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Abstract We study the evolutionary selection of conjectures in duopoly games when
players have other regarding preferences, i.e. preferences over payoff distributions.
In both the Cournot and Bertrand duopoly games, the consistent conjectures are
independent of other regarding preferences. Both duopoly games have evolution-
arily stable conjectures that depend on other regarding preferences but that do not
coincide with the consistent conjectures. For increasingly spiteful preferences, the
evolutionarily stable conjectures implicate low quantities in the Cournot game and
high prices in the Bertrand game, whereas the inverse relationships hold for the con-
sistent conjectures. We discuss our findings in the context of ultimate and proximate
causation.

Keywords Duopoly · Conjectural variations · Other regarding preferences ·
Evolutionary stability

JEL Classification D43 · B52 · C73

1 Introduction

Could it be the case that conjectures are consistent but that subjects are
maximizing something other than profit? – Charles (Holt 1985)

In many games players maximize something other than profit. In the strategic del-
egation literature a firm’s owners incentivize managers to include market share or
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the relative profits with respect to rivals into their objectives (Vickers 1985; Fer-
shtman et al. 1991). In mixed oligopoly models, a welfare-maximizing public firm
competes with profit-maximizing private firms (De Fraja and Delbono 1989). The
motive for maximizing other things than profit can also be non-strategic. A large body
of literature in experimental economics has demonstrated that players have other
regarding preferences (ORPs) that can be included into the maximization problem by
complementing the utility functions with such factors as concerns for efficiency or
reciprocity (Cooper and Kagel 2016).

Various models of strategic behavior also take beliefs into account. A traditional
way to model beliefs in the industrial organization literature is to assume that firms
conjecture that competitors react to variations in own strategies by nonzero varia-
tions in their strategies. As in the case of ORP models, the conjectural variations
models can represent many different outcomes in a single framework (Varian 1992).
However, conjectural variations have been criticized as imposing a dynamic process
of belief formation into a static framework (e.g. Makowski 1987). Presently, con-
jectural variations are modeled in contexts that have some sort of an implicitly or
explicitly dynamic nature (Figuières et al. 2004). In these models, the conjectural
variations equilibria are interpreted as shortcuts to modeling outcomes of dynamic
games (Dockner 1991; Cabral 1995). Alternatively the conjectures can be assumed to
result from behavior that is boundedly rational, either in belief formation (Friedman
and Mezzetti 2002; Jean-Marie and Tidball 2006) or in short-term fitness maximiza-
tion in the presence of evolutionary selection pressure on the conjectures (Dixon and
Somma 2003; Müller and Normann 2005; Possajennikov 2009). Common to these
bounded rationality approaches is that they justify the consistent conjecture, i.e. a
conjecture that represents correctly anticipating the competitor’s reaction (Bresnahan
1981).

The appeal of the evolutionary approach is that it can also justify the origin of
the conjectures. In the models studying the evolutionary selection of conjectures in
infinite populations, the evolutionarily stable conjecture coincides with the consistent
conjecture (Müller and Normann 2005). Possajennikov (2009) argues that this occurs
because the first-order conditions of payoff maximization and fitness maximization
coincide and the players solve the correct maximization problem.

Our motivation in this paper is to demonstrate cases when the consistent conjecture
is not justified by evolutionary arguments. We use the indirect evolutionary approach
to derive conjectures in a model where other-regarding (altruistic or spiteful) behavior
is possible. We show that the evolutionarily stable conjecture does not coincide with
the consistent conjecture if the players maximize a simple utility function that takes
ORPs into account, thus contrasting with the results obtained byMüller and Normann
(2005). We consider the two classical models of duopoly competition, quantity com-
petition (Cournot) and price competition (Bertrand). Both games have evolutionarily
stable conjectures with ORPs that do not coincide with the consistent conjectures.

The model of ORPs that we consider is a linear rule that imposes a concern for
the total payoff distribution. Varying the ORP parameter allows the representation
of altruism, spite, or self-regard. A concern for relative payoffs can be modeled
with a change of the parameter. As this model has only a single parameter, it is
selected over competing and more complex models of other-regarding behavior (such
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as the inequity aversion model of Fehr and Schmidt (1999) or the egocentric altruism
model of Cox et al. 2007) for its analytical tractability. Although the ORP parame-
ter is symmetric among the players, the model captures the essence of distributional
preferences.

Some evolutionary models in the literature subject the ORP parameter to selection
pressure and derive conditions for stability of altruism or spite (Bester and Güth
1998; Possajennikov 2000). In our model only the conjecture is shaped by selection
pressure but the ORP parameter is free of that pressure. Thus, in an evolutionary
sense the phenotypic variability is maintained in the model via the ORP parameter.
We find that this variability is maintained also in the conjectures themselves, i.e. the
conjectures (beliefs) depend directly on ORPs.

We analyze the Cournot duopoly game in Section 2 and the Bertrand duopoly
game in Section 3. In each of these sections we first derive the consistent conjec-
ture and then analyze the evolutionary stability. Section 4 discusses the results and
Section 5 contains all the proofs.

