
Japan J. Indust. Appl. Math. (2013) 30:203–225
DOI 10.1007/s13160-012-0097-6

ORIGINAL PAPER Area 3

Quasi-chaotic behaviors of narrow-band response
of a non-deterministic resonant system: application
to analysis of ship motion in irregular seas

Kimihiko Ueno · Chunming Fan

Received: 14 July 2011 / Revised: 26 October 2012 / Published online: 11 December 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract This paper describes similarities between the narrow-band response of a
resonant system excited by random inputs and low-dimensional chaos, with particular
emphasis on the geometric characteristics of trajectories reconstructed in m-dimen-
sional phase space from measured scalar time series data with a time-delay coordinate
system. In this study, the time series data of ship roll angle in irregular waves were
analyzed as an example of the narrow-band response of a resonant system. These
time series data were measured by one of the authors in Tokyo Bay. The similarities
between the narrow-band response of a resonant system excited by random inputs and
low-dimensional chaos are verified by numerical simulation data.

Keywords Narrow-band response · Ship roll motion · Chaos

1 Introduction

It is necessary to distinguish low-dimensional dynamics and randomness in mea-
sured time series. Because, it is necessary for avoiding the mistake of concluding
non-chaotic data as chaotic data. If the decision is wrong, there is a possibility of
wrong time series analysis or construction of a wrong model. Therefore, detecting
determinism in a time series is very important, and numerous studies have focused on
this problem [4,5,10,12,18,24,29,33,40,42,45–47,51,54,55,60]. The purpose of the
present research is closely related to this problem. Obtaining quantitative indicators
from measured scalar time series data x(t) requires reconstructing the appropriate
state vector x(t) in m-dimensional phase space with a time-delay coordinate system
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Fig. 1 Narrow-band response of a resonant system excited by a random input

Fig. 2 Definition of the
coordinate system. The roll
motion is the oscillatory motion
around the x-axis. The point G
corresponds to the center of
gravity
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x(t) = (x(t), x(t − τ), . . . , x(t − (m − 1)τ )) , (1.1)

where τ is the time delay and m is the embedding dimension. In this paper, the trajec-
tory of the vector x(t), a function of time t, is called the reconstructed trajectory. The
analytic methods used in this study are based on Takens’ embedding theorem [52],
as extended to both forced and stochastic systems by Stark et al. [48–50]. This study
particularly focuses on the geometric characteristics of the reconstructed trajectories
in m-dimensional phase space.

In most oscillation phenomena, the system has at least one resonant frequency at
which large amplitudes can be generated by small inputs. At other frequencies, trans-
mission is reduced and, at very high frequencies, the effective mass may be so high that
the output is not measurable. Furthermore, since the output spectrum is confined to a
narrow band of frequencies in the vicinity of the resonant frequency, the response is
narrow-banded and the typical time series of the output resembles a sine wave in which
amplitudes and phases vary [39]. Namely, the existence of the resonant frequency of
the system acts as a kind of filter (see Fig. 1).

In this study, the time series data of ship roll angle in irregular waves were analyzed
as an example of a narrow-band response of a resonant system excited by random
inputs. The roll motion is the oscillatory motion around the x-axis in Fig. 2.

There are a number of similarities between the narrow-band response of a resonant
system excited by random inputs and low-dimensional chaos.

The first is that the correlation dimension of the time series estimated by the
Grassberger–Procaccia algorithm [14,15] converges at a low embedding dimension m
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Quasi-chaotic behaviors of a non-deterministic resonant system 205

[56–58]. This convergence is consistent with the result obtained by Rapp et al. [43],
who proved that filtered noise can mimic low-dimensional chaotic attractors when
examined with the Grassberger–Procaccia algorithm alone. Our study verified the
Rapp et al. result with real field measurement data. For the first time, Kawashima
[25] estimated the correlation dimension for the time series data of ship roll angle in
irregular waves.

