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Many high-resolution surfaces are created through isosurface extraction from volumetric repre- 

sentations, obtained by 3D photography, CT, or MRI. Noise inherent in the acquisition process can lead 

to geometrical and topological errors. Reducing geometrical errors during reconstruction is well studied. 

However, isosurfaces often contain many topological errors in the form of tiny handles. These nearly 

invisible artifacts hinder subsequent operations like mesh simplification, remeshing, and parametrization. 

In this paper we present an efficient method for removing handles in an isosurface. Our algorithm makes 

an axis-aligned sweep through the volume to locate handles, compute their sizes, and selectively remove 

them. The algorithm is designed for out-ofcore execution. It finds the handles by incrementally 

constructing and analyzing a surface Reeb graph. The size of a handle is measured by a short surface loop 

that breaks it. Handles are removed robustly by modifying the volume rather than attempting “mesh 

surgery.” Finally, the volumetric modifications are spatially localized to preserve geometrical detail. We 

demonstrate topology simplification on several complex models, and show its benefit for subsequent 

surface processing. 

Categories and Subject Descriptors: I.3.0 [Computer Graphics]: 
 
1. INTRODUCTION 

 
Highly accurate geometric models of physical objects are often acquired through discrete scanning 

techniques. For example, models are commonly obtained using laser range scanners, computed 

tomography (CT) or magnetic resonance imaging (MRI). Laser range scanners achieve full coverage of 

complex objects by acquiring and merging multiple scans. Many surface reconstruction algorithms 

perform the merging of scanned data using a volumetric grid representation, in which the model is 

represented as the zero-contour of its sampled distance function, i.e., as an isosurface [Curless and Levoy 

1996; Hilton et al. 1996; Hoppe et al. 1992; Levoy and others 2000]. Similarly, CT or MRI produce data 
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volumes from which isosurfaces are extracted [Lorensen and Cline 1987]. [Insert Figure 1] [Insert Figure 
 

2] 
 

For surface reconstruction, one advantage of an isosurface representation is that it naturally supports 

models of arbitrary genus, i.e., with any number of “handles.” A handle is a toroidal region of the surface 

with genus g = 1 (various formal definitions exist, see for example, “Conway’s ZIP proof” [Francis and 

Weeks 1999]). An example of an isosurface with arbitrary genus is the Buddha statue used in Figure 2 

that has genus 6. Unfortunately, reconstructed isosurfaces may have higher genus than expected, due to 

the presence of extraneous topological handles. In fact, the scanned Buddha surface has genus 104 

because of nearly invisible artifacts like the one revealed in Figure 1. Similar artifacts also arise in models 

acquired from CT and MRI scans, and can result in incorrect connectivity of biological structures, such as 

a brain surface with non-zero genus. In general, topological defects are caused by a number of factors, 

including sampling density, sampling noise, misalignment of scans, and grid discretization. 

While often invisible, extraneous handles create significant problems for subsequent geometry processing 

like model simplification, smoothing, and parametrization. As seen in Figure 2, traditional mesh 

simplification preserves all handles, resulting in inferior overall quality at coarse resolutions. Also, 

topological artifacts hinder any processing that must parametrize the surface, such as texture mapping and 

remeshing (see Section 3). Finally, correct topology can be essential for applications such as the fitting of 

organ templates to medical MRI data [Shattuck and Leahy 2001; Jaume et al. 2002]. 

We present a method for removing topological defects in an isosurface. Rather than attempting to repair the 

defects on a mesh already extracted from the volume [Guskov and Wood 2001], our approach operates on 

the volume representation directly, as this offers advantages of efficiency and robustness. In terms of 

efficiency the advantage of the volume setting is the natural ordering of the data in the form of planar slices. 

This ordering allows us to develop out-of-core algorithms to process very large dataset. Operating directly 

on a volume is robust because even when we alter discrete grid samples in the volume to simplify the 

topology, the final isosurface will remain a manifold [Lachaud 1996]. [Insert Figure 3] 



Our algorithm identifies topology in the volume through the application of techniques associated with 

Morse theory [Milnor 1963]. The topology is coded in a Reeb graph [Reeb 1946], where cycles in the 

Reeb graph correspond to handles. See Section 1.1 for details. In order to measure the size of handles on 

the surface, we examine them one by one and consider cutting this region along a non-separating cut. A 

non-separating cut leaves the surface connected [Aleksandrov 1956]. By subsequently pinching each of 

the two open boundaries of such a cut to a point, the genus of the handle is reduced (g = 0). See 

Figure 11 for an example. Using the length of this cut as a measure of the size of the handle, we choose 

either to retain the handle or remove it. Our method sweeps through the volume grid to locate handles, 

compute their sizes, and selectively remove them, accessing only a small buffer of the volume at a time. 

The contributions of our method are the following: 

Out-of-core execution Complex 3D models are represented by large volumes that may not fit entirely 

in memory. The model in Figure 3 is from a 885×709×736 grid, and much larger models now exist 

[Levoy and others 2000]. The algorithm is applied to such volumes using out-of-core methods. The 

volume is processed using a sweep method, so the data access pattern is highly regular. We encode 

surface topology as the sweep progresses using a Reeb graph, requiring only a few slices in memory at 

any time. 

Fast identification of handles Handles are efficiently identified during the sweep, as cycles in the 
 

Reeb graph as it is incrementally constructed. We detect all handles during the sweep. 
 

Handle size estimation and local repair Some models have genus that should be preserved, such as 

the handles formed by the Buddha’s arms. We introduce a simple measure of handle size to be the length 

of a non-separating cut, and remove all handles with a size smaller than a user defined threshold. Cutting 

along such a cycle helps retain as much as possible of the fine geometrical detail of the model. 