2 The Cournot duopoly game

2.1 The model

There are two players in the model. In the rest of this article the player is indexed
by i and the other player is referred to as j , such that i �= j . The players make
simultaneous decisions in a one-shot game. They choose quantities xi ∈ R

+ ∪ {0} as
strategic variables. The inverse demand functions are a − xi − bxj , where a ∈ R

+
and b ∈ (0, 1) ⊂ R. We restrict the product differentiation parameter b to be strictly
less than one for the existence of consistent conjectures (Bresnahan 1981). We also
assume that a is sufficiently large with respect to the market total quantity so that
the inverse demand function is positive for all reasonable-sized quantities. The cost
function for player i is cx2

i , where c ∈ R
+ ∪ {0}. The payoff function for player i is

linear-quadratic and given by

fi(xi, xj ) = xi(a − xi − bxj ) − cx2
i . (1)

The market has complete information, so the payoffs are known to both players. Both
players experience utility that depends linearly on both players’ market payoffs. The
utility function for player i is given by

ui(xi, xj ) = fi(xi, xj ) + tfj (xi, xj ). (2)

The ORP parameter t assumes values on the open interval (−1, 1) ⊂ R. When t > 0
the player is altruistic, when t < 0 he is spiteful, and when t = 0 the preferences are
self-regarding. We assume that the value of t is a fixed characteristic of a player and,
importantly, is not subject to the players’ discretion. For simplicity, we also assume
that t is equal for both players and this is common knowledge. The plausibility of
this assumption is assessed at Section 4.

The conjectures are beliefs of player i about how player j reacts to a variation in
own quantity xi . In other words, a unit change in own quantity results in a non-unit
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change in the total quantity. As is conventional in the conjectural variations literature,
we assume that the conjectures are constant. Therefore, a player does not form a
belief about the whole reaction function but only about its slope at specific values of
the strategic variables. Player i’s conjecture is defined as

dxj

dxi

(xi, xj ) = ri,

where we make the standard assumption that ri ∈ [−1, 1] ⊂ R. This assumption cap-
tures the relevant results that range from perfect competition (ri = −1) to collusion
(ri = 1). The conjectures can be made to appear in the first-order conditions of util-
ity maximization obtained by total differentiation. Similar to Possajennikov (2009),
we denote the left-hand side of player i’s first-order condition by defining a function

Fi(xi, xj ; ri) : = ∂ui

∂xi

(xi, xj ) + ri
∂ui

∂xj

(xi, xj )

= a+ari t − 2(1+c)xi −2(1+ c)ri txj − b(1 + t)(rixi + xj ). (3)

The first-order condition Fi(xi, xj ; ri) = 0 defines implicitly the reaction functions
x∗
i (xj ; ri). Because the payoff functions are quadratic, the reaction functions are lin-

ear. For the special case of ri, rj = 0, the players have Nash conjectures and the
corresponding equilibrium is the Cournot-Nash equilibrium (CNE).

Lemma 1 The equilibrium quantities as function of arbitrary conjectures, x∗
i (ri , rj ),

exist for all feasible a, b, c and t and are given by

x∗
i (ri , rj ) =

a
(
b(1+t)(−1+rj +(−1+ri )rj t)−2(1+c)(−1+ri rj t2)

)

b2(−1+ri rj )(1+t)2−2b(1+c)(ri+rj )(−1+t2)−4(1+c)2(−1+ri rj t2)
.

(4)

The conjectures are required to be constant in the strategic variables but they may
depend on the other parameters a, b, c and t . To allow generality, we are only inter-
ested in symmetric conjectures ri = rj = r that are continuous in the full ranges
of the parameters. The symmetry assumption of the conjectures is not restrictive
because the payoff and utility functions are symmetric as well. By the chain rule,
because the payoff function (1) is smooth, the utility function (2) is also smooth in
the strategic variables.

Remark 1 By inspecting the derivative of the reaction function x∗
i (xj ; r) w.r.t xj

we can obtain information about its slope for different ranges of t and r . For zero
ORPs, t = 0, the slope is −b/(2 + 2c + br) < 0 and the reaction function is
downward-sloping for any r ∈ [−1, 1] in the Cournot duopoly game. For nonzero
ORPs, t �= 0, the slope is − (2(1 + c)rt + b(1 + t)) / (2 + 2c + br(1 + t)), and the
reaction function is upward-sloping when

−1 < r < − b

1 + c
, − b

b + 2(1 + c)r
< t < 1
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or when

0 < r < 1, −1 < t < − b

b + 2(1 + c)r
.

In other words, the downward-sloping reaction function is the standard case except
for certain ranges of negative conjectures and altruistic preferences or for positive
conjectures and spiteful preferences, in which cases the reaction function can slope
upwards. Knowing the reaction function slopes helps us understand how equilibrium
profits behave. Upwards-sloping reaction functions imply that quantities are comple-
ments and then increasing quantities increase profits as well. In the self-regarding
case, the reaction functions always slope downwards and quantities are substitutes,
but our analysis above indicates that quantities can become complements for nonzero
ORPs and nonzero conjectures.

