
Model-based testing for software safety: a systematic
mapping study

Havva Gulay Gurbuz1 & Bedir Tekinerdogan1

Published online: 25 September 2017
The Author(s) 2017. This article is an open access publication

Abstract Testing safety-critical systems is crucial since a failure or malfunction may
result in death or serious injuries to people, equipment, or environment. An important
challenge in testing is the derivation of test cases that can identify the potential faults.
Model-based testing adopts models of a system under test and/or its environment to
derive test artifacts. This paper aims to provide a systematic mapping study to
identify, analyze, and describe the state-of-the-art advances in model-based testing
for software safety. The systematic mapping study is conducted as a multi-phase study
selection process using the published literature in major software engineering journals
and conference proceedings. We reviewed 751 papers and 36 of them have been
selected as primary studies to answer our research questions. Based on the analysis of
the data extraction process, we discuss the primary trends and approaches and present
the identified obstacles. This study shows that model-based testing can provide
important benefits for software safety testing. Several solution directions have been
identified, but further research is critical for reliable model-based testing approach for
safety.

Keywords Model-based testing .Model-driven testing . Software safety . Systematic mapping
study

1 Introduction

Currently, an increasing number of systems are controlled by software and rely on
the correct operation of the software. In this context, a safety-critical system is

Software Qual J (2018) 26:1327–1372
DOI 10.1007/s11219-017-9386-2

* Havva Gulay Gurbuz
havva.gurbuz@wur.nl

Bedir Tekinerdogan
bedir.tekinerdogan@wur.nl

1 Information Technology Group, Wageningen University, Wageningen, The Netherlands

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/191534145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-7063-4277
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9386-2&domain=pdf
mailto:havva.gurbuz@wur.nl

defined as a system in which the malfunctioning of software could result in death,
injury, or damage to environment. Software can be considered safe if it does not
produce an output that causes a catastrophic event for the system. Several methods,
processes, and models are developed in order to make the software safe. System
safety engineering is the application of engineering and management principles,
criteria, and techniques to optimize all aspects of safety within the constraints of
operational effectiveness, time, and cost throughout all phases of the system life
cycle.

Testing the software of safety-critical systems is crucial since a failure or malfunc-
tion may result in death or serious injury to people, or loss or severe damage to
equipment or environmental harm. Software testing of safety-critical systems can be
stated as the process of validating and verifying that a system meets the safety
requirements that guided its design and development and likewise satisfies the needs
of stakeholders. Testing usually includes the process of executing a program or
application with the intent of finding software defects. Software defects may result
in an error that could in the end cause a failure that could be safety-critical. An
important challenge in testing is the derivation of test cases that can identify the
potential faults. In large-scale and complex software systems, testing can be laborious
and time consuming when it is done manually.

Model-based testing (MBT) adopts models of a system under test and/or its
environment for designing and optionally also executing artifacts to perform software
testing or system testing. Using explicit models helps to structure the process of
deriving tests and support the reuse, reproduction, and documentation of test cases.
In addition, MBT enables the automated production and execution of test cases, which
on its turn reduces the cost and time of testing and increases the quality of test cases
(Rafi et al. 2012). MBT has been applied for testing both functional and nonfunc-
tional properties. In this paper, we focus on the application of MBT for testing safety
properties. Several approaches have been provided for this in the literature, but no
effort has been provided yet to provide an overall analysis of the studies in the
literature. The overall objective of this paper is thus to provide a systematic mapping
study (SMS) to systematically identify, analyze, and describe the state-of-the-art
advances in model-based testing for software safety.

The SMS is conducted as a multi-phase study selection process using the published
literature in major software engineering journals and conference proceedings. We have
reviewed 751 papers that were discovered using a well-planned review protocol, and 36 of
them were assessed as primary studies related to our research questions. Based on the analysis
of data extraction process, we discuss the primary trends and approaches and present the
identified obstacles.

For researchers, this SMS gives an overview of the reported model-based
testing for software safety with the strength of empirical evidence of the identified
approaches. Practitioners may benefit from the SMS by identifying the strengths
and weaknesses of the approaches as well as the remaining important challenges.

The remainder of the paper is organized as follows. Section 2 provides the
preliminaries including background of model-based testing and systematic mapping
study. Section 3 gives the details of SMS method adopted in this study. Section 4
provides the result of the SMS study. Section 5 presents the related work and finally
Section 6 concludes the paper.

1328 Software Qual J (2018) 26:1327–1372

2 Background

2.1 Model-based testing

The IEEE Software Engineering Body of Knowledge (SWEBOK 2004) defines testing as an
activity performed for evaluating product quality, and for improving it, by identifying defects
and problems (Bourque and Dupuis 2004). In contrast to static analysis techniques, testing
requires the execution of the program with specific input values to find failures in its behavior.
In general, exhaustive testing is not possible or practical for most real programs due to the large
number of possible inputs and sequences of operations. Because of the large set of possible
tests, only a selected set of tests can be executed within feasible time limits. As such, the key
challenge of testing is how to select the tests that are most likely to expose failures in the
system. Moreover, after the execution of each test, it must be decided whether the observed
behavior of the system was a failure or not. This is called the oracle problem.

In the traditional test process, the design of test cases and the oracles as well as the
execution of the tests are performed manually. This manual process is time consuming and
less tractable for the human tester. MBT relies on models of system requirements and behavior
to automate the generation of the test cases and their execution. The general process for MBT
is shown in Fig. 1 (Utting et al. 2006). Based on the test requirements and the test plan, a test
model is constructed. A model is usually an abstract, partial presentation of the desired
behavior of a system under test (SUT). The test model is used to generate test cases that
together form the abstract test suite. Because of that, there are usually an infinite number of
possible tests; usually test selection criteria are adopted to select the proper test cases. For
example, different model coverage criteria, such as all-transitions, can be used to derive the
corresponding test cases. The resulting test cases lack the detail needed by the SUTand as such
are not directly executable. In the third step, the abstract test suite is transformed to a concrete
or executable test suite. This is typically done using a transformation tool, which translates
each abstract test case to an executable test case. An advantage of the separation between
abstract test suite and concrete test suite is the platform and language independence of the
abstract test cases. The same abstract test case can be reused in different test execution
environments. In the fourth step, the concrete test cases are executed on the SUT. A distinction
is made between online MBT and offline MBT. In online MBT, the concrete test cases are
executed as they are produced. In offline MBT, the test cases are produced before the
execution. The test execution will result in a report that contains the outcome of the execution
of the test cases. In the final, fifth step, these results are analyzed and if needed corrective
actions are taken. Hereby, for each test that reports a failure, the cause of the failure is
determined and the program (or model) is corrected.

2.2 Systematic mapping studies

A systematic mapping study (also referred to as scoping study) is a practice that based on
the evidence-based research that was mostly used in the field of medicine and has been
adopted by software engineering. The SMS is a methodology to give an overview of a
research area through classification and counting contributions in relation to the catego-
ries of that classification (Petersen et al. 2015). The results of the SMS are often
illustrated by visual maps to provide an overview of the state-of-art on a specified
research area.

Software Qual J (2018) 26:1327–1372 1329

A systematic mapping study is conducted to investigate a relatively broad topic and aims to
identify, analyze, and structure the goals, methods, and contents of previous primary studies. In
our study, we aim to classify and analyze the literature and provide an overview of existing
research directions regarding the model-based testing for software safety. Therefore, a SMS is
a suitable research method for our research.

3 Research method

We carry out the SMS to provide an overview of existing research directions regarding the
MBT for software safety by following the guidelines and process proposed by (Petersen et al.
2015). The remainder of this section describes the steps of this process.

3.1 Mapping study protocol

Before conducting the systematic mapping study, firstly we developed a mapping study protocol
which defines the methods that will be used to perform a specific systematic mapping study. The

1330 Software Qual J (2018) 26:1327–1372

KEY
artefactprocess step dataflow controlflow

Test

Requirements

1. Test Model

Construction

Test Plan

Test Model

2. Abstract Test

Case Generator

Abstract Test

Suite

3. Concrete Test

Case Generator

Concrete Test

Suite

4. Test Execution

Report

5. Analyze Test

Results

Fig. 1 General process for MBT

pre-defined protocol reduces the researcher bias. The adoptedmapping study protocol is shown in
Fig. 2. Firstly, we specified our research questions (discussed in Section 3.2) based on the
objectives of this SMS. Then, we defined the search strategy and search scope to specify the
time span and the venues that we considered to conduct our study (explained in Section 3.3). In
the search strategy, we devised the search strings that were formed after performing deductive
pilot searches. Awell-defined search string brings the appropriate search results that will come to a
successful conclusion in terms of sensitivity and precision rates. After we defined the search
strategy, we specified the study selection criteria (Section 3.4) which were used to determine
which studies are included in, or excluded from, the systematic mapping study. We piloted the
selection criteria on a number of primary studies.We screened the primary studies at all phases on
the basis of inclusion and exclusion criteria. In addition, we performed peer reviews throughout
the study selection process. After this step, we conducted quality assessment in which the primary
studies that resulted from the search process were screened based on quality assessment checklists
and procedures (Section 3.5). Once the final set of preliminary studies was defined, we specified
the data extraction strategy which defines how the information required from each study is
obtained (Section 3.6). For this, we developed a data extraction form that was defined after a
pilot study. In the final step, we present the data extraction results.

3.2 Research questions

The most important part of any systematic mapping study is specifying the research questions
clearly and explicitly. Research questions drive the subsequent parts of the systematic mapping
study. Hence, asking the right question is crucial to derive the relevant findings properly. The
more precise research questions bring the more accurate findings. In this context, research
questions need to be meaningful and important to both practitioners and researchers. In this
paper, we are interested in investigating empirical studies that are done about model-based
testing for software safety. In order to examine the evidence of model-based testing for
software safety, we define the following research questions:

RQ.1: In which application domains is model-based testing applied?
With this research question, we aim to identify the different application domains in

which model-based testing has been applied. This will highlight the current scope and
applicability of model-based testing.

Software Qual J (2018) 26:1327–1372 1331

Fig. 2 Mapping study protocol

RQ.2: What are the existing research directions within model-based testing for software
safety?
RQ.2.1: What is the motivation for adopting model-based testing for software safety?
RQ.2.2: What are the proposed solutions in model-based testing for software safety?
RQ.2.3: What are the research challenges in model-based testing for software safety?

With this research question, we aim to make the current research directions explicit for
model-based testing for software safety in particular. Related to this, we will identify the
motivation for adopting model-based testing for software safety, the current solutions, and
the research challenges.
RQ.3: What is the strength of evidence of the study?
Elaborating on RQ2, we will further explore whether the proposed solution approaches
have been empirically justified. This is important to highlight scientific evidence and as
such identify the proven solutions.

3.3 Search strategy

The aim of the SMS is finding as many primary studies relating to the research questions as
possible using a well-planned search strategy. In this section, we describe our search strategy
by explaining search scope, adopted search method, and search string.

3.3.1 Scope

Our search scope consists of two dimensions that are publication period and publication
venues. In terms of publication period (time), we include the papers that were published over
the period of 1992 and August 2015. We use the following well-known search databases to
search studies: Scopus, IEEE Xplore, ACM Digital Library, Wiley Inter Science Journal
Finder, Science Direct, Springer Link, and ISI Web of Knowledge. Our targeted search items
are journal papers, conference papers, articles, and workshop papers.

3.3.2 Search method

To perform the search, in the selected databases, we use both manual and automatic search.
Automatic search is realized through entering search strings on the search engines of the
electronic data source. Manual search is realized through manually browsing the conferences,
journals, or other important sources.

The outcome of a search process can easily lead to a very high number of papers. In this
respect, for the search process it has been pointed out that the relevant studies are selected
(high recall) while the irrelevant ones are ruled out (high precision). Usually depending on the
objectives of an SMS, one of the criteria (recall or precision) can be favored and used by the
investigators. Hereby, a search strategy that focuses on high recall only can require too much
manual effort of dealing with irrelevant articles whereas a precise search strategy can unavoid-
ably miss many relevant articles. Zhang et al. (Zhang et al. 2011) proposes the solution called
as quasi-gold standard (QGS) in order to identify the relevant studies while reducing the
number of irrelevant ones as much as possible. Hereby, before defining the search query first, a
manual survey of publications is carried out in which the employed search strings are analyzed

1332 Software Qual J (2018) 26:1327–1372

and elicited. The resulting search strings are then fed into the search query aiming to find the
optimal set with respect to the recall and precision rates.

We adopted this approach to reveal better keywords in designating search strings,
and likewise to achieve high recall rate and high precision rate. The primary studies,
which we manually selected in reliance upon our knowledge of topic, were analyzed
in order to elicit better keywords that would optimize the retrieval of relevant
material. The analysis of the articles in the QGS was carried out using word
frequency and statistical analysis tools. First, the term frequency, inverse document
frequency (TF*IDF) algorithm (Leskovec et al. 2014), was operated on the titles and
abstracts of the QGS papers. As stated by (Zhang et al. 2011), full text analysis
would mislead us into thinking inaccurate keywords as true indicators because of the
titles in the reference section. In addition, the keywords of authors were manually
examined to enhance the representative set of words observed. Finally, a definite set
of search strings was obtained.

3.3.3 Search string

For the automated search, we construct a search string after performing a number of
pilot searches to get relevant studies at utmost level. Since each electronic data source
requires its own expression format to enter the search queries, we have defined these
separately. However, although the syntax of the queries is necessarily different, we
have ensured that the queries are semantically equivalent. To create more complex
queries, we use the OR and AND operators. The following text represents the search
string is defined for IEEE Xplore database:

(("Abstract": model based software test OR "Abstract": model driven software test) AND
"Abstract": safety)

The search strings for other electronic databases are given in Appendix Table 11
Search Strings. The result of the overall search process after applying the search
queries is given in the second column of Table 1. As shown in the table, we identify
in total 751 papers at this stage of the search process. The third column of the table
presents the number of papers where the full texts of papers are available. Since some
studies can be shown in different electronic databases multiple times, we apply a
manual search to find duplicate publications. After applying the last stage of the
search process 36 papers are left.

3.4 Study selection criteria

Since the search query strings have a broad scope to ensure that any important documents are
not omitted, the automated search can easily lead to a large number of documents. In
accordance with the SMS guidelines, we further apply two exclusion criteria on the large-
sized sample of papers in the first stage. The overall exclusion criteria that we use are as
follows:

& EC1: Papers which do not have full text
& EC2: Duplicate publications found in different search sources

Software Qual J (2018) 26:1327–1372 1333

& EC3: Papers are not written in English
& EC4: Papers do not relate to software safety
& EC5: Papers do not relate to model-based/model-driven testing
& EC6: Papers do not explicitly discuss safety
& EC7: Experience and survey papers
& EC8: Papers do not validate the proposed study

The exclusion criteria are applied manually. After applying these criteria, 36 papers of the
751 papers are selected.

3.5 Study quality assessment

In addition to general inclusion/exclusion criteria, we also consider to assess the
quality of primary studies. The main goals of the quality assessment step are provid-
ing more detailed inclusion/exclusion criteria, determining the importance of individ-
ual studies once results are being synthesized, guiding the interpretation of findings
and leading recommendations for further research. We consider the quality assessment
as part of our data extraction process and use the result of the assessment while
providing an answer to RQ3.

We develop a quality assessment based on quality instruments which are checklist
of factors that need to be assessed for each study (Kitchenham and Charters 2007).
The quality checklist is derived by considering the factors that could bias study
results. While developing our quality assessment, we adopt the summary quality
checklist for quantitative studies and qualitative studies which is proposed on
Kitchenham and Charters (2007). Table 2 presents the quality checklist. Since the
aim is ranking studies according to an overall quality score, we deploy the items in
the quality checklist on a numeric scale. We use the three-point scale and assign
scores (yes = 1, somewhat = 0.5, no = 0) to each criterion. The results of assessment
are given in Appendix Table 13 Study Quality Assessment Form. These results are
used in order to support data extraction step.

