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results of the original study was performed using descrip-
tive statistics, and univariate- and multivariable regression 
analyses in the validation cohort. External validation was 
assessed following a variety of analyses described previ-
ously. Baseline patient characteristics and results from 
the regression analyses were largely comparable. Kaplan–
Meier curves of the validation cohort reproduced sepa-
rated groups of standard (n = 39), intermediate (n = 125), 
and high-risk (n = 78) patients. This discriminative abil-
ity was confirmed by similar values for the hazard ratios 
across these risk groups. The calibration curve in the vali-
dation cohort showed a symmetric underestimation of the 
predicted survival probabilities. In this external validation 
study, we demonstrate that the DIPG survival prediction 
model has acceptable cross-cohort calibration and is able 
to discriminate patients with short, average, and increased 

Abstract  We aimed to perform external validation of 
the recently developed survival prediction model for dif-
fuse intrinsic pontine glioma (DIPG), and discuss its util-
ity. The DIPG survival prediction model was developed in 
a cohort of patients from the Netherlands, United Kingdom 
and Germany, registered in the SIOPE DIPG Registry, and 
includes age <3 years, longer symptom duration and receipt 
of chemotherapy as favorable predictors, and presence of 
ring-enhancement on MRI as unfavorable predictor. Model 
performance was evaluated by analyzing the discrimination 
and calibration abilities. External validation was performed 
using an unselected cohort from the International DIPG 
Registry, including patients from United States, Canada, 
Australia and New Zealand. Basic comparison with the 
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survival. We discuss how this clinico-radiological model 
may serve a useful role in current clinical practice.

Keywords  Prognostic modeling · Cox proportional 
hazards modeling · External validation · Discrimination · 
Calibration

Introduction

Diffuse intrinsic pontine glioma (DIPG) is a highly aggres-
sive tumor in the pons that nearly exclusively affects chil-
dren. Prognosis is dismal, with a median overall survival 
(OS) of 9 months [1]. Despite decades of research, sur-
vival has not improved, although variations in outcome 
have been reported [2]. Given the rarity of DIPG, clinical 
trials are mostly non-randomized and include low patient 
numbers. Results are, therefore, possibly influenced by 
selection bias since prognostic variables for patient strati-
fication are rarely taken into account. This makes it diffi-
cult to determine whether the observed variations in sur-
vival are caused by true treatment effects or (patient- or 
disease-related) confounders [3]. At the same time, by 
not taking into account significant prognostic variables in 
small-scaled clinical trial cohorts, the detection of potential 
subgroup-specific efficacy may be hampered [4].

To better understand the variables influencing the out-
come of DIPG patients, a multivariable prediction model 
was developed to assess survival, based on radiographic 
and clinical variables [5]. For this, patient data from the 
Netherlands, United Kingdom and Germany, now included 
in the SIOPE DIPG Registry [6], were used. The DIPG sur-
vival prediction model that was developed contained four 
prognostic variables, including patient age and symptom 
duration at time of diagnosis, presence of ring enhance-
ment on diagnostic MR-imaging, and receipt of any chem-
otherapy at any time during the disease course, and could 
distinguish patients with short, average, and increased sur-
vival. Internal validation of the model by bootstrapping of 
the original dataset showed acceptable calibration. Exter-
nal validation, however, could not be performed because 
a large-scale independent dataset was lacking. With the 
recently established close international collaboration 
between the SIOPE DIPG Registry and International DIPG 
Registry [6, 7], such dataset became available.

The primary aim of this study was therefore to perform 
external validation of the DIPG survival prediction model, 
using an independent and unselected cohort of patients 
from the International DIPG Registry [7]. External vali-
dation is essential to determine a model’s accuracy and 
examine its generalizability [8–10]. An accurate and gener-
alizable model not only discriminates well between patient 
outcomes, thereby dividing the cohort into distinguishable 

risk groups, but also calibrates well to prevent under- or 
over prediction of the survival probabilities. A second-
ary aim of this study was to discuss the utility of the cur-
rent clinico-radiological DIPG survival prediction model, 
considering the rapid developments in the field of DIPG 
research, especially the discovery of biological variables 
that correlate with survival.