The second similarity is that the parallelness degree of the adjacent trajectories
reconstructed in m-dimensional phase space is high [59]. Methods that can distin-
guish deterministic time series and stochastic time series by estimating parallelness
degrees of adjacent reconstructed trajectories were proposed by Kaplan and Glass
[24], Wayland et al. [60], and Fujimoto et al. [10]. In this study we propose a simple
method to evaluate parallelness degrees of the adjacent trajectories quantitatively. The
method proposed in this paper has a key advantage of involving a simple calculation
and can be used to discriminate determinism and stochastic properties in a time series.

The third similarity is that short-term prediction is possible [56–58]. The Jacobian
matrix estimation method is used as a prediction method in this study. The algorithm
of this method was proposed by Sano and Sawada [44] and Eckmann et al. [7] to mea-
sure the Lyapunov spectrum at first. Farmer and Sidorowitch [9] used this algorithm
for prediction of chaotic time series data. For predicting a chaotic time series, in addi-
tion to the above, other methods with reconstructed trajectories have been proposed;
these include the method of analogs by Lorenz [31], the simplex projection method
by Sugihara and May [51], the Voronoi tesselation by Mees [33], the local optimal
linear-reconstruction method by Jiménez et al. [22], the local fuzzy reconstruction
method by Iokibe et al. [21], the improved method of analogs by Ikeguchi and Aihara
[17], and the regularized local linear method by Kugiumtzis [26].

The fourth resemblance is that not only is the conventional correlation coefficient
of the predicted value for one step ahead and measured value high but so also is the
difference correlation coefficient. The difference correlation coefficient was defined
by Ikeguchi and Aihara [18,19].

The time series data of ship roll angle were measured in Tokyo Bay by one of the
authors. We used a 19GT boat (Lpp = 16.55 [m], B = 4.50 [m] and D = 1.55 [m])
to measure roll angle. The eigen frequency of roll motion was 0.286 Hz, and the rep-
resentative frequency of waves at the time of measurement was 0.233 Hz. To dislodge
the noise of measurement, the time series data of ship roll angle were passed through
a bandpass filter (0.05–0.5 Hz). The similarities between the narrow-band response of
a resonant system excited by random inputs and low-dimensional chaos are verified
by numerical simulation data.

Considerable research has been conducted on the topics of chaotic resonators and
chaotic oscillators (for instance, Reference [2,6,8,11,13,16,20,27,28,32,34,35,37,
38,41,53,61,62]). However, few studies have considered the narrow-band response
of a non-deterministic resonant system, as in the case of our research. In other words,
very little research has been done in the cases where a forced moment in the equation
of motion is non-deterministic. Our research, on the other hand, discusses the simi-
larities between the narrow-band response of a resonant system and low-dimensional
chaos. Therefore, our research differs in content from prevailing studies, which dealt
with chaotic resonators and chaotic oscillators.
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2 Correlation dimension

2.1 Estimation of the correlation dimension by the Grassberger–Procaccia algorithm
[14,15]

The following correlation integral is used to evaluate the correlation dimension D2 of
the reconstructed trajectory in m-dimensional phase space in practice:

C(ε) = 1

N 2

N∑

i, j=1

�
(
ε − ‖x(ti ) − x(t j )‖

)
. (2.1)

where, N indicates the total number of vectors x(ti ) reconstructed in m-dimensional
phase space, ε indicates the radius of the hypersphere whose center is x(t j ), �(·)
indicates the Heaviside function, and ‖x(ti )−x(t j )‖ is the distance between x(ti ) and
x(t j ). In this paper, the distance is defined by the Euclidean norm.

Next, we consider the number N . If it is too small, the result will be unreliable,
whereas if it is too large, computations will take too long. An expedient is to draw M
samples (x(tn( j)), j = 1, 2, . . . , M) out of N and evaluate the following [36]:

C(ε) = 1

N

1

M

N∑

i=1

M∑

j=1

�
(
ε − ‖x(ti ) − x(tn( j))‖

)
. (2.2)

In the actual estimation, the correlation dimension D2 is obtained from the slope of
the regression line of the rectilinear part of log C(ε) as a function of log ε (see Fig. 4).