2.2 Consistent conjectures

A consistent conjecture equals the actual reaction function slope at the equilibrium,
i.e. at xi = x∗

i . A consistent conjecture equilibrium (CCE) is a pair of quantities
(x∗

i , x∗
j ) and a pair of symmetric conjectures (r∗, r∗) that solve

r = − ∂Fj/∂xi(x
∗
j , x∗

i ; r)

∂Fj/∂xj (x
∗
j , x∗

i ; r)
. (5)

Equation (5) gives a pair of equations that are obtained by applying the implicit func-
tion theorem on the first-order conditions Fi(xi, xj , r) = 0 (Possajennikov 2009). In
the Cournot duopoly game, this equation is for both players equal to

r = −b + (b + 2(1 + c)r) t

2 + 2c + br(1 + t)
. (6)

Proposition 1 In Cournot competition with ORPs, the consistent conjecture is

r∗ = −1 + c − √−b2 + (1 + c)2

b
. (7)

Remark 2 Proposition 1 shows that the consistent conjecture does not depend on t in
the Cournot duopoly game. Assuming ORPs, therefore, does not change the predic-
tions of the consistent conjectures theory. This was already shown by Holt (1985),
but we have generalized his result for nonconstant marginal cost and differentiated
products. The consistent conjecture (7) is strictly negative for all feasible values of b

and c, as is typical for Cournot competition (Bresnahan 1981).

2.3 Evolutionarily stable conjectures

Evolutionarily stable (ES) conjectures are formed by selection pressure. Players with
different conjectures are matched in duopoly pairs and those players who have the
highest fitness pass their conjectures to future generations of players. In practice this
can happen, e.g., through cultural evolution or when managers switch between firms.
Alternatively, the conjectures may evolve through individual evolutionary learning
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(Arifovic and Maschek 2006) where beliefs (i.e. the conjectures) are updated as if
they undergo natural selection. In this section, we assume that the population from
which the conjectures are selected is infinite.1 The conjectures thus derived conform
to the concept of evolutionarily stable (ES) strategies, introduced by Maynard Smith
(1982). A strategy is evolutionarily stable if it cannot be invaded by any alternative
mutant strategy.

The fitness of each player is determined by its payoff function (Bester and Güth
1998; Possajennikov 2000). The payoff functions are reformulated as fitness func-
tions where quantities are given by equilibrium quantities and the relevant choice
variables are the conjectures ri, rj . The ES conjectures can be solved from the fitness
maximization problem (Possajennikov 2009)

max
ri

fi

(
x∗
i (ri , rj ), x

∗
j (ri , rj )

)

where x∗
i (ri , rj ) and x∗

j (ri , rj ) are the equilibrium strategies as functions of arbitrary
conjectures. We know that the fitness function fi is well-defined in ri, rj because the
equilibrium strategies x∗

i (ri , rj ), x
∗
j (ri , rj ) exist for each feasible pair of conjectures

ri, rj (Lemma 1). Player i’s first-order condition for fitness maximization is

∂fi

∂ri
(x∗

i (ri , rj ), x
∗
j (ri , rj )) = 0, (8)

where the equilibrium strategies x∗
i (ri , rj ), x

∗
j (ri , rj ) are given by Lemma 1. After

setting ri = rj = r , the first-order condition for fitness maximization (8) can be
written

a2b2(−1+ t2)
(
b(1+ t)(1 + r2 + 2rt) + 2(1 + c)

(
t + r(1 + t + rt2)

))

(b(−1+ r)(1+ t) − 2(1+ c)(−1+ rt)) (b(1 + r)(1 + t) + 2(1 + c)(1 + rt))3
= 0

(9)
from which the candidate for the symmetric ES conjecture can be solved. We note
that, because there is a factor (−1+ t2) in the numerator, the first-order condition (9)
vanishes for t = −1 and t = 1 and the ES conjecture is not defined for these limit
values.

Proposition 2 In Cournot competition with ORPs, the evolutionarily stable conjec-
ture is

rE = − (1+c+bt)(−1+t2)+√
A

(−1+t)(b+bt+2(1+c)t2)
,

where A = (−1 + t)3
(
b2(1 + t)3 − (1 + c)2 (1 + t (3 + 4t))

)
.

(10)

Remark 3 The conjecture rE(t) assumes generally negative values but becomes pos-
itive for a range of negative t and approaches unity as t → −1. This implies that, for
sufficiently spiteful ORPs, the reaction functions slope up and the quantities decrease
below those in the CNE (see Remark 1).

1The results in this section and in Section 3 can be extended for finite populations by using the finite
population ESS (Schaffer 1988). See also Müller and Normann (2007).
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Fig. 1 Equilibrium quantity as
function of t in the Cournot
duopoly for the Nash conjectures
(solid line), the consistent
conjectures (dashed line), and
the ES conjectures (dotted line).
The parameter values are a = 2,
b = 0.95, and c = 0.05

Corollary 1 The ES conjecture rE(t) is strictly decreasing in t in the Cournot game.

Remark 4 Corollary 1 implies that rE(t) crosses r∗ only once and this is exactly at
t = 0. This can be seen by observing that rE(0) = r∗. This also implies that the point
t = 0 where ORPs change between spiteful and altruistic also determines whether
the equilibrium quantities with the ES conjectures are lower or higher than those in
the CCE. With self-regarding preferences t = 0 the quantities (4) are equal as well.

Figure 1 illustrates the situations of Remarks 3 and 4 and depicts the equilibrium
quantities as function of t . The CCE and the ES quantities intersect at t = 0. The
ES quantity decreases as the ORPs get increasingly spiteful while the CCE and CNE
quantities increase.