Materials and methods

Study population

For external validation of the DIPG survival prediction 
model, an independent and unselected cohort from the 
International DIPG Registry was utilized. This cohort con-
tained comparable data to the original cohort. However, 
data collected differed based on participating countries 
and sites, time frame of data collection, and participating 
investigators and coordinators responsible for data collec-
tion. The same inclusion criteria were used for patients 
registered on both the International DIPG Registry and the 
SIOPE DIPG Registry; the common definition of DIPG 
included a T1-weighted hypointense and T2-weighted 
hyperintense tumor with at least 50% involvement of the 
pons [6, 7, 11]. As described previously, all patients had 
central review of diagnostic MR-images by two board certi-
fied neuroradiologists (JL and BVJ) to confirm the diagno-
sis DIPG [7]. As in the original study, only patients aged 
0–18 years were included.

The derivation cohort used in the original study included 
patients diagnosed between 1990 and 2010. In that study, 
data were abstracted from two nationwide cohorts (the 
Netherlands and Germany) and one single center cohort 
(United Kingdom) [5]. The validation cohort consisted of 
patients diagnosed between 1999 and 2015. Patients from 
the United States, Canada, Australia and New Zealand were 
enrolled in the International DIPG Registry through the 
website, dipgregistry.org, or via collaborating medical cent-
ers. Data for this study were abstracted by registry staff.

DIPG survival prediction model

The prognostic variables in the DIPG survival predic-
tion model were age (age ≥3 years = 1/age <3 years = 0) 
and symptom duration at time of diagnosis (as continuous 
variable), presence of ring enhancement on diagnostic MR-
imaging (yes = 1/no = 0), and the use of oral or intensive 
(i.v.) chemotherapy at any time during the disease course 
(yes = 1/no = 0). This model was converted into the follow-
ing clinical prediction rule: (age ≥3 years × 7) + (symptom 
duration in months × −1) + (ring enhancement × 4) + (oral 
chemotherapy and/or intensive chemotherapy × −4). With 
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the resulting risk score, the predicted risk of death at 12 
months can be calculated for each individual DIPG patient 
to whom the rule is applied. In the original study, patients 
with a risk-score <1 were considered to represent a stand-
ard risk group and showed a median survival of 13.7 (+1.7) 
months, patients with a risk-score of 1–6 were considered 
to represent an intermediate risk group with a median sur-
vival 9.7 (+0.4) months, and patients with a risk-score 
>6 were considered to represent a high-risk group with a 
median survival of 7.0 (+0.9) months.

Variables

The variables as used in the original study were retrieved 
from the International Registry. For most variables, the 
exact same definition and scoring system were used. One 
radiographic variable, encasement of the basilar artery, was 
not collected in the validation cohort, but this was not a sig-
nificant predictor of prognosis in the original study. Also, 
due to the similarity of the hazard ratios for oral and inten-
sive chemotherapy, these variables were combined to form 
the variable “any chemotherapy” for the prediction rule 
in the original study. For this reason, we have considered 
only “any chemotherapy” in this validation study, defined 
as the receipt of chemotherapeutics at any time during the 
disease course. For histology, the 2007 WHO grading sys-
tem [12] was used in both cohorts, however, tissue was col-
lected at different time points during the disease course: in 
the derivation cohort from biopsy alone, and in the valida-
tion cohort from biopsy and autopsy. The outcome varia-
bles collected were the event (e.g. death) and time until the 
event (e.g. OS). OS was defined as the time from diagnosis 
to death.

Missing data

Multivariable analyses and external validation steps were 
performed using the complete cases, single and multiple 
imputation from the validation cohort [13, 14]. The com-
plete cases were patients with complete data on the four 
prognostic and two outcome variables.

