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Zero-two law for cosine families

Felix L. Schwenninger and Hans Zwart

Abstract. For (C(t))t≥0 being a strongly continuous cosine family on a Banach space, we show that
the estimate lim supt→0+ ‖C(t) − I‖ < 2 implies that C(t) converges to I in the operator norm. This
implication has become known as the zero-two law. We further prove that the stronger assumption of
supt≥0 ‖C(t) − I‖ < 2 yields that C(t) = I for all t ≥ 0. For discrete cosine families, the assumption

supn∈N ‖C(n) − I‖ ≤ r < 3
2 yields that C(n) = I for all n ∈ N. For r ≥ 3

2 , this assertion does no longer
hold.

1. Introduction

Let (T (t))t≥0 denote a strongly continuous semigroup on the Banach space X with
infinitesimal generator A. It is well known that the inequality

lim sup
t→0+

‖T (t) − I‖ < 1, (1.1)

implies that the generator A is a bounded operator, see, e.g. [12, Remark 3.1.4] or
equivalently that the semigroup is uniformly continuous (at 0), i.e.

lim sup
t→0+

‖T (t) − I‖ = 0. (1.2)

This has become known as zero-one law for semigroups. Surprisingly, the same law
holds for general semigroups on semi-normed algebras, i.e. (1.1) implies (1.2), see,
e.g. [5]. For a nice overview and related results, we refer the reader to [4].

In this paper, we study the zero-two law for strongly continuous cosine families on
a Banach space, i.e. whether

lim sup
t→0+

‖C(t) − I‖ < 2 implies that lim sup
t→0+

‖C(t) − I‖ = 0. (1.3)
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This implication is known if the Banach space is UMD, see Fackler [6, Corollary
4.2], hence, in particular for Hilbert spaces. On the other hand, the 0 − 3/2 law, i.e.

lim sup
t→0+

‖C(t) − I‖ <
3

2
implies that lim sup

t→0+
‖C(t) − I‖ = 0,

holds for cosine families on general Banach spaces as was proved by Arendt in
[1, Theorem 1.1 in Three Line Proofs]. The result even holds without assuming that
the cosine family is strongly continuous. In the same work, Arendt poses the question
whether the zero-two law holds for cosine families, [1, Question 1.2 in Three Line
Proofs]. The following theorem answers this question positively for strongly contin-
uous cosine families. For its proof and the definition of a cosine family, we refer to
Sect. 2.

THEOREM1.1. Let (C(t))t≥0 bea strongly continuous cosine family on theBanach
space X. Then,

lim sup
t→0+

‖C(t) − I‖ < 2, (1.4)

implies that limt→0+ ‖C(t) − I‖ = 0.

By taking X = �2 and

C(t) =
⎛
⎜⎝
cos(t) 0 · · ·
0 cos(2t) 0 · · ·
...

. . .

⎞
⎟⎠ ,

it is easy to see that this result is optimal. Whether one can remove the assumption
that the cosine family is strongly continuous remains open.
The zero-one law for semigroups and the zero-two law for cosine families tells

something about the behaviour near t = 0. Instead of studying the behaviour around
zero, we could study the behaviour on the whole time axis. A result dating back to the
sixties is the following; for a semigroup the assumption

sup
t≥0

‖T (t) − I‖ < 1, (1.5)

implies that T (t) = I for all t ≥ 0, see, e.g.Wallen [13] andHirschfeld [8]. This seems
not to be well known among researchers working in the area of strongly continuous
semigroup. The corresponding result for cosine families, i.e.

sup
t∈R

‖C(t) − I‖ < 2 implies that C(t) = I (1.6)

is hardly studied at all. We prove (1.6) for strongly continuous cosine families on
Banach spaces. This result is strongly motivated by the recent work of Bobrowski and
Chojnacki. In [3, Theorem 4], they showed that if r < 1