Volumetric modification To remove a handle, we alter the scalar values of the volume, thus indirectly 

modifying the isosurface. Since properly-extracted isosurfaces are always manifold [Lachaud 1996], 

operating on the volume is robust. In contrast, traditional “mesh surgery” must deal with issues of surface 

self-intersection and non-manifoldness. Since our algorithm creates a topologically clean volume, this 



volume can then be used for surface extraction or other applications that depend on a topologically accurate 

volumetric representation, for example cortex labeling [Jaume et al. 2002] or 3D morphing. 

Our goal is the removal of small excess topology. Applying our simplification method to large handles 

that are obstructed by another piece of the isosurface may result in disconnected components or an 

additional handle. We discuss this issue in more detail in Section 2.3. Our algorithm is designed to detect 

all handles in an iso-surface. We propose a simple metric to measure the size of these handles and a 

simplification method suited to the removal of small extraneous handles. Our method operates directly on 

the volume data, is out-of-core and produces topologically simplified volume data and isosurfaces. 

1.1 Related Work 
 

Reeb graphs and Discrete Morse Functions Our approach is related to Morse theory, which examines 

the relationship of the critical points of a smooth function defined on a smooth manifold to the 

connectivity of the manifold [Milnor 1963]. Since we are only interested in identifying handles on a 

surface, we do not attempt to identify every critical point on the surface (for example we are not 

interested in maxima and minima). We therefore take an approach that is loosely related to discrete Morse 

theory [Forman 2002]. Similar to the work of [Axen 1999; Guskov and Wood 2001; Wood et al. 2000], 

we examine how the trace of a discrete wavefront, induced by a distance function, changes as it 
 

progresses over a 2-manifold. Regions where the wavefront splits and merges as it passes over the surface 

are related to the location of saddle points on the surface. We refer the interested reader to the work of 

Axen [1999] for a thorough description of the use of a height function as a Morse function on triangulated 

manifolds and techniques to isolate exact critical points on the wavefront. Note that we do not find exact 

critical points on the surface, instead, we track critical regions of the surface where a discrete wavefront 

splits and merges. Each of these regions is well defined given our reconstruction rules, (see Section 2) and 

regions with non-isolated or degenerate critical points are handled appropriately. For more information 

see Section 2.1. 
 

We store and track the changes of the discrete height function with the use of a Reeb graph [Reeb 1946]. 

Specifically, given a scalar function f, defined on the surface, a Reeb graph tracks the connected 



components of the pre-image of the function. For instance, if the scalar function returns the z coordinate 

of the volume, its pre-image is the intersection of the surface with z planes, and the connected 

components consist of closed planar contours (see Figure 4). The Reeb graph tracks how these contours 

split and merge as z varies and is often used to analyze surface topology, since cycles in the graph corre- 

spond to handles. Shinagawa et al. [1991] use this framework for the reconstruction of surfaces from 

contours. Axen and Edelsbrunner [1998], Hilaga et al. [2001], and Wood et al. [2000] analyze Reeb 

graphs induced by a geodesic distance function with respect to a seed point. Because these geodesic-based 

methods require a breadth-first traversal of the surface, the irregular accesses to the volume make out-of- 

core processing difficult. Reeb graphs (sometimes called contour trees) have alternatively been used to 

construct the medial axis of polyhedral objects [Lazarus and Verroust 1999], to compute seed sets for 

tracing isosurfaces [Carr et al. 2000; Kreveld et al. 1997], to recognize shapes [Hilaga et al. 2001], and to 

re-mesh surfaces [Wood et al. 2000; Attene et al. 2001]. 

Mesh-based topology simplification [Insert Figure 4] Guskov and Wood [2001] remove topological noise 

from already extracted meshes. They repeatedly grow a-balls over the surface, and remove any handle 

enclosed within such a ball via mesh surgery. This approach is simple and effective, however it has several 

drawbacks. Namely, their definition of topological feature size fails to detect long thin handles, since they 

do not fit in a small ball (see inset figure). In addition, we prefer to operate on the volume data, since an 

isosurface will always remain a manifold even after topological repair [Lachaud 1996]. 

Using the concept of alpha hulls, El-Sana and Varshney [1997] reduce surface genus by re-tessellating 

small handles in a model. Their algorithm creates candidate tessellation regions by heuristically detecting 

crease edges in mechanical CAD models. One difference with our approach is that we evaluate whether to 

retain or simplify a handle based on a topological metric defined on the handle itself. 

Edelsbrunner et al. [2000] use alpha complexes to generate a filtration, a history of the evolution of 

complexes. A filtration allows for a combinatorial definition of topological feature size. Zomorodian 

expands this work in his thesis [2001] and presents a practical algorithm to apply topology simplification 

to a variety of topological spaces. This work could be applied to filter small handles from volumetric data. 



To properly remove the handles from volume data requires the construction of a three dimensional Morse 

complex. Recent work addresses this issue [Edelsbrunner et al. 2003]. 

Volume-based topology simplification Nooruddin and Turk [1999] convert a polygonal model into a 

volumetric representation in order to repair its topology. They apply morphological operations (dilation 

and erosion) to the volume data, causing handles to close. However, the operators affect the entire 

volume, resulting in the smoothing of geometry and thus loss of fine detail. Extensions to this approach 

were recently presented by Bischoff et al. [Bischoff and Kobbelt 2002]. We prefer a more targeted 

approach that provides analysis of the sizes of the handles and exactly preserves geometrical detail in 

regions away from topological artifacts. 