2.2 Estimated result of the correlation dimension

Figure 3 shows an example of a reconstructed trajectory of the time series data of the
ship roll angle in irregular waves. In this case, the embedding dimension m is three.
(The time series data of the ship roll angle in irregular waves is shown in Fig. 6a.)
It is difficult to define ’irregular wave’ and ‘irregular seas’ appropriately. However,
these terms are used quite often in marine engineering and naval architecture. In the
present research, waves that do not have a constant period and amplitude are treated
as irregular waves. Seas are considered to be irregular when their condition gives rise
to irregular waves. The sampling period of the time series data, δt, is 0.1 [s]. The esti-
mated result of the correlation dimension of the time series data of the ship roll angle
in irregular waves is shown in Fig. 4. Here, N = 8,000 and M = 4,000. Figure 4a shows
the relation between ε and C(ε) obtained from (2.2) by a double logarithm. In Fig. 4a,
the value of the slope of the regression line applied to the linear part is the correlation
dimension D2. The relation between the embedding dimension m and the correlation
dimension D2 is depicted in Fig. 4b, which shows that the correlation dimension D2
converges at low embedding dimension m. This result is the first similarity between the
narrow-band response of a resonant system (in this case, time series data of ship roll
angle in irregular waves) and low-dimensional chaos. In addition, this characteristic
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Fig. 3 Example of a reconstructed trajectory of the time series data of the ship roll angle in irregular waves.
In this example, the embedding dimension m is three
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Fig. 4 Estimated result for the correlation dimension

that the correlation dimension converges at low embedding dimension is a necessary
condition for making short-term prediction of time series possible. If the correlation
dimension is small, this suggests that the motion may be described by a small number
of variables, even when the original system has many degrees of freedom [36].

3 The degree of parallelness of the adjacent trajectories that are reconstructed
in m-dimensional phase space

3.1 Estimation method

Methods that can distinguish deterministic time series and stochastic time series
by estimating parallelness degrees of adjacent reconstructed trajectories have been
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Fig. 5 Parallelness degree of the adjacent trajectories

proposed by Kaplan and Glass [24], Wayland et al. [60], and Fujimoto et al. [10]. We
propose a simple method to evaluate parallelness degrees of the adjacent trajectories
quantitatively. In the method proposed here, a simple calculation is one of the advan-
tages. This method can be used to discriminate determinism and stochastic properties
in a time series.

Let NData be the total number of the data points in the time series. Select randomly
N1 vectors

x(ti,1) = (x(ti,1), x(ti,1 − δt), . . . , x(ti,1 − (m − 1)δt) (i = 1, . . . , N1) (3.1)

from the trajectories reconstructed in m-dimensional phase space with a time-delay
coordinate system. The distance between two position vectors is defined by the Euclid-
ean norm in this space. Select the N2 neighboring vectors of the vector x(ti,1) as the
following condition is satisfied:

‖x(ti,2) − x(ti,1)‖ ≤ ‖x(ti,3) − x(ti,1)‖ ≤ · · · ≤ ‖x(ti,N2+1) − x(ti,1)‖. (3.2)

After evolution of a time interval δt , these vectors will proceed from x(ti, j ) to x(ti, j +
δt). The displacement vectors are y(ti, j ) = x(ti, j + δt) − x(ti, j ) (see Fig. 5).

Define αi , ᾱ, and β as follows:

αi = 1

N2(N2 + 1)

N2+1∑

j,k=1, j �=k

y(ti, j ) · y(ti,k)

‖y(ti, j )‖‖y(ti,k)‖ , (3.3)

ᾱ = 1

N1

N1∑

i=1

αi , β = 1 − ᾱ. (3.4)
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Fig. 6 Part of time series data corresponding to a ship roll angle in irregular waves, b the x component of
the Lorenz model, and c the white noise

If the adjacent trajectories that are reconstructed in m-dimensional phase space are
nearly parallel, the value of the inner product of the unit vectors,

y(ti, j ) · y(ti,k)

‖y(ti, j )‖‖y(ti,k)‖ , (3.5)

is nearly one. Moreover, if the parallelness degree of the adjacent trajectories that are
reconstructed in m-dimensional phase space is high en masse, the value of ᾱ is nearly
one, too. In this case, the value of the indicator β must be nearly zero.