2 , where

r = sup
t≥0

‖C(t) − cos(at)I‖; (1.7)
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then, C(t) = cos(at)I for all t ≥ 0. They used this to conclude that scalar cosine
families are isolated points in the space of bounded strongly continuous cosine families
on a fixed Banach space.
Hence, we show that for a = 0 the r can be chosen to be 2, provided C is strongly

continuous. We remark that by using the proof idea in [1, Theorem 1.1 in Three
Line Proofs] the implication

sup
t∈R

‖C(t) − I‖ < r implies that C(t) = I

holds for r < 3
2 for any cosine family. While this paper was being revised, we heard

that Bobrowski, Chojnacki and Gregosiewicz showed that for a �= 0 the implication

sup
t∈R

‖C(t) − cos(at)I‖ < r implies that C(t) = cos(at)I (1.8)

holds for general cosine families with r = 8
3
√
3
. This constant is optimal, as can be

directly seen by choosing C(t) = cos(3at)I . In [11], we wrongly claimed that r = 2
was the optimal constant.
The layout of this paper is as follows. In Sect. 2, we prove the zero-two law for

strongly continuous cosine families, i.e. Theorem1.1 is proved. In Sect. 3, we prove the
implication (1.6). Furthermore, we study the corresponding discrete version and show
that there the 2 has to be replaced by 3

2 . Finally, we give an elementary alternative
proof for strongly continuous semigroups. Throughout the paper, we use standard
notation, such as σ(A) and ρ(A) for the spectrum and resolvent set of the operator A,
respectively. Furthermore, for λ ∈ ρ(A), R(λ, A) denotes (λI − A)−1.

2. The zero-two law at the origin

In this section, we prove that for a strongly continuous cosine family C on the
Banach space X Theorem 1.1 holds; i.e.

lim sup
t→0+

‖C(t) − I‖ < 2 implies that lim sup
t→0+

‖C(t) − I‖ = 0.

However, before we do so, we first recall the definition of a strongly continuous
cosine family. For more information, we refer to [2] or [7].

DEFINITION 2.1. A family C = (C(t))t∈R of bounded linear operators on X is
called a cosine family when the following two conditions hold

1. C(0) = I , and
2. For all t, s ∈ R there holds

2C(t)C(s) = C(t + s) + C(t − s). (2.1)
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It is defined to be strongly continuous, if for all x ∈ X and all t ∈ R, we have

lim
h→0

C(t + h)x = C(t)x .

Similar as for strongly continuous semigroups, we can define the infinitesimal gen-
erator.

DEFINITION 2.2. Let C be a strongly continuous cosine family; then, the infini-
tesimal generator A is defined as

Ax = lim
t→0

2(T (t)x − x)

t2

with its domain consisting of those x ∈ X for which this limit exists.

This infinitesimal generator is a closed, densely defined operator. For the proof of
Theorem 1.1, the following well-known estimates, which can be found in [7, Lemma
5.5 and 5.6], are needed.

LEMMA 2.3. Let C be a strongly continuous cosine family with generator A. Then,
there exists ω ≥ 0 and M ≥ 1 such that

‖C(t)‖ ≤ Meωt ∀t ≥ 0. (2.2)

Furthermore, for Re λ > ω we have λ2 ∈ ρ(A) and

‖λ2R(λ2, A)‖ ≤ M · |λ|
Re λ − ω

. (2.3)

Hence, the above lemma shows that the spectrum of A must lie within the parabola
{s ∈ C | s = λ2 with Re λ = ω}. To study the spectral properties of the points within
this parabola, we use the following lemma.

LEMMA 2.4. Let C be a strongly continuous cosine family on the Banach space
X and let A be its generator. Then, for λ ∈ C and s ∈ R there holds

1. S(λ, s) defined by

S(λ, s)x =
∫ s

0
sinh(λ(s − t))C(t)x dt, x ∈ X, (2.4)

is a linear and bounded operator on X and its norm satisfies

‖S(λ, s)‖ ≤ sup
t∈[0,|s|]

‖C(t)‖ · sinh(|s|Re λ)

Re λ
. (2.5)

2. For x ∈ X we have S(λ, s)x ∈ D(A),

(λ2 I − A)S(λ, s)x = λ(cosh(λs)I − C(s))x . (2.6)

Furthermore, S(λ, s)A ⊂ AS(λ, s).
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3. The bounded operators S(λ, s) and C(s)x − cosh(λs)I commute.
4. If λ �= 0 and cosh(λs) ∈ ρ(C(s)), then λ2 ∈ ρ(A) and

‖R(λ2, A)‖ ≤ 1

|λ| · ‖S(λ, s)‖ · ‖R(cosh(λs),C(s))‖

≤ sup
t∈[0,|s|]

‖C(t)‖ · 2|s|e
|s Re λ|

|λ| · ‖R(cosh(λs),C(s))‖. (2.7)

Proof. We begin by showing item 1. Since the cosine family is strongly continuous,
the integral in (2.4) is well defined. Hence S(λ, s) is well defined and linear. For the
estimate (2.5), we consider

‖S(λ, s)x‖ ≤ sup
t∈[0,|s|]

‖C(t)‖ · ‖x‖ ·
∫ |s|

0
| sinh(λt)| dt

= sup
t∈[0,|s|]

‖C(t)‖ · ‖x‖ · 1
2

∫ |s|

0
|eλt − e−λt | dt

≤ sup
t∈[0,|s|]

‖C(t)‖ · ‖x‖ · e
|s|Re λ − e−|s|Re λ

2Re λ
.

