

WiiHopp

Sponsored by JumpSport

Team Members:

Jeff Christian
JtChrist@CalPoly.edu

Ben Hoselton

BHoselto@CalPoly.edu

Derek Simon
DeSimon@CalPoly.edu

Revision: 12/6/2011

mailto:JtChrist@CalPoly.edu
mailto:BHoselto@CalPoly.edu
mailto:DeSimon@CalPoly.edu

2

Table of Contents

Introduction .. 4

Background ... 4

General System Design ... 4

Gaming Console .. 5

Controller .. 5

TV .. 7

Couch .. 7

Arduino.. 7

Similar Products .. 8

Fitness Trampoline .. 8

DDR Pads ... 8

Wii Balance Board ... 9

Objectives ... 10

Concept Generation .. 12

Single Accelerometer .. 12

Nunchuck as Accelerometer ... 13

Multiple Accelerometers .. 13

Strain Gages .. 14

Buttons .. 14

Concept Selection ... 16

Method of Approach ... 17

Research .. 18

Wii Balance Board ... 18

DDR Pad .. 19

Accelerometer ... 21

Management Plan ... 23

Testing ... 26

Accelerometer ... 26

Buttons .. 30

Arduino.. 34

Static Button Testing ... 35

3

Dynamic System Testing ... 37

Mario Kart 64 .. 38

Dance Dance Revolution ... 38

User Feedback ... 40

Building ... 40

Accelerometer ... 40

Accelerometer Protector .. 42

Buttons .. 43

Final Button Design ... 45

Recommendations and Conclusions ... 45

Button Size .. 45

Button Layout .. 46

Accelerometer Mount and Gyroscope .. 46

Get Working With Wii / Package Electronics .. 46

Manufacturing Process ... 47

Engineering Conclusions ... 48

Final Comments .. 49

References .. 50

Appendix A: QFD ... 52

Appendix B: Console Research.. 53

Appendix C: TV Connection Types .. 55

Appendix D: Wii Mote Circuit Board ... 56

Figure 1. Wii Mote Printed Circuit Board, top view. .. 56

Figure 2. Wii Mote Printed Circuit Board, bottom view. ... 57

Chip listing: ... 57

Appendix E: Nunchuck Accelerometer Program ... 57

Appendix F: Wiimote Communication .. 64

Extension Controller Pinout .. 64

Nunchuck Data Format ... 64

I2C Protocol ... 65

Appendix G: Dynamic Testing/Expo Survey .. 68

Appendix H: Expo Poster ... 70

4

Introduction

 Childhood obesity is becoming a growing problem in the United States. According to the CDC,

childhood obesity has more than tripled in the past 30 years [7]. It can lead to health problems

previously reserved for adults, such as diabetes, high blood pressure, and high cholesterol. For the team

WiiHopp project, we plan to turn a JumpSport mini-trampoline into a controller for the Nintendo Wii

console. The hope is to help turn the problem of video games and the laziness surrounding them into an

active solution to combat the problem of childhood obesity.

Our goal is to produce an add-on device for a mini-trampoline capable of interfacing with a

gaming console. The device should be able to recognize typical trampoline motions, such as bouncing,

stepping, and running along with bounce frequency and height. This will be done by integrating a series

of sensors designing to interpret these motions. The device will then produce an output recognizable by

the gaming system, thus allowing the user to use their trampoline to play their video games.

Background

General System Design

Figure 1. Diagram of essential gaming components: gaming console, controller, TV, gamer, and couch.

5

Gaming Console

The game console is the piece of electronic equipment that does all of the processing and

graphics computations necessary for the user to play a game. Its layout typically resembles that of a

modern computer, consisting of a CPU, GPU, and RAM mounted to a motherboard. The console

receives input from a controller and displays output on a TV. Nowadays, the controller-console

connection is usually wireless. However, the console-TV connection is always wired. See the TV section

below for more on the console-TV connection.

Consoles are categorized by their generation, with the latest being the 7th generation. The three

current generation consoles are the Nintendo Wii, the PlayStation 3, and the XBOX 360, as seen below in

Figure 2. For clarity, the terms gaming console and gaming system are interchangeable.

Figure 2. Current generation gaming consoles, from left to right: XBOX 360, PlayStation 3, and Nintendo Wii. [3]

Controller

The controller is the link between the gamer and the
console. All game consoles utilize some sort of
controller. Older consoles had wired controllers, but
as of the current generation (7th) all major consoles
now have wireless controllers. These are powered by
either a pair of traditional AA batteries or a
rechargeable battery pack [1]. PS3 and Wii use
Bluetooth to connect wirelessly to their consoles,
while XBOX 360 uses a proprietary radio frequency
technology. The Bluetooth chip is the Wii controller is
a Broadcom BCM2042 [2].