Shattuck and Leahy [2001] address the specific problem of constructing a genus-zero model of the human 

cortex from MRI scans, for use in cortical flattening and mapping. Their method removes all handles 

without regard to size, and always breaks handles along axis-aligned planes (Figure 11 shows an example 

where their strategy would fail to find a short loop to break the handle). 

Model simplification Several algorithms simplify topology as a byproduct of model simplification, e.g., 

[Garland and Heckbert 1997; He et al. 1996; Popovic and Hoppe 1997]. These methods can result in non- 

manifold structures which would hinder parametrization as much as the original topological artifacts. In 

addition, since these methods simultaneously simplify geometry and topology, removing topological 

artifacts invariably involves loss of geometrical detail. Our focus is on simplifying topology while 

preserving geometrical detail as much as possible. 

Cut graphs Our approach shares common themes with work on cutting a surface into a single topological 

disk [Lazarus et al. 2001; Erickson and Har-Peled 2002; Gu et al. 2002; Kartasheva 1999; Colin de 

Verdi`ere and Lazarus 2002]. These approaches typicallyanalyze the topology of the entire surface. Our 

problem is slightly different as we only consider reducing the genus of the surface, not cutting it into a 

disk. Erickson and HarPeled [2002] address the task of optimally cutting a surface into a disk. They 

propose a greedy algorithm to compute a nearly minimal cut graph. A cut graph is a collection of edges 

that cut a surface into a disk. Their approach must analyze the entire surface, compute a cut-graph for the 



surface and then find nearly-shortest essential loops one at a time. Our search for non-separating cuts is 

localized to process one handle at a time. This means that we are not guaranteed to find the globally 

minimum cuts. However, our algorithm can operate out-of-core and generate fast approximations of short 

non-separating cuts used to simplify the topology, [Insert Figure 5] 

2. OUR APPROACH 
 

Definitions and terminology Our input consists of a regularly sampled 3D grid of scalar values. A grid 

cube is bounded by 8 grid data points. Within each cube, an isosurface generation algorithm (e.g., 

[Lachaud 1996] or [Lorensen and Cline 1987]) defines a set of polygons. Each cube may have up to 4 

polygons. The polygons from all cubes together form a discrete representation of the isosurface. For our 

algorithm, the important element is the connectivity of the polygons, as this connectivity defines the 

topology of the surface. Our algorithm never requires the construction or storage of a triangulation of the 

surface. We assume that the connectivity of the polygons is pre-determined, for example, by some table 

driven isosurface generation algorithm. We use the connectivity rules of Lachaud [1996] due to the fact 

that they produce a closed oriented surface without singularities nor self-intersections [Lachaud 1996]. 

Lachaud’s table has proven properties by restricting data to have well defined interior and exteriors, i.e., 

for a scalar function F (x), the interior is defined as F (x) < 0, while exterior is defined as F (x) ≥ 0. This 

is similar to a standard general position argument, and creates a well defined isosurface, i.e., the surface is 

perturbed away from the volume grid nodes. 

Our approach uses a height function to construct a Reeb graph representing the topology of the surface. An 

axis-aligned sweep through the volume visits the grid data along parallel data planes. The isosurface 

intersects each such plane along a set of contours (oriented closed polylines) as depicted on Figure 4 and 8. 

A slice of the volume is the set of grid cubes between two adjacent data planes. Within each slice, the 

surface may have several connected components; each such component is called a ribbon. The boundaries 

of a ribbon consist of one or more contours in the two adjacent planes. Given the reconstruction rules of 

Lachaud, the isosurface is well defined and likewise all the ribbons and contours are well defined. 



Problem statement The topology of a surface is characterized by its genus, its orientability, the number 

of its connected components, and the number of its boundary components [Massey 1967]. Isosurfaces 

have the property that they are always orientable, and never have boundaries (if one pads all sides of the 

volume with “outside” scalar values). Our problem of topology simplification corresponds to reducing 

surface genus, i.e., removing handles. 

Our algorithm deals with multiple disconnected components by concurrently simplifying them 

independently. Typically, for the final output, one discards all but the largest component. However, for 

completeness we simplify the topology of all the components in the volume. 

Our goal is to locate handles in the isosurface and selectively remove them. Removing a handle involves 

modifying the data values of nodes in the grid, from positive to negative or vice-versa. The ideal choice of 

which handles to remove is subjective, since some topology may be “inherent” to the model. While our 

system could be designed to locate handles and repeatedly ask the user for guidance, we sought an 

automatic solution. To make this problem computationally tractable, we introduce a definition for handle 

size, and remove all handles whose measured size is smaller than a user-provided threshold B. For our 

application of topology simplification, we define the appropriate measure of the size of a handle to be the 

minimum-length non-separating cut. A non-separating cut leaves the surface connected [Aleksandrov 

1956]. For example, a sphere has no non-separating cuts. In a torus, such a cut will be one of a pair of the 

many generator loops that form a basis of the handle [Munkres 2000]. In order to support out-of-core 

processing of the data, our algorithm does not find globally minimal-length non-separating cuts. Instead our 

method finds locally short non-separating cycles for each handle. See Figure 11 for an illustration of such 

cycles. Cutting the surface along such a cycle and then pinching each new boundary of the cut to a point 

removes the handle. 

Approach overview Our approach can be summarized as: 

Sweep through the volume to locate all handles. 

For each handle found, measure its size. 
 

If the size is sufficiently small, remove the handle. We now present each of these steps in more detail. 