3 The Bertrand duopoly game

3.1 The model

As in Cournot competition, the players make simultaneous decisions in a one-shot
game. Now the strategies xi ∈ R

+ ∪ {0} are prices. The payoff functions are

gi(xi, xj ) = xi

(
a(1 − b) − xi + bxj

1 − b2

)
− c

2

(
a(1 − b) − xi + bxj

1 − b2

)2

(11)

and they are formed similarly as in the Cournot case but from the demand function
that gives quantity as function of prices.2 Firms maximize utility given by Eq. 2
where we replace the Cournot payoff functions by the Bertrand payoff functions (11).
The payoff and utility functions are smooth also in the Bertrand case. The reaction

2To simplify the expressions we use c/2 as the cost function parameter instead of c as in the Cournot case.
This does not change the interpretations of the results in any way.
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functions are solved from the first-order conditionGi(xi, xj ; ri) = 0 whose left-hand
side is given by

Gi(xi , xj ; ri ) := ∂ui

∂xi

(xi , xj ) + ri
∂ui

∂xj

(xi , xj )

= − 1

(−1 + b2)2

(
−a(−1 + b)

(
bc(ri + t) + b2(1 + ri t) − (1 + c)(1 + ri t)

)

+2xi + cxi + (2 + c)ri txj + b3(1 + t)(rixi + xj ) − b(1 + c)(1 + t)

·(rixi + xj ) + b2
(
(−2 + ct)xi + ri (c − 2t)xj

))
. (12)

As in the Cournot case, the Bertrand payoff functions are quadratic and the reac-
tion functions are linear. For the special case of zero conjectures, ri, rj = 0, the
corresponding equilibrium is again called the Cournot-Nash equilibrium.

Lemma 2 The equilibrium prices as function of arbitrary conjectures x∗
i (ri , rj ) exist

for all feasible a, b, c and t and are given by

x∗
i (ri , rj ) = (

a
(
(−1 + b2 − c + bcri)(2 + c + b2(−1 + rj ) − b(1 + rj + crj ))

+(−1 + b)2b(1 + b)(−1 + rirj )t + (
b2(−1 + ri) − (2 + c)ri

+b(1 + c + ri))
(
bc + b2rj − (1 + c)rj

)
t2

))
/
(
b4(−1 + rirj )

·(1 + t)2 + b3(2 + c)(ri + rj )(−1 + t2) − b(1 + c)(2 + c)(ri + rj )

·(−1+ t2)+(2+ c)2(−1+ rirj t
2)+ b2

(
5− rirj − c

(−2+ (2+ c)rirj
)

+2t − 2rirj t + (
(1 + c)2 − (5 + 2c)rirj

)
t2

))
.

(13)

We are again only interested in conjectures that are continuous in the parameters
a, b, c and t . Also, as the game is symmetric, we can assume that the conjectures are
symmetric as well, ri = rj = r .

Remark 5 By inspecting the derivative of the reaction function x∗
i (xj ; r) w.r.t xj we

can obtain information about its slope for different ranges of t and r . For zero ORPs
t = 0 the slope is (b (1 + c − b(b + cr))) /

(
2 − 2b2 + c + b3r − b(1 + c)r

)
> 0

and the reaction function is upward-sloping for any r ∈ [−1, 1] in the Bertrand
duopoly game. For t �= 0 the slope is

−b2r(c − 2t) + (2 + c)rt + b3(1 + t) − b(1 + c)(1 + t)

2 + c + b3r(1 + t) − b(1 + c)r(1 + t) + b2(−2 + ct)

and the reaction function is downward-sloping when

2b(1 − b2 + c)

2 + b2(−2 + c) + c
< r < 1,

b (1 + c − b(b + cr))

b3 − b(1 + c) − 2b2r + (2 + c)r
< t < 1

or when

−1 < r < 0, −1 < t <
b (1 + c − b(b + cr))

b3 − b(1 + c) − 2b2r + (2 + c)r
.

The upward-sloping reaction function (with strategic complements) is now the stan-
dard case except for certain ranges of positive conjectures and altruistic preferences



Evolutionarily stable conjectures and other regarding preferences... 355

or for negative conjectures and spiteful preferences, in which cases the reaction
function can slope downwards, thus yielding prices as strategic substitutes. See also
Remark 1.

3.2 The consistent conjectures

In the Bertrand duopoly game, the equation that determines the consistent conjec-
tures, i.e. Eq. 5 with functions (12), is

r = −b2r(c − 2t) + (2 + c)rt + b3(1 + t) − b(1 + c)(1 + t)

2 + c + b3r(1 + t) − b(1 + c)r(1 + t) + b2(−2 + ct)
. (14)

Proposition 3 In Bertrand competition with ORPs the consistent conjecture is

r∗ = − (
2 − 2b2 + (1 + b2)c

) + (1 − b2)
√−4b2 + (2 + c)2

2b(−1 + b2 − c)
. (15)

Remark 6 Proposition 3 shows that (as in Remark 2) assuming ORPs does not change
the consistent conjectures in the Bertrand duopoly game.

3.3 Evolutionarily stable conjectures

As in the Cournot case, we use the equilibrium prices with arbitrary conjectures(
x∗
i (ri , rj ), x

∗
j (ri , rj )

)
given by Lemma 1. Player i’s first-order condition for fitness

maximization is of the form

∂

∂ri
gi

(
x∗
i (ri , rj ), x

∗
j (ri , rj )

)
= 0. (16)

After setting ri = rj = r we get the first-order condition for fitness maximization
into a form from which the symmetric conjecture r can be solved:

(
a2b2(−1+b2)(−1+t2)

(
b3(1+t)(1+ r2+ 2rt) − b(1+ c)(1 + t)(1 + r2 + 2rt)

+b2
(
r2(c−2t)t+ (−2+c)r(1+t)+t (−2+ct)

)+ (2 + c)
(
t + r(1 + t + rt2)

)))

/
((
2 + c − b(1 + r + cr) − (2 + c)rt + b(1 + c + r)t + b2(−1 + r)(1 + t)

)

· (b2(1 + r)(1 + t) + b (−1 + r(1 + c − t) + t + ct) − (2 + c)(1 + rt)
)3) = 0.