Figure 3. Typical video game controller consisting of buttons
 and joysticks. This controller is for the XBOX 360 [4].

6

Each of the three modern consoles also has its own means of motion control. For the Wii, the

motion sensing is built in, but for the other systems it is sold as an add-on (pictured below). They are

called the PS3 Move and XBOX Kinect. In this document, the term “remote” will refer to a handheld

motion-sensing device, while the term “controller” will refer to a device using buttons and joysticks to

communicate.

New motion sensing control systems, as can be seen above, show that the PS3 and Wii use very

similar systems consisting of a controller in one hand (left) and a motion sensing remote in the other.

The remotes both contain 3-axis accelerometers. The Wii in particular uses an Analog Devices ADXL330

3-axis accelerometer1 [2]. The Wii Mote (Wii remote) detects its position through the use of a sensor

bar. The sensor bar is placed above or below the TV and contains a series of infrared LEDs at a fixed

spacing. Contained in the front of the Wii Mote is an infrared detector. Based on the orientation of the

LEDs and the perceived distance between LEDs, the Wii Mote can determine where it is pointing. Note

that this means of sensing only works when the Wii Mote is pointed towards the TV. Otherwise it must

rely on its accelerometers for position detection.

The PS3 uses a similar yet more advanced system to accomplish the same goals. It uses a

camera, called the PlayStation Eye, placed above the TV (in place of the sensor bar). Each remote has a

glowing orb at the tip. The camera is used to locate the orb and can determine depth based on the orb’s

size. Because the orb can be seen at all angles, this system allows the PS3 to maintain accurate position

detection regardless of the orientation of the remote. In addition to a 3-axis accelerometer, the PS3

remote also contains a gyroscope to determine its rotation, as well as a magnetometer to determine its

rotation relative to magnetic north. Data from all of these sensors is analyzed to determine the

remote’s position and orientation in 3D space to within a millimeter.

The XBOX Kinect works quite differently. It utilizes two mounted cameras to identify the human

body. The data from the two cameras is combined to create a 3D model of your body and the room in

which you’re playing. It also has a RADAR system to determine your distance from the TV. Advanced

1
 ADXL330 data sheet can be found at http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf

Figure 4. Current motion sensing systems for different consoles. From left to right: PS3, Wii,
Xbox360.

http://www.analog.com/static/imported-files/data_sheets/ADXL330.pdf

7

software is used to interpret this data and create a 3D skeleton of your body. This allows it to track your

motions which are then used to control the game.

TV

In order to play a console, one must have a television or monitor to display the game. The TV is

the primary means through which the gaming system interacts with the user. The user primarily

interacts with the gaming system by pressing buttons, moving joysticks, and recently through certain full

body motions recognized by the new motion control systems.

Consoles typically connect to a TV through composite-video cables, component-video cables, or

HDMI (High Definition Multimedia Interface). Any display device, be it analog or digital, TV, monitor, or

projector, will work with the console. The connection used depends upon user preference and the

available connection types on the user’s TV. See Appendix A for a description of these connection types.

Couch

Sitting on a couch is the classic position for playing video games. However, as the new motion

systems mature, household gaming is becoming more and more active. We hope that our trampoline

controller will get players on their feet and bouncing, making the gaming experience more fun, more

interactive, and healthier.

Arduino
Concept Selection

 Our first choice for interfacing our controller with the Wii was through the Wiimote expansion

port. This is a port in the back of the Wiimote into which extension controllers can be plugged, such as

the Wii Nunchuck, classic controller, or Guitar Hero guitar. Our other options for interfacing with the Wii

were to use the Gamecube ports or to create our own Bluetooth compatible device. The expansion

port, however, has many advantages:

1. Maintains wireless – as opposed to using the Gamecube ports which are wired

2. Wiimote already has bluetooth built in – this simplifies our product and eliminates redundancy

3. Wiimote expansion port communicates through I2C, a simple and well-known protocol.

4. Possibility to power our extension from the Wiimote, thus eliminating the need for a battery

pack.

5. For development purposes, we can have our extension controller disguise itself as different pre-

existing controllers, allowing us to use it to try it out different games without having to develop

our own software. This could not be done through the Gamecube ports.

Choosing Arduino

We decided that the best way to convert our inputs (accelerations and buttons presses) to an

output recognizable by the Wiimote, was to use a microcontroller. We’ve chosen to work with an

Arduino Uno (Figure 35). Arduino boards are open source electronics prototyping platforms. They are

cheap, fully programmable (in C), and widely used. In fact, much progress has been made towards using

8

an Arduino with Wii controllers, and all of the

code is readily available online, so we decided

this was a good place to start.