2.1 Locating Topological Handles 
 

Determining the genus of an isosurface is a relatively simple task. One can sweep through the volume and 

count the number of vertices (V ), edges (E), and faces (F ) for each individual component of the surface 

that would be generated during isosurface mesh extraction [Lachaud 1996]. The Euler characteristic is 

then x = |V |−|E|+|F |, and the surface genus is g = (2 − x)/2 (for each individual component of the 

surface). However, this genus analysis fails to provide any information as to the location or size of handles. 

To locate handles, we perform a sweep through the volume along the z axis, and construct a Reeb graph to 

track the connected components of the surface as the sweep advances. More precisely, we analyze the 

isosurface one slice or z-interval at a time. Within a slice, the surface is made up of ribbons, whose 

boundaries are contours in the two adjacent z planes. Both the ribbons and contours are identified using 

breadth-first search within the slice to find connected sets of polygons (in the slice) and edges (in the 

planes) respectively. Contours are constructed by searching from an arbitrary edge in the plane until the 

contour is closed. Ribbons are constructed by running a breadth-first traversal in the slice starting with the 

polygons adjacent to one contour and ending with the polygons adjacent to the previous contour. We 

create nodes in the Reeb graph corresponding to both ribbons and contours, and record their adjacency as 

graph edges, as illustrated in Figures 4 and 8. Cycles in the Reeb graph correspond to handles on the 

surface. 

Note that for constructing the Reeb graph of a surface, one must choose the rate to sample the height 

function. In our discrete setting, the ideal sampling rate is the largest step that can be taken while still 

capturing all the topology of the surface. In some settings there is no choice. For example, in work done 

by Shinagawa [1991], a Reeb graph is constructed from predetermined cross sectional contours only. In 

such a setting, a priori information about the topology of the initial shape is required to guarantee that the 

Reeb graph exactly matches the topology of the input shape. In our setting, the surface connectivity and 

topology of the surface between planar cross sections is determined by the connectivity information of the 

ribbon between z intervals. 



We choose to sample the height function at the discrete z intervals of the volumetric grid. Such planar 

slices are a natural choice for our setting as an ordered traversal through the slices allows for the out-of- 

core processing of the volume data. However, the consequence of this sampling choice is that when a 

handle is entirely contained within a ribbon, (i.e., within a slice of the volume), it does not initially appear 

as a cycle in our Reeb graph. One such intra-ribbon handle is generated by the 6×6 cube grid shown in 

Figure 5. In practice, these intra-ribbon handles occur for 1-10% of the total slices for a volume. We detect 

these intra-ribbon handles by computing the Euler characteristic of each surface ribbon. If a ribbon has 

non-zero genus, it obviously contains handles. The solution for such cases is to locally modify the height 

function to be a geodesic function defined on the vertices within the slice. Constructing a Reeb graph from 

contours defined by an ordering on the vertices within the slice will guarantee that we encode the intra- 

ribbon handles in our Reeb graph. In addition, confining the per vertex geodesic traversal to the slice keeps 

our surface access local, allowing our method to remain out-of-core. We discuss our method in more detail 

later in Section 2.1. 

Finding cycles in the Reeb graph Reeb cycles are detected incrementally as the sweep advances through 

the volume. This progressive detection allows for handle removal to occur concurrently during the sweep. 

Our approach is as follows. To detect a handle, the algorithm needs to locally differentiate in the Reeb graph 

between a lone saddle point and a pair of saddle points that form a handle. Both of these events are encoded 

in the Reeb graph by the merging of two contours to one ribbon, see Figure 4 for an example of both cases. 

To distinguish between these two cases we associate a label with both ribbons and contours, that identifies 

the connected component to which they belong. Such a labeling allows us to locally differentiate between 

the merging of (a) two previously disconnected components (i.e., a lone saddle point) and (b) two previously 

connected components (i.e., a handle forming from the second of a pair of saddle points). In our setting the 

only way that a Reeb cycle can form is when two contour nodes in the previously visited plane are added to 

a single ribbon node in the Reeb graph. When adding such graph-edges, we test whether 
 

[Insert Figure 6] [Insert Figure 7] the two contour nodes have the same component label. If so, they 

belong to the same connected component and a Reeb cycle is formed. In any case, after the graph-edge is 



added, we relabel the graph nodes to reflect the merging of connected components. This process is 

implemented efficiently using a Union-Find algorithm on a disjoint-set data structure [Cormen et al. 

1990], taking negligible time. 
 

When a Reeb cycle is detected, we need to isolate the associated handle in the surface. The process of 

isolating the geometric extent of a handle is a combinatorial problem as a surface can be ‘cut’ into isolated 

handles in many different ways. For the purpose of computer graphics, it is reasonable to isolate handles 

that are geometrically localized in the surface. Each of the handles that we consider, correspond to a cycle 

in our Reeb graph. Each of these cycles correspond to the height function splitting into two components 

and then merging back together. As the height function is spatially localized, the cycles will correspond to 

geometrically succinct regions. To isolate handles for each Reeb cycle that is detected, we perform a 

breadth-first search through the graph to find the shortest graph cycle, starting from one of the like-labeled 

contour nodes, e.g., c1 to the other c2 as shown in Figure 7. The Reeb cycle path consists of alternating 

ribbon and contour nodes and defines a handle. Note that for a given z interval, a ribbon may have k child 

contours [Insert Figure 8] with the same component labels, with k ≥ 2. Although the local genus of the 

surface is k − 1 we need to consider all pairs of child contours as this allows us to test each of the reasonable 

ways to isolate a handle. For example, in Figure 8, in order to identify the best non-separating cut we must 

consider all pairs of child contours. Such a case can correspond to a region with a degenerate critical point, 

for example, possibly a region with a multiple saddle. In such a case, our method of checking the possible 

combinations of child contours relates to splitting a multiple saddle into simple saddles (similar to 

[Zomorodian 2001]). [Insert Figure 9] 

The following pseudocode summarizes the key parts of the algorithm for detecting cycles and isolating 

handles (see Figure 7): 

function Add ribbon to Reeb graph(ribbon r, Reeb Graph G) 

Add ribbon r as node in Reeb graph G. 

label(r) := unique label(). 
 

