade. 

Project Introduction 

At this point, you know quite a bit about basic physics and computer animation. In particular, 
you know, via the laws of physics, how to animate: 

1. 1D motion 

2. 2D motion (projectile motion) 

3. Basic forces and Newton’s Laws 

4. Newton’s Law machines (ropes, pulleys, springs, curved paths, etc.) 

5. Energy and work due to friction 

6. Collisions (elastic and inelastic) 

7. Rotations (kinematics and torque) 

With your new set of skills, this sheet announces a final animation project. Your job is create 
an animation of a Rube Goldberg machine (see Wikipedia) that uses a series of physics 
interactions (above) to do something as simple as (for this project) turning on a lightbulb. Here 
is a sample: 
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From left to right on your screen: a ball is compressed against a spring. It is 
released and travels toward the right on a level surface. It collides elastically with 
a second ball. This second ball rolls up an inclined surface, going over its edge, 
subsequently executing projectile motion. It takes a couple of bounces until it collides 
(inelastically) with one mass of an Atwood Machine. The ball causes the Atwood 
Machine to become unbalanced, sending the mass/ball blob down toward the ground, 
where it lands on a push-button switch and turns on a lightbulb. 

Hints, guidelines, and requirements 

1. Your movie must use all of the physics interactions listed above. 

2. Your movie must run at least 20 seconds in duration. 

3. Your movie must show the continuous “life” of some object(s) on your screen concluding 
with a lightbulb switch being pressed and a lightbulb turning on. 

4. The v and a vectors must be drawn on your object at all times. 

5. Your movie must end with a lightbulb being turned on after the series of physics interac
tions. Turning on a lightbulb doesn’t need to be anything fancy. Making a gray sphere 
suddenly turn bright yellow will be sufficient. 

6. You may work in groups of up to 3 people. 

7. You will show your movie in front of the class and discuss it and take questions about it 
during the last week of the quarter. 

8. It is easiest to divide your	 screen up into several sections and apply accelerations or 
speed changes to the object(s) as needed with #if statements that check the x and/or y 
coordinates of the object(s). 

Due Dates - three of them 

Deadline #1: Monday Oct 31st (at the beginning of class) (5 points): Two section summary 
of your project, as follows: 

•	 Section I: One paragraph written summary of your movie’s story line. Tell me what 
your object is, and what is going to happen to it. A sketch (by hand) is required. 

•	 Section II: List the names of all people in your group (up to 3 people). I need these 
names so I can schedule presentation times during the last week of the quarter. 

Deadline #2: Monday Nov 7th (at the beginning of class) (5 points): A single page, two 
section progress report of your project, as follows: 
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•	 A Youtube link to a rough animation draft of your movie. This will not be your final 
movie and your movie will likely be incomplete, but it must show significant progress 
in implementing the story line you have proposed. 

•	 The names of the people in your group, so I can give everyone credit. 

Deadline #3: Week of Nov 28th (≈ 80 points): In class (or lab), a 6 minute presentation of 
your work, consisting of: 

1. Show us your movie. 

2. Point out the different areas of physics used in the movie. 

3. Discuss	 any results or technical hurdles that were difficult for you, and how you 
overcame it. 

4. Upload your final movie to your Youtube account. 

5. Turn in a CD-ROM (due at the time of your presentation) with your final, playable 
movie and complete Povray code burned onto it. 



Chapter 18 

Future Plans 

We believe the software used in this work was unfortunately the wrong approach. For  a  
classroom-based programming endeavor, where the programming is not meant to be the sole 
course focus, there must be minimal fussing with software installs, versions, downloads, and 
configuration. Despite popular belief, the typical freshman college-student is not very computer 
savvy. Organizing work with folders, following software-installation directions, using logic to 
write a few lines of code, stitching together image files and maintaining a Youtube account are 
all rather difficult for most students, and well beyond what they were expecting in a freshman 
physics course. Although we still remain convinced of the graphics approach to freshman physics 
(we cannot ignore the FMCE learning gains we consistently see when using this approach), such 
“computer issues” quickly lead to a negative outlook for the course. 

But this isn’t all of their fault. The Povray-based system used in this work was troublesome, 
but we feel as if it was the best choice, given what’s available. We wanted easy programming 
access to beautiful looking graphics. Povray generates some of the best looking graphics one 
can find, through its relatively simple scripting language, but it has not been maintained since 
the early 1990s. The scripting language, despite being “Turing complete” is is very contrived 
and awkward. The OSX version, called MegaPOV has a few strange bugs on both older PPC 
machines and on the latest Intel-based machines. We now are convinced that for such a classroom 
endeavor, software needs to be 100% web-based. 

A web-based system would be an ideal substitute as a “lighter” programming environment. 
It would require only that the student point their browser to a URL in order to do their work. 
As for animation, the HTML5 canvas and WebGL are of great promise. With performance 
improvements in JavaScript (i.e. Google’s V8 engine), such a web-platform is becoming a viable 
alternative. JavaScript, however, is a strange language, and we don’t think students will like 
using it any more than Povray’s scripting language. 

We these considerations, we have begun work on such a system that includes the following 
features: 

1. Integrated editor and output-screen all in a single browser window, with a single “run” 
button. 

2. Zero-framework, meaning there are no include files or libraries to import. Typing a single 
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line into the editor such as 

sphere(<0,0,0>,5,"red") 

will draw a red sphere with a radius of 5 pixels at x = 0, y  = 0, z  = 0.  

3. A JavaScript preprocessor,	 that rids the “apparent language” of seeming unnecessary 
parentheses, semi-colons and curly braces, in favor of much less punctuation and do-end 
pairs for grouping code. We find the Lua (www.lua.org) language to be the ideal language, 
so are writing a preprocessor to morph JavaScript into Lua. 

4. WebGL animation for a compelling look to the graphics. 

5. Support for a native vector data type (as part of the preprocessor), so a line like r=<5,1,3> 
is valid. 

A early prototype of this work is available as an open-source package at: 

https://github.com/tbensky/physgl 

https://github.com/tbensky/physgl
http:www.lua.org