3.2 Estimation result of indicator β

In this section, three kinds of time series data (see Fig. 6) are analyzed. The first is
the time series of ship roll angle in irregular waves (see Fig. 6a). The second one
is the x component of the Lorenz model [30] (see Fig. 6b). Under the initial condi-
tion (x(0) = −1.81, y(0) = 0.01, and z(0) = 0.01), the fourth-order Runge–Kutta
method was used to solve the following equations numerically with a time step of 0.01
to obtain the numerical solutions of the Lorenz model (Eq. 3.6):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −σ(x − y),

dy

dt
= −xz + r x − y,

dz

dt
= xy − bz,

(3.6)
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Fig. 7 Embedding dimension m
and indicator β. Squares
correspond to the x component
of the Lorenz model. Circles
correspond to the time series
data of the ship roll angle in
irregular waves. Triangles
correspond to the white noise
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where σ = 16, r = 40, and b = 4. The third time series is the white noise (see
Fig. 6c).

For each, the calculated results of values of the indicator β are shown in Fig. 7.
Values of the indicator β corresponding to embedding dimension m are shown. All
were calculated under the condition that NData = 8,000, N1 = 400, and N2 = 4.

The values of the indicator β of time series data of the ship roll angle in irregular
waves, which represent the narrow-band response of a resonant system, are near the
values of β of the x component of the Lorenz model, which is used for deterministic
chaos, rather than the values of β of the white noise.

This is the second similarity between the narrow-band response of a resonant system
and low-dimensional chaos. Furthermore, this characteristic that parallelness degree of
adjacent reconstructed trajectories is high (i.e., β is nearly zero) is a necessary condi-
tion for making short-term prediction of time series possible by using the deterministic
method.

3.3 Distinction between the narrow-band response of a resonant system
and deterministic chaos by phase-randomized surrogate data

If the function obtained by Fourier transforming time series data x(t) is X ( f ), the
power spectral density function P( f ) is defined by the following equation in this
study:

P( f ) = lim
T →∞

|X ( f )|2
T

, (3.7)

where f is the frequency. In the actual calculation, T = NDataδt , where NData is the
total number of the data points in the time series and δt is the time interval.
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Fig. 8 Power spectral density functions corresponding to the time series data of a ship roll angle, b the x
component of the Lorenz model, and c the white noise

The phase-randomized surrogate data [54] xs(t) of the original time series data x(t)
has the following properties. The power spectrum density function of the surrogate
data xs(t) is equal to that of the original data x(t). However, it is randomized so that
the initial phase of each frequency component constituting the time series data is dif-
ferent from the original data. Stam et al. [47] point out problems seen in the case of
analyzing phase-randomized surrogate data of time series data with strong periodic-
ity. In this study, we focused on these problems. In the time series data of ship roll
angle in irregular waves used in this study, all the amplitudes are less than 20 [deg].
Therefore, the influence of the nonlinear restoring moment term of the equation of
ship roll motion can be ignored. The power spectral density functions P( f ) of each
time series data are shown in Fig. 8.

Surrogate data of time series data of ship roll angle in irregular waves, which rep-
resent the narrow-band response of a resonant system, and those of the x component
of the Lorenz model, which is used for deterministic chaos, are shown in Fig. 9. For
creation of surrogate data for time series data of ship roll angle in irregular waves,
8,000 data points taken at a time interval δt = 0.1 [s] were used. For creation of
surrogate data of the x component of the Lorenz model, 10,000 data points taken at a
time interval δt = 0.01 were used. For the time series data of ship roll angle in irreg-
ular waves, which represent the narrow-band response of a resonant system, values
of indicator β of the original data and those of surrogate data are almost equal (see
Fig. 10). This implies that time series data of ship roll angle in irregular waves are
stochastic and a linear superposition. In other words, the complexity of time series
data of ship roll angle in irregular waves is independent of the initial phase. However,
for the x component of the Lorenz model, values of the indicator β of surrogate data
greatly differ from those of the original data (see Fig. 10). This implies that the Lorenz
model gives deterministic chaos, which subtly depends on initial values. This result
agrees with that of Wayland et al. [60].