Identify all previous contours C adjacent to r on surface. 



Foreach (pair contours c1, c2 E C) 
 

if label(c1) = label(c2) then 
 

path P := shortest path from c1 to c2 in G. 

Report Reeb cycle as (c2, r) + (r, c1) + P. 

Foreach (contour c E C) 

Add edge (c, r) to G. 
 

Unify labels of contour c and ribbon r. 
 

Finding intra-ribbon handles Recall that we must also consider the case of a handle contained entirely 

within a ribbon. For each slice of the volume, we keep track of the Euler characteristic of the surface and 

if the Euler characteristic does not match the number of cycles in the Reeb graph, we know that the 

previous slice must contain at least one intra-ribbon handle. To detect the handle(s) we modify our height 

function to locally be a discrete geodesic function defined on the faces in the current slice. Specifically, 

we use a breadth-first traversal over the faces in the current slice. We construct a contour after adding 

each neighboring face one at a time. This face by face traversal is limited to only the polygons in the 

current slice. Such a construction guarantees that our Reeb graph will correctly encode a cycle for each 

intra-ribbon handle. Note that an intra-ribbon handle relates to a non-isolated critical point. Altering our 

algorithm to construct a contour after adding each face within the slice, resolves this issue by isolating 

distinct critical regions, (i.e., where the contours split from one component into two and vice versa). We 

could traverse the entire volume with a discrete geodesic, however, the breadth-first traversal of the 

surface would cause irregular access to the volume data, making out-of-core computation impossible. 

Once a Reeb cycle is found for an intra-ribbon handle, the previously described approach to isolate 

handles is applied. [Insert Figure 10] 

2.2 Measuring Topological Handle Size 
 

Recall that a Reeb cycle in the Reeb graph identifies a cycle of ribbons forming a handle. There are two 

natural ways to remove a handle (Figure 9). In order to remove either of the handles shown in Figure 9, 

we reduce the number of non-separating cycles for the surface. Recall that genus is defined as the 



maximum number of simple non-separating cuts that do not intersect. By collapsing a non-separating cut 

we conceptually either fill in the interior of a handle or we pinch open the handle (Figure 9). Local 

surface geometry determines which method is more appropriate, as illustrated in Figure 9. Both methods 

are in fact the same operation applied to two different non-separating cuts. We call this operation loop 

closure. Topologically, the loop closure operation collapses the loop to a single point, removing the 

handle. In terms of geometry, loop closure removes the handle by removing a thin strip of surface about 

the loop, and closing the resulting two boundaries using two parallel “membranes” spanning the loop. The 

actual implementation of this operation on our discrete grid volume is discussed in the next section. 

Two non-separating cuts Given a handle, to choose the more appropriate loop closure operation, we 

compute two non-separating cuts. For the sake of discussion we distinguish and name these loops 

depending on the orientation of our Reeb graph: 

the Reeb loop is the locally short loop around the Reeb cycle, and 
 
the cross loop is the locally short loop “transversal” to the Reeb loop. 

 
For a given sweep direction, a loop that may be called a Reeb loop would alternately be called a cross loop 

from an orthogonal sweep direction. On the irregularly shaped torus, shown on the right, the Reeb loop is 

shown in magenta, and the cross loop is shown in blue. Since we perform a sweep in only a single 

direction, it is important that we consider both types of handle removal operations. There are many 

possible non-separating cuts for a given handle. Since our goal is to simplify the topology in a way that 

minimizes geometric changes to the volume we attempt to find tight fitting loops of short length. We 

define handle size to be the smaller of the Reeb loop length and the cross loop length. [Insert Figure 10] 

[Insert Figure 11] 

We find the Reeb loop by constructing a non-separating cut that matches the Reeb cycle. We can do this by 

cutting the Reeb cycle and then finding the shortest path from one side of the cut to the other. Observe that 

any one of the contours in the Reeb cycle are non-separating curves, which can be used to cut the Reeb 

cycle. Intuitively, this corresponds to cutting along a contour of the handle to open it into an cylinder open 

on both ends, see Figure 10. We construct a locally short non-separating cut that follows the Reeb cycle by 



computing the shortest path from one side of such a contour to the other. In the intuitive setting of the 

cylinder this corresponds to computing the shortest path from the top of the cylinder to the bottom. This 

loop is locally nearly minimal because we close the loop by only traversing along the contour. We guarantee 

that the loop that we find matches a given Reeb cycle by restricting the area that we search for the loop. The 

Reeb cycle contains at least one pair of contours in the same plane, thus we start our search from one such 

contour and only consider returning paths that have passed through the other contour. 

We construct the cross loop in a similar manner. Starting from one side of the Reeb loop, we compute the 

shortest paths to the points on the other side of the Reeb loop. Among all shortest paths forming cycles, 

the shortest is the cross loop. 

Measure of handle sizes From these two non-separating cuts, we can now derive a measure of the handle. 

Generally, we use the smaller of the two cuts as the measure of handle size. If desired, we can provide 

additional user-control. For example, if the user wants to avoid removing long skinny handles, we can 

preserve handles that have a large ratio between the two loop sizes. Also, the user can specify that material 

is to be only added or only subtracted from the volume. From the orientation of any contour in 

the Reeb graph cycle, one can determine whether the ribbon cycle encloses a void or encloses material. 