Table 1 Overview of search
results and study selection Source Number of

included studies
after applying
search query

Number of
included studies
after EC1-EC3
is applied

Number of
included studies
after EC4-EC8
is applied

IEEE Xplore 53 40 9
ACM Digital

Library
10 5 0

Wiley
Interscience

36 18 0

Science Direct 7 7 5
Springer 466 325 18
ISI Web of

Knowledge
32 7 0

Scopus 147 43 4
Total 751 445 36

1334 Software Qual J (2018) 26:1327–1372

3.6 Data extraction and visualization

In order to extract data needed to answer the research questions, we read the full texts
of 36 selected primary studies. We designed a data extraction form to collect all the
information needed to address the review questions and the study quality criteria. The
data extraction form includes standard information such as study ID, date of extrac-
tion, year, authors, repository, publication type, and space for additional notes. In
order to collect information directly related to answering research questions, we have
added some fields, such as targeted domain, motivation for study, solution approach, constraints/
limitations of approach, and findings. All related fields to research questions are shown in Table 3.
We have a record of the extracted information in a spreadsheet to support the process of
synthesizing the extracted data. In Appendix Table 12, we have provided the details of the data
extraction form.We present the data extraction results in Section 4 by explaining them textually
and visually. In order to make data extraction results easy to understand, we use tables and
charts while presenting the distribution of the primary studies according to extracted data.

Table 2 Quality checklist

Number Assessment
category

Question

Q1 Quality of
reporting

Are the aims of the study is clearly stated?
Q2 Are the scope and context of the study clearly defined?
Q3 Is the proposed solution clearly explained and validated by an empirical study?
Q4 Rigor Are the variables used in the study likely to be valid and reliable?
Q5 Is the research process documented adequately?
Q6 Are the all study questions answered?
Q7 Credibility Are the negative findings presented?
Q8 Are the main findings stated clearly in terms of creditability, validity and reliability?
Q9 Relevance Do the conclusions relate to the aim of the purpose of study?
Q10 Does the report have implications in practice and results for model-based testing for

software safety?

Table 3 Data extraction

Research question Data extracted

RQ1 Targeted domain
RQ2 RQ2.1 Motivation for study

Main theme of study
RQ2.2 Requirement specification language

Safety model specification language
Method for generating models from requirements
Type of generated test elements

(test case, test oracle, test data etc.)
Solution approach for test element
Abstract test case generation
Test selection criteria
Test case specification language
Method for test execution
Contribution type

RQ2.3 Constraints/limitation of proposed solution
Findings

RQ3 Assessment approach

Software Qual J (2018) 26:1327–1372 1335

4 Results

4.1 Research methods

It is very important to conduct empirical studies with well-defined research methodol-
ogies to ensure the reliability and validity of the findings. Primary studies are expected
to explicitly define and report the used research methodology. In Table 4, we provide
the information about the type of research methods used in the 36 selected primary
studies. We consider the categorization in Wohlin et al. (2012) to extract research
method during the review process. Wohlin et al. (2012) define three main research
methods, surveys, case studies, and experiments, for empirical studies. Since we do not
include surveys in our work, we only consider case study and experiment as research
methods to categorize primary studies. It can be observed that case study is the
dominant method used to evaluate the model-based testing for software safety ap-
proaches. Case studies are conducted to understand, to explain, or to demonstrate the
capabilities of a new technique, method, tool, process, technology, or organizational
structure (Wohlin et al. 2012). In addition, Table 4 shows that in the reviewed primary
studies, experiments are also used to analyze and assess the proposed approaches.
Experiments are conducted to investigate of a testable hypothesis in which conditions
are set up to isolate the variables of interest and test how they affect certain measurable
outcomes.

Besides the research method, we also extract the evidence type to indicate that primary
studies validate their solution approaches using academic or industrial evidence. Fifteen (42%)
of the primary studies use industrial evidence to validate their proposed model-based testing
methods for software safety. Twenty-one (52%) of the primary studies illustrate their solution
approach using academic evidence. In Table 5, we provide the information about the studies
and their evidence type.

4.2 Methodological quality

In this section, we present the quality of selected primary studies. For this purpose, we try to
address methodological quality in terms of relevance, quality of reporting, rigor, and assess-
ment of credibility by using the quality checklist that is defined in Table 2. Therefore, we

Table 4 Distribution of studies over research method

Research method Studies Number Percent

Case study [1], [2], [4], [5], [6], [7], [8], [9], [10], [11], [12], [14],
[16], [17], [18], [21], [22], [24], [26], [28], [29], [31], [33],
[34], [35], [36]

26 72

Experiment [3], [13], [15], [19], [20], [23], [25], [27], [30], [32] 10 28

1336 Software Qual J (2018) 26:1327–1372

group the first three questions of the checklist for the quality of reporting, the ninth and tenth
questions for the relevance, the fourth, fifth, and sixth questions for rigor, and the seventh and
eighth questions for assessment of credibility of evidence. In Appendix Table 13 Study Quality
Assessment Form, we present the result of quality checklist.

For the quality of reporting based on the result of first three questions, two studies (6%) are
weak with score 2, 22 (61%) of the studies are average with score 2.5, and 12 (33%) of the
primary studies are good with score 3.

In order to assess the primary studies’ quality according to the trustiness of findings,
we assess the rigor of studies. The quality score of rigor of studies is calculated based on
the result of fourth, fifth, and sixth questions. Five (14%) of the primary studies have
poor quality with score 1.5. Five (14%) of the primary studies have average quality with
score 2. Eighteen (50%) primary studies are good according to rigor quality with score
2.5. Further, eight papers (22%) of the primary studies are assessed as top quality in
terms of rigor with score 3.

As another methodological quality measure, we assess the relevance of the selected primary
studies. The relevance quality scores are calculated based on the evaluation of the ninth and
tenth questions. Thirty-nine percent of the primary studies with score 2 are directly relevant to
the model-based software safety testing, and 61% of the primary studies with scores 1 and 1.5
are to some extent relevant to the field.

In order to assess the primary studies in terms of credibility, validity, and reliability of
positive and negative findings and major conclusions of the primary studies, the quality
score is calculated based on results of seventh and eighth questions. According to our
evaluation, there is no primary study that has full credibility of evidence. Considering the
score 1.5 as first rate, 4 (11%) of the primary studies are good with score 1.5. The studies
having score 1 were treated as fair, and 18 (50%) of the primary studies fall into this
category. Fourteen studies (39%) have poor quality score according to their credibility of
evidence.

Finally, we summarize this section by giving the overall methodological quality
scores. In Fig. 3, the total quality of scores is presented in terms of our four criteria:
quality of reporting, relevance, rigor, and credibility of evidence. Considering the scores
9 and 9.5 as high, 5 (14%) of the primary studies have high quality. Eighteen (50%)
primary studies having scores (7.5, 8.5) have good quality. Thirteen (36%) of the studies
having scores (5.5, 7) have poor quality.

Table 5 Evidence type for selected studies

Evidence type Studies Number Percent

Academic [3], [5], [6], [7], [8], [9], [10], [12], [13], [14], [15], [17], [18], [23],
[24], [26], [29], [30], [32], [34], [36]

21 58

Industrial [1], [2], [4], [11], [16], [19], [20], [21], [22], [25], [27], [28], [31],
[33], [35]

15 42

Software Qual J (2018) 26:1327–1372 1337

4.3 RQ.1–MBT in application domains

RQ.1: In which application domains is model-based testing applied?

In order to answer this research question, we analyze the targeted domains of the
36 selected primary studies separately. In Table 6, we present the categories of
targeted domain that we extracted. There are seven main application domains namely,
automotive, railway, nuclear, robotics, automation, medical, and power consumption
(Fig. 4).

As shown in Table 6, the category automotive includes ten subcategories. [12],
[17], [23] and [30] apply the model-based testing on alarm systems for cars. [12]
perform model-based testing on software product family of automotive domain. [13]
and [30] discuss the cruise control system that automatically controls the speed of a
car. In [9], a model-based approach for test case generation is described for embedded
control systems for cars. [1] apply the model-based testing on the embedded system
application for cars. [3] discuss the control system in vehicles. [27] apply model
based testing on landing gear system. In [31], they illustrate their approach on the
turn indicator of automotive system. [30] illustrate the model-based testing on window
controller. In [32], they illustrate their approach on anti-slip regulation/anti-lock
braking system (ASR/ABS). In [26], they demonstrate the proposed solution on an
automotive operating system. As shown in the table, [36] illustrate the proposed
solution on several subcategories. They use cruise control, landing gear system, and
different controller systems.

In the domain Railway, model-based testing is applied on seven different subcat-
egories listed in Table 6. [8], [16] and [29] discuss the railway interlocking system
that prevents trains from colliding and drilling while allowing trains movements. [2],
[4], [7] and [21] discuss the train control system represents an important part of the
railway operations management system. [5] applies the model-based testing on railway
onboard system which is responsible for implementation of over speed protection and
safe distance between trains. [20] and [22] apply the model-based testing on radio
block systems for trains. [19] discuss the battery control system of train that manages
the power source of the train system.

1338 Software Qual J (2018) 26:1327–1372

1

3

5
4

8

5 5
4

1
0
1
2
3
4
5
6
7
8
9

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5

seidutS
yra

mirPfo
#

Score

Fig. 3 Quality assessment scores

The domain Robotics includes three subcategories that are autonomous mobile
robots, vacuum cleaner, and robot arm. [15] apply model-based testing on autonomous
mobile robot which behaves like a human and make decisions on their own or interact
with humans. In [14], vacuum cleaner robot is used to verify proposed model-based
testing approach. The robot is able to create a map of its placed environment, clean
the room, and avoid collision with living beings. [30] apply model-based testing
approach on robot arms which can be controlled by a joystick.

In the domain Nuclear, [10] and [13] apply model-based testing on safety injection
systems that injects water into the reactor pressure vessel automatically. In the domain
Aerospace, [28] apply the proposed approach on launch system helps to initialize, fire,
prepare for flying, and launch the system. [35] use landing functionality to illustrate their
approach. For the domain Avionics, [24] apply the model-based testing on hypothetical
helicopter system. In [34], the authors use an autopilot system to illustrate their ap-
proach. In the domain Automation, [6] apply the model-based testing on modular

Table 6 Identified domains of model-based testing for software safety

Domain Identified subcategory Studies

Automotive Car alarm system [12], [17], [23], [30]
Cruise control [13], [30], [36]
Car door controlling [9]
Car application system [1]
Control system [3], [36]
Landing gear system [27], [36]
Turn indicator [31]
Window controller [30]
ASR/ABS system [32]
Automotive operating system [26]
Electronic stability control [36]
Performance traction [36]
Electronic throttle [36]
Heating, ventilation, air conditioning [36]
Active safety control [36]

Railway Interlocking system [8], [16], [29]
Control system [2], [4], [7], [21]
Onboard system [5]
Radio block system [20], [22]
Battery control system [19]
Automatic train protection [33]
Programmable logic controller [25]

Robotics Autonomous mobile robots [15]
Vacuum cleaner [14]
Robot arm [30]

Nuclear Safety injection system [10], [13]
Aerospace Launch system [28]

Landing symbology function [35]
Automation Modular production system [6]
Avionics Helicopter system [24]

Autopilot system [34]
Medical Infusion pump [11]
Power

consumption
Power state machine [18]

Software Qual J (2018) 26:1327–1372 1339

production system. In the domain Medical, [11] demonstrate the proposed solution
approach for model-based testing on software which is developed for infusion pumps.
In the final category Power Consumption, [18] illustrate the proposed methodology by
using power state machine component which is used for power management in embed-
ded systems. As seen in Table 6, [13] appears in both Automotive and Nuclear domains.

Based on Table 6, the approaches for model-based testing for software safety are
applied to different types of domains. Additionally, it can be observed that Automotive
and Railway domains are dominant in the selected primary studies.

4.4 RQ.2–existing research directions within MBT for software safety

RQ.2: What are the existing research directions within model-based testing for software
safety?

With this research question, we aim to identify research directions within model-based
testing for software safety. As defined in Section 3.2, we divide this research question
into three sub-questions. The first sub-question aims to explain the motivation for
adopting model-based testing for software safety, the second sub-question aims to
present existing solution approaches, and the third sub-question aims to report identified
research challenges.

4.4.1 RQ.2.1–motivation for adopting MBT

RQ.2.1: What is the motivation for adopting model-based testing for software safety?

Here, we aimed to identify the main reasons for applying model-based software testing for
software safety in the reviewed primary studies. Based on the result of the data extraction
process, we could derive the following reasons from the selected primary studies:

1340 Software Qual J (2018) 26:1327–1372

2 1

13

2 1 2 1

13

3
0

2

4

6

8

10

12

14

seidutS
yra

mirPfo
#

Domain

Fig. 4 Domain distribution of the studies

& Reducing cost and development time

Software testing has to be carried out carefully to ensure that a test coverage can
detect the relevant faults. Unfortunately, as we have stated before, manual testing is a
time-consuming process that becomes soon infeasible with the increasing size and
complexity of the software. Also, in case of changes to the software regression,
testing needs to be carried out to ensure that no faults have been introduced. Similar
to MBT in general, an important motivation for MBT for safety is indeed the
reduction of cost and development time. [3], [11], [12], [16], [17], [20], [21], [22],
[23], [26], [30], [31] explicitly describe the reduction of cost and development time as
the reasons for adopting MBT.

& Improving the testing coverage

Another main reason for adopting MBT is testing coverage which is the measurement
of software testing how many lines/blocks/functions of code is tested. It describes how
much of the code is exercised by running the tests. As the safety critical systems are
growing, it is difficult to achieve high test coverage and complete testing by using
conventional testing methods such as manual testing and random testing. [2], [3], [6],
[10], [13], [18], [24], and [25] discuss how to achieve high testing coverage using MBT.

& Improving the testing efficiency and quality

The third main reason to apply MBT is increasing testing efficiency. [5], [12], [15],
[16], [19], [26], [27], [28], [29], and [32] discuss how to increase testing efficiency and
quality in their work. In the test case generation process, beside the generation of
relevant test cases, redundant and irrelevant test cases may be generated. [5] indicates
that in manual test case generation, most of the generated test cases cannot be reused
and manual test case generation leads to repeated works when the configuration is
changed. [16] discusses difficulty of quality evaluation of manually generated test cases
regarding efficiency and redundancy. [15] point out that when test cases are generated
in an ad hoc manner, they are described on a very low technical level of abstraction.
[12] discuss the testing a software product line. The study indicates that testing every
single product configuration of a software product line individually using common
testing methods is not acceptable for large software product lines. Additionally, the
study points out that in order to achieve efficient testing, small test suite must be
generated to cover all test cases in the software product line. [19] focus on testing of
functional block diagrams that represent component model of the safety-critical sys-
tems. In [19], the authors state that program testing of functional block diagrams mostly
relies on manual testing or simulation methods which are inefficient way of testing. In
[26], they discuss the testing of system regarding both functionalities and safety
properties of the system in more effective way than the conventional testing. [27]
focus on the lack of easy-use tool sets, guidance, and methodology to support
development process. [28] point out the testing of system in terms of both functional
and fail-safe behaviors. In [29], they discuss to make the testing activity more effective
and facilitate incremental test-case generation. [32] focus on the techniques to develop
automated quality assurances.