4 Short-term prediction

4.1 Prediction method

The Jacobian matrix estimation method (JMEM) is used as a prediction method in this
study. Its algorithm was first proposed by Sano and Sawada [44] and Eckmann et al.
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Fig. 9 Phase-randomized surrogate data of the time series data of a ship roll angle and b the x component
of the Lorenz model

Fig. 10 Phase-randomized
surrogate data and indicator β

with m. Squares correspond to
the x component of the Lorenz
model. Circles correspond to the
time series data of the ship roll
angle in irregular waves.
Triangles correspond to the
white noise. Crosses correspond
to the surrogate data of the time
series data of the ship roll angle.
Inverted triangles correspond to
the surrogate data of x
component of the Lorenz model
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[7] to measure the Lyapunov spectrum. Farmer and Sidorowitch used this algorithm
for prediction of chaotic time series data [9].

Let x(t j ) = (x(t j ), x(t j − τ), . . . , x(t j − (m − 1)τ )) denote the newest observed
vector that reconstructs in m-dimensional phase space. The distance between two
position vectors is defined by the Euclidean norm.

We select L neighboring vectors xε(tp(i))(i = 1, 2, . . . , L) of the newest observed
vector x(t j ) from the past observed vectors. Namely, we select the neighboring vectors
in the hypersphere whose radius ε is centered at the newest observed vector x(t j ). The
following condition is satisfied as selecting neighboring vectors (see Fig. 11):

⎧
⎨

⎩

‖xε(tp(1)) − x(t j )‖ ≤ ‖xε(tp(2)) − x(t j )‖ ≤ · · · ≤ ‖xε(tp(L)) − x(t j )‖,

p(i) < j (i = 1, 2, . . . , L).

(4.1)
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Fig. 11 Jacobian matrix estimation method

According to this condition (4.1), the vector xε(tp(1)) is nearest to the newest observed
vector x(t j ) in these neighboring vectors. When the vector xε(tp(1)) is the source, the
displacement vectors for other neighboring vectors are the following:

yi = xε(tp(i)) − xε(tp(1)) =

⎛

⎜⎜⎜⎝

y1,i

y2,i
...

ym,i

⎞

⎟⎟⎟⎠ (i = 2, . . . , L). (4.2)

After evolution of a time interval δt , the neighboring vectors will proceed from
xε(tp(i)) to xε(tp(i)+δt). The displacement vector yi = xε(tp(i))−xε(tp(1)) is thereby
mapped to

zi = xε(tp(i) + δt) − xε(tp(1) + δt) =

⎛

⎜⎜⎜⎝

z1,i

z2,i
...

zm,i

⎞

⎟⎟⎟⎠ (i = 2, . . . , L). (4.3)

We consider the following map f, which transforms from yi to zi :

f(yi ) = zi , zk,i = fk(y1,i , y2,i , . . . , ym,i ) (k = 1, . . . , m), (4.4)

f(0) = 0, fk(0, 0, . . . , 0) = 0. (4.5)

Here, 0 is the null vector. The following is obtained by a Maclaurin expansion:

zk,i = ∂ fk

∂y1
y1,i + ∂ fk

∂y2
y2,i + · · · + ∂ fk

∂ym
ym,i

+(terms ≥ second degree), (4.6)

where yl(l = 1, . . . , m) is the lth component of the vector yi as a general variable and
∂ fk
∂yl

denotes ∂ fk (y1,y2,...,ym )
∂yl

∣∣∣
y1=y2=···=ym=0

. By ignoring terms that are greater than or
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equal to the second degree, the following approximate equation is obtained:

zk,i = ∂ fk

∂y1
y1,i + ∂ fk

∂y2
y2,i + · · · + ∂ fk

∂ym
ym,i . (4.7)

Therefore, we can express this as

zi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,i

z2,i

...

zm,i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1

∂ y1

∂ f1

∂ y2
· · · ∂ f1

∂ ym

∂ f2

∂ y1

∂ f2

∂ y2
· · · ∂ f2

∂ ym
...

...
. . .