Data analyses

All analyses were performed using data from the validation 
cohort only. The results from the analysis in the validation 
cohort were compared to the original results previously 
published [5]. Continuous and categorical patient charac-
teristics were summarized by median (range) and frequency 
(percent), respectively, to enable basic comparison with the 
results from the original study [5]. Univariate and multi-
variable hazard ratios were found using Cox proportional 
hazards regression analysis for all variables of interest, and 

compared to the Hazard ratios found in the original study 
[5]. To externally validate the DIPG survival prediction 
model, the methods as described by Royston et  al. were 
performed [15]. Statistical significance was assessed at the 
0.05 level.

Method 1: regression on the Prognostic Index

The Prognostic Index (PI) is the weighted sum of the prog-
nostic variables, where the weights are the regression coef-
ficients from the derivation cohort A Cox proportional 
hazards model was fit with the PI as the only prognostic 
variable. A calibration slope smaller than 1 indicates sub-
optimal discrimination. A score test was performed to test 
for if the slope was significantly different from 1 Averaged 
values were reported as a result of multiple imputations.

Method 2: model misspecification/fit

Model fit was defined as the agreement of the regression 
coefficients between the derivation and validation cohorts. 
It was assessed by fitting a Cox model that included the 
prognostic variables and the PI (using the original coeffi-
cients from the derivation cohort) as an ‘offset’ variable. 
The model is considered to fit well if the regression coef-
ficients for the prognostic variables were not statistically 
significantly different from 0. This was tested jointly for 
significance using a pooled likelihood ratio (LR) test from 
each multiple imputation.

Method 3: measures of discrimination

To determine the discriminative ability of the DIPG sur-
vival prediction model, the Harrell’s c-index of concord-
ance was calculated in the validation cohort. Harrell’s 
c-index reflects the proportion of all patient pairs in which 
the predicted and observed outcomes are accordant [16]. 
An index value close to 1 is considered to reflect good per-
formance of the model. Results were pooled over multiple 
imputed datasets by taking the average.

Method 4: Kaplan–Meier curve for risk groups

Kaplan–Meier curves for OS were created based on the 
three risk groups from the original study, including stand-
ard risk (score <1), intermediate risk (score 1–6), and 
high-risk (score >6) groups. The Kaplan–Meier curves 
allowed a visual evaluation of the discriminative ability of 
the DIPG survival prediction model when applied to the 
data from the validation cohort. The Kaplan–Meier curves 
also indicated how well the model is calibrated by means of 
comparing agreement of the curves from the derivation and 
validation cohorts.
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Method 5: hazard ratios across risk groups

To check the discriminative ability represented by the 
Kaplan–Meier curves, hazard ratios across the risk 
groups were calculated. Ideally, each value would corre-
spond well with what was observed in the results from 
the original study.

Method 6: probability of death

The calibration of the DIPG survival prediction model in 
the validation cohort was also checked by using a cali-
bration curve. On this curve the predicted and observed 
probabilities to die at 12 months were plotted. The 
baseline survival probability for 12 months’ survival 
in the validation cohort was determined using [S0(12)]. 
The survival probabilities at 12 months were calculated 
using S(12) = S0(12)exp(PI), where S0(12) = 0.39506 and 
the probability of dying at 12 months was 1 − S(12).The 
results were compared with the results in the original 
study.

Statistical software

Data cleaning and statistical evaluation was carried out 
using R (Vienna, Austria, R foundation for Statistical Com-
puting, Version 3.1.3). Multiple imputation (MI) and single 
imputation (SI) were performed by use of the mi package 
[17]. For MI, total of 100 imputations was used.

Results

Derivation and validation cohorts

The derivation cohort comprised 316 typical DIPG patients 
[5]. The validation dataset includes 249 patients (Table 1). 
Following the inclusion criteria from the original study, 
patients >18 years of age and patients with non-typical 
pontine tumors, based on the classification criteria of Bark-
ovich et al. [11] were excluded. Out of 249 patients, 205 are 
considered complete cases based on the prognostic and out-
come variables from the DIPG survival prediction model. 
Out of 249 patients, seven patients had missing values in 
at least one of the outcome variables. In the remaining 242 
patients, missing values for the prognostic variables were 
substituted by single and multiple imputation methods. 
These datasets were used for the multivariable analyses and 
external validation steps. Results from the multiple impu-
tation methods are discussed below, results from complete 

case and single imputation methods can be found in the 
Supplementary material.