Software Qual J (2018) 26:1327–1372 1341

& Increasing fault detection

The last main reason to apply MBT is increasing the fault detection. In [1], [9],
[13], [18], and [22] enhancing fault detection is discussed. [1] indicate that because of
the increasing occurrence of failures in embedded systems in automotive domain,
number of recalled cars increase. Therefore, testing is important to detect faults. [9]
point that failures can be discovered by applying model-based testing. [13] indicate
that written test cases can be used to check the implementation of software for faults.
The fault detection capability can be improved by creating suitable test cases. There-
fore, by applying testing process, fault detection can be improved. [18] indicate that
designing system-on-a-chip has many challenges and automatic test case generation is
necessary to find faults in these designs. [22] focus to minimize chances of failures.

In Fig. 5, we present the number of studies which include the mentioned four main
reasons for applying MBT for safety. As shown in the Fig. 5, one primary study can
discuss more than one main reason.

Apart from these main reasons, there are also minor reasons mentioned in reviewed
studies. One minor reason is the need for particular set of models for testing. [7]
consider the systems that are built up with components connected a network-like
structure. It indicates that in these systems, each instance needs its own set of models
for testing. Another minor reason is solving the state space explosion problem in
automated verification techniques. [8] point that in model checking approach, when
too many objects are taken into account, state space explosion problem arises. The
other minor reason is reducing the complexity of process of creating test models. [21]
consider this problem and create test specification patterns to help to solve this
problem. Another minor reason is supporting the debugging process with model-
based testing. [23] point to this issue and they aim to speed up the debugging
process. The other minor reason is pointed out by [34] which aims to facilitate the
application of model-based testing in avionics domain.

4.4.2 RQ.2.2–proposed solutions for MBT for safety

In this section, firstly we provide short overview of the selected 36 studies and then
we present the results extracted from 36 selected primary studies in order to answer
the research questions.

1342 Software Qual J (2018) 26:1327–1372

13
12

9

6

0
2
4
6
8

10
12
14

Improve Test
Coverage

Reduce Cost and
Development Time

Increase Fault
Detec�on

Improve Test
Efficiency

seidutS
yra

mirPfo
#

Mo�va�on Category

Fig. 5 Motivation for selected studies

As explained in the search scope, we include the studies published over the period of 1992
and August 2015. After the selection process, we have 36 selected papers over the years
between 2005 and 2015. Figure 6 shows the year-wise distribution of the selected 36 primary
studies along with the publication venues of the selected studies.

We present the overview of the selected primary studies according to publication
channel in Table 7. The table includes the publication sources, publication channels,
types of studies, and number of studies. According to the table, we can observe that
the selected primary studies are published in highly ranked publication sources such
as IEEE, Science Direct, and Springer. The journal International Journal on Software
Tools for Technology Transfer is one of the remarkable publication channels that
discusses all aspects of tools that aid in development of computer systems. The other
significant publication channel is BElectronic Notes in Theoretical Computer Science^
that provides rapid publication of conference proceedings, lecture notes, thematic
monographs and similar publications of interest to the theoretical computer science
and mathematics communities. The publication channels BFormal methods for indus-
trial critical systems^, Information and Software Technology, BTests and proofs,^ and
BSoftware Testing, Verification and Validation Workshops^ are also distinguished
publication channels. BFormal methods for industrial critical systems^ provides a
forum for researchers who are interested in the development and application of formal
methods in industry. Information and Software Technology focuses on research and
experience that contributes to the improvement of software development practices.
BTests and proofs^ provides a forum for the cross-fertilization of ideas and approaches
from the formal verification community and the testing community, abandoning earlier
dogmatic views on the incompatibility of proving and testing. BSoftware Testing,
Verification and Validation Workshops^ focuses on research in all areas related to
software quality.

RQ.2.2: What are the proposed solutions in model-based testing for software safety?

In order to analyze identified studies, we aimed to present the details for the selected
36 studies based on the data extraction process. As described in Section 3.6, we create a

Software Qual J (2018) 26:1327–1372 1343

1 2 2 1

8

2 2

4

9

5

0

2

4

6

8

10

2005 2006 2007 2009 2010 2011 2012 2013 2014 2015

seidutS
yra

mirPfo
#

Year

Fig. 6 Year-wise distribution of the studies

data extraction form considering the defined research questions and the model-based
testing process shown in Fig. 1. Based on the results of data extraction process, we
construct Table 8 to provide more detailed analysis of identified 36 studies.

As explained in 2.1, model-based testing process starts with constructing of the test models.
In this step, system models are extracted from requirements or specification documents. In
order to analyze this step, we extract the information about existence of safety model,
requirement specification language, model specification language, and method for model
generation from requirements.

In order to test safety properties of the software, it is quite important to create
safety models from requirements. Only [2], [4], [6] and [28] (11% of the primary
studies) create the specific safety model in order to describe the safety properties/
functions of the system under test. Eighty-nine percent of the primary studies do not
describe the safety model in their studies.

For the requirement specification language, we define two categories: formal and informal.
Eleven (31%) of the primary studies define the requirements formally. Fifteen (42%) of the
primary studies define the requirements informally. Ten (28%) of the primary studies do not
specify the requirements.

Table 7 Distribution of the studies over publication channel

Publication channel Publication
source

Type Number of
studies

International Journal on Software Tools for
Technology Transfer

Springer Journal 4

Electronic Notes in Theoretical Computer Science Science Direct Conference 3
Formal methods for industrial critical systems Springer Chapter 2
Information and Software Technology Science Direct Journal 2
Tests and proofs Springer Chapter 2
Software Testing, Verification and Validation

Workshops (ICSTW)
IEEE Conference 2

Software Testing, Verification and Validation (ICST) IEEE Conference 2
Agent and multi-agent systems. Technologies

and applications
Springer Chapter 1

Autonomous Decentralized Systems (ISADS) IEEE Conference 1
Computational Intelligence and Software

Engineering (CiSE)
IEEE Conference 1

Computer safety, reliability, and security Springer Chapter 1
e & i Elektrotechnik und Informationstechnik Springer Article 1
Formal methods for components and objects Springer Chapter 1
Formal Methods in System Design Springer Journal 1
High Level Design Validation and Test Workshop IEEE Conference 1
Information Technology and Applications IEEE Conference 1
Intelligent Solutions in Embedded Systems IEEE Conference 1
Intelligent Transportation Systems IEEE Conference 1
KI 2010: advances in artificial intelligence Springer Chapter 1
Model driven engineering languages and systems Springer Chapter 1
Model-based safety and assessment Springer Chapter 1
Software & Systems Modeling Springer Journal 1
Software Quality Journal Springer Journal 1
Model-Driven Engineering, Verification, and

Validation (MoDeVVa)
IEEE Conference 1

Engineering of Complex Computer Systems (ICECCS) IEEE Conference 1
Software Testing, Verification and Reliability Wiley Journal 1

1344 Software Qual J (2018) 26:1327–1372

T
ab

le
8

D
at
a
ex
tr
ac
tio

n
fo
r
se
le
ct
ed

st
ud
ie
s

St
ud
y

R
ef
er
en
ce

R
eq
ui
re
m
en
t

sp
ec
if
ic
at
io
n

M
od
el

sp
ec
if
ic
at
io
n

G
en
er
at
e
m
od
el
s

fr
om

re
qu
ir
em

en
ts

A
bs
tr
ac
t
te
st

ca
se

ge
ne
ra
tio
n

Ty
pe

of
ge
ne
ra
te
d
te
st

el
em

en
ts

A
pp
ro
ac
h
to

ge
ne
ra
te
te
st

el
em

en
ts

Te
st
se
le
ct
io
n

cr
ite
ri
a

Te
st
ca
se

sp
ec
if
ic
at
io
n

M
et
ho
d
to

ex
ec
ut
e

te
st
s

[1
]

K
an
dl

et
al
.

(2
00
6)

Fo
rm

al
A
ut
om

at
a

A
ut
om

at
ic

N
/A

Te
st
ca
se
,t
es
t
da
ta

M
od
el
ch
ec
ki
ng

N
/S

In
fo
rm

al
N
/S

[2
]

Y
u
an
d
X
u

(2
01
0)

In
fo
rm

al
A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se
,t
es
t
se
qu
en
ce
,

te
st
sc
en
ar
io
,t
es
t

sc
ri
pt

N
/S

N
/S

N
/S

A
ut
om

at
ic

[3
]

Fa
ng

et
al
.

(2
01
2)

In
fo
rm

al
D
SL

M
an
ua
l

N
/A

Te
st
ca
se
,t
es
t
se
qu
en
ce

M
od
el
ch
ec
ki
ng

C
la
ss
if
ic
at
io
n

tr
ee

N
/S

A
ut
om

at
ic

[4
]

Y
u
et
al
.

(2
00
9)

Fo
rm

al
A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se
,t
es
t
sc
ri
pt
,t
es
t

da
ta

M
od
el
ch
ec
ki
ng

Te
m
po
ra
l

L
og
ic

Fo
rm

ul
as

In
fo
rm

al
A
ut
om

at
ic

[5
]

L
v
et
al
.

(2
01
3)

N
/S

A
ut
om

at
a

A
ut
om

at
ic

N
/A

Te
st
ca
se
,t
es
t
su
ite

To
ol

C
ov
er
ag
e

cr
ite
ri
a

N
/S

N
/S

[6
]

K
lo
os

et
al
.

(2
01
1)

Fo
rm

al
A
ut
om

at
a

A
ut
om

at
ic

N
/A

Te
st
ca
se

N
/S

N
/S

N
/S

A
ut
om

at
ic

[7
]

K
lo
os

an
d

E
sc
hb
ac
h

(2
01
0)

Fo
rm

al
D
SL

A
ut
om

at
ic

N
/A

Te
st
m
od
el

D
SL

N
/S

N
/S

N
/S

[8
]

K
ol
lm

an
n

an
d
H
on

(2
00
7)

In
fo
rm

al
U
M
L

M
an
ua
l

N
/A

Te
st
ca
se

M
ul
ti-
ob
je
ct

ch
ec
ki
ng

N
/S

N
/S

N
/S

[9
]

L
oc
ha
u
an
d

G
ol
tz

(2
01
0)

In
fo
rm

al
A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se

G
ra
ph

al
go
ri
th
m

A
de
qu
ac
y

cr
ite
ri
a

Fo
rm

al
N
/S

[1
0]

Ts
en
g
an
d

Fa
n
(2
01
3)

In
fo
rm

al
U
M
L

M
an
ua
l

N
/A

Te
st
ca
se
,t
es
t
sc
en
ar
io

A
lg
or
ith

m
N
/S

Fo
rm

al
N
/S

[1
1]

A
ug
us
to
n

et
al
.

(2
00
6)

In
fo
rm

al
D
SL

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

N
/S

N
/S

A
ut
om

at
ic

[1
2]

C
ic
ho
s
et
al
.

(2
01
1)

In
fo
rm

al
A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
su
ite

To
ol

N
/S

Fo
rm

al
A
ut
om

at
ic

Software Qual J (2018) 26:1327–1372 1345

T
ab

le
8

(c
on
tin
ue
d)

St
ud
y

R
ef
er
en
ce

R
eq
ui
re
m
en
t

sp
ec
if
ic
at
io
n

M
od
el

sp
ec
if
ic
at
io
n

G
en
er
at
e
m
od
el
s

fr
om

re
qu
ir
em

en
ts

A
bs
tr
ac
t
te
st

ca
se

ge
ne
ra
tio
n

Ty
pe

of
ge
ne
ra
te
d
te
st

el
em

en
ts

A
pp
ro
ac
h
to

ge
ne
ra
te
te
st

el
em

en
ts

Te
st
se
le
ct
io
n

cr
ite
ri
a

Te
st
ca
se

sp
ec
if
ic
at
io
n

M
et
ho
d
to

ex
ec
ut
e

te
st
s

[1
3]

G
ar
ga
nt
in
i

(2
00
7)

N
/S

A
ut
om

at
a

N
/S

N
/A

Te
st
se
qu
en
ce

To
ol

A
de
qu
ac
y

cr
ite
ri
a

N
/S

N
/S

[1
4]

M
ic
sk
ei
et
al
.

(2
01
2)

Fo
rm

al
U
M
L

M
an
ua
l

A
pp
lie
d

Te
st
da
ta
,t
es
t
or
ac
le

M
od
el

tr
an
sf
or
m
at
io
n

N
/S

N
/S

A
ut
om

at
ic

[1
5]

Pr
oe
tz
sc
h

et
al
.

(2
01
0)

N
/S

G
ra
ph

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

N
/S

Fo
rm

al
A
ut
om

at
ic

[1
6]

H
er
zn
er

et
al
.

(2
01
0)

Fo
rm

al
O
O
A
S

A
ut
om

at
ic

A
pp
lie
d

Te
st
ca
se

To
ol

N
/S

Fo
rm

al
N
/S

[1
7]

K
re
nn

et
al
.

(2
01
0)

Fo
rm

al
O
O
A
S

A
ut
om

at
ic

N
/A

Te
st
m
od
el

To
ol

N
/S

N
/S

N
/S

[1
8]

M
at
ha
ik
ut
ty

et
al
.

(2
00
7)

In
fo
rm

al
D
SL

M
an
ua
l

N
/A

Te
st
ca
se
,t
es
t
da
ta

To
ol

C
ov
er
ag
e

cr
ite
ri
a

Fo
rm

al
A
ut
om

at
ic

[1
9]

(E
.P
.(
E
no
iu

et
al
.

20
13
))

N
/S

A
ut
om

at
a

A
ut
om

at
ic

N
/A

Te
st
su
ite

To
ol

A
de
qu
ac
y

cr
ite
ri
a

N
/S

A
ut
om

at
ic

[2
0]

Z
he
ng

et
al
.

(2
01
4)

N
/S

G
ra
ph

M
an
ua
l

N
/A

Te
st
ca
se
,t
es
t
se
qu
en
ce

A
lg
or
ith

m
A
lg
or
ith

m
Fo

rm
al

A
ut
om

at
ic

[2
1]

G
en
til
e
et
al
.

(2
01
4)

In
fo
rm

al
U
M
L

M
an
ua
l

N
/A

Te
st
se
qu
en
ce

M
od
el
ch
ec
ki
ng

N
/S

N
/S

N
/S

[2
2]

M
ar
ro
ne

et
al
.

(2
01
4)

Fo
rm

al
U
M
L

M
an
ua
l

N
/A

Te
st
ca
se

M
od
el
ch
ec
ki
ng

N
/S

Fo
rm

al
N
/S

[2
3]

A
ic
he
rn
ig

et
al
.

(2
01
4)

N
/S

A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

N
/S

N
/S

N
/S

[2
4]

W
ilk
in
so
n

et
al
.(
20
14
)

In
fo
rm

al
D
S
L

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

N
/S

N
/S

N
/S

[2
5]

(E
.P
.(
E
no
iu

et
al
.2
01
4)
)

N
/S

A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

L
og
ic co
ve
ra
ge

N
/S

A
ut
om

at
ic

1346 Software Qual J (2018) 26:1327–1372

T
ab

le
8

(c
on
tin

ue
d)

St
ud
y

R
ef
er
en
ce

R
eq
ui
re
m
en
t

sp
ec
if
ic
at
io
n

M
od
el

sp
ec
if
ic
at
io
n

G
en
er
at
e
m
od
el
s

fr
om

re
qu
ir
em

en
ts

A
bs
tr
ac
t
te
st

ca
se

ge
ne
ra
tio
n

Ty
pe

of
ge
ne
ra
te
d
te
st

el
em

en
ts

A
pp
ro
ac
h
to

ge
ne
ra
te
te
st

el
em

en
ts

Te
st
se
le
ct
io
n

cr
ite
ri
a

Te
st
ca
se

sp
ec
if
ic
at
io
n

M
et
ho
d
to

ex
ec
ut
e

te
st
s

[2
6]

C
ho
i
an
d

B
yu
n

(2
01
7)

N
/S

D
SL

N
/S

N
/A

Te
st
se
qu
en
ce

To
ol

N
/S

N
/S

A
ut
om

at
ic

[2
7]

A
rc
ai
ni

et
al
.