(17)
We note that the ES conjectures are not defined for the limit values of t = −1 and
t = 1. This is because the factor (−1+t2) in the numerator of the first-order condition
for fitness maximization (17) makes it vanish for these values of t .

Proposition 4 In Bertrand competition with ORPs the ES conjecture is given by

rE =
{

rE,1 for t ∈ (−1, 1) \ {t−} ∪ {t+}
rE,2 for t ∈ {t−} ∪ {t+}
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such that

rE,1= (−4b2(−1+t)(1+t)2−b4(−2+c)(−1+t)(1+t)2+(2 + c)(−1 + t)(1 + t)2

−2b5(−1+ t)t (1+ t)2 − 2b(1+ c)(−1+ t)t (1 + t)2 + 2b3(2 + c)(−1 + t)

·t (1+t)2+√
A

)
/
(
2(−1+b2)(−1+t2)

(
b2(c−2t)t+(2 + c)t2 + b3(1 + t)

−b(1 + c)(1 + t)))

where

A = (−1 + b2)4(1 − t)3(1 + t)2
(
−4b2(1 + t)3 + (2 + c)2 (1 + t (3 + 4t))

)

and

rE,2 = −(2 + c)t − b3(1 + t) + b(1 + c)(1 + t) + b2t (2 − ct)

(1 + t)
(
2 + b2(−2 + c) + c + 2b3t − 2b(1 + c)t

)

and

t∓ = b − b3+bc − b2c ∓ √
4(2 − 2b2+c)(b − b3+bc)+(−b + b3 − bc + b2c)2

2(2 − 2b2 + c)
.

Remark 7 As in the Cournot case, the evolutionarily stable conjecture in the Bertrand
game coincides with the consistent conjecture exactly at t = 0. The evolutionarily
stable conjecture is generally positive but obtains negative values as t approaches
unity.

Corollary 2 The ES conjecture rE(t) is strictly decreasing in t in the Bertrand game.

Figure 2 illustrates the behavior of the equilibrium prices in the Bertrand duopoly
game for different t . The CCE and ES prices intersect at t = 0. As we move to
the left towards increasingly spiteful preferences, the equilibrium price with the ES
conjecture increases while the CCE and CNE prices decrease. As an increasing price
indicates increasing cooperative behavior, this result is qualitatively the same as in
the Cournot duopoly game (see Fig. 1).

Fig. 2 Equilibrium price as
function of t in the Bertrand
duopoly for the Nash conjectures
(solid line), the consistent
conjectures (dashed line), and
the ES conjectures (dotted line).
The parameter values are a = 2,
b = 0.95, and c = 0.05
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4 Discussion

Holt (1985) argues that the concept of CCE can be refuted on the basis of labo-
ratory evidence. In the Cournot duopoly game the CCE predicts higher quantities
than the CNE even in the presence of ORPs (see Fig. 1), but laboratory experiments
show that quantities are usually equal to or lower than those in the CNE. For exam-
ple, Huck et al. (2001) find that average quantities in one-shot Cournot duopoly
markets roughly correspond to the CNE quantities, and Suetens and Potters (2007)
survey Bertrand experiments and find that tacit collusion is more frequent with price
than with quantity. Our results suggest that a variety of behavioral outcomes can be
supported by assuming conjectures and/or other-regarding preferences in both the
Cournot and the Bertrand duopoly games. While cooperative behavior can generally
be explained by altruistic preferences, our novel result is that spiteful preferences
also explain cooperative outcomes if we assume that the players have evolutionarily
stable conjectures. Figure 1 implies that spiteful Cournot players with ES conjec-
tures can actually choose quantities that are close to the CNE quantities or even close
to the collusive quantities. On the other hand, altruistic players with ES conjectures
would end up playing quantities that are higher than even the CCE quantities. Similar
arguments hold for the Bertrand duopoly game as Fig. 2 demonstrates. These results
shed new insights also to explaining the laboratory evidence of Huck et al. (2001)
and others.

Burnham (2014) presents the concepts of proximate and ultimate mechanisms
from evolutionary biology to economic theory. Ultimate mechanisms determine what
kind of behavior survives in evolution in the long run. Proximate mechanisms explain
what motivates behavior in the short run. In this view, the consistent conjectures
are the products of proximate mechanisms and the ES conjectures arise from ultimate
mechanisms.Whereas prior research has shown that the ultimate and proximate mech-
anisms produce the same conjectures if the duopolists are self-regarding (Müller and
Normann 2005; Possajennikov 2009), we show that the ES conjectures are different
from the consistent conjectures if we allow a simple type of other regarding behavior.

It should be noted that our models of Cournot and Bertrand competition are
specific in terms of linear demand functions and quadratic costs. Also, the utility
function model is restrictive because only a very simple linear utility function is
used and the ORP parameter is assumed to be symmetric among the firms. These
restrictions limit the generalizations that can be drawn from the results.