By definition, the last fraction equals sinh(|s|Re λ)
Re λ

, and so the inequality (2.5) is shown.
Item 2. See [10, Lemma 4].
Item 3. This is clear, since C(t) and C(s) commute for s, t ∈ R.
Item 4. We define the bounded operator

B = 1

λ
S(λ, s)R(cosh(λs),C(s)).

By item 2., we see that (λ2 I − A)B = I . By item 3., we get that B = 1
λ
R(cosh(λs),

C(s))S(λ, s). Thus, again by 2., B(λ2 I − A)x = x for x ∈ D(A). Hence, λ2 ∈ ρ(A)

and the first inequality of (2.7) follows. By using the power series of the exponential
function, it is easy to see that sinh(|s|Re λ)

Re λ
≤ 2|s|e|s Re λ|. Combining this with (2.5)

gives the second inequality in (2.7). �

With the use of the above lemma, we show that the spectrum of A is contained
in the intersection of a ball and a parabola, provided that (1.4) holds, i.e. provided
lim supt→0+ ‖C(t) − I‖ < 2.

LEMMA 2.5. Let C be a strongly continuous cosine family on the Banach space
X with generator A. Assume that there exists c > 0 such that

lim sup
t→0+

‖C(t) − I‖ < c < 2. (2.8)

Then, there exists Mc, rc > 0 and φc ∈ (0, π
2 ) such that

Rc :=
{
λ2 | λ ∈ C, |λ| > rc, | arg(λ)| ∈

(
φc,

π

2

]}
⊂ ρ(A), (2.9)
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and

∀μ ∈ Rc ‖μR(μ, A)‖ ≤ Mc. (2.10)

Proof. First, we note that by (2.8) we have the existence of a t0 > 0 such that ‖C(t)−
I‖ < c for all t ∈ [0, t0), and by symmetry, for all t ∈ (−t0, t0). Using the assumption,
we find that 1

2‖C(t) − I‖ < c
2 < 1, and hence, I + 1

2 (C(t) − I ) = 1
2 (C(t) + I )

is invertible with ‖(C(t) + I )−1‖ < 1
2−c for all t ∈ (−t0, t0). In other words, −1 ∈

ρ(C(t)). By standard spectral theory, it follows that the open ball centred at −1 with
radius ‖R(−1,C(t))‖−1 is included in ρ(C(t)). Therefore,

B 2−c
2

(−1) ⊂ B 1
2‖R(−1,C(t))‖

(−1) ⊂ ρ(C(t)) ∀t ∈ (−t0, t0), (2.11)

and by the analyticity of the resolvent, we have for μ ∈ B 2−c
2

(−1) and t ∈ (−t0, t0)
that

‖R(μ,C(t))‖ =
∥∥∥∥∥

∞∑
n=0

(μ + 1)n R(−1,C(t))n+1

∥∥∥∥∥

≤ 2‖R(−1,C(t))‖ <
2

2 − c
. (2.12)

Since cosh(t) is entire and cosh(iπ) = −1, there exists an r̃ > 0 such that

cosh(Br̃ (iπ)) ⊂ B 2−c
2

(−1). (2.13)

Let λ ∈ C be such that | arg(λ)| ≤ π
2 . We search for s ∈ R such that λs ∈ Br̃ (iπ).

Let sλ = π sin(arg(λ))
|λ| be the unique element on the line {λs : s ∈ R} which is closest to

iπ . We have that |iπ − λsλ| = π cos(arg(λ)). Now, choose φc ∈ (0, π
2 ) large enough

such that π cos(φc) < r̃ and choose rc > 0 such that π
rc

< t0. Then, for all λ2 ∈ Rc,
we have that λsλ ∈ Br̃ (iπ) with sλ ∈ (−t0, t0). By (2.13), cosh(λsλ) ∈ B 2−c

2
(−1).