(2
01
7)

In
fo
rm

al
A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se

Fr
am

ew
or
k

N
/S

Fo
rm

al
A
ut
om

at
ic

[2
8]

G
ar
io

et
al
.

(2
01
5)

Fo
rm

al
A
ut
om

at
a

A
ut
om

at
ic

N
/A

Te
st
m
od
el

A
lg
or
ith
m

N
/S

N
/S

N
/S

[2
9]

A
ic
he
rn
ig

et
al
.

(2
01
5)

In
fo
rm

al
D
SL

M
an
ua
l

N
/A

Te
st
da
ta

A
lg
or
ith
m

N
/S

N
/S

N
/S

[3
0]

Sc
hr
am

m
el

et
al
.

(2
01
6)

N
/S

D
SL

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

N
/S

N
/S

A
ut
om

at
ic

[3
1]

K
im

et
al
.

(2
01
5)

In
fo
rm

al
A
ut
om

at
a

M
an
ua
l

N
/A

Te
st
ca
se

To
ol

N
/S

N
/S

N
/S

[3
2]

H
er
be
r
an
d

G
le
sn
er

(2
01
5)

Fo
rm

al
A
ut
om

at
a

A
ut
om

at
ic

N
/A

Te
st
ca
se

To
ol

N
/S

N
/S

N
/S

[3
3]

G
ra
ss
o
et
al
.

(2
01
0)

In
fo
rm

al
St
at
ef
lo
w

M
an
ua
l

N
/A

Te
st
sc
en
ar
io

To
ol

N
/S

N
/S

A
ut
om

at
ic

[3
4]

St
al
lb
au
m

an
d

R
ze
pk
a

(2
01
1)

In
fo
rm

al
U
M
L

M
an
ua
l

N
/A

Te
st
m
od
el

M
an
ua
l

N
/S

N
/S

N
/S

[3
5]

Sa
m
ih

et
al
.

(2
01
4)

Fo
rm

al
D
SL

A
ut
om

at
ic

N
/A

Te
st
su
ite

To
ol

N
/S

N
/S

N
/S

[3
6]

M
oh
al
ik

et
al
.

(2
01
4)

N
/S

St
at
ef
lo
w

N
/S

N
/A

Te
st
su
ite

To
ol

N
/S

Fo
rm

al
A
ut
om

at
ic

O
O
A
S
ob
je
ct
-o
ri
en
te
d
ac
tio

n
sy
st
em

,D
SL

D
om

ai
n
Sp

ec
if
ic
L
an
gu
ag
e,
U
M
L
U
ni
fi
ed

M
od
el
in
g
L
an
gu
ag
e,
N
/A

no
t
ap
pl
ie
d,

N
/S

no
t
sp
ec
if
ie
d

Software Qual J (2018) 26:1327–1372 1347

Model generation from requirements can be performed manually or automatically. In 36
selected studies, we identify that ten (28%) of the primary studies generate models from
requirements automatically. Twenty-three (64%) of the reviewed primary studies generate
models manually. Three (8%) of the studies do not explain their model generation method
explicitly.

For the model specification language, the reviewed primary studies used various
different specification languages. In Fig. 7, we present all extracted methods from the
36 selected primary studies. In 15 (42%) of the primary studies ([1], [2], [4], [5], [6],
[9], [12], [13], [19], [23], [25], [27], [28], [31], [32]), automata are used as model
specification language. Automata are a useful model for various different kinds of
hardware and software (Hopcroft et al. 2001). In [1], NuSMV NuSMV Language
(NuSMV Language n.d.) which is designed for model checking is used to declare
models. In [2] and [6], finite state machine is used as model specification language.
In [28], model is defined as communicating extended finite state machine which is
based on finite state machines. In [5], [19], [23], [25], [31], and [32], models are
defined as timed automata. In [9], models are described by using StateFlow which has
been adopted from StateChart and allows hierarchical modeling of discrete behaviors
consisting of parallel and exclusive decompositions, which makes it challenging to
capture and translate into formal models (Li and Kumar 2011). In [12], deterministic
state machine is used to model products in a software product line. In [13] and [27],
models are defined as abstract state machine.

In [3], [7], [11], [18], [24], [26], [29], [30], [35] (25% of the primary studies),
models are defined using domain-specific languages which are designed to express
statements in particular application domain. The verification language Promela is used
in [3] as model specification language. In [7], they define a domain-specific language
(DSL) to build a system model by defining composition operators and atomic com-
ponents in the system. Attributed event grammar is used in [11]. Esterel language
which is used for the development of complex systems is used as model specification
language in [18]. In [24], they express Event-B models to create formal model of the
system. [26] introduces a constraint specification language OSEK_CLS for modeling
the system. In Kitchenham and [29], the authors formalize the requirements using a
domain-specific language and use them as models. In [30], Linear Temporal Logic

1348 Software Qual J (2018) 26:1327–1372

15

9

6

2 2 2
0
2
4
6
8

10
12
14
16

Automata DSL UML Graph OOAS Stateflow

seidutS
yra

mirPfo
#

Model Specifica�on Language

Fig. 7 Model specification language

(LTL) is used to indicate safety concerns in the system. In study of [35], usage model
variants models from MaTeLo Tool (n.d.)) (BMaTeLo Tool^) are used to model the
system.

In six (17%) of the primary studies, Unified Modeling Language (UML) is used to
construct models. In [10] and [14], UML sequence diagram is used to define test
models. UML state diagram is used as a model specification language in the study by
[21]. UML profiling is used for modeling in [22]. In [7], UML-based railway
interlocking (RI) models are used to define test models. UML-based RI includes the
infrastructure objects and UML to model the system behavior. [34] use UML profiles
to define test models to support DO-178B certification.

[33] and [36] use Simulink/Stateflow models as test model. [20] define the models by using
Colored Petri Net (Jensen 1987) graphs. In [15], models are defined as product graphs. In [16]
and [17], Object-Oriented Action System (OOAS) is used as model specification language.
OOAS is used for formalism of parallel and distributed systems.

The second step for model-based testing is generating abstract test suites as shown
in Fig. 1. We analyze the primary studies in terms of application of this step. Most of
the studies do not apply this step in their approaches. Only two (6%) of the studies,
[14] and [16], applied the abstract test suite generation process before generating
concrete test suites.

For test case generation step, only four of the primary studies, [7], [17], [28] and [34] do
not conduct the test case generation step. They perform only model construction step.
Therefore, there is no extracted data for test case generation step regarding these studies.
Additionally, in some reviewed studies, test data (inputs and outputs), test sequences, test
scenarios, test oracles, and test scripts are generated beside of the test cases.

In Fig. 8, we present the generated type of test elements along with the number of
studies. The reviewed studies, except studies [7], [12], [13], [14], [17], [19], [21],
[26], [28], [29], [33], [34], [35] and [36] generate test cases. [2], [3], [13], [20], [21],
and [26] generate test sequence which is the set order of steps and actions comprising
a test or test run. [1], [4], [14], [18] and [29] generate test data which is used for
testing of system. [2], [10] and [33] generate test scenario that represents the set of
actions in order to test the functionality of the system. [2] and [4] generate test scripts
which are a set of instructions in order to test system functions correctness. [14]
generate test oracle which is a mechanism that decides whether system has passed or
failed a test. [5], [12] [19], [35] and [36] generate test suites.

In order to generate types of test elements (test case, test script, etc.), reviewed
studies propose various types of solution approaches. In Fig. 9, we present the
proposed solution approaches for generating test elements.

As seen from the Fig. 9, 17 (47%) of the primary studies use existing model-based
testing tools. [5] uses CoVeR tool (Hessel and Pettersson 2007a) to generate test cases
automatically based on timed automata theory. CoVeR is a model-based testing tool
that allows its users to automatically generate test suites from timed automata spec-
ifications of real-time systems. [11] generate test cases and test scripts by using
attributed event grammar-based (AEG-based) generator. It is used for automation of
random event trace generation in order to generate desired test cases and test scripts.
[12] use a model-based testing tool Azmun as test case generator that is based on the
model checker NuSMV (NuSMV Language n.d.) to generate test cases of products in
software product line. [13] use a tool ATGT (ATGT Tool n.d.). [15] use JUMBL (J

Software Qual J (2018) 26:1327–1372 1349

Usage Model Builder Library) tool (Prowell 2003) which is a model-based testing tool
for statistical testing in order to generate test cases and test scripts. [17] use Argos
and Ulysses (Aichernig et al. 2011) tools to generate OOAS models from UML
diagrams. [18] use Esterel and TestSpec Generator in order to generate executable
test suites from abstract test suites. [19], [25] and [31] use the UPPAAL tool based on
model checking to generate test cases from models. [23] use the model-based testing
mutation tool MoMuT::TA for timed automata. In [30], they use test case chain
generator CHAINCOVER tool. [32] use Verista tool to generate test cases. [16] uses
VIATRA tool to generate OOAS models from UML diagrams. [33] implement their
own tools Test Observator and Test Integrator to generate test scenarios. [35] use tool
MaTeLo to generate test suites. [36] implement their own tool AutoMOTGen to
generate test suites from Simulink/Stateflow models.

The second most used solution approach is model checking. Seven (19%) of the
reviewed primary studies used model checking to generate test elements. Model checking
is a technique used for formal verification of the system automatically. The main purpose
of the model checking is to verify a formal property given as a logical formula on a
system model. Model checkers are formal verification tools which are capable of
providing counter examples to violated properties (Fraser et al. 2009). [1] use SAL
and NuSMV model checkers to generate test case and test data. SAL (BSymbolic
Analysis Laboratory Title (Symbolic Analysis Laboratory Title n.d.) is a framework
which is used for model checking of transition systems. NuSMV Language (NuSMV
Language n.d.) is a model checker based on binary decision diagrams. It is designed to
be an open architecture for model checking. [26] uses the model checker NuSVM in
order to generate test sequences. In [3], they aim to find both test cases and execution
sequence by using model checking techniques. [4], [21], and [22] use the SPIN Spin–
Formal Verification (Spin–formal verification n.d.) model checker tool in order to

1350 Software Qual J (2018) 26:1327–1372

20

6
5 5

4
3 2 2 10

5

10

15

20

25

of

 P
rim

ar
y

St
ud

ie
s

Test Elements

Fig. 8 Generated type of test elements

generate test cases and test scripts. SPIN is a general tool for verifying the correctness of
distributed software models automatically. The model checker Rodin is used to generate
test cases in [24].

In five (14%) of the reviewed studies, algorithm is used to generate test cases. In
[9], they use path-finding algorithm on a graph to generate test case. [20] use all the
paths covered optimally graph algorithm to generate test cases. [10] define a new
algorithm which generates test cases by extracting the data from the tagged prelim-
inary safety analysis report (PSAR). The extracted data generate the sequence diagram
to product test information. In [28], they apply the algorithm defined in Hessel and
Pettersson (2007b). [29] define a new algorithm to generate test cases incrementally.

[8] uses a multi-object checking in order to generate test cases. In model checking
techniques, if too many objects are taken into account, state space explosion problem
arises. Therefore, they use multi-object checking which outwits the state space explo-
sion problem by checking one object at a time. [14] generate test data and test oracles
by using model transformations by conforming model instances to the metamodel. [7]
use a DSL to define test models. [27] use the ASMETA framework to generate test
cases. [2] and [6] do not specify their methods used to generate test elements.

Next step for the model-based testing is definition of test selection criteria. For this step,
most (75%) of the primary studies are not define the criteria for test selection. Only nine
(25%) of the primary studies, [3] and [4] define the criteria. In order to define the criteria, [3]
use classification tree, [4] use temporal logic as test selection criteria. The studies [5], [9],
[13], [18], [19], [20], and [25] define their own criteria.

For the test case specification step, most (66%) of the primary studies don’t specify their
test case specification language. Ten (28%) of the reviewed studies [9], [10], [12], [15], [16],
[18], [20], [22], [27] and [36] define test cases formally. Two (6%) of the primary studies, [1]
and [4], use an informal language to describe test cases.

Test execution can be done manually or automatically. For this step, 17 (47%) of the
primary studies [2], [3], [4], [6], [11], [12], [14], [15], [18], [19], [20], [25], [26], [27], [30],
[33] and [36] execute tests automatically. Nineteen of the primary studies do not state
explicitly whether they run the tests or do not.

Software Qual J (2018) 26:1327–1372 1351

17

7

5

2

1

1

1

1

1

0 5 10 15 20

Tool
Model checking

Algorithm
Not specified

DSL
Framework

Manual
Model transforma�on
Mul� object checking

of Primary Studies

So
lu

�o
n

Ap
pr

oa
ch

Fig. 9 Solution approaches for generating test elements

With this research question, we also extracted information about contribution provided by
the reviewed primary studies and present them in Fig. 10. Twenty-five (69%) of the primary
studies propose a method in order to conduct model-based testing for software safety. Seven
(19%) of the primary studies implement a framework, only 4 of the reviewed primary studies a
tool to test software safety by using model-based techniques.

4.4.3 Summary of the selected primary studies

Below we provide a short summary of each primary study.

& Study [1]: In this work, the authors present the requirements in temporal logic
formulas. An automaton model is generated in NuSVM from the c-source code
automatically. They generate the test cases from the automaton model and require-
ment specification using the model checkers SAL and NuSVM by producing
counterexamples. The approach is illustrated using a case study from automotive
domain.

& Study [2]: In this study, the authors provide an automaton model for safety properties.
The safety model is generated from automaton model. Test case and test script
generation are performed based on the safety model. They provide a framework for
the testing process. The proposed approach is validated using an industrial case from
railway domain.

& Study [3]: The authors propose a method for model-based testing of AUTOSAR
multi-core RTOS. Firstly, they construct an abstract model to describe requirements.
From this model, they generate concrete model in the Promela language with system
configuration. Then, from this formal model, they generate the test cases by model
checking. They provide a classification tree for test selection. Additionally, they
provide a method for bug analysis. The proposed approach is illustrated using an
experiment from automotive domain.

& Study [4]: In this study, the authors propose a framework for generating test cases
from a safety model. Firstly, they model the system using finite state machine (FSM).
The FSM models are translated into Promela models. Each test requirement is
formulated as temporal logic expression. In addition to these models, Markov chain
model is used to describe the states of the system. Test case generation is performed
by SPIN tool with model checking techniques using the constructed models. They
illustrate the proposed framework on an industrial case from railway domain.

& Study [5]: In this study, the authors propose a new algorithm for test case generation
to support the testing of onboard systems. Firstly, they produce the network timed
automata model from interaction model of system using the UPPAAL tool. Then,

1352 Software Qual J (2018) 26:1327–1372

25

7 40

10

20

30

Method Framework Tool#
of

 P
rim

ar
y

St
ud

ie
s

Contribu�on Type

Fig. 10 Contribution type

they generate the test cases from network timed automata model using the CoVeR
model-based testing tool. The proposed approach is illustrated using a case study
from railway domain.

& Study [6]): In this work, the authors propose a risk-based testing method using the
information from Fault Tree Analysis (FTA). They generate test cases based on the risk
given in FTA. They use the event set notion and transform the event set into state machine
as test model. They mainly focus on generating the test model from FTA events. The
proposed approach is illustrated by using an automation system.