Unlike Bester and Güth (1998) and others who have modeled the evolution of
altruism and spite in the linear-quadratic context, we leave the ORP parameter
untouched by evolutionary forces. This is in part a modeling decision: If both the
ORP parameter and the conjecture were subject to selection pressure, we would lose
analytical tractability. However, another rationale is that it allows us to explain situ-
ations where selection pressure focuses on nonzero conjectures but where there are
degrees of freedom in terms of distortions in payoff maximization. Therefore, the
conjecture is the expression of the tendency that evolves (Trivers 1971) whereas the
ORP parameter allows, for example, the characterization of phenotypic variability.
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Our results then suggest that in two of the most studied duopoly games with linear-
quadratic payoffs, the Cournot and the Bertrand games, this variability in the ES
conjectures is nonzero.

The assumption of the common ORP parameter t for both players can be justified
on several grounds. Here, too, the assumption maintains analytic tractability. How-
ever, one can also quickly imagine situations where exogenous factors demand that
assumption, such as when the individual utilities are common knowledge, or when
firms explicitly agree on a common t parameter (as in colluding). Even in a popu-
lation of dissimilar phenotypes, evolutionary forces may favor interactions between
phenotypically similar individuals (Antal et al. 2009).

Müller and Normann (2005) argue that because the consistent conjecture is equal
to the ES conjecture, evolutionary stability can rationalize consistency. Possajen-
nikov (2009) points out that the ES conjecture is consistent because the players with
consistent conjectures correctly anticipate the other player’s reaction function and
therefore solve the correct first-order conditions. Our results challenge both of these
arguments. This is because in the presence of ORPs (i) evolutionary stability cannot
rationalize consistency, and (ii) players with consistent conjectures do not solve the
correct first-order conditions.

Future research should extend our analysis by allowing the model of ORPs be
more general or by allowing distortions in the symmetric ORP parameters. Also,
the results could be extended to cover other games such as public goods games. Yet
another extension would be an evolutionary model that allows the evolution of both
ORPs and conjectures. The players could, for example, first develop evolutionarily
stable conjectures that depend on the ORP parameters and then subject the ORPs to
evolutionary pressure.

5 Proofs

5.1 Proof of lemma 1

Solve the equilibrium quantities x∗
i , x∗

j from the pair of first-order conditions the
left-hand sides of which are given by Eq. 3. Writing the derivative of Fi(xi, xj ; ri)

as

∂

∂xi

Fi(xi, xj ; ri) = −2 − 2c − bri(1 + t)

we see that the second-order condition is satisfied. The candidate is Eq. 4, which
has a denominator and a numerator that are quadratic polynomials in each of the
parameters. We note that all the other parameters in the denominator are restricted
except c, which can increase without limit. It is therefore instructive to write the
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denominator as a polynomial function of c and analyze the ranges of its coefficients.
We see from the following form of the denominator

4 − 4rirj t
2 + b2(−1 + rirj )(1 + t)2 − 2b(ri + rj )(−1 + t2)

︸ ︷︷ ︸
Range: (0,8)

+
(
8 − 8rirj t

2 − 2b(ri + rj )(−1 + t2)
)

︸ ︷︷ ︸
Range: (0,16)

·c

+
(
4 − 4rirj t

2
)

︸ ︷︷ ︸
Range: (0,8)

·c2

that as the coefficients of c have strictly positive ranges and c ≥ 0, the denominator
cannot assume nonpositive values. The limit values of the denominator are −4(1 +
c)2(−1+ rirj ) as t → −1 and 4(b2 − (1+ c)2)(−1+ rirj ) as t → 1, which are also
both nonnegative.

5.2 Proof of proposition 1

From Eq. 6, we get two candidates for the consistent conjectures,

r∗± = −(1 + c) ± √−b2 + (1 + c)2

b
.

The numerator of the positive root equals zero when b = 0 and −(1 + c) +√
c(2 + c) ∈ (−1, 0) when b = 1. Because

√−b2 + (1 + c)2 is decreasing in b, for
intermediate values of b the numerator of the positive root is strictly in (−1, 0). The
numerator of the negative root, however, equals −2(1 + c) < 0 when b = 0 and
−(1 + c) − √

c(2 + c) ∈ (−∞, −1] when b = 1. From this we already see that the
negative root cannot always be in [−1, 1]. Furthermore, when c � b, the term with
b in the numerator of the positive root loses its impact on its value and the terms
with c cancel each other. Therefore only the positive root r∗+ is well-behaved and in
the closed interval [−1, 1] for all feasible b and c but the negative root r∗− is not.
Because b < 1, the positive root r∗+ is also strictly below zero for all feasible values
of b, c.

5.3 Proof of proposition 2

At Step 1 we determine the ES conjecture candidate from the first-order condition
for fitness maximization (9) and show that the candidate satisfies the limit values.
At Step 2 we show that the candidate is the best response against itself and that the
population of players with rE’s survives a mutant invasion, i.e. the candidate is an
ES strategy (Maynard Smith 1982).
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5.3.1 Step 1

Solve (9) for r to get two candidates for the ES conjecture,

rE± = − (1 + c + bt)(−1 + t2) ± √
A

(−1 + t)
(
b + bt + 2(1 + c)t2

) ,

where A is as given in Eq. 10. We make the following observations from the
candidates:

– First we note that the denominators of the candidates rE± are always nonzero.
Furthermore, the term A is a product of two negative factors and therefore
positive. Thus the candidates rE± are continuous for all feasible b, c and t .