We can therefore exclude the appropriate loop if desired. 

As a measure of loop size, we chose the perimeter length of the loop. This length corresponds to the 

extent of the cut along the surface necessary for loop closure. An [Insert Table 1] [Insert Figure 12] 

alternative would be to measure the area of the loop, e.g., the area of the spanning minimal surface. This 

area would correspond to the extent of the new surface necessary for loop closure. We have chosen loop 

length because on our examples this typically was a tighter measure than area. The user may specify an 

area metric instead of length if this is deemed more appropriate for a particular application, e.g., if filling a 

long narrow opening in a wide surface is a desired result. Note that by evaluating both loops, this measure 

is independent of sweep direction. 

2.3 Removing Handles 



The same minimal loop used to define handle size is also used to remove the handle through loop closure. 

We perform loop closure on the isosurface by scan-converting a surface spanning the loop into the volume 

grid data [Kaufman 1987]. Since the loop is generally non-planar, one could construct some approximation 

to the minimal spanning surface. For efficiency, we simply use a triangle fan about the centroid of the loop. 

The scan-conversion writes either positive or negative scalar values in the grid, depending on the orientation 

of the loop (discussed in Section 2.2). This rasterization technique both collapses and pinches off handles 

through insertion of a thin wall. The modified isosurface, once extracted from the volume data, is 

guaranteed to remain a manifold and to have no self-intersections [Lachaud 1996]. 

[Insert Figure 14] There are a few potential problems to consider. Our algorithm provides the essential 

information to always successfully remove a handle, i.e., the location of a locally short non-separating cut 

for each handle. Topologically, the handle can always be closed along this loop, reducing the genus of the 

model. However, depending upon how the surface is embedded in R3 the fan of triangles closing the non- 

planar loop could be self-intersecting, or could intersect other regions of the surface, for instance, if the 

handle were to contain another, nested handle. In practice, this has never occurred since we only simplify 

small handles. At worst, the loop closure could introduce additional handles. To address this, we locally 

rebuild the Reeb graph after a loop closure operation. If any new components or handles were introduced 

in the previous simplification step, they will appear in the reconstructed Reeb graph and be subsequently 

processed. In theory the introduction of new handles could cause halting problems if each collapse always 

created a new handle. We have chosen a relatively simple method for performing loop closure due to the 

fact that our target application is to remove small excess topology from models. In practice, the issue of 

obstructions has never caused the creation of new handles or halting problems for our approach when 

simplifying small extraneous topology. In addition, even for large loops that do not contain obstructions, 

our simple closure routine performs as expected (see inset Buddha figure). However, for an alternative 

application that targeted closing large loops it would be important to add a criterion to check for 

obstructions and alter the closing routine accordingly. 

3. RESULTS AND DISCUSSION 



We have run our topology simplification algorithm on a number of volumes, as shown in Table I. The 

Buddha, dragon, feline and David models are from laser range scans at Stanford University. The brain 

models are from an MRI scan from the Harvard Medical School [Kikinis et al. 1996]. 

We have demonstrated the robustness of our algorithm using convoluted geometry (Figure 12) and 

large volumes (Table I). Since our algorithm locally reconstructs the Reeb graph after every topological 

change, it guarantees that we are accurately identifying all of the topology of the surface, even as its 

topology evolves. In practice our method has always removed all handles with length less than B. 

The timing for our algorithm depends on the size of the volume and on the number of handles. It depends 

particularly on the number of handles that need to be simplified, since the Reeb graph must be locally 

rebuilt each time a handle is simplified. In general, our processing takes on the order of minutes, see 

Table I. 

During topology simplification, collapse and pinch operations appear with approximately equal 

frequency. Topological artifacts are generally small, in terms of both Reeb and loop sizes, and are 

oriented randomly throughout the volume, leading to equal likelihood of either the Reeb or cross loop 

having size < B. 

The scatterplot in Figure 18 shows a typical distribution of handle sizes for an object with large-scale 

topology. Typically, extraneous handles in the isosurface are small with 90% having loop lengths of 4–8 

(see Figure 17). However, there are some volumes containing handles with larger Reeb and cross loops. 

For laser range data, these larger loops are typically associated with spurious data, external to the intended 

surface. For example, whereas the surface of the dragon has predominantly small handles, one of its 

spurious external surface components has a handle of length 46. [Insert Figure 14] [Insert Figure 15] 

3.1 Applications 
 

Topology simplification facilitates many surface operations: 
 

Fewer triangles are wasted to encode topological defects during mesh simplification, as shown in Figures 
 

2, 3 and 12 using the progressive mesh representation of Hoppe [1996]. Consequently, coarser meshes 



can be created, and geometrical quality is improved at all levels of detail. [Insert Figure 16] [Insert Figure 
 

17] 
 

Better surface parametrization improves texture mapping, as shown in Figure 16 using the method of 

Sander et al. [2001]. Fewer charts are necessary to partition the surface, which results in a nicer 

parametric domain. 

Removal of topological defects greatly facilitates remeshing, as shown in Figure 13 using the method of 

Guskov et al. [2002]. The remesh has nice regular face sizes and allows for efficient progressive geometry 

compression [Khodakovsky et al. 2000] as well as many other semi-regular geometry processing algorithms 

[Schr¨oder and Sweldens 2001]. The topologically clean volumes can also be more readily used for semi- 

regular mesh extraction [Wood et al. 2000]. Applications such as geometry images [Gu et al. 2002], as 

shown in Figure 14, which remesh the entire surface to a completely regular structure by parametrizing the 

surface to a disk, would suffer from large distortion if applied to surfaces with many topological artifacts. 