& Study [7]: The authors focus on generating test model for the instances in the system.
Firstly, they identify the components and composition operators in the system. Then, they
describe the behavior of components using the Mealy machines (type of finite state
machine) and behavior of composition operators using π-calculus. They define a DSL
which uses the components and composition operators to build a system model from
domain description. The proposed approach is illustrated by using a case study from
railway domain.

& Study [8]: In this paper, the authors focus on the state space explosion problem in model
checking process. They propose a multi-object checking approach for generating scenarios
in order to solve state space problem. Firstly, they define the UMLmodels of the system by
using UML-based railway interlockings. Then, they propose an approach for generating
counterexamples with multi-object checking. From the UML-based RI models, they
generate the counterexamples using the multi-object checking. Based on the counterex-
amples, they generate test cases with multi-object checking method. The approach is
illustrated on a case study from railway domain.

& Study [9]: In this study, the authors propose a model-based test case generation approach
particularly aim feature interaction analysis. Firstly, they define the functional architecture
and behavioral specification to describe system specification model. Functional architec-
ture defines the components, sensors, actuator hardware devices and values, such as
signals and shared variables in the system. Behavioral specification describes the behavior
of the system by using the STATEFLOW automata. In order to generate test cases, the
STATEFLOW diagrams are transformed into flow graphs. They generate the test cases
from the flow graphs. The approach is illustrated by using a case study from automotive
domain.

& Study [10]: In this paper, the authors propose a systematic method for test case generation
based on a PSAR. The report is written in natural language which specifies the user’s
needs. They convert the PSAR into an explicit system model for scenario-based test case
generation. Then, they design ontology that represents the set of concepts and their
relations with in a domain. They construct the SRP (Standard Review Plan)-based
ontology in XML that will be used to tag PSAR. Sequence diagram is generated for
combining and generating different scenario test cases from the tagged PSAR. The test
cases are generated from the sequence diagrams and their variations. They illustrate the
proposed method using a case study from nuclear domain.

& Study [11]: In this paper, the authors present an approach for automatic scenario generation
from environment behavior models of the system. The authors define an environmental
behavior model rather than system behavior model. The environmental behavior model
focuses on the productive aspects of the behavior. They model the environmental behavior
of system as event trace. Then, they use the AEG tool for generating AEG model from
environment model. The test generator takes the AEG and derives a random event trace

Software Qual J (2018) 26:1327–1372 1353

from it and generates a test drive in C. They illustrate the proposed approach using an
experiment from medical domain.

& Study [12]: In this work, the authors provide an approach for test suite generation for
testing of software product lines (SPLs). They define their test model as state machines.
For each product in the SPL, they build a test model called as 100% test model. By
combining these models, they build a super model called as 150% test model for SPL.
Additionally, they define the test goals for test case selection. Then, they propose an
algorithm to generate test cases from the 150% test models using the test goals. They use
the Azmun framework as a test case generator. The proposed method is illustrated on a
case study from automotive domain.

& Study [13]: In this study, the authors focus on fault detection. They classify the faults
and select most studied classes of faults in the literature. They use the abstract state
machine (ASM) as a test model. Based on the ASM and fault class, they generate the
test predicates that describe the test conditions. From the ASM specification, SPIN
model checker generates the counterexamples with model checking. Based on the
counterexamples and test predicates, the test suite is generated. They illustrate their
approach using one case study from automotive domain and one from nuclear
domain.

& Study [14]: In this study, the authors focus on automatically generating test data
representing complex situations and evaluating test traces. In this case, it is important to
have a method providing a method to generate both test data and test oracle. Firstly, the
authors define the context model and scenarios in the system. Context model is a
metamodel of the system and explains the elements and their relations. The scenarios
are presented in UML sequence diagram of the system. Based on the context model and
UML sequence diagrams, they generate test data. For the test oracles, they present
requirements as graphical scenarios in the form of extended UML sequence diagrams
which express events/messages received and actions/messages sent by the system under
test. Based on these action models, they generate test oracles. The proposed approach is
illustrated on a case study from robotics domain.

& Study [15]: In this work, the authors construct the test model as transition system that
includes all possible inputs and corresponding expected outputs. In addition, they
define a DSL for expressing transition systems. They use JUMBL tool for test case
generation. The proposed approach is illustrated by using an experiment from
robotics domain.

& Study [16]: In this paper, the authors define the UML class diagrams and state diagrams to
express the requirements. In order to express the rules that define the system behavior, they
use the OCL. They generate the OOAS models from UML diagrams using VIATRA tool.
OOAS consists of a finite set of variables representing the state of system and a finite set of
actions that act upon the variables. They generate the mutants of the OOAS models. For
every OOAS model and its mutants, they generate input/output-labeled transition system
(IOLTS) as abstract test cases. IOLTS describes the states and transition relations between
these states. The abstract test cases are converted to EPS (Elektra Periphery Simulator)
scripts that present concrete test cases. They illustrate the proposed method on a case study
from railway domain.

& Study [17]: In this study, the authors present an approach for generate OOAS model as test
model from UML class and state diagrams. They define a set of rules for transformation
UML diagrams into OOAS model. They implement a tool for transformation.

1354 Software Qual J (2018) 26:1327–1372

Additionally, they use the Argos tool which converts OOAS model to an action system
that is the input for their test-case generator Ulysses. The proposed approach is illustrated
by an industrial case from automotive domain.

& Study [18]: In this paper, the authors derive the functional model from the require-
ment specification in a language called ESTEREL. They also build verification
model in PSL (property specification language). They annotated these models
according to defined code coverage metrics and they produce structural and
conformance models. From these models, tests are generated by esVerify tool by
generating counterexamples. The generated tests are not executable. They are
transformed into executable SystemC tests using the TestSpec generator. The
proposed method is illustrated by using a power state machine.

& Study [19]: In this paper, the authors propose an approach to transform functional
block diagram (FBD) into timed automata model. Programmable logic controllers
widely used in avionics and railway domains. FBD is a programming language for
PCLs. They use a UPPAAL model-checker to generate test cases from timed
automata model. The proposed method is illustrated using an industrial case from
railway domain.

& Study [20]: In this work, the authors, firstly, build the colored Petri Net (CPN)
model based on the system requirement specification. Based on the CPN model,
XML file and reachable graph of the CPN model are obtained. They propose an
algorithm All Paths Covered Optimal (APCO) to generate test cases as XML.
From the XML test cases, they apply the APCO algorithm to obtain set of test
subsequences. The set of XML test sequences is generated using the Sequence
Priority Selected (SPS) algorithm. The proposed method is illustrated using an
industrial case from railway domain.

& Study [21]: In this paper, the authors propose test specification patterns (TSP) that
are constructed based on the requirements and they provide a set of guidelines for
test specification. They propose a Verification&Validation UML profile to capture
system and requirement features. The test specification patterns are expressed in
UML statechart diagrams annotated with V&V UML profile. As a second step,
TSPs are transformed into Promela models that specify behaviors should not
happen. Using the SPIN model-checking tool, Promela code and test sequences
are generated from Promela models. The authors illustrated the proposed work on
the industrial case study in railway domain.

& Study [22]: In this work, the authors start with building a high-level model of the
system includes the information for Validation & Verification (V&V) purposes
expressing the structure and behavior of the system as well as modeling its
requirements. For this purpose, they define the UML V&V profile. They develop
a transformation that generates a Promela specification from the high-level UML
model using Atlas Transformation Language (ATL). Using the SPIN model-
checking tool, the test cases are generated from the Promela models. They use
an industrial case study from railway domain to illustrate the proposed approach.

& Study [23]: In this paper, the authors propose model-based mutation testing. They
define the models in terms of timed automata with inputs and outputs (TAIO). Then
they apply the mutation on these TAIO models. After that, they run the existing test
cases on the mutated models and select the mutants that are failed (killed mutants) to
create new test cases. They use a tool MoMuT::TA to create minimal test cases for

Software Qual J (2018) 26:1327–1372 1355

the killed mutants. They exemplify the proposed approach on two short examples
from automotive domain.

& Study [24]: In this paper, the authors use Event-B grammar to create formal model of the
system. Event-B is a formal method to model and analyze the system. While defining
Event-B models, they apply system-theoretic process analysis to discover potential hazards
in the system. With this process, they introduce the safety constraints in Event-B models.
They use a model checker ProB to generate abstract test cases from Event-B models. In
order to show the applicability of their approach, they create a case study from avionics
domain.

& Study [25]: In this work, the authors aim to generate test cases for FBD programs.
Firstly, they transform the FBD programs to timed automata models. After that,
they annotate the transformed models such that a condition describing a single test
case can be formulated. They use model-checking tool UPPAAL to generate test
cases from timed automata models. They develop a toolbox COMPLETETEST for
the proposed approach. The proposed work is demonstrated with the industrial
experiment from railway domain.

& Study [26]: In this paper, the authors introduce a constraint specification language
OSEK_CLS to define usage constraints of automotive systems. They develop a tool which
generates constraint modules and trap properties from constraint specs and system con-
figurations. The constraint modules and trap properties combined with generic task
models. Then, they used NuSVM model checker to generate tests from these models.
They illustrate the proposed approach on automotive operating system.

& Study [27]: In this work, they develop a framework ASMETA as an Eclipse plug-in
for their proposed approach. Firstly, they create an ASM model capturing the
behavior of the system at a high-level of abstraction based on the informal
requirements. The ASM models are an extension of finite state machines. They
generate abstract test sequences from ASM models using ATGT tool in ASMETA
framework. After this step, they generate JUnit tests based on these abstract test
sequences. The proposed work is demonstrated using an industrial experiment
from automotive domain.

& Study [28]: In this paper, the authors propose a testing approach based on behav-
ioral and fault model of the system. They express the behavioral model as a
communicating extended finite state machines (CEFSM) and the fault model as a
fault tree. As a first step for their approach, they apply compatibility transforma-
tion using behavioral model and fault tree and construct transformed fault tree.
They transform the transformed fault tree into Gate CEFSM (GCEFSM). For third
step, they integrate the CEFSM and GCEFSM models into integrated CEFSM
(ICEFSM). They develop a tool that provides these transformations. They use
these models while applying fail-safe testing on a case study from aerospace
domain.

& Study [29]: In this work, the authors formalize the requirements by defining a domain-
specific language. They use the formalized requirements as models. They define an
algorithm that uses SMT solver Z3 to generate test input sequences from these models.
They illustrate their method on wheel loader case study and interlocking case study from
railway domain.

& Study [30]: In this paper, they aim to discover a test case chain which is a single-
test case that covers a set of multiple test goals and minimizes the test execution

1356 Software Qual J (2018) 26:1327–1372

time. They build a tool chain for the proposed method and define LTL properties
to indicate safety concerns in the system. They generate the C code from
SIMULINK models using the GENE-AUTO tool. Using the CHAINCOVER tool,
they generate test cases from generated C code and defined LTL properties. They
exemplify their tool chain on some experiments from automotive and robotics
domain.

& Study [31]: In this work, the authors model the system as network of timed
automata using the UPPAAL environment. Firstly, they analyze and verify the
timed automata model using UPPAAL statistical model checking with respect to
the properties formulated based on the system requirements. After then, they
generate test cases from the verified model using the UPPAAL Yggdrasil tool to
check that whether behavior meet by the model. In order to demonstrate their
work, they use an industrial case study from automotive domain.

& Study [32]: In this paper, they construct a framework VeriSTA based on a model
checking and conformance testing. They use the SystemC to design the system
model. They develop a transformation engine (STATE) to transform SystemC
designs into UPPAAL timed automata. They generate conformance tests from
these UPPAAL timed automata models using the VeriSTA framework. They
illustrate the proposed approach by conducting experiments on a case from
automotive domain.

& Study [33]: In this paper, the authors combine the model-based testing approach
with abstract interpretation method which is a static analysis method for inferring
dynamic properties of the code and catch faulty states of the program without
executing the code. They construct the Stateflow model from defined unit test
requirements. From the Stateflow model, they generate C code using real-time
workshop (RTW) embedded coder. They describe the unit tests in Simulink test
suite and develop a tool Test Observer to translate unit test definitions into test
suites for the generated C code. Test Observer registers the test execution during
the simulation in terms of input/output Simulink time series and translates these
time series into given input/expected output matrixes for the generated code. They
also develop a tool Test Integrator which creates a main file merging the regis-
tered input/expected output and the model generated code. For each test case, Test
Integrator runs the executable file and checks whether the output is same with the
expected output. They experimented the proposed tools using a case study from
railway domain.

& Study [34]: In this study, the authors propose a new UML profile which can be used
as a test model during MBT to support DO-178B certification. In their work, firstly,
they explain the importance of the DO-178B certification and identify eight essential
requirements which have high impact on to support DO-178B certification. From the
identified essential requirements, they define a conceptual model for proposed UML
profile for DO-178B compliant test models. Then, they exemplify their proposed
profile using a case study from avionics domain.

& Study [35]: In this work, the authors introduce an approach that adopts MBT
process for product lines (PL). Firstly, they define their product line requirements
using the tool IBM Rational DOORS. Then they import these requirements into
the tool MaTeLo and create PL usage model. MaTeLo transforms the PL usage
models into usage model variants for designed products. The MaTeLo Testor tool

Software Qual J (2018) 26:1327–1372 1357

generates the test suites from these derived usage model variants. Finally, they
assess their approach using a case study from aerospace domain.

& Study [36]: In this paper, the authors propose a tool AutoMOTGen which generates
tests from Simulink/Stateflow design models and test specifications. Firstly, they
define Simulink/Stateflow design models and requirements and test specifications.
Based on design models and specifications, AutoMOTGen generates test suites
using model checking techniques. They illustrate their approach using several case
studies from automotive domain.

RQ.2.3–Research challenges in MBT for software safety

RQ.2.3: What are the research challenges in model-based testing for software safety?

This research question is aimed to reveal the research challenges that are extracted
from primary studies for further advancements. With respect to this question, we
identified some research challenges that include problems in reviewed studies and
future research directions.

& Model-based testing for domain-specific applications

All reviewed papers discuss model-based testing for particular application domains,
such as automotive and railway. There seems to be a clear impact of the specific
domain on the model-based testing process. The question here is whether we could
provide a general-purpose MBT approach without considering a particular domain. For
this purpose, the application domain semantics and its impact on the MBT process
should be investigated.

& What is the impact of the context on MBT? How to model context in/for MBT?

Some of the reviewed papers indicate that existing standard test descriptions do not
support the representation of changes in the context. For some domains such as auton-
omous systems, safety testing has some challenges due to some reasons: Firstly, the
system behavior is highly context-aware. Additionally, context is complex and its
specification could be large. Thirdly, changes in system behavior and context should
be handled to capture the requirements. In order to solve these problems, study of [16]
defines a context model and scenario-based behavior specification language. The context
model captures domain knowledge about context of the system systematically. In regard
to the system behavior, scenario-based behavior specification captures the behavior of
system in case of a test context.

& What are the required metrics for validating/evaluating the MBT elements including
model, test case specification, test case etc.?

As explained before, model-based testing consists of several steps. In each step, at
least one element is produced to complete MBT process. However, after each gener-
ation of MBT elements, the quality of the generated element should be evaluated. In
some reviewed studies, they propose a new metric or use existing metrics to assess the

1358 Software Qual J (2018) 26:1327–1372

testing quality. In the study by [15], they define context-related coverage metric and
scenario-related coverage metric in order to measure testing coverage. In reviewed
studies, there is not stated/proposed metric to evaluate for other types of MBT
elements.

& How to compose models for generating test cases in MBT?

Some of the systems are built up with components that connected a network-like
structure. In the study by [7], these systems are discussed. Each instance of these
systems requires its own set of models to generate test cases. However, creating a test
model for each instance could be costly. Therefore, they propose a component-based
solution to generate test models by using general information. They create test model
components from requirement specification and they translate these models by using
the domain-specific information.