– The positive root rE+ ∈ [−1, 1]. This is shown by first examining limit behavior
and then behavior between the limits. The positive root approaches 1 when t →
−1 and −1 when t → 1. We thus have to show that rE+ = −1 only at t = −1
and rE+ = 1 only at t = 1. Rearranging the equation rE+ − 1 = 0 such that
the square-root term is at the right-hand side and all the other terms at the left-
hand side, squaring each side and then moving all terms back to the left-hand
side results in an equation

2(1 + b + c)(−1 + t2)2
(
b + bt + 2(1 + c)t2

)
= 0

that holds only when t = −1 or t = 1. However, knowing that rE+ = −1
at t = 1, we can conclude that t = −1 is the unique solution of the equation
rE+ − 1 = 0. Using a similar procedure for the equation rE+ + 1 = 0 yields the
conclusion that this equation holds exactly at t = 1.

– For the negative root, there are values of b, c and t that yield the candidate out of
its limits. For example, when b = 1/2, c = 0 and t = 1/3 we have rE− = −3.
This is enough to show that rE− /∈ [−1, 1] for some values of b, c and t .

Therefore, we accept only the positive root rE = rE+. This concludes Step 1.

5.3.2 Step 2

If the expression

fi(r
E, rE) ≥ fi(r, r

E), (18)

where r ∈ [−1, 1] is an arbitrary conjecture, holds strictly for r �= rE , then rE

is the unique best reply against itself (Müller and Normann 2005). We can inspect
the function fi(r, r

E) and show that rE is its unique maximizer on [−1, 1]. The
function fi(r, r

E) is a rational function of the form P(r)/Q(r) where P(r) and
Q(r) are second-degree polynomials in r . Taking its derivative in r leads to a form(
P ′(r)Q(r) − P(r)Q′(r)

)
/Q(r)2, which, after canceling common factors, has a

first-degree polynomial in r at the numerator and a third-degree polynomial at the
denominator. Therefore, there is just one maximizer to fi(r, r

E) and by substitution
it can be shown to be rE . The complicated expressions of P(r) and Q(r) are too long
to be presented here, but are available from the Author upon request.



Evolutionarily stable conjectures and other regarding preferences... 361

5.4 Proof of corollary 1

Step 1 in the Proof of Proposition 2 shows that the limit values of rE(t) for t =
−1 and t = 1 are 1 and −1, respectively. Therefore, to show that rE(t) is strictly
decreasing in t ∈ (−1, 1), we must show that rE(t) crosses an arbitrary constant
conjecture r ∈ (−1, 1) (i.e. a horizontal line in (t, r)-plane) only once in t ∈ (−1, 1).
We form the equation rE(t) − r = 0 and manipulate it such that we move square-
root terms on the right-hand side, square each side and move everything back to the
left-hand side. A simplified equation

b(1 + t)(1 + r2 + 2rt) + 2(1 + c)
(
t + r(1 + t + rt2)

)

b + bt + 2(1 + c)t2
= 0 (19)

follows. There is an upwards-opening quadratic polynomial in t in the numerator of
the left-hand side of Eq. 19 that has at most two (real) roots. Because rE(t) − r is
smooth in t , we know that at least one root must always be in (−1, 1). Therefore, if
the other root is outside of (−1, 1), then the quadratic has a different sign at the point
t = −1 than at the point t = 1. Indeed, we find that the quadratic is

2(1 + c)(−1 + r2) for t = −1,
2(1 + b + c)(1 + r)2 for t = 1.

These have different signs for all r ∈ (−1, 1) and for all feasible b, c, proving that
there is only one r that satisfies (19) in (−1, 1).

5.5 Proof of lemma 2

Solve the equilibrium prices x∗
i , x∗

j from the pair of first-order conditions the left-
hand sides of which are given by Eq. 12. Writing the derivative of Gi(xi, xj ; ri)

as

∂

∂xi

Gi(xi, xj ; ri) = −2 − c − b3ri(1 + t) + b(1 + c)ri(1 + t) + b2(2 − ct)

(−1 + b2)2

we see that the second-order condition is satisfied. Both the denominator and numer-
ator of Eq. 13 are quadratic polynomials in t . The equilibrium prices thus exist if
the denominator has no zeros in −1 < t < 1. As in the Cournot case (see Proof of
Lemma 1), we examine the zeros by writing the denominator as a function of c. We
can express the denominator in the following form

(−1 + b2)
(
4 − 4rirj t

2 + b2(−1 + ri rj )(1 + t)2 + 2b(ri + rj )(−1 + t2)
)

︸ ︷︷ ︸
Range: (−8,0)

+
(
−4 + 4rirj t

2 − 3b(ri + rj )(−1 + t2) + b3(ri + rj )(−1 + t2) − 2b2(−1 + rirj )(1 + t2)
)

︸ ︷︷ ︸
Range: (−8,0)

·c

+
(
−1 + b(ri + rj − brirj ) + (b − ri )(b − rj )t

2
)

︸ ︷︷ ︸
Range: (−4,0)

·c2
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and see that all the coefficients of c are strictly negative and thus the denominator
cannot assume nonnegative values. The limit values of the denominator are −(−1 +
b2)(2 + c)2(−1 + rirj ) as t → −1 and (−1 + b2)(4b2 − (2 + c)2)(−1 + rirj ) as
t → 1 and these limits are strictly negative.