Comparison of the study populations

Table 1 presents the patient characteristics of both the vali-
dation cohort and the derivation cohort (copied from the 
original paper). The distribution of most variables within 
the cohorts is remarkably similar, however, small differ-
ences are seen in the prevalence of cranial nerve palsies 
between the derivation and the validation cohort (72 vs. 
63%, respectively). Also, the validation cohort shows a 
shorter duration of symptoms pre-diagnosis (max 12 vs. 30 
months), an 11% higher prevalence of WHO grade IV his-
tology, a higher prevalence of tumors that affect >67% of 
the pons (96 vs. 90%) and a higher prevalence of tumors 
that extend towards the mesencephalon and medulla oblon-
gata (12 and 36% higher, respectively). The validation 
cohort also contains a higher percentage of patients who 
have been treated with either radiotherapy (97 vs. 91%) 
and/or chemotherapy at any time during the disease course 
(77 vs. 60%). The 5-years’ OS of the validation cohort 
was 0% (vs. 2% in the derivation cohort), however, with a 
median OS of 10.7 (±0.35) versus 10 (±0.38).

Table 2 shows the comparison of hazard ratios for each 
variable investigated in the original study, resulting from 
univariate analysis. The variables included in the DIPG 
survival prediction model are indicated with an arrow. The 
hazard ratios for these variables, i.e. age ≥3 years, symp-
tom duration, presence of ring enhancement, and chemo-
therapy, point in the same direction in both cohorts. In the 
validation cohort, significance is only found for the use of 
chemotherapy.

Table 3 shows the comparison of hazard ratios resulting 
from multivariable analyses. Again, all predictor variables 
point in the same direction, but in the validation cohort sig-
nificance is only found for the use of chemotherapy.

External validation steps

Method 1: regression on the Prognostic Index

The slope in the Cox proportional hazards model on the 
PI in the validation cohort was 0.72 and different from 1 
(p = 0.01). This suggests a suboptimal discrimination and 
some mis-calibration of the model.

Method 2: model misspecification/fit

The agreement, or rather the above suggested difference 
(i.e. a slope of 0.72), in one or more regression coeffi-
cients between the derivation and validation cohort was 
tested by creating and ‘offset’ Cox proportional hazards 
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model. The joint test of all the prognostic variables 
resulted in a chi2 of 9.77, which was different from 0 
(p = 0.002), suggesting not a good fit of the PI in the vali-
dation cohort.

Method 3: measures of discrimination

Harrell’s c-index in the original study was 0.68 Harrell’s 
c-index was 0.58 in the validation cohort, which reflects 

Table 1   Baseline 
characteristics of children 
with a diffuse intrinsic pontine 
glioma

a Data directly copied from the original study [5]
b In the derivation cohort, tissue was collected from biopsy (n = 68). In the validation cohort, tissue was col-
lected from biopsy and autopsy (n = 57)
c Patients were mainly treated with temozolomide concurrent with and/or adjuvant to radiotherapy or with 
vincristine and carboplatin according to the SIOP LGG protocol
d HITGBM-D pre-irradiation methotrexate, radiation and cisplatin, etoposide, vincristine and ifosfamide, 
HITSKK cyclofosfamide, methotrexate and vincristine or DIPG-VUMC-1 containing high dose chemother-
apy with stem cell reinfusion

Category Baseline variable Derivationa Validation
n (%) n (%)

Total 316 249
Sex Female 156 (51) 137 (55)

Male 160 (49) 110 (45)
Age Mean age [years (range)] 7.2 (0–18) 7.1 (0.2–18.2)

Age <3 years 20 (6) 16 (7)
Missing – 3

Signs and symptoms Mean symptom duration pre-diagnosis, mo (range) 2.0 (0–30) 1.4 (0–12)
Symptom duration ≥6 months 21/285 (7) 7/230 (3)
Symptom duration <6 months 264/285 (93) 223/230 (97)
Cranial nerve palsy 226/310 (72) 130/206 (63)
Ataxia 192/315 (61) 127/208 (61)
Pyramidal tract symptoms 133/317 (42) 84/210 (40)