...
∂ fm

∂ y1

∂ fm

∂ y2
· · · ∂ fm

∂ ym

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1,i

y2,i

...

ym,i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ayi . (4.8)

Here, we use the least-square algorithm to estimate the Jacobian matrix A, which
minimizes the summation of the squared error norm between zi and Ayi as follows:

S =
L∑

i=2

‖zi − Ayi‖2. (4.9)

By denoting the (k, l) component of the Jacobian matrix A by ak,l(= ∂ fk
∂yl

) and apply-

ing condition (4.9), m × m equations are obtained with ∂S
∂ak,l

= 0. Here, we use the
following expression for A:

AV = C, vk,l =
L∑

i=2

yk,i yl,i , ck,l =
L∑

i=2

zk,i yl,i , (4.10)

where V and C are m ×m matrices, vk,l and ck,l are the (k, l) components of matrices
V and C , respectively, and A = CV −1.

Using matrix A, the following expression for the prediction is obtained:

x̃(t j + δt) = A
(
x(t j ) − xε(tp(1))

) + xε(tp(1) + δt), (4.11)

where the first component of the vector x̃(t j +δt) will be the prediction value. Predicted
values of n steps ahead are obtained by repeating the above operation.

4.2 Prediction result

The prediction results of the time series data of ship roll angle in irregular waves are
shown in Fig. 12. Predicted values for 30 steps ahead, with data of the past 5,000
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Fig. 12 Prediction results by a JMEM and b the linear AR model. The dotted line corresponds to the
measured value and the solid line corresponds to the predicted value (30 steps ahead)

points (500 [s]) as reference values at the beginning, are indicated. The dotted line
indicates measured values and the solid line indicates predicted values.

The results shown in Fig. 12a are predicted by JMEM. In this case, the number
of neighboring vectors was held constant (L = 250). Here, m = 11 and τ = 0.7
[s]. The results shown in Fig. 12b are predicted results obtained by a linear auto
regression model (linear AR model) (4.12) used widely as a conventional method. To
set the degree of the regression formula, the one with the minimum AIC (Akaike’s
information criterion) [1] (4.13) was selected:

x(t) = a1x(t − δt) + a2x(t − 2δt) + · · · + an y(t − nδt) + ν, (4.12)

AIC(m) = NData log(2πσ 2
n ) + NData + 2(n + 1), (4.13)

where n is the degree of the self-regression formula, δt = 0.1 [s] is the time inter-
val, ai (i = 1, . . . , n) is the self-regression coefficient, and ν is white noise, which is
independent from the past of x(t) with the condition that its average is zero and its
variance is σ 2

n . NData is the total number of data points in the time series.
Figure 13 gives scatter diagrams corresponding to Fig. 12. In Fig. 13, r1 indicates

a conventional correlation coefficient and rmse indicates root-mean-square error. For
time series data of ship roll angle in irregular waves, which represent the narrow-band
response of the resonant system, it has been confirmed that prediction results by JMEM,
which was devised to predict deterministic chaos, are more precise than those obtained
by the linear AR model, which is the conventional method. This is the third similarity
between the narrow-band response of a resonant system and low-dimensional chaos.

When we predict time series data of the narrow-band response of a resonant system
using JMEM, we should be careful about the number of neighboring vectors, L . If it
is too small, the prediction result will be unreliable. This is a difference between the
narrow-band response of a resonant system and low-dimensional chaos. However, if
it is too large, there is no remarkable difference between the prediction result using
JMEM and that from using the linear AR model.
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Fig. 13 Scatter diagrams of prediction results (30 steps ahead) by a JMEM and b the linear AR model
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Fig. 14 Influence of high-frequency noise. The dotted line corresponds to the raw data and the solid line
corresponds to filtered data. The raw data of the ship roll angle xo(t) and the filtered data x(t) are shown

in a. The third derivatives d3xo(t)
dt3 and d3x(t)

dt3 are shown in b

4.3 Influence of high-frequency noise

In this study, the time series data of ship roll angle were passed through a bandpass
filter (0.05–0.5 Hz) to dislodge the trend and the high-frequency noise. It is difficult
to judge only by seeing raw data whether measured time series data are polluted by
minute high-frequency noise. The raw data xo(t) of the time series data of ship roll
motion and the filtered data x(t) are shown in Fig. 14a. For examining influences
of high-frequency noise, it is effective to amplify the high-frequency component by
numerical differentiation [58]. The third derivatives of the raw data and of the filtered
data are shown in Fig. 14b. The graph of the third derivative clearly shows that the
raw data are polluted by high-frequency noise. Next, using the indicator β defined in
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dt ). Black squares correspond to the second derivative