& How to define MBT for software product families?

Software product line (SPL) is an engineering approach for the systematic software
reuse in order to reduce the cost and development time and improve the software
quality. Since every product needs its own configuration in large SPLs, SPL testing
approaches are not able to test efficiently large SPLs. Additionally, testing each
product in SPLs individually is a time-consuming process. For these reasons, [12]
propose a new approach for testing of SLPs. They implement an algorithm which
generates a set of test cases from complete test model that consist of all test models
of an SPL as special cases. They generate test cases which satisfy the required
coverage criteria. After the test case generation, they applied selection criteria on
generated test cases in order to represent all subsets of product features in the SPL. In
[35], the authors introduce an approach that adopts MBT process for PL. Firstly, they
define their product line requirements using the tool IBM Rational DOORS. Then
they import these requirements into the tool MaTeLo and create PL usage model.
MaTeLo transforms the PL usage models into usage model variants for designed
products. They use the MaTeLo Testor tool to generate the test suites from these
derived usage model variants.

& How to apply MBT for testing systemic behavior?

In some reviewed studies, they use behavioral models for test case generation. The
study by [7] focuses only on creating proper test models for the embedded control
systems. In order to handle the complexity of these systems, they propose a
component-based approach. They identify the candidate components that represent the
behavior of system. They use Mealy machine (finite-state automata) in order to describe
the behavior of the components. They define a DSL that describes components and
operators to build a system model as a test model. The study by [9] describes the
behavioral models of system by using Stateflow finite-state automata) models. In the
study by [8], they used UML sequence diagrams to define their behavioral models. In
[22], they define a UML V&V profile which contains all information for V&V purposes,
describing the structure and behavior of the system under test.

Software Qual J (2018) 26:1327–1372 1359

& How to integrate MBT with other V&V approaches?

The main purpose of model checking is to verify a formal property given as a
logical formula on a system model. Model checkers are formal verification tools that
have capability of providing counterexamples to violated properties. In some reviewed
studies ([3], [4]), model checking is used to interpret both counterexamples to find
test cases and the test cases to find execution sequence. However, the study by [8]
indicates that model-checking techniques suffer from state space explosion problem
when the system has too many objects. Hence, they propose multi-object checking
approach to handle the state space explosion problem.

& How to define a generic test model to express safety properties/functionalities of the
system?

In reviewed studies, only four of the primary studies have specific safety model to
use it test case generation process. Three of these papers define their safety properties
using automata. One of them defines a DSL in order to specify safety model. Based
on these results, none of the reviewed papers provide a generic approach to generate
test model. However, in Thomas et al. (2008), the authors propose a UML profile on
architectural level aim to provide a tool for formal verification and validation tech-
niques such as model checking and runtime verification.

& How to generalize the safety requirement specification in order to generate test models?

Based on the data extraction results, only six of the primary studies express the
requirements by using formal language. Two of these studies use temporal logic
formulas to indicate the requirements. The other studies use fault tree and UML state
diagrams. As a result, there is no proposed generic approach to express safety
requirements.

& How to handle evolution of the system models in the test models?

As a nature of continuous engineering, the evolution of system models is essential
to reflect changes and improvements in the system. With regard to updating and
improving the system models, it is expected to have some revision on test models.
Based on the data extraction results, none of the primary studies consider the
evolution of the system. Therefore, none of them discuss how to reflect the
changes/improvements on the system model to test models.

4.5 RQ.3: What is the strength of evidence of the study?

We design the third research question to address strength of evidence based on the
selected primary studies. In the literature, there are several systems for grading the
strength of the evidence. In this work, we used the definitions from the Grading of
Recommendations Assessment, Development and Evaluation (GRADE) (Atkins et al.
2004) working group which is developed for grading the quality of evidence and strength
of recommendations. GRADE approach specifies four grades of strength of evidence

1360 Software Qual J (2018) 26:1327–1372

which is given in Table 9 (adopted from Atkins et al. 2004). The strength of evidence is
determined by four key elements which are study design, study quality, consistency, and
directness.

Regarding the study design, the GRADE approach gives higher grade to exper-
iments than to observational studies. In this work, 10 (28%) of the selected primary
studies are experimental type. Table 10 shows the average quality scores related to
experimental studies. Thus, according to GRADE approach, our first categorization
of the strength of evidence in this review from the perspective of study design is
low.

With respect to quality of studies, in general, issues of bias, validity, and reliability
are not addressed explicitly. Additionally, none of the selected primary studies got full
score from our study quality assessment criterion. Twenty-two (61%) of the selected
primary studies stated their findings clearly in terms of credibility, validity, and
reliability. Besides, none of the selected primary studies discuss the negative findings
clearly. Based on these findings, we can conclude that there are some limitations to
the quality of the selected primary studies due to the low-quality scores.

Regarding the consistency which addresses the similarity of estimates of effects
across studies, we realized that there are little differences among studies. Because of
the results of the primary studies are presented both objectively and empirically, we
did not conduct a sensitivity analysis by excluding studies which have poor quality.
Since the outcomes of reviewed primary studies are not presented in comparable way
and reporting protocols vary from study to study, evaluating the synthesis of quanti-
tative results will be not feasible. This causes us to perform the data synthesis in a
more qualitative or descriptive way which is not desired. Based on these findings, we
can conclude that in general results are consistent.

Directness refers to the extent to which the people, interventions, and outcome measures are
similar to those of interest. In this context, people refer to the subject of the study; intervention
refers to the applied model-based testing approaches. With respect to the people, none of the
selected primary studies used human subjects. Regarding the intervention, in the
selected primary studies, various types of model-based testing approaches are used.
With respect to the outcome measures, 13 (40%) of the primary studies performed in
industrial settings. Based on these findings, the total evidence based on directness of
the primary studies is low.

Combining the four key elements of study design, study quality, consistency, and
directness for grading the strength of evidence, we found that the strength of evidence

Table 9 Definitions for grading the strength of evidence

Grade Definition

High Further research is very unlikely to change our confidence in the estimate of effect
Moderate Further research is likely to have an important impact on our confidence in the

estimate of effect and may change the estimate
Low Further research is very likely to have an important impact on our confidence

in the estimate of effect and is likely to change the estimate
Very low Any estimate of effect is very uncertain

Software Qual J (2018) 26:1327–1372 1361

in a low grade. This means that the estimate of effect that is based on the body of
evidence from current research can be considered uncertain. Further research is
required to gain a reliable estimate of effects of model-based testing for software
safety.

4.6 Threats to validity

One of the main threats to validity of this systematic mapping study is the publication
bias. The publication bias indicates the tendency of researchers to more likely publish
positive results. In order to deal with this bias, we develop a research protocol and
constructed research questions. After this, we define our search scope and search
method clearly. Since we decide to search papers automatically, we constructed our
search string according to the target of this systematic mapping study. Another
important issue is the incompleteness which results in search bias. The risk of this
threat highly depends on used keywords in search string. In order to reduce this risk,
we use an iterative approach in keyword list construction process. In order to achieve
the largest set of targeted search items, we perform some pilot searches on search
engines of selected electronic databases by constructing a keyword list. When the
keyword list was not able to find the targeted studies, new keywords were added to
list or some keywords are deleted from the list. However, it is still possible to miss
some relevant literature papers. One such instance is the existence of gray literature
such as technical reports, MSc and PhD theses, and company journals. In our case,
this literature can be important if the authors report the complete study and validated
it by using a case study. In this mapping study, we do not include such information.
Another risk of the incompleteness is that the searches on electronic databases are
inconsistent in search engines. Those databases have limited capabilities in terms of
performing complex search strings. This could lead to irrelevant studies being select-
ed. Therefore, we define a selection criteria and applied inclusion/exclusion proce-
dures on primary studies manually. Thereby, we try to reduce the publication bias and
search bias as much as possible by adopting the guidelines and defining criteria.

After the primary studies selected and evaluated, we perform the data extraction in
order to derive the review result. In this process, if data extraction is not modeled in a
well-defined way, this can cause data extraction bias. In order to define the data
extraction model, we read a set of randomly selected papers. Each of them was used
to construct initial data extraction form based on previously defined research questions
and we perform pilot data extraction on randomly selected primary studies. After the
pilot data extraction process, we add some fields to the form in order to capture
relevant results. Furthermore, to eliminate the unnecessary or irrelevant results, we
remove some fields from the data extraction form. To reduce the data extraction bias,

Table 10 Average quality scores of experimental studies

Experimental studies [3], [13], [15], [19], [20], [23], [25], [27], [30], [32]

Number of studies 10
Mean quality score 8.2

1362 Software Qual J (2018) 26:1327–1372

we apply this several times and after a number of iterations and discussions, we
constructed the final data extraction model.

Another one of the main threats to the validity of this systematic mapping study is
the classification of primary studies. To deal with this bias, the classification process
is done based on what has been written and claimed by the corresponding authors
instead of judging each paper independent from the authors statements. This has the
advantage that the primary studies can also be examined by other reviewers, and this
will support the reliability and reproducibility of our SMS.

5 Related work

Rafi et al. (2012) provide a systematic literature review and survey on benefits and
limitations of automated software testing. They consider the 25 studies and conduct
data extraction for both benefits and limitations of automated software testing. They
use the data extraction results to conduct practitioner survey to determine whether the
benefits and limitations are of relevance for the software industry at large. They share
the survey with 115 people from software industry. With the survey results, they
conclude that main benefits of test automation are reusability, repeatability, and effort
saved in test executions. Moreover, the participants of the survey indicate that
automation of testing improvise the test coverage. On the other hand, for the limita-
tions, they find that designing test cases and buying a test automation tool and
training the staff is highly costly. In this work, the authors only focus on the benefits
and limitation of automated testing where our work focuses on not only benefits and
limitation of the MBT but also the proposed solution approaches to provide more
detailed investigation of MBT approaches.

In the study of Hartman et al. (2007), the authors conduct a survey on the different
types of languages used to define test models. In this work, they indicate that one of
the key factors in model-based testing is language used to define test models. They
compare the languages from different aspects. First, design languages and test-specific
languages are compared and advantages/disadvantages of these languages are present-
ed. Secondly, they compare the domain-specific languages and generic modeling
languages and discuss the issues in each language. In addition, they compare the
visual and textual languages for test modeling. Then, they discuss the commercial, in-
house, and open-source tools. Finally, they give the pros and cons of the standard
languages and custom-made proprietary solutions. In this study, the authors only focus
on specific part of model-based testing. They only consider the test model construc-
tion step (explained in 2.1) of model-based testing. However, in our work, we
examine each of the model-based testing steps and provide more detailed analysis
on each of the steps.

In Dias Neto et al. (2007), they perform a systematic review on model-based
testing approaches. They focus on 78 papers to show where MBT approaches have
been applied, the characteristics and the limitations of MBT. They analyze the
selected studies in terms of application scope of MBT approaches, level of automa-
tion, tools to support MBT, models used for test case generation, test coverage
criteria, behavior model limitations, cost and complexity of application of MBT
approach. In addition to these, they also discuss the issues regarding MBT approaches

Software Qual J (2018) 26:1327–1372 1363

and limitation of MBT approaches. With this work, the authors analyze the all studies
in the literature, where we only consider to take the studies which focus on only
software safety. Our work also has slightly different fields for data extraction where it
is based on the model-based testing process (explained in 2.1).

6 Conclusions

In this paper, we have presented the results of a systematic mapping study on model-
based testing (MBT) for software safety. Our main goal was to investigate the
application domains in which MBT for safety was applied, identify the current
challenges and research directions, and identify the potential solutions in this context.
To the best of our knowledge, no previous systematic mapping study has been
performed yet on MBT and for this purpose. The SMS is carried out meticulously
and included the published literature since 2005. We can identify 604 papers from the
searching literature, and 36 of them are found as relevant primary studies to our
research questions.

Based on this mapping study, we have analyzed the current MBT approaches for
software safety and presented the results to help the researchers and identify the future
research directions. From our study, we can conclude that MBT for safety is quite broad
and has been applied in various application domains. This shows that MBT for safety is
indeed relevant and can help testing safety-critical systems. We could identify recurring
common motivations for adopting MBT, such as reducing the cost of testing and
increasing test coverage.

All the selected primary studies show that existing MBT approaches have a clear
impact on software safety testing. In parallel, we could observe that the proposed
solution approaches are focused on particular application domains. The focus on
specific application domains is often necessary to better support the targeted genera-
tion of test cases in that application domain. On the other hand, the proposed MBT
for safety approach as such is not directly applicable to other application domains and
as such is less generic and less reusable. Besides the focus on particular application
domains, we could also observe that the MBT for software safety approaches usually
focus on a small scope of the system. A model of the complete system is often
missing and likewise an overall evaluation of the system using MBT only is not
feasible. We could thus identify that the current MBT for software safety approaches
is basically focused on particular application domains and has a smaller system scope.
In this context, we could also observe that only a few studies perform an abstract test
case generation step that is useful for defining generic and reusable test cases.

An important aspect of MBT is of course the adoption of tool support to provide the
necessary automation. Most of the approaches have indeed tool support for model and test case
generation. In alignment with the focus of the solution approaches, the corresponding tools
also focus on particular application domains. Further, the learning curve for the tools is
different.

To sum up, we have highlighted the relevant primary studies in the state-of-the-art
regarding MBT for safety. The SMS provides both an analysis and synthesis of the
results and can help to provide a vision for further research. In our future work, we
will indeed tackle some of the identified challenges to enhance MBT for safety.