Histology WHO II 14/68 (21) 10/57 (18)
WHO III 21/68 (31) 15/57 (26)
WHO IV 26/68 (38) 28/57 (49)
High-grade glioma not defined 7/68 (10) 4/57 (7)
Unknown (no biopsy or biopsy/autopsy)b 248/316 (79) 192/249 (77)

MRI characteristics Pontine involvement 50–66% 33/316 (10) 9/249 (4)
>67% 283/316 (90) 240/249 (96)
Ring enhancement 114/316 (36) 73/235 (31)
No contrast given 14/316 (4) Not collected
Encasement basilar artery Not collected
 180° < encasement < 360° 212/316 (67) –
 Full encasement (360°) 71/316 (23) –
 No encasement 33/316 (10) –

Hydrocephalus 65/316 (21) 57/228 (25)
Growth in mesencephalon 183/316 (58) 174/249 (70)
Growth in medulla oblongata 124/316 (39) 186/249 (75)

Treatment Radiotherapy 272/299 (91) 234/241 (97)
Oral chemotherapyc 159/316 (50) –
Intravenous chemotherapyd 33/316 (10) –
Any chemo – 182/236 (77)

Outcome Median overall survival (OS), mo 10 (±0.38) 10.7 (±0.35)
12-month OS 35% 40%
24-month OS 9% 8%
5-year OS 2% 0%
Median PFS, mo 6 (±0.25) 6 (±0.5)
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modest discrimination, i.e. good separation between sur-
vival curves for individuals or groups.

Method 4: Kaplan–Meier curves for risk groups

Figure  1 displays the Kaplan–Meier curves for both the 
derivation cohort (A) and the validation cohort (B) when 
preserving the three risk groups from the DIPG survival 
prediction model. Both KM-curves show separated lines, 

thereby dividing the cohort in three distinguishable risk 
groups. In both cohorts, the KM-curves show that a patient 
in the standard risk group has approximately two times 
greater odds of surviving past one year than a patient in the 
high-risk group. When comparing the individual curves in 
the validation and derivation cohorts, however, these do not 
seem to match perfectly. Especially the standard risk group 
in the validation cohort does not separate as well in the first 
9 months after diagnosis as in the derivation cohort.

Table 2   Results of the univariate Cox proportional hazards regression analysis for the variables of interest

CI confidence interval, RT radiotherapy, → prognostic variable included in the DIPG survival prediction model
a Data directly copied from the original study [5]

Baseline variables Hazard ratios (95% CI) and p values

Derivationa Validation

Increasing age (years) 1.01 (0.98–1.04) 0.68 0.97 (0.93–1.00) 0.034
→ Age ≥3 years 2.19 (1.25–3.82) 0.006 1.28 (0.75–2.19) 0.370

Sex (male vs. female) 0.92 (0.72–1.17) 0.49 1.07 (0.83–1.37) 0.63
Signs and symptoms

→  Symptom duration (months) 0.90 (0.86–0.95) 0.0001 0.93 (0.86–1.01) 0.074
 Cranial nerve palsy 1.29 (0.97–1.70) 0.08 1.22 (0.91–1.64) 0.170
 Pyramidal tract symptoms 1.18 (0.93–1.50) 0.17 1.00 (0.75–1.32) 0.990
 Ataxia 1.38 (1.07–1.79) 0.02 0.86 (0.65–1.15) 0.310

MRI characteristics
 Pontine involvement: 33/50–67% vs. >67% 1.29 (0.86–1.92) 0.21 1.14 (0.59–2.23) 0.69

→  Ring enhancement 1.53 (1.19–1.97) 0.001 1.18 (0.90–1.57) 0.23
 Encasement basilar artery
  >180°; <360° vs. no encasement 1.15 (0.77–1.73) 0.49 – –
  360° vs. no encasement 1.30 (0.83–2.05) – –