(
d2xo(t)

dt2 and d2x(t)
dt2 ). White squares correspond to the third derivative (

d3xo(t)
dt3 and d3x(t)

dt3 )

Sect. 3.1 of this paper, we examined the influence of high-frequency noise. For the
raw data and the filtered data, first, second, and third derivatives were obtained. For
each, values of the indicator β for embedding dimension m are shown in Fig. 15. The
second and third derivatives of the raw data for which the high-frequency noise was
amplified have randomness close to the white noise shown in Sect. 3.2 of this paper.
The influence of the high-frequency noise clearly appeared even in the prediction for
10 steps ahead. The prediction results for the raw data and the filtered data by JMEM
are shown in Fig. 16. Here, L = 250, m = 11 and τ = 0.7 [s]. For the raw data,
predictability deteriorates with the influence of high-frequency noise. As above, it is
necessary to pay attention to high-frequency noise in an analysis of time series data
of the oscillatory system narrow-band response actually measured.

4.4 The difference correlation

Ikeguchi and Aihara [18,19] showed that the difference correlation can distinguish
deterministic chaos from 1/ f α-type colored noise. The difference coefficient of cor-
relation r2 is the coefficient of correlation between the first-difference time series
�x(ti+1) = x(ti+1) − x(ti ) and �x̃(ti+1) = x̃(ti+1) − x(ti ):

r2 =
∑Nq

i=1
(�x(ti ) − �x̄)

(
�x̃(ti ) − � ¯̃x

)

√∑Nq

i=1
(�x(ti ) − �x̄)2

√∑Nq

i=1

(
�x̃(ti ) − � ¯̃x

)2
, (4.14)

where x(ti ) and x̃(ti ) are actual and predicted time series, �x̄ and � ¯̃x are the averages,
and Nq is the number of data points in the time series �x̃(ti ).
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Fig. 17 The conventional coefficient of correlation r1 and the difference coefficient of correlation r2 (one
step ahead)

Both chaos and 1/ f α-type colored noise are predictable over the short term and the
conventional correlation coefficient r1 is high. However, Ikeguchi and Aihara showed,
using the difference correlation coefficient r2 defined by (4.14), that chaos takes a high
value, but 1/ f α-type colored noise takes a low value [18,19].

Figure 17 shows the conventional correlation coefficient r1 and the difference cor-
relation coefficient r2 for time series data of the ship roll motion, which represent the
narrow-band response of the resonant system. This is the result of forecasting one step
ahead by JMEM. Here, L = 250, m = 11 and τ = 0.7 [s]. For the results for time
series data of ship roll, which represent the narrow-band response of the oscillatory
system, not only the conventional correlation coefficient r1 but also the difference
correlation coefficient r2 take on high values, similar to chaos. This is the fourth
resemblance of the narrow-band response of a resonant system and low-dimensional
chaos.
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Fig. 18 The power spectral
density function estimated by a
very short time series data set of
the x component of the Lorenz
model
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5 Power spectral density function

Distinguishing low-dimensional chaos from the narrow-band response of the resonant
system by checking for a peak in the power spectrum density function poses a potential
problem. This is because a characteristic peak can appear when the power spectrum
density function is obtained from a short part of the time series data in low-dimen-
sional chaos. The power spectrum density function for 4 ≤ t ≤ 8 (see Fig. 6b) of the
x component of the Lorenz model [30] is shown in Fig. 18.

6 Numerical simulation

In this section, we verify the similarities between the narrow-band response of a reso-
nant system excited by random inputs and low-dimensional chaos by numerical sim-
ulation data. Under the given initial conditions, a fourth-order Runge–Kutta method
was used to solve the following equation numerically at a time step of 0.1 to obtain
the simulated data:

d2φ

dt2 + b1
dφ

dt
+ b2

∣∣∣∣
dφ

dt

∣∣∣∣
dφ

dt
+ c1φ = p(t), φ(0) = 0,

dφ

dt

∣∣∣∣
t=0

= 0, (6.1)

where b1 = 0.48, b2 = 1.25, c1 = 1.25, and p(t) is an external force. The total
number of the data points in the time series was NData = 8, 000.