Medical applications such a cortex labeling benefit from operating on topologically clean volumes. For 

example, the approach of Jaume et al. [2002], requires genus zero brain models and volumes to propagate 

cortex labels correctly. See Figure 12 for an illustration of excess topology in brain data. Using our 

method to obtain topologically clean volumes, Jaume et al. are able to propagate cortex labels from one 

labeled volume to others. See Figure 15. [Insert Figure 18] 

 
 
 
 
 

3.2 Discussion 
 

Setting the handle size threshold For our examples, we first make an initial pass over the volume to gather 

statistics on handle sizes, and examine these using a scatterplot (Figure 18) or histogram (Figures 17. By 

looking at the relative sizes of handles, we select an appropriate B. For most of the models, the excess 

topology has loop lengths in the range of 4–8. Thus, our setting of B typically ranges from 10–20. 

We observed that the initial statistics can change significantly as handles are simplified. Figure 18 shows 

a large handle with a small nested handle. For this configuration, the large handle has a large Reeb loop 



and small cross loop, and the small handle has an even smaller Reeb loop and shares the same cross loop. 

During topology simplification, the small handle is removed first leaving only the large handle which 

now has both large Reeb and cross loop. This phenomenon is also reflected in the scatterplots before and 

after topology simplification (Figure 18), where a data point near the B line moves to the top right once 

the small handle is removed. Note that this effect would be present in any topology simplification that 

sequentially treats handles locally one by one, when handles are adjacent to one another as seen in Figure 

18. As adjacent handles are simplified, the topology and measure of that topology changes. There is more 

than one way to simplify the topology of a shape. In order to support out-of-core operations on large data 

we have chosen to analyze topology locally in terms of handles. Since our intended application is the 

removal of topological artifacts, we have chosen an approach that automatically removes excess topology 

of a given size. An alternative application could integrate visualization of the handles and their non- 

separating cuts to allow the user more fine control over the order in which loops are collapsed if so 

desired. For our setting, we found that our method performed well and achieved the desired results. 

[Insert Figure 19] 
 

Algorithm time complexity The overriding time complexity term for the algorithm is the traversal of 

the volume, which requires accessing O(n3) grid values, where n is the extent of the grid in each 

dimension. Typically the surface has only O(n2) polygons, and the Reeb graph only O(n) nodes and edges, 

so the processing steps related to the surface and Reeb graph do not require significant time. However, 

there is processing time associated with each handle discovered and its subsequent measurement and 

possible removal. This processing time is dominated by the time complexity of the breadth-first searches 

run to compute the length of the Reeb and cross loop. For each loop, the complexity is O(d log d), where d 

is the number of polygons in the local handle. This measure correspond to running Dijkstra’s algorithm. In 

the worst case situation the complexity for a given handle could be O(n2), if the entire surface were 

composed of one large handle. 

A final concern for time complexity is the fact that for every handle that is simplified, we must 

reconstruct the Reeb graph locally to account for the resulting changes. The cost of this reconstruction is 



on the order of B × n (where B slices with n polygons need to be reconstructed after the topology  
 

changes). 
 

Algorithm space complexity Perhaps more important are the space requirements. In practice, we 

only keep 50 slices of volume in memory at any time, making the algorithm viable even for low-end 

computers. The choice of buffer size is flexible and can change due to the size of the volume and the 

memory resources available. All of our operations have strong spatial coherence, and in practice, we 

found that we rarely reload the same slice more than twice. [Insert Figure 20] 

In addition to the buffer of volumes slices, the algorithm stores the Reeb graph O(n) for the surface, 

and some limited local number of polygons, P < O(n2). Typically we store ≈ 50 × n polygons, since 

polygons below the bottom of the current buffer are erased to minimize memory use. These local 

polygons are stored in order to compute loops for any handle that is being processed, however, they can 

also quickly be recomputed using a table look-up [Lachaud 1996]. In general computing the Reeb loop 

for a handle requires access to the polygons in all ribbons referred to in the Reeb cycle. Accurate 

computation of the cross loop requires additional slices above and below the cycle. The number of 

additional slices is determined according to B, such that we are guaranteed to find a cross loop of length 

less than B if one exists. The worst case situation is that of a very long handle with a thin cross-section 

somewhere along its length. In this worst case setting, the memory requirements may reach O(n2) to 

store all of the polygons, in practice this does not happen. 

Since polygons below the bottom of the current buffer are erased to minimize memory use, Reeb and 
 

cross loop computation for handles with length > 50 may require reloading the buffer with previous slices of 

the volume that have already been flushed from memory. This reloading is only necessary to re-allocate 

polygons and all computations can be done in sequence, locally on the volume data. Reloading previous 

buffers is rare since few handles have large extents. 

4. SUMMARY AND FUTURE WORK 
 

We have introduced a algorithm for automatically removing handles from isosurfaces through direct 

processing of the original volume data, and demonstrated its effectiveness on several complex models. 



We have also demonstrated that removing topological artifacts is important for many subsequent  
 

modeling operations. 
 

We would like to extend this work to other settings besides volume data, and are presently exploring 

techniques to use a geodesic distance to construct a Reeb graph for arbitrary meshes. This work involves 

exploring loop closure operations that avoid self-intersections. This mesh setting poses challenges for out- 

of-core approaches. 

Another area of future work is to improve the local surface geometry after handle removal. The 

handles removed in our test examples were so small as to be nearly invisible, so we did not consider 

smoothing to be important. However, it is conceivable that some settings and applications could require 

the removal of topological features of a more substantial size. Since we have information about the local 

region affected by the loop closure, we could smooth the newly inserted surface. In range data 

reconstruction algorithms, it is already common to smooth the unscanned, filled-in regions of the surface 

[Curless and Levoy 1996; Davis et al. 2002]. 