1364 Software Qual J (2018) 26:1327–1372

Appendix A Search Strings

Table 11 Search strings

Electronic
database

Search string

IEEE Xplore ((BAbstract^: model based software test OR BAbstract^: model driven software test)
AND BAbstract^: safety)

ACM Digital
Library

((Title:Bmodel based testing^ OR Title:Bmodel based software testing^ OR
Title:Bmodel-based testing^ OR Title:Bmodel-based software testing^ OR
Title:Bmodel driven testing^ OR Title:Bmodel driven software testing^ OR
Title:Bmodel-driven testing^ OR Title:Bmodel-driven software testing^ OR
Title:Bmodel based test^ OR Title:Bmodel based software test^ OR
Title:Bmodel-based test^ OR Title:Bmodel-based software test^ OR
Title:Bmodel driven test^ OR Title:Bmodel driven software test^ OR
Title:Bmodel-driven test^ OR Title:Bmodel-driven software test^) AND Title:Bsafety^) OR
((Abstract:Bmodel based testing^ OR Abstract:Bmodel based software testing^ OR
Abstract:Bmodel-based testing^ OR Abstract:Bmodel-based software testing^ OR
Abstract:Bmodel driven testing^ OR Abstract:Bmodel driven software testing^ OR
Abstract:Bmodel-driven testing^ OR Abstract:Bmodel-driven software testing^ OR
Abstract:Bmodel based test^ OR Abstract:Bmodel based software test^ OR
Abstract:Bmodel-based test^ OR Abstract:Bmodel-based software test^ OR
Abstract:Bmodel driven test^ OR Abstract:Bmodel driven software test^ OR
Abstract:Bmodel-driven test^ OR Abstract:Bmodel-driven software test^) AND

Abstract:Bsafety^)
Wiley Interscience (Bmodel based testing^ OR Bmodel based software testing^ OR Bmodel-based testing^ OR

Bmodel-based software testing^ OR Bmodel driven testing^ OR Bmodel driven software
testing^ OR Bmodel-driven testing^ OR Bmodel-driven software testing^ OR Bmodel
based test^ OR Bmodel based software test^ OR Bmodel-based test^ OR Bmodel-based
software test^ OR Bmodel driven test^ OR Bmodel driven software test^ OR
Bmodel-driven test^ OR Bmodel-driven software test^) AND Bsoftware^ AND Bsafety^

Science Direct TITLE-ABSTR-KEY ((Bmodel based testing^ OR Bmodel based software testing^ OR
Bmodel-based testing^ OR Bmodel-based software testing^ OR Bmodel driven testing^
OR Bmodel driven software testing^ OR Bmodel-driven testing^ OR Bmodel-driven
software testing^ OR Bmodel based test^ OR Bmodel based software test^ OR
Bmodel-based test^ OR Bmodel-based software test^ OR Bmodel driven test^ OR Bmodel
driven software test^ OR Bmodel-driven test^ OR Bmodel-driven software test^) AND
Bsafety^)

Springer (Bmodel based testing^ OR Bmodel based software testing^ OR Bmodel-based testing^ OR
Bmodel-based software testing^ OR Bmodel driven testing^ OR Bmodel driven software
testing^ OR Bmodel-driven testing^ OR Bmodel-driven software testing^ OR Bmodel
based test^ OR Bmodel based software test^ OR Bmodel-based test^ OR Bmodel-based
software test^ OR Bmodel driven test^ OR Bmodel driven software test^ OR
Bmodel-driven test^ OR Bmodel-driven software test^) AND Bsafety^

ISI Web of
Knowledge

((TI = Bmodel based testing^ OR TI = Bmodel based software testing^ OR
TI = Bmodel-based testing^ OR TI = Bmodel-based software testing^ OR
TI = Bmodel driven testing^ OR TI = Bmodel driven software testing^ OR
TI = Bmodel-driven testing^ OR TI = Bmodel-driven software testing^ OR
TI = Bmodel based test^ OR TI = Bmodel based software test^ OR
TI = Bmodel-based test^ OR TI = Bmodel-based software test^ OR
TI = Bmodel driven test^ OR TI = Bmodel driven software test^ OR
TI = Bmodel-driven test^ OR TI = Bmodel-driven software test^) AND TI = Bsafety^) OR
((TS = Bmodel based testing^ OR TS = Bmodel based software testing^ OR
TS = Bmodel-based testing^ OR TS = Bmodel-based software testing^ OR
TS = Bmodel driven testing^ OR TS = Bmodel driven software testing^ OR
TS = Bmodel-driven testing^ OR TS = Bmodel-driven software testing^ OR

Software Qual J (2018) 26:1327–1372 1365

Table 11 (continued)

Electronic
database

Search string

TS = Bmodel based test^ OR TS = Bmodel based software test^ OR
TS = Bmodel-based test^ OR TS = Bmodel-based software test^ OR
TS = Bmodel driven test^ OR TS = Bmodel driven software test^ OR
TS = Bmodel-driven test^ OR TS = Bmodel-driven software test^) AND TS = Bsafety^)

Scopus TITLE-ABS-KEY ((Bmodel based testing^ OR Bmodel based software testing^ OR
Bmodel-based testing^ OR Bmodel-based software testing^ OR Bmodel driven testing^
OR Bmodel driven software testing^ OR Bmodel-driven testing^ OR Bmodel-driven
software testing^ OR Bmodel based test^ OR Bmodel based software test^ OR
Bmodel-based test^ OR Bmodel-based software test^ OR Bmodel driven test^ OR Bmodel
driven software test^ OR Bmodel-driven test^ OR Bmodel-driven software test^) AND
Bsafety^)

APPENDIX-B Data Extraction Form

1366 Software Qual J (2018) 26:1327–1372

Table 12 Data extraction form

Extraction element Contents

General Information

1 ID Unique id for the study

2 SMS Category Include Exclude

3 Title Full title of the article

4 Date of Extraction The date it is added into repository

5 Year The publication year

6 Authors

7 Repository ACM, IEEE, ISI Web of Knowledge, Science Direct, Springer, Wiley

Interscience

8 Type Journal Article Book Chapter

Study Description

10 Main theme of the study

11 Motivation for the study

12 Existence of safety model Yes No

13 Targeted domain Automation, Automotive, Medical, Nuclear, Power Consumption, Railway,

Robotics

14 Requirement specification

language

Formal Informal Not specified

15 Model specification language Automata, DSL, UML, Object-Oriented Action Systems, Product Graph,

Transition System

16 Method for generating models

from requirements

Automatic Manual

17 Test selection criteria Algorithm, Temporal Logic Expression, Not specified

18 Test case definition language Formal Informal Not specified

19 Type of generated test elements Test Case, Test Script, Test Data, Test Sequence, Test Oracle, Test Scenario

20 Solution approach for generating

test elements

Tool , Model Checking, Not Specified, Graph Theory Algorithm, Multi-

Object Checking, Mutation, Model Transformation

21 Contribution Type Framework Tool Method

22 Assessment Approach Case Study Experiment

23 Evidence Type Academic Case Industrial Case

Academic Experiment Industrial Experiment

24 Findings

25 Constraints / Limitations

Evaluation

26 Personal note The opinions of the reviewer about the study

27 Additional note Publication details

28 Quality Assessment Detailed quality scores

T
ab

le
13

St
ud
y
qu
al
ity

as
se
ss
m
en
t
fo
rm

St
ud
y

Q
ua
lit
y
of

re
po
rt
in
g

R
ig
or

C
re
di
bi
lit
y

R
el
ev
an
ce

Q
ua
lit
y
of

re
po
rt
in
g

R
ig
or

A
ss
es
sm

en
to

f
cr
ed
ib
ili
ty

R
el
ev
an
ce

To
ta
l

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

[1
]

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

0.
5

0.
5

1.
0

1.
0

2.
5

3.
0

1.
0

2.
0

8.
5

[2
]

1.
0

1.
0

0.
5

0.
5

0.
5

0.
5

0.
0

0.
5

1.
0

0.
5

2.
5

1.
5

0.
5

1.
5

6.
0

[3
]

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

3.
0

3.
0

1.
5

2.
0

9.
5

[4
]

1.
0

1.
0

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

1.
0

0.
5

2.
5

1.
5

1.
0

1.
5

6.
5

[5
]

1.
0

1.
0

0.
5

1.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
5

2.
5

2.
5

0.
5

1.
5

7.
0

[6
]

1.
0

1.
0

0.
5

0.
5

1.
0

1.
0

0.
0

0.
5

1.
0

0.
5

2.
5

2.
5

0.
5

1.
5

7.
0

[7
]

1.
0

1.
0

0.
5

0.
5

1.
0

1.
0

0.
5

0.
5

1.
0

0.
5

2.
5

2.
5

1.
0

1.
5

7.
5

[8
]

1.
0

1.
0

0.
5

1.
0

0.
5

1.
0

0.
0

1.
0

1.
0

0.
5

2.
5

2.
5

1.
0

1.
5

7.
5

[9
]

1.
0

1.
0

0.
5

0.
5

0.
5

1.
0

0.
0

0.
5

1.
0

0.
5

2.
5

2.
0

0.
5

1.
5

6.
5

[1
0]

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

2.
5

3.
0

1.
5

2.
0

9.
0

[1
1]

1.
0

1.
0

0.
5

1.
0

0.
5

1.
0

0.
5

0.
5

1.
0

0.
5

2.
5

2.
5

1.
0

1.
5

7.
5

[1
2]

1.
0

1.
0

0.
5

0.
5

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

2.
5

2.
5

1.
5

2.
0

8.
5

[1
3]

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

2.
5

3.
0

1.
5

2.
0

9.
0

[1
4]

1.
0

1.
0

0.
5

0.
5

0.
5

0.
5

0.
0

0.
5

0.
5

1.
0

2.
5

1.
5

0.
5

1.
5

6.
0

[1
5]

1.
0

1.
0

0.
5

1.
0

1.
0

0.
5

0.
0

0.
5

1.
0

0.
5

2.
5

2.
5

0.
5

1.
5

7.
0

[1
6]

1.
0

1.
0

0.
5

0.
5

0.
5

1.
0

0.
0

1.
0

1.
0

1.
0

2.
5

2.
0

1.
0

2.
0

7.
5

[1
7]

1.
0

1.
0

0.
5

1.
0

0.
5

1.
0

0.
0

0.
5

1.
0

1.
0

2.
5

2.
5

0.
5

2.
0

7.
5

[1
8]

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

0.
0

1.
0

1.
0

0.
5

2.
5

3.
0

1.
0

1.
5

8.
0

[1
9]

1.
0

1.
0

1.
0

1.
0

0.
5

1.
0

0.
0

1.
0

1.
0

1.
0

3.
0

2.
5

1.
0

2.
0

8.
5

[2
0]

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
0

1.
0

1.
0

1.
0

3.
0

3.
0

1.
0

2.
0

9.
0

[2
1]

1.
0

1.
0

1.
0

1.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
5

3.
0

2.
5

0.
5

1.
5

7.
5

[2
2]

1.
0

1.
0

1.
0

1.
0

0.
5

1.
0

0.
0

1.
0

1.
0

1.
0

3.
0

2.
5

1.
0

2.
0

8.
5

[2
3]

1.
0

1.
0

0.
5

0.
5

0.
5

0.
5

0.
0

0.
5

1.
0

0.
5

2.
5

1.
5

0.
5

1.
5

6.
0

[2
4]

1.
0

0.
5

0.
5

0.
5

0.
5

0.
5

0.
0

0.
5

1.
0

0.
5

2.
0

1.
5

0.
5

1.
5

5.
5

[2
5]

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

0.
0

1.
0

1.
0

1.
0

3.
0

3.
0

1.
0

2.
0

9.
0

[2
6]

1.
0

1.
0

0.
5

1.
0

0.
5

0.
5

0.
0

0.
5

1.
0

0.
5

2.
5

2.
0

0.
5

1.
5

6.
5

[2
7]

1.
0

1.
0

0.
5

1.
0

0.
5

1.
0

0.
0

1.
0

1.
0

1.
0

2.
5

2.
5

1.
0

2.
0

8.
0

[2
8]

1.
0

1.
0

1.
0

1.
0

1.
0

0.
5

0.
0

0.
5

0.
5

0.
5

3.
0

2.
5

0.
5

1.
0

7.
0

A
P
P
E
N
D
IX

-C
St
ud

y
Q
ua

lit
y
A
ss
es
sm

en
t
F
or
m

Software Qual J (2018) 26:1327–1372 1367

T
ab

le
13

(c
on
tin

ue
d)

St
ud
y

Q
ua
lit
y
of

re
po
rt
in
g

R
ig
or

C
re
di
bi
lit
y

R
el
ev
an
ce

Q
ua
lit
y
of

re
po
rt
in
g

R
ig
or

A
ss
es
sm

en
to

f
cr
ed
ib
ili
ty

R
el
ev
an
ce

To
ta
l

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

[2
9]

1.
0

1.
0

1.
0

1.
0

1.
0

0.
5

0.
0

1.
0

0.
5

0.
5

3.
0

2.
5

1.
0

1.
0

7.
5

[3
0]

1.
0

1.
0

1.
0

1.
0

0.
5

0.
5

0.
0

1.
0

1.
0

1.
0

3.
0

2.
0

1.
0

2.
0

8.
0

[3
1]

1.
0

1.
0

1.
0

1.
0

0.
5

1.
0

0.
0

1.
0

1.
0

1.
0

3.
0

2.
5

1.
0

2.
0

8.
5

[3
2]

1.
0

1.
0

1.
0

1.
0

0.
5

1.
0

0.
0

1.
0

0.
5

0.
5

3.
0

2.
5

1.
0

1.
0

7.
5

[3
3]

0.
5

0.
5

1.
0

1.
0

0.
5

1.
0

0.
0

0.
5

1.
0

0.
5

2.
0

2.
5

0.
5

1.
5

6.
5

[3
4]

1.
0

1.
0

1.
0

0.
5

1.
0

1.
0

0.
0

1.
0

1.
0

0.
5

3.
0

2.
5

1.
0

1.
5

8.
0

[3
5]

1.
0

1.
0

0.
5

0.
5

0.
5

1.
0

0.
0

0.
5

1.
0

0.
5

2.
5

2.
0

0.
5

1.
5

6.
5

[3
6]

1.
0

1.
0

0.
5

1.
0

1.
0

1.
0

0.
0

1.
0

1.
0

0.
5

2.
5

3.
0

1.
0

1.
5

8.
0

1368 Software Qual J (2018) 26:1327–1372

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Aichernig, B. K., Brandl, H., Jöbstl, E., & Krenn, W. (2011). UML in action: A two-layered interpretation for
testing. SIGSOFT Softw Eng. Notes, 36(1), 1–8. doi:10.1145/1921532.1921559.

Aichernig, B. K., Hörmaier, K., & Lorber, F. (2014). Debugging with timed automata mutations. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8666 LNCS, 49–64. doi:10.1007/978-3-319-10506-2_4.

Aichernig, B. K., Ničković, D., & Tiran, S. (2015). Scalable incremental test-case generation from large behavior
models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Vol. 9154, pp. 1–18). doi:10.1007/978-3-319-21215-9_1.

Arcaini, P., Gargantini, A., & Riccobene, E. (2017). Rigorous development process of a safety-critical system:
From ASM models to Java code. International Journal on Software Tools for Technology Transfer, 19(2),
247–269. doi:10.1007/s10009-015-0394-x.

ATGT Tool. (n.d.). http://cs.unibg.it/gargantini/software/atgt/. Accessed 3 September 2016.
Atkins, D., Best, D., Briss, P. A., Eccles, M., Falck-Ytter, Y., Flottorp, S., et al. (2004). Grading quality of evidence

and strength of recommendations. BMJ (Clinical Research ed.), 328(7454), 1490. doi:10.1136
/bmj.328.7454.1490.

Auguston, M., Michael, J. B., & Shing, M.-T. (2006). Environment behavior models for automation of testing
and assessment of system safety. Information and Software Technology, 48(10), 971–980. doi:10.1016/j.
infsof.2006.03.005.

Bourque, P., & Dupuis, R. (2004). Guide to the Software Engineering Body of Knowledge 2004 Version.
SWEBOK 2004 Guide to the Software Engineering Body of Knowledge (Vol. 1). doi:10.1109
/SESS.1999.767664.

Choi, Y., & Byun, T. (2017). Constraint-based test generation for automotive operating systems. Software and
Systems Modeling, 16(1), 7–24. doi:10.1007/s10270-014-0449-6.

Cichos, H., Oster, S., Lochau, M., & Schuerr, A. (2011). Model-based coverage-driven test suite generation for
software product lines. Model Driven Engineering Languages and Systems, 6981, 425–439.

Dias Neto, A. C., Subramanyan, R., Vieira, M., & Travassos, G. H. (2007). A survey on model-based testing
approaches: A systematic review. In Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held in Conjunction with the 22Nd
IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007 (pp. 31–36). New
York, NY, USA: ACM. doi:10.1145/1353673.1353681.

Enoiu, E. P., Sundmark, D., & Pettersson, P. (2013). Model-based test suite generation for function block
diagrams using the UPPAAL model checker. Proceedings–IEEE 6th International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2013, 158–167. doi:10.1109/ICSTW.2013.27.

Enoiu, E. P. ., Čaušević, A. ., Ostrand, T. J. ., Weyuker, E. J. ., Sundmark, D., Pettersson, P. (2014). Automated
test generation using model checking: an industrial evaluation. International Journal on Software Tools for
Technology Transfer, 335–353. doi:10.1007/s10009-014-0355-9.

Fang, L., Kitamura, T., Do, T. B. N., & Ohsaki, H. (2012). Formal model-based test for AUTOSAR multicore
RTOS. Proceedings–IEEE 5th International Conference on Software Testing, Verification and Validation,
ICST 2012, 251–259. doi:10.1109/ICST.2012.105.