Thus,

cosh(λsλ) ∈ ρ(C(sλ)), and ‖R(cosh(λsλ),C(sλ))‖ ≤ 2

2 − c
, (2.14)

by (2.11) and (2.12). Therefore, 4. of Lemma 2.4 implies that λ2 ∈ ρ(A) and

‖R(λ2, A)‖ ≤ sup
t∈[0,|sλ|]

‖C(t)‖ · 2|sλ|e
|sλ Re λ|

|λ| · ‖R(cosh(λs),C(sλ))‖

≤ sup
t∈[0,t0]

‖C(t)‖ · 2πe
π

|λ|2 · 2

2 − c
≤ Mc

|λ|2

for some Mc only depending on supt∈[0,t0] ‖C(t)‖ and c. �

Combining the results from Lemmas 2.3 and 2.5 enables us to prove Theorem 1.1.
As for semigroups, we can prove a slightly more general result.



Vol. 15 (2015) Zero-two law for cosine families 565

THEOREM 2.6 (Zero-two law for cosine families). Let C be a strongly continuous
cosine family on the Banach space X. Denote by A its infinitesimal generator. Then,
the following assertions are equivalent

1. lim supt→0+ ‖C(t) − I‖ < 2;
2. lim supt→0+ ‖C(t) − I‖ = 0;
3. A is a bounded operator.

Proof. Trivially the second item implies the first one. If the assertion in item 3 holds,
then the corresponding cosine family is given by

C(t) =
∞∑
n=0

An (−1)nt2n

(2n)! .

From this, the property in item 2 is easy to show. Hence, it remains to show that
item 1 implies item 3.
Let c be the constant from Eq. (2.8), and let rc > 0, φc ∈ [0, π

2 ) be the constants
from Lemma 2.5. By Lemma 2.3, we have that there exists ω′ > ω ≥ 0 such that

sup
λ∈Rω′∩Sφc

‖λ2R(λ2, A)‖ < ∞, (2.15)

where Rω′ = {
λ ∈ C : Re λ ≥ ω′} and Sφc = {μ ∈ C : | argμ| ≤ φc}. Now, letλ such

that |λ| > rc and | arg(λ)| ∈ (φc,
π
2 ]. Thus, λ2 ∈ Rc, see (2.9), and so by Lemma 2.5,

sup
λ2∈Rc

‖λ2R(λ2, A)‖ < ∞. (2.16)

Let f (z) = z2. It is easy to see that the closure of C\(Rc ∪ f (Rω′ ∩ Sφc )
)
is

compact. Thus, (2.15) and (2.16) yield that there exists an R > 0 such that the
spectrum σ(A) lies within the open ball BR(0) and

sup
|μ|>R

‖μR(μ, A)‖ < ∞. (2.17)

Hence, we have that μ �→ R(μ, A) has a removable singularity at ∞. Since A is
closed, this implies that A is a bounded operator, [9, Theorem I.6.13], and therefore,
item 3 is shown. �

3. Similar laws on R and N

In the previous section, we showed that uniform estimates in a neighbourhood of
zero imply additional properties. In this section, we study estimates which hold on R,
(0,∞),Z, orN. ForR and (0,∞), we show that by applying a scaling trick, the results
can be obtained from the already proved laws. The main theorem of this section is the
following.
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THEOREM 3.1. The following assertions hold

1. For a semigroup T we have that (1.5) implies that T (t) = I for all t ≥ 0.
2. If the strongly continuous cosine family C on the Banach space X satisfies

sup
t≥0

‖C(t) − I‖ = r < 2 (3.1)

then C(t) = I for all t .

Proof. Since the proof of the two items is very similar, we concentrate on the second
one.
For the Banach space X , we define �2(N; X) as

�2(N; X) =
{

(xn)n∈N | xn ∈ X,
∑
n∈N

‖xn‖2 < ∞
}

. (3.2)

With the norm

‖(xn)‖ =
√∑

n∈N
‖xn‖2,

this is a Banach space. On this extended Banach space, we define Cext(t), t ∈ R as

Cext(t)(xn) = (C(nt)xn). (3.3)

Hence, it is a diagonal operator with scaled versions of C on the diagonal. By
a standard argument, it follows that the cosine family Cext is strongly continuous.
Now we estimate the distance from this cosine family to the identity on �2(N; X) for
t ∈ (0, 1].