 We began by familiarizing ourselves

with the Arduino IDE (Integrated Development

Environment), programming language, and the

use of buttons, LEDs, and sensors. We

extended this into communicating between

the Wii nunchuk and Arduino. The Arduino

could read the Nunchuck’s acceleration and

button values and perform calculations on

them.

Similar Products

Fitness Trampoline
 While we plan to integrate a fitness trampoline

into our product, we are still in competition with existing

mini trampolines. Trampolines like the JumpSport

Rebounder, shown in Figure 5, are most commonly used

for working out, either in a fitness class or with a workout

video. We hope to maintain these uses while adding the

ability to use the trampoline as a game controller.

Figure 6. Fitness Trampoline. The model pictured is a JumpSport Rebounder [6].

DDR Pads
 Dance Dance Revolution (DDR) was a video

game released in 1999. It began as an arcade game

and grew in popularity once the game and the required

dance pads were released for home game consoles.

The DDR Pads are the simplest controllers we’ve

examined, containing only buttons as input devices.

Underneath the colorful surface of the gamepad exist

three distinct layers: a top and bottom layer of

conductive sheeting with a middle layer of foam.
Figure 7. Dance Dance Revolution game pad.

Figure 5. Arduino Uno

9

The foam has holes cut throughout it, so that when it is compressed by stepping on it, the top and

bottom layers complete a circuit (button press). See Testing for details on the DDR Pad we

disassembled.

Many people applauded the game’s incorporation of physical activity into gaming, as people

playing at the higher difficulties can easily work up a sweat in a matter of minutes. Unfortunately, these

gamepads are only usable with actual DDR games.

It should be noted that the DDR controller connection is the same as that of a Nintendo

GameCube controller, which is also compatible with the Wii. This allows us to play any game on the Wii

that can be played with a GameCube controller or a DDR pad.

Wii Balance Board
 The Wii Balance Board was introduced in
2007along with the game Wii Fit. It is an attempt
to incorporate more physical activity into gaming,
with categories such as yoga, strength training,
aerobics, and balance. While these are certainly
healthy activities, we feel the balance board falls
short in being able to deliver any type of full
workout. Additionally, it is limited in the games
with which it can be used. The balance board uses
four strain gages, one in each corner, to measure
the user’s weight and determine their distribution
of weight. See Research for more information on
the internal workings of the Wii Balance Board.

Although we have not been able to find another instance of a trampoline being used with a video game

console, we have identified certain of its competitors. We hope that our product, when used in

conjunction with a Wii, will replace a regular mini-trampoline used with a workout video. Other

products, such as the Wii Balance Board and Dance Dance Revolution dance pads are designed to meld

activity with gaming. Our product will accomplish this same goal through the arguably more fun

medium of a trampoline.

Figure 8. Wii Balance Board

http://en.wikipedia.org/wiki/Yoga
http://en.wikipedia.org/wiki/Strength_training
http://en.wikipedia.org/wiki/Aerobics
http://en.wikipedia.org/wiki/Balance_(ability)

10

Table 1. Pros and Cons of Similar Products

Fitness

Trampoline
DDR Pads

Wii Balance
Board

Disadvantages
Doesn’t appeal to

kids
Doesn’t appeal to

adults

Not very intense
(can’t jump or

run)

Workout
oriented

Can only be used
with one type of

game

Limited use with
other games

 Only single player

Advantages Rugged design Multi-player Precise control

 Variable intensity

Objectives

The overall goal of the project is to make a market ready trampoline that connects to a gaming

console to give real time feedback of movement. The initial goal will be to get the trampoline to work

with some existing games. Once this is completed, the trampolines outputs can then be used by

software engineers to make games designed for trampoline jumping. The final product should meet the

following engineering specifications.

I. Length of Assembly

We want the user to be able to pull the unit out of the box and have it ready to play

within 30 minutes. This gives enough time to pull everything out of the box, bolt the

legs of the trampoline together, and mount the sensory equipment. The final step will

be to hook up the Wii trampoline to the Wii console which will be as easy as the press of

a button.

II. Customer Survey on Use

We are requiring that all aspects of the device receive at least 80% positive feedback on

use. We do not want to market an item that users do not want to use on a regular

basis. The device should satisfy all customers in the customer description.

III. Customer Survey on Fun

We require that we have at least a 90% positive feedback on a survey of how fun the

item is. We want our customer to be satisfied with the product.

IV. Energy Used by User

We want to regulate the amount of energy needed to use the device. The average user

may not want to get an extreme workout every time they use the device so we want to

be able to limit the input of the device. Also, since the device will be used by children

and adults we must set the limits accordingly. We set the maximum value for this

specification based on the average amount of energy to play basketball. The lower limit

11

would be as low as possible so that anyone from any skill level can play with the device

whether it is for fitness or fun.