For larger handles, it may be desirable to use more accurate approximations of true geodesic non- 

separating cuts rather than the discrete graph approximation. More generally, we are interested in 

exploring alternative methods for measuring handle size. 

To explore data such as MRI, some systems allow the isosurface value to be varied interactively. 

Efficiently removing handles in the changing isosurface is an interesting problem. Perhaps it is possible to 

pre-process the volume to remove topological artifacts for a range of isosurface values. For such a setting, 

the work of Zomorodian [2001] is promising. 
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Fig. 1. Sequence of progressively closer views revealing an extraneous handle in the Buddha mesh. 
 

 
 

 
 

Fig. 2. This scanned Buddha has genus 104 instead of the expected 6. Regions with extraneous handles 
are highlighted in red. The two images on the right compare mesh simplification results before and after 
topology simplification for a given triangle budget. 

 
 

Fig. 3. Comparison of progressive meshes of the David model before and after topology simplification. 
On the left, many triangles are wasted representing invisible topological artifacts. Note that the 
topologically simplified mesh on the right shows no visible artifacts from the topology simplification 
process. 



 

 

 
 
Figure 4 

 
 
 
 

 
 
Fig. 5. An isosurface and its corresponding Reeb graph for a bottom to top sweep of the volume.  In the 
graph, contour nodes are shown in blue, and ribbon nodes in pink. Also shown on the graph are 
component labels, here represented as numbers. 

 

 
 

 
 
Fig. 6. Example of intra-ribbon handle. This torus tilted at an angle is formed by two “C” shaped 
contours. As shown in the figure on the left, the Reeb graph does not contain any cycle. On the right we 
see the volume grid overlaid on this isosurface. Observe that the slice between the two “C” shaped 
contours is equivalent to a torus with boundaries. 



 

 

 
 

Fig. 7. Example surfaces and their associated contours and Reeb graphs. The examples are: a torus on its 
side, an upright torus, and a bowl-like surface. 

 

 
 

 
 

Fig. 8. Example surface and its Reeb graph with adjacent handles. The ribbon r has the previous contours 
C = {c1, c2}. When we discover the Reeb cycle associated with contours c1 and c2, we construct the 
cycle path by finding the shortest path from c1 to c2. 

 

 
 

 
 

Fig. 9. A two-holed torus, the associated planar cross section, and its associated Reeb graph. To find 
the locally shortest non-separating cut (shown in blue), we must explore all pairs of child contours with 
the same component label (i.e., {c1, c2}, {c1, c3} and {c2, c3} where the minimal length non-separating 
cut is associated with {c1, c2}). 

 

 
 

 
 

Fig. 9. Two ways of removing a handle, illustrated on two tori. The “fat” torus is best repaired by 
collapsing the handle, and the “skinny” torus is best repaired by pinching the handle. 



 

 

 
 

Figure 10 
 

 
 

Fig. 10. Illustration of the process of identifying the Reeb loop for a torus. In this case, we are searching 
for a loop on the surface of the torus that corresponds to the red cycle in the Reeb graph shown on the left. 
The search is started from one of the contours in the Reeb-cycle, shown in purple in the middle two 
images. 

 

 
 

 
 

Table I. Quantitative results: The handle threshold size P is expressed in units of cube edge size. The 
number of removed handles (original genus minus simplified genus) is broken down into handles 
collapsed by Reeb or cross loop. Times are shown in CPU minutes for a 1 Ghz, Pentium 4. All values 
listed are for the entire volume, i.e., for the surface and any spurious disconnected components in the 
volume data. 



 

 
 

Fig. 12. Close-up of the feline mesh with the Reeb loop shown in blue, and cross loop shown in red. The 
right image shows our algorithm’s output after collapsing the cross loop of the handle. 

 
 

Figure 13 
 

 
 

Fig. 14. Comparison of the base meshes of progressive meshes on a brain model (MRI). 



 

 

 
 

Fig. 15. A remesh of the genus 1 dragon. Given the difficulty of achieving a high-quality parametrization 
for high-genus models, remeshing the original dragon with genus 46 would be quite challenging and 
require numerous elements in the base domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Geometry Image of the genus 1 dragon model, showing the cuts used to parametrize the entire 
model onto a single chart. Parameterizing the 500K face dragon onto a unit square would cause large 
distortion with the original genus 43 model. 

 

 
 

 
 

Fig. 17. Two different views of a brain model in which cortex labels have been propagated from one brain 
to the next through the method of Jaume et al.. 



 

 

 
 

Fig. 18. Comparison of normal-mapping progressive meshes before and after topology simplification. 
Both models refer to 512x512 texture images. The topological complexity of the original model requires 
many more parametric charts, shown in pseudocolor. The resulting fragmentation of the parametric 
domain restricts simplification. 

 
 

Fig. 19. Histogram of handle sizes for the original scanned Buddha model. Recall that handle size is the 
smaller of the Reeb and cross loop lengths. 



 

 

 
 
Fig. 20. Scatterplot of the Reeb loop and cross loop lengths of the handles of the Buddha, before and after 
topology simplification. Hollow circles identify handles whose minimal loop encloses a void. The red 
lines mark the range of t that keeps exactly these 6 handles. On the right we see corresponding close up 
view of two adjacent handles on the Buddha model with a shared small cross loop. After topology 
simplification (bottom), the small handle is collapsed and the larger handle now has a larger cross loop. 

 
 
 
 
 
 

 