‖Cext(t) − I‖2 = sup
‖(xn)‖=1

‖Cext(t)(xn) − (xn)‖2

= sup
‖(xn)‖=1

∑
n∈N

‖C(nt)xn − xn‖2

≤ sup
‖(xn)‖=1

∑
n∈N

r2‖xn‖2 = r2,

where we have used (3.1). In particular, this implies that

lim sup
t→0+

‖Cext(t) − I‖ < 2.

By Theorem 2.6, we conclude that the infinitesimal generator of Cext is bounded.
Since Cext(t) is a diagonal operator, it is easy to see that its infinitesimal generator
Aext is diagonal as well. Furthermore, the n’th diagonal element equals nA. Since n
runs to infinity, Aext can only be bounded if A = 0. This immediately implies that
C(t) = I for all t . �
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From the above proof, it is clear that if Theorem 2.6 would hold for non-strongly
continuous cosine families, then the strong continuity assumption can be removed
from item 2 in the above theorem as well.
We emphasise that for semigroups no continuity assumption was needed. As men-

tioned in the introduction, this can also be proved using operator algebraic result
going back to Wallen [13]. In Sect. 3.2, we present an (also simple) alternative proof.
However, first we study the analogue of Theorem 3.1 for discrete cosine families.

3.1. Discrete cosine families

A family of bounded operators C = (C(n))n∈Z is called a discrete cosine family
when C(0) = I and (2.1) holds for all t, s ∈ Z.

THEOREM 3.2. If a discrete cosine family C on the Banach space X satisfies

sup
n∈N

‖C(n) − I‖ = r <
3

2
, (3.4)

then C(n) = I for all n. Furthermore, there exists a discrete cosine family such that
C(n) �= I for all n ∈ N and

sup
n∈N

‖C(n) − I‖ = 3

2
.

Proof. We follow closely the proof in [1]. Using Eq. (2.1), we find for n ∈ Z that

2 (C(n) − I )2 = C(2n) − I − 4(C(n) − I ).

Hence,

4(C(n) − I ) = C(2n) − I − 2 (C(n) − I )2.

Taking norms, we find

4‖C(n) − I‖ ≤ ‖C(2n) − I‖ + 2‖C(n) − I‖2. (3.5)

Let L := supn∈N ‖C(n) − I‖; then, (3.5) implies that

4L ≤ L + 2L2

In other words, L = 0 or L ≥ 3/2. By assumption, the latter does not hold, and
therefore, L = 0, or equivalently C(n) = I, n ≥ 0. This proves the first part of
the theorem. To show that the constant 3/2 is sharp, we consider the following scalar
discrete cosine family on X = C,

C(n) = cos

(
2π

3
n

)
, n ∈ Z.

It is easy to see that this family only takes the values 1 and − 1
2 , and thus,

sup
n∈N

‖C(n) − I‖ = sup
n∈N

∣∣∣∣cos
(
2π

3
n

)
− 1

∣∣∣∣ = 3

2
. (3.6)

Hence, we conclude that 3
2 is the best possible constant in (3.4). �
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3.2. An elementary proof for semigroups

We now give an elementary proof of the following result.

THEOREM 3.3. Let T be a strongly continuous semigroup on the Banach space
X, and let A denote its infinitesimal generator. If

r := sup
t≥0

‖T (t) − I‖ < 1, (3.7)

then T (t) = I for all t ≥ 0.

Proof. In general, it holds that

T (t)x − x = A
∫ t

0
T (s)x ds, t > 0, x ∈ X. (3.8)

For t > 0, let Bt denote the bounded operator x �→ Bt x := ∫ t
0 T (s)xds. For x ∈ X ,

‖x − t−1Bt x‖ = 1

t

∥∥∥∥
∫ t

0
x − T (s)x ds

∥∥∥∥ ≤ 1

t

∫ t

0
‖x − T (s)x‖ds ≤ r‖x‖.

Thus, since r < 1, it follows that t−1Bt is boundedly invertible for all t > 0 and

‖t B−1
t ‖ ≤ 1

1 − r
⇔ ‖B−1

t ‖ ≤ 1

t (1 − r)
. (3.9)

By (3.8) and (3.7), we have that ‖ABt‖ ≤ 1. Thus,

‖A‖ ≤ ‖B−1
t ‖ (3.9)≤ 1

t (1 − r)
∀t > 0; (3.10)

hence, A = 0 which concludes the proof. �
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