 Hydrocephalus 0.95 (0.71–1.28) 0.75 1.31 (0.97–1.78) 0.080
 Growth in mesencephalon 0.93 (0.73–1.18) 0.54 1.02 (0.78–1.35) 0.860
 Growth in medulla oblongata 1.17 (0.92–1.48) 0.22 1.21 (0.91–1.63) 0.190

Histology
 WHO grade III–IV vs. grade II 1.55 (0.80–3.00) 0.20 1.57 (0.81–30.06) 0.180

Treatment
→  RT and chemotherapy vs. RT – 0.004 – –

  Oral chemotherapy 0.64 (0.49–0.84) – – –
  Intravenous chemotherapy 0.68 (0.45–1.02) – – –
  Any chemotherapy – – 0.48 (0.35–0.66) <0.0001

Table 3   Results of the 
multivariable Cox proportional 
hazards regression analysis for 
the prognostic variables

a Data directly copied from the original study [5]
b Results from multiple imputation method analyses (n = 242, 7 patients were missing survival time and/or 
event status)

Predictor Hazard ratios (95% CI) and p values

Derivationa Validationb

Age ≥3 years 1.95 (1.01–3.80) 0.046 1.29 (0.72–1.84) 0.38
Symptom duration (months) 0.92 (0.86–0.97) 0.003 0.93 (0.85–1.01) 0.11
Ring enhancement 1.41(1.07–1.84) 0.013 1.07 (0.78–1.36) 0.63
RT and chemotherapy vs. RT 0.65 (0.49–0.99) 0.013 0.51 (0.20–0.82) < 0.0001
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Method 5: hazard ratios across risk groups

Table 4 presents the hazard ratios across the risk groups. 
The hazard ratios are well maintained in the validation 
cohort (i.e. they point in the same direction as in the 
original study) and are significantly different between 
risk groups. The results also reflect the Kaplan–Meier 
curves: the more widely separated lines (representing the 
standard vs. high-risk group) have a larger hazard ratio. 
This again confirms that the model is able to discrimi-
nate between patients with short, average and increased 
OS.

Method 6: probability of death

The calibration curve, presented in the Supplementary 
material, shows that the predicted probabilities to die 
within 12 months in the validation cohort are underesti-
mated. All closed circles are above the line (i.e. symmet-
ric), suggesting this to be dependent upon the baseline 
survival function.

Discussion

External validation of a Cox prediction model is seldom 
described in the literature although it is an essential step 
towards acceptance of a model into clinical practice [2]. 
Unvalidated models should not be used in clinical practice 
[9]. Since DIPG is a rare orphan disease, external valida-
tion using a large-scale independent dataset is extremely 
challenging. This study describes the external validation of 
the previously published DIPG survival prediction model 
[5] in an independent and unselected cohort from the Inter-
national DIPG Registry, including DIPG patients from the 
United States, Canada, Australia and New Zealand. It is 
the first study resulting from the recently established close 
international collaboration between the SIOPE DIPG Reg-
istry and International DIPG Registry [6, 7]. This study 
represents the welcome paradigm shift in DIPG research, in 
which data are no longer a rate-limiting resource.

The results of this external validation study confirm that 
the DIPG survival prediction model, which combines three 
favorable predictors (age <3 years and longer duration of 
symptom at time of diagnosis and use of oral or intensive 
chemotherapy at any time during the disease course) and 
one unfavorable predictor (presence of ring enhancement 

Fig. 1   Kaplan–Meier curves presenting the risk groups in the 
derivation (a) and validation (b) cohort. a Derivation cohort (data 
directly copied from the original study [5]). Dotted lines Risk score 
<1: standard risk group. Dashed lines Risk score 1–6: intermediate 

risk group. Solid lines Risk score ≥7: high-risk group. b Validation 
cohort. Dotted lines Risk score <1: standard risk group (n = 39). 
Dashed lines Risk score 1–6: intermediate risk group (n = 125). Solid 
lines Risk score ≥7: high-risk group (n = 78)

Table 4   Hazard ratios across the risk groups

a Results from multiple imputation method analyses (n = 242, 7 patients were missing survival time and/or event status)
b This finds the risk group most often assigned from all imputations

Hazard ratios (95% CI) and p valuesa

Intermediate vs. standard High vs. standard High vs. intermediate

Multiple Imputation averaged risksb 1.29 (0.9–1.68) 0.20 1.67 (1.26–2.08) 0.014 1.29 (1.00–1.58) 0.09
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on diagnostic MR-imaging) is able to reproduce separated 
groups of standard, intermediate, and high-risk patients.