Fraser, G., Wotawa, F., & Ammann, P. E. (2009). Testing with model checkers: A survey. Software Testing
Verification and Reliability. doi:10.1002/stvr.402.

Gargantini, A. (2007). Using model checking to generate fault detecting tests. Tests and Proofs, 189–206.
doi:10.1007/978-3-540-73770-4_11.

Gario, A., Andrews, A., & Hagerman, S. (2015). Fail-safe testing of safety-critical systems: A case study and
efficiency analysis. Software Quality Journal. doi:10.1007/s11219-015-9283-5.

Gentile, U., Marrone, S., Mele, G., Nardone, R., & Peron, A. (2014). Test specification patterns for automatic
generation of test sequences. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 8718 LNCS, 170–184. doi:10.1007/978-3-319-
10702-8_12.

Software Qual J (2018) 26:1327–1372 1369

http://dx.doi.org/10.1145/1921532.1921559
http://dx.doi.org/10.1007/978-3-319-10506-2_4
http://dx.doi.org/10.1007/978-3-319-21215-9_1
http://dx.doi.org/10.1007/s10009-015-0394-x
http://cs.unibg.it/gargantini/software/atgt/
http://dx.doi.org/10.1136/bmj.328.7454.1490
http://dx.doi.org/10.1136/bmj.328.7454.1490
http://dx.doi.org/10.1016/j.infsof.2006.03.005
http://dx.doi.org/10.1016/j.infsof.2006.03.005
http://dx.doi.org/10.1109/SESS.1999.767664
http://dx.doi.org/10.1109/SESS.1999.767664
http://dx.doi.org/10.1007/s10270-014-0449-6
http://dx.doi.org/10.1145/1353673.1353681
http://dx.doi.org/10.1109/ICSTW.2013.27
http://dx.doi.org/10.1007/s10009-014-0355-9
http://dx.doi.org/10.1109/ICST.2012.105
http://dx.doi.org/10.1002/stvr.402
http://dx.doi.org/10.1007/978-3-540-73770-4_11
http://dx.doi.org/10.1007/s11219-015-9283-5
http://dx.doi.org/10.1007/978-3-319-10702-8_12
http://dx.doi.org/10.1007/978-3-319-10702-8_12

Grasso, D., Fantechi, A., Ferrari, A., Becheri, C., & Bacherini, S. (2010). Model based testing and abstract
interpretation in the railway signaling context. ICST 2010–3rd International Conference on Software
Testing, Verification and Validation, 103–106. doi:10.1109/ICST.2010.44.

Hartman, A., Katara, M., & Olvovsky, S. (2007). Choosing a test modeling language: A survey. Hardware and
Software, Verification and Testing, 204–218. doi:10.1007/978-3-540-70889-6_16.

Herber, P., & Glesner, S. (2015). Formal modeling and verification of cyber-physical systems. doi:10.1007/978-
3-658-09994-7.

Herzner, W., Schlick, R., Schütz, W., Brandl, H., & Krenn, W. (2010). Towards generation of efficient test cases
from UML/OCL models for complex safety-critical systems. Elektrotechnik und Informationstechnik,
127(6), 181–186. doi:10.1007/s00502-010-0741-2.

Hessel, A., & Pettersson, P. (2007a). COVER-–A real-time test case generation tool.
Hessel, A., & Pettersson, P. (2007b). A global algorithm for model-based test suite generation. Electronic Notes

in Theoretical Computer Science, 190(2 SPEC. ISS.), 47–59. doi:10.1016/j.entcs.2007.08.005.
Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages, and

computation, 2nd edition. ACM SIGACT News, 32(1), 60. doi:10.1145/568438.568455.
Jensen, K. (1987). Coloured Petri nets. In Petri nets: central models and their properties (Vol. 254, pp. 248–299).

doi:10.1007/BFb0046842.
Kandl, S., Kirner, R., & Puschner, P. (2006). Development of a framework for automated systematic

testing of safety-critical embedded systems. Proceedings of the Fourth Workshop on Intelligent
Solutions in Embedded Systems, WISES 2006, 65–77. doi:10.1109/WISES.2006.237154.

Kim, J. H., Larsen, K. G., Nielsen, B., Mikučionis, M., & Olsen, P. (2015). Formal analysis and testing of real-
time automotive systems using UPPAAL tools. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9128, pp. 47–61).
doi:10.1007/978-3-319-19458-5_4.

Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in Software
Engineering. EBSE Technical Report Nr. EBSE-2007-01. EBSE Technical Report. http://www.dur.ac.
uk/ebse/resources/Systematic-reviews-5-8.pdf

Kloos, J., & Eschbach, R. (2010). A systematic approach to construct compositional behaviour models for
network-structured safety-critical systems. Electronic Notes in Theoretical Computer Science, 263, 145–160.
doi:10.1016/j.entcs.2010.05.009.

Kloos, J., Hussain, T., & Eschbach, R. (2011). Risk-based testing of safety-critical embedded systems driven by
fault tree analysis. Proceedings–4th IEEE International Conference on Software Testing, Verification, and
Validation Workshops, ICSTW 2011, 26–33. doi:10.1109/ICSTW.2011.90.

Kollmann, M., & Hon, Y. M. (2007). Generating scenarios by multi-object checking. Electronic Notes in
Theoretical Computer Science, 190(2 SPEC. ISS.), 61–72. doi:10.1016/j.entcs.2007.08.006.

Krenn, W., Schlick, R., & Aichernig, B. K. (2010). Mapping UML to labeled transition systems for test-case
generation: A translation via object-oriented action systems. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6286 LNCS, 186–
207. doi:10.1007/978-3-642-17071-3_10.

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). Mining social-network graphs. Mining of Massive
Datasets, 340–393. doi:10.1017/CBO9781139924801.011.

Li, M., & Kumar, R. (2011). Stateflow to extended finite automata translation. In Proceedings–International
Computer Software and Applications Conference (pp. 1–6). doi:10.1109/COMPSACW.2011.11.

Lochau, M., & Goltz, U. (2010). Feature interaction aware test case generation for embedded control systems.
Electronic Notes in Theoretical Computer Science, 264(3), 37–52. doi:10.1016/j.entcs.2010.12.013.

Lv, J., Li, K., Wei, G., Tang, T., Li, C., & Zhao, W. (2013). Model-based test cases generation for onboard
system. 2013 I.E. Eleventh International Symposium on Autonomous Decentralized Systems (ISADS), 1–6.
doi:10.1109/ISADS.2013.6513433.

Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., & Vittorini, V. (2014). Towards model-driven V&V
assessment of railway control systems. International Journal on Software Tools for Technology Transfer,
16(6), 669–683. doi:10.1007/s10009-014-0320-7.

MaTeLo Tool. (n.d.). http://www.all4tec.net/Matelo/model-based-testing.html. Accessed 10 March 2017.
Mathaikutty, D. A., Ahuja, S., Dingankar, A., & Shukla, S. (2007).Model-driven test generation for system level

validation (pp. 83–90). HLDVT: Proceedings–IEEE International High-Level Design Validation and Test
Workshop. doi:10.1109/HLDVT.2007.4392792.

Micskei, Z., Szatmári, Z., Oláh, J., & Majzik, I. (2012). A concept for testing robustness and safety of the
context-aware behaviour of autonomous systems. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7327 LNAI, 504–513.
doi:10.1007/978-3-642-30947-2_55.

1370 Software Qual J (2018) 26:1327–1372

http://dx.doi.org/10.1109/ICST.2010.44
http://dx.doi.org/10.1007/978-3-540-70889-6_16
http://dx.doi.org/10.1007/978-3-658-09994-7
http://dx.doi.org/10.1007/978-3-658-09994-7
http://dx.doi.org/10.1007/s00502-010-0741-2
http://dx.doi.org/10.1016/j.entcs.2007.08.005
http://dx.doi.org/10.1145/568438.568455
http://dx.doi.org/10.1007/BFb0046842
http://dx.doi.org/10.1109/WISES.2006.237154
http://dx.doi.org/10.1007/978-3-319-19458-5_4
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://dx.doi.org/10.1016/j.entcs.2010.05.009
http://dx.doi.org/10.1109/ICSTW.2011.90
http://dx.doi.org/10.1016/j.entcs.2007.08.006
http://dx.doi.org/10.1007/978-3-642-17071-3_10
http://dx.doi.org/10.1017/CBO9781139924801.011
http://dx.doi.org/10.1109/COMPSACW.2011.11
http://dx.doi.org/10.1016/j.entcs.2010.12.013
http://dx.doi.org/10.1109/ISADS.2013.6513433
http://dx.doi.org/10.1007/s10009-014-0320-7
http://www.all4tec.net/Matelo/model-based-testing.html
http://dx.doi.org/10.1109/HLDVT.2007.4392792
http://dx.doi.org/10.1007/978-3-642-30947-2_55

Mohalik, S., Gadkari, A., Yeolekar, A., Shashidhar, K. C., & Ramesh, S. (2014). Automatic test case generation
from Simulink/Stateflow models using model checking. Software Testing Verification and Reliability, 24(2),
155–180. doi:10.1002/stvr.1489.

NuSMV Language. (n.d.). http://nusmv.fbk.eu/. Accessed 20 January 2014.
Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in

software engineering: An update. In Information and Software Technology (Vol. 64, pp. 1–18). doi:10.1016
/j.infsof.2015.03.007.

Proetzsch, M., Zimmermann, F., Eschbach, R., Kloos, J., & Berns, K. (2010). A systematic testing approach for
autonomous mobile robots using domain-specific languages.KI 2010: Advances in Artificial Intelligence, 6359,
317–324. doi:10.1007/978-3-642-16111-7_36.

Prowell, S. J. (2003). JUMBL: A tool for model-based statistical testing. In Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, HICSS 2003. doi:10.1109/HICSS.2003.1174916.

Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M. V. (2012). Benefits and limitations of automated
software testing: Systematic literature review and practitioner survey. In 2012 7th International Workshop on
Automation of Software Test, AST 2012–Proceedings. doi:10.1109/IWAST.2012.6228988.

Samih, H., Guen, H. Le, Bogusch, R., Acher, M., & Baudry, B. (2014). Deriving usage model variants for model-
based testing: An industrial case study. Proceedings of the IEEE International Conference on Engineering of
Complex Computer Systems, ICECCS, 77–80. doi:10.1109/ICECCS.2014.19.

Schrammel, P., Melham, T., & Kroening, D. (2016). Generating test case chains for reactive systems.
International Journal on Software Tools for Technology Transfer, 18(3), 319–334. doi:10.1007/s10009-
014-0358-6.

Spin–formal verification. (n.d.). http://spinroot.com/spin/whatispin.htm. Accessed 21 January 2014.
Stallbaum, H., & Rzepka, M. (2011). Toward DO-178B-compliant test models. Proceedings–2010 Workshop on

Model-Driven Engineering, Verification, and Validation, MoDeVVa 2010, 25–30. doi:10.1109
/MoDeVVa.2010.21.

Symbolic Analysis Laboratory Title. (n.d.). http://sal.csl.sri.com/. Accessed 21 January 2014.
Thomas, F., Delatour, J., Terrier, F., & Gérard, S. (2008). Toward a framework for explicit platform-based

transformations. In Proceedings–11th IEEE Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, ISORC 2008 (pp. 211–218). doi:10.1109/ISORC.2008.64.

Tseng, W.-H., & Fan, C.-F. (2013). Systematic scenario test case generation for nuclear safety systems.
Information and Software Technology, 55(2), 344–356. doi:10.1016/j.infsof.2012.08.016.

Utting, M., Legeard, B., Pretschner, A., & Legeard, B. (2006). A taxonomy of model-based testing. Software
Testing, Verification and Reliability, 22(April), 297–312. doi:10.1002/stvr.456.

Wilkinson, T., Butler, M., & Colley, J. (2014). A systematic approach to requirements driven test generation for
safety critical systems, 43–56. doi:10.1007/978-3-319-12214-4_4.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in
software engineering. Experimentation in Software Engineering, 9783642290. doi:10.1007/978-3-642-
29044-2.

Yu, G., & Xu, Z. W. (2010). Model-based safety test automation of safety-critical software. 2010 International
Conference on Computational Intelligence and Software Engineering, CiSE 2010, (60674004), 4–6.
doi:10.1109/CISE.2010.5676883.

Yu, G., Xu, Z. W., & Du, J. W. (2009). An approach for automated safety testing of safety-critical software
system based on safety requirements. Proceedings–2009 International Forum on Information Technology
and Applications, IFITA 2009, 3, 166–169. doi:10.1109/IFITA.2009.18.

Zhang, H., Babar, M. A., & Tell, P. (2011). Identifying relevant studies in software engineering. Information and
Software Technology, 53(6), 625–637. doi:10.1016/j.infsof.2010.12.010.

Zheng, W., Liang, C., Wang, R., & Kong, W. (2014). Automated test approach based on all paths covered
optimal algorithm and sequence priority selected algorithm. IEEE Transactions on Intelligent Transportation
Systems, 15(6), 2551–2560. doi:10.1109/TITS.2014.2320552.

Software Qual J (2018) 26:1327–1372 1371

http://dx.doi.org/10.1002/stvr.1489
http://nusmv.fbk.eu/
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1007/978-3-642-16111-7_36
http://dx.doi.org/10.1109/HICSS.2003.1174916
http://dx.doi.org/10.1109/IWAST.2012.6228988
http://dx.doi.org/10.1109/ICECCS.2014.19
http://dx.doi.org/10.1007/s10009-014-0358-6
http://dx.doi.org/10.1007/s10009-014-0358-6
http://spinroot.com/spin/whatispin.htm
http://dx.doi.org/10.1109/MoDeVVa.2010.21
http://dx.doi.org/10.1109/MoDeVVa.2010.21
http://sal.csl.sri.com/
http://dx.doi.org/10.1109/ISORC.2008.64
http://dx.doi.org/10.1016/j.infsof.2012.08.016
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1007/978-3-319-12214-4_4
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1109/CISE.2010.5676883
http://dx.doi.org/10.1109/IFITA.2009.18
http://dx.doi.org/10.1016/j.infsof.2010.12.010
http://dx.doi.org/10.1109/TITS.2014.2320552

1372 Software Qual J (2018) 26:1327–1372

Havva Gulay Gurbuz Havva received her B.S. degree (2012) in Computer Engineering from Hacettepe
University, Turkey and her MSc degree (2014) from Bilkent University, Turkey. Currently she is a software
engineer at Microsoft, USA, and PhD student at Wageningen University, The Netherlands.

Bedir Tekinerdogan Prof. Tekinerdogan received his MSc degree (1994) and a PhD degree (2000) in Computer
Science, both from the University of Twente, The Netherlands. From 2003 until 2008 he was a faculty member at
University of Twente, after which he joined Bilkent University until 2015. At Bilkent he has founded and led the
Bilkent Software Engineering Group which aimed to foster research and education on software engineering in
Turkey. Currently he is full professor and chair of the Information Technology group at Wageningen University,
The Netherlands.

	Model-based testing for software safety: a systematic mapping study
	Abstract
	Introduction
	Background
	Model-based testing
	Systematic mapping studies

	Research method
	Mapping study protocol
	Research questions
	Search strategy
	Scope
	Search method
	Search string

	Study selection criteria
	Study quality assessment
	Data extraction and visualization

	Results
	Research methods
	Methodological quality
	RQ.1–MBT in application domains
	RQ.2–existing research directions within MBT for software safety
	RQ.2.1–motivation for adopting MBT
	RQ.2.2–proposed solutions for MBT for safety
	Summary of the selected primary studies

	RQ.3: What is the strength of evidence of the study?
	Threats to validity

	Related work
	Conclusions
	Appendix A Search Strings
	References