5.6 Proof of proposition 3

Solving Eq. 14 gives two candidates for the consistent conjectures:

r∗± = − (
2 − 2b2 + (1 + b2)c

) ± (1 − b2)
√−4b2 + (2 + c)2

2b(−1 + b2 − c)
.

The denominator of the candidates is strictly negative for all feasible b and c;
furthermore, r∗+ < r∗−. To show that the positive root is the unique consis-
tent conjecture within set [−1, 1], Eq. 14 can be simplified to assume the form(
b3 − b(1 + c)

)
r2 + (

2 + b2(−2 + c) + c
)
r + b3 − b(1+ c) = 0, the left hand side

of which is a quadratic polynomial in r that has zeros r∗+ and r∗−. We can see that,
for all feasible values of b and c, this polynomial is negative when r = 0, positive
when r = 1, and negative when r → ∞. Because r∗+ < r∗− we then know that the
positive root r∗+ is in the set [−1, 1] for all feasible b and c, while the negative root
is not in the set [−1, 1].

5.7 Proof of proposition 4

This proof is similar to the Proof of Proposition 2.

5.7.1 Step 1

The first-order condition (17) is of the form P(r)/Q(r) and the solution rE,1 is
obtained from P(r) = 0. P(r) is a second-degree polynomial in r . The denominator
of the solution to P(r) = A(t)r2+B(t)r+C(t) = 0 is zero for some t , namely, when
A(t) = 0. These zeros are given by t− and t+. For these zeros in the denominator we
consider the reduced form P(r) = B(t)r + C(t) = 0, which has rE,2 as the unique
solution.

The corresponding negative root to rE,1 is not within [−1, 1] for all b, c and t . For
example, for b = 1/3, c = 0 and t = 1/5 the negative root equals 7. The positive
root rE,1 ∈ [−1, 1] for t ∈ (−1, 1) \ {t−} ∪ {t+}, and this is seen by examining it
similarly as in the Proof of Proposition 2. First we note that limt→−1 rE,1 = 1 and
limt→1 rE,1 = −1. Then we show that rE,1 = 1 only at t = −1, i.e. we rearrange the
equation rE,1 −1 = 0 such that the square-root term is on the right-hand side, square
each side, and then move all back to the left-hand side. This results in an equation

(−1 + b)2(2 + 2b + c)(1 + t)2

b2(c − 2t)t + (2 + c)t2 + b3(1 + t) − b(1 + c)(1 + t)
= 0,

which holds only for t = −1. A similar procedure can be followed to obtain the limit
for t = 1.
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5.7.2 Step 2

As in the Proof of Proposition 2, we inspect the inequality

gi(r
E, rE) ≥ gi(r, r

E) (20)

where r ∈ [−1, 1] is an arbitrary conjecture. However, this time we inspect separately
the conjectures rE,1 and rE,2.

When t ∈ (−1, 1) \ {t−} ∪ {t+}, the function gi(r, r
E,1) is a rational function of

the form P(r)/Q(r) where P(r) and Q(r) are second-degree polynomials in r . Tak-
ing its derivative in r leads again to a form

(
P ′(r)Q(r) − P(r)Q′(r)

)
/Q(r)2, which

simplifies to a rational function that has a first-degree polynomial in r at the numer-
ator and third-degree polynomial at the denominator. Therefore, there is a unique
maximizer to gi(r, r

E,1) and by substitution it can be shown to be rE,1. The com-
plicated expressions of P(r) and Q(r) are too long to be presented here, but are
available from the Author upon request.

When t ∈ {t−} ∪ {t+}, the function gi(r, r
E,2) is again of the form P(r)/Q(r)

with second-degree polynomials in r . The same arguments hold as above, i.e. we get
the result that r = rE,2 is the unique maximizer of gi(r, r

E,2) in [−1, 1].

5.8 Proof of corollary 2

This proof is similar to the Proof of Corollary 1. The limit values of the ES conjecture
rE(t) are limt→−1 rE(t) = 1 and limt→1 rE(t) = −1. Therefore, it remains to show
that rE,1(t) − r = 0 has only one root at t ∈ (−1, 1) for all arbitrary constant
conjectures r . Manipulating the equation such that we move square-root terms on
the right-hand side, square each side and move everything back to the left-hand side
results in a simplified equation that has a numerator of the form

b3(1 + t)(1 + r2 + 2rt) − b(1 + c)(1 + t)(1 + r2 + 2rt) + b2
(
r2(c − 2t)t

+(−2 + c)r(1 + t) + t (−2 + ct)) + (2 + c)
(
t + r(1 + t + rt2)

)
.

(21)
The expression (21) is a downwards-opening quadratic polynomial in t . Knowing that
at least one of the roots is in (−1, 1) it remains to show that (21) has a different sign
on t = −1 than on t = 1 for all r ∈ (−1, 1). We find that the expression reduces to

−(−1 + b2)(2 + c)(−1 + r2) for t = −1,
(−1 + b)2(2 + 2b + c)(1 + r)2 for t = 1.

These have different signs for all r ∈ (−1, 1) and for all feasible b, c. Therefore,
Eq. 21 is equal to zero only for one value of r .
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