For the statistical approach of external validation, 
Royston et al. provided well worked-out methods to deter-
mine the discriminative and calibration abilities of a sur-
vival prediction model. For survival prediction modeling 
in particular, discrimination is the key indicator of model 
accuracy because this reflects its capacity to separate indi-
vidual patient outcomes into distinguishable risk groups. In 
our validation cohort, the slope of the PI, Harrell’s c-index 
and Kaplan–Meier curves suggested poorer discrimina-
tion, but this is well within the range of what may generally 
be expected in validation studies [9]. Notably, the hazard 
ratios across the risk groups seen in the derivation cohort 
are well maintained in the validation cohort. Although not 
statistically significant, which is also generally expected in 
external validation studies, the hazard ratios all point in the 
same direction as in the original study. This is confirmed by 
the Kaplan–Meier curves that show separation of the lines 
for each risk-group. Overall, the results from this external 
validation study suggest adequate discriminative and cali-
bration abilities of the DIPG survival prediction model. 
While most prognostic models have a poorer performance 
in new datasets, the performance of our model remained 
stable over datasets [9]. We, therefore, conclude that this 
external validation is succesful, meaning the model has 
acceptable performance and that it is generalizable in DIPG 
patients. However, this finding does not imply that the 
model itself, is perfect.

Finding a slightly lower discriminative ability in exter-
nal validation studies is not surprising, and generally due 
to (i) overestimation of the model in the derivation cohort. 
This is most likely the case in this external validation 
study, since internal validation of the model by bootstrap-
ping revealed a 15% overfit in the original study [5]. Dis-
crepancy in discriminative ability may also arise when 
(ii) regression coefficient(s) of variables differ from the 
original study. This may be caused by inter-observer vari-
ation or variation in the definition of variables, or methods 
of measurement. It is therefore important to consider the 
comparability of the patients and settings. In this external 
validation study, an example would be the observed dif-
ference in prevalence of WHO grade IV histology, which 
is caused by the fact that in the derivation cohort tissue 
was collected from biopsy alone, while in the validation 
cohort tissue was collected both from biopsy and autopsy. 
It should also be noted that “any chemotherapy” reflects 
many different treatment regimens, which are not further 
analyzed but which are known to differ between the deriva-
tion and validation cohorts. All other variables analyzed in 
this study, however, were considered to be uniform to the 
original study variables, since both registries make use of 
collaboratively developed, comparable, standardized Case 

Report Forms (CRFs) for all variables [6, 7]. Finally, find-
ing lower discriminative ability may also be due to (iii) 
case mix, meaning a “true” difference in the underlying 
population. Case mix in this study may be expressed in the 
observed shorter duration of symptoms pre-diagnosis and 
larger tumors, which more frequently extended towards 
surrounding brain structures in the validation cohort, sug-
gesting these patients to be more affected. The assumed 
difference in baseline survival function, to the prejudice of 
the validation cohort, is underlined by the calibration curve 
that shows a symmetric underestimation of the predicted 
probabilities to die within 12 months for the latter popula-
tion. It may also explain why the number of patients who 
received treatment was higher in the validation cohort (6% 
higher for radiotherapy and 17% higher for chemotherapy). 
Unfortunately, we could not perform additional analysis to 
identify possible underlying biological variations that could 
explain these differences between the cohorts. Due to the 
retrospective nature of this study, biological data on the 
recently discovered histone mutational status was missing 
for a high number of patients.