Figure 19a shows part of the time series data of p(t). Figure 20a shows the power
spectrum density function of p(t). The features of the time series data of p(t) are
shown in the graph of spectral density function (Fig. 21). The spectral density func-
tion of p(t) has the properties of Pierson–Moskowitz spectrum. Figure 19b shows part
of the time series data of φ(t). Figure 20b shows the power spectrum density function
of the simulated data φ(t).
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Fig. 20 Power spectral density functions corresponding to a p(t) and b φ(t)

Figure 21 shows the estimated results of the correlation dimension of the simu-
lated data φ(t), indicating that the correlation dimension D2 converges at the low
embedding dimension m in this example too (see Fig. 21).

Values of indicator β that correspond to embedding dimension m are shown in
Fig. 22. The values of the indicator β of simulated data φ(t), which represent the nar-
row-band response of a resonant system, are near the values of β of the x component
of the Lorenz model, which is used for deterministic chaos, rather than the values of
β of the white noise.

The prediction results of the simulated data φ(t) are shown in Fig. 23. The first
1,000 data points in the time series were excluded to guarantee that a steady state
was reached in the prediction. Prediction values for 10 steps ahead, with the data of
the past 5,000 points as reference value at the beginning, are shown. Here, L = 250,
m = 8 and τ = 0.2. For the time series data of the narrow-band response of a resonant
system like φ(t), it has been confirmed that the prediction results by JMEM, which
was devised to predict deterministic chaos, are more precise than those obtained by
the linear AR model, which is the conventional method.
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Figure 24 shows the conventional correlation coefficient r1 and the difference cor-
relation coefficient r2 for the simulated data φ(t), which represent the narrow-band
response of the resonant system. For the simulated data φ(t), which represent the
narrow-band response of the oscillatory system, both the conventional correlation
coefficient r1 and also the difference correlation coefficient r2 take on high values,
similar to chaos.

7 Conclusion

Similarities between the narrow-band response of a resonant system and low-dimen-
sional chaos are verified by using the data obtained by measurement on the actual boat
and that obtained by performing a simulation.
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Fig. 23 Prediction results of the simulated data φ(t) (10 steps ahead) by a JMEM and b the linear AR
model
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Fig. 24 The conventional coefficient of correlation r1 and the difference coefficient of correlation r2 of
the simulated data φ(t) (one step ahead by JMEM). L = 250, m = 11 and τ = 0.2

The results of the analysis of the data obtained by simulation of the model expressed
by Eq. (6.1) are similar to those obtained by the analysis of the data measured on the
actual boat described in Sects. 2–4. Therefore, it can be concluded that the model
expressed by Eq. (6.1) is valid. Further, it can also be concluded that the model
expressed by Eq. (6.1) is an example of the narrow-band response of a resonant sys-
tem excited by random external forces. Further, the graph of spectral density function
shown in Fig. 20 also indicates that this model is an example of the narrow-band
response of a resonant system.

The authors do not consider ship roll motion in irregular waves as a completely
deterministic phenomenon. A number of similarities between ship roll motion in
irregular waves and low-dimensional chaos have been mentioned. Thus, it has been
indicated that for the measured time series data, it is difficult to differentiate the nar-
row-band response of a resonant system from chaos by using conventional methods
like correlation dimension. This is because it may lead to a wrong conclusion that
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the narrow-band response of a resonant system is equivalent to chaos. In addition,
techniques that can be used for differentiating between the narrow-band response of
a resonant system and low-dimensional chaos are discussed in this paper. Evaluating
phase-randomized surrogate data and the indicator β is effective for distinguishing
low-dimensional chaos from the narrow-band response of a resonant system.

It is contemplated that the method of analysis employed in the present research
is applicable not only for ship roll motion in irregular waves but also for the other
narrow-band response of a resonant system.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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