Univariate and multivariate analyses, surprisingly, 
showed no significant correlation between three of the pre-
dictors and overall survival in this validation cohort, while 
in the derivation cohort [5] and in previously published 
studies age [18], symptom duration [19] and ring enhance-
ment [20] were significantly associated with prognosis. The 
lack of statistical significance noted in correlations on the 
univariate and multivariate analyses may be due to the fact 
that this external validation is slightly underpowered. Other 
factors, including the above described overestimation of the 
model, variation in the use of variables or case mix are also 
possible.

Overall, for both the development and validation of 
the DIPG survival prediction model, a possible limita-
tion could be the use of disease registry data. Registries in 
general harbor enrollment bias with tendency for patients 
with unique characteristics, which in this case is mainly 
based on the participating institutions (with a tendency 
for large academic centers), and patients who self-refer. 
The registries, however, both aim to include all patients 
diagnosed with DIPG, both in- and outside clinical tri-
als and both those who do or do not undergo treatment. A 
major strength of this study compared to other published 
reports on DIPG, was the requirement for central radiologi-
cal review of diagnostic imaging by specialized pediatric 
neuro-radiologists. All patients included in the study are 
“typical” DIPG patients, based on the generally accepted 
definition of Barkovich et  al. [11]. It may, therefore, be 
expected that the SIOPE and International DIPG Regis-
try contain comparable data that are representative for the 
“general” DIPG population. In a rare orphan disease such 
as DIPG, where the lack of large-scale dataset for decades 



239J Neurooncol (2017) 134:231–240	

1 3

has been the rate-limiting resource, we consider this study 
a valuable step forward.

Having a reliable and applicable model to predict the 
survival in DIPG patients is of great clinical relevance [21]. 
As discussed, results of clinical trials are possibly influ-
enced by selection bias since prognostic variables are rarely 
taken into account and trials are largely underpowered. 
The survival prediction model will be particularly use-
ful for stratification of patients by disease severity before 
they enroll on clinical trials, or for interpretation of treat-
ment outcomes based on risk stratification. Stratification 
is important to determine whether an observed change in 
survival can be attributed to the novel therapeutic interven-
tion or, alternatively, to selection bias. Intriguingly, both 
the original study, as well as the validation study, showed 
significant survival benefit for patients who received chem-
otherapy, in contrast to the disappointing results of individ-
ual studies investigating the use of chemotherapy in DIPG 
patients [1]. It would therefore be interesting to apply the 
DIPG survival prediction model to all historical trial data 
from the literature, in which such DIPG risk stratifica-
tion has not been taken into account. It is possible that the 
identification of effective therapies has been hampered by 
selection of solely high-risk patients resulting in false-neg-
ative results, and, vice versa, more favorable (‘false-posi-
tive’) results by selection of relatively more standard-risk 
patients. By retrospectively applying the DIPG survival 
prediction model, beneficial or negative effects of certain 
treatment strategies may still be identified. The recently 
developed infrastructure of both the SIOPE and Interna-
tional DIPG Registry [6, 7], including central radiology 
review of DIPG patients, provides the opportunity to per-
form such a study, as a total of over 1400 patients (of whom 
many participated in clinical trials) have now been enrolled 
on both Registries.

Currently, the DIPG survival prediction model does not 
include biological variables. Castel et  al. recently showed 
that type of histone H3 mutation is a strong prognostic vari-
able of survival [22]. Based on the recent discoveries, our 
clinico-radiologically-defined risk groups are likely based 
on underlying biological variations [4]. However, since 
biopsies are still not routinely performed in the world, for 
most patients, tumor material for mutational status analyses 
is not (yet) readily available [3]. Due to a lack of biological 
data, the current study was not aimed at updating the DIPG 
survival prediction model to also including biological 
variables. In fact, until biopsies are routinely performed, a 
model including biological variables would not yet be gen-
eralizable. We emphasize the value of the discovery of bio-
logical variables, but underline the current clinical utility 
and versatility of this clinico-radiological model to easily 
stratify DIPG patients without extensive biological analy-
sis [23]. In the future, when biopsies become standard of 

care, the incorporation of biological variables may further 
improve the DIPG survival prediction model, but until that 
time, this clinico-radiological model may perform a useful 
role in risk-classification of DIPG patients.
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