V. Price

The price of the unit should be around $50 for the sensory equipment and the mounting

system. This price does not include the price of the $300 dollar trampoline or the price

of the $200 dollar Wii. The Wii Fit costs $100 which is like just having our sensory

equipment and mounting system. The Wii and the trampoline already cost so much

that a $50 add on is not a huge investment to mesh the two together

VI. Response Time

We need the device to be able to accurately relate input motion to a visual display as

quickly as possible. The value of the upper limit came from the Wii Remote response

time.

VII. Test Games

All devices testing should pass with at least 50% effectiveness on current games

produced. We want the user to be able to use their current game collection with the

device.

VIII. Test Movements

Since the device is going to be used by a wide range of users, our inputs must work

accordingly. The device should be able to pick up all movements from our user range

with 95% effectiveness.

IX. Customer Survey on Aesthetics

The device must produce 90% positive feedback for its looks. We want the customer to

be able to leave the device in the living room or gym area all the time without the

embarrassment of it looking sloppy.

X. Pass/Fail

Some requirements can only be either pass or fail. These include, wireless capabilities

and power source effectiveness. For instance we want to require that the device be

wireless. Its either pass meaning it is wireless, or its fail meaning it isn’t wireless. We

also want to be able to run the device by two double A batteries.

12

Table 2. Project WiiHopp Formal Engineering Requirements

For Risk L = Low, M = Medium, H = High

For Compliance A = Analysis, T = Test, S = Similarity to an Existing Design, I = Inspection

Spec # Parameter Description Requirement or
Target (Units)

Tolerance Risk Compliance

1 Length of Assembly 30 minutes Max L T

2 Customer Survey on Use 80% positive Min H A

3 Customer Survey on Fun 90% positive Min H A

4 Energy Used by User 13 Calories/Min Max M T, S

5 Price $50 +/- $10 L A, S

6 Response Time 16 ms +/- 2 H A, T, S

7 Test Games 50% effective Min M T

8 Test Movements 95% effective Min H T

9 Customer Survey on looks 90% positive Min H A

10 Pass/Fail Pass M A, T, I, S

 In summary, we hope to build on this newer generation of motion sensing controllers. We plan

to use some of this latest generation motion sensing technology and adapt it to a trampoline. This will

bring video games controllers and workouts to an all new level of interactivity.

Concept Generation

Single Accelerometer
This design uses a single accelerometer to take data then transfers it to the interface device which

processes the data then sends a signal to the Wii via Bluetooth. This would allow for the jumping

interface between the user jumping on the trampoline and the Wii game. We can also satisfy leaning,

directional jumping, light and heavy jumping, as well as running with this one sensory device.

Pros

 Doesn’t interfere with jumping

 Light weight

 Cheap

Cons

 Hard to process data

 Mounts to mat

 Requires intense software and electronics

Figure 9. Single accelerometer

13

Nunchuck as Accelerometer
This design utilizes the equipment already made for Nintendo interface. The user would strap the

Nunchuck to the underside of the trampoline then slide the Wii Mote into the remote holder. The Wii

Mote is already set up to read the accelerometer data and interface with the Wii. This would satisfy all

the same design requirements as the singular accelerometer would.

Pros

 Uses a common Wii accessory

 Easily unstraps

 Cheap

 Interface is already set up

Cons

 Interferes with jumping

 Can cause damage to the Nunchuck

 Could fall out if not mounted correctly

Multiple Accelerometers
This design uses a multiple accelerometers located at different points on the mat. It would allow us to

analyze the accelerations relative to other mat positions. With this we could map where the user is on

the mat and potentially where they are in the air. This would satisfy the design requirements in the

precious two concepts but allow for more accuracy.

Pros

 Accurate mapping

 Light weight

 Doesn’t interfere with jumping

Cons

 Super intense software and electronics

 Difficult to calibrate

 Hard to process data

 Mounts to mat

 Expensive

Figure 11. Multiple accelerometers

Figure 10. Nunchuck

14

Strain Gages
This concept attaches strain gages to the legs of the trampoline. It would allow us to map the user’s

position on the trampoline. This concept is very similar to the way the Wii balance board is made.

Strain gages would be easily mounted but this could not be a standalone concept because we would not

be able to correlate jumping to an output very easily.

Pros

 Easily mounted

 Doesn’t interfere with jumping

Cons

 Hard to process data

 Expensive

 Difficult to calibrate

 Doesn’t pick up jumping very well

Buttons
This concept adapts buttons to the surface of the trampoline mat. It would follow a similar construction

to that of the DDR Pad, using conductive pads separated by a foam pad. However, it is a simple,

straighforward, and cheap solution and allows the user to do a wide range of controlling.

Figure 12. Strain Gages

15

Pros

 Simple electronics

 Already compatible with DDR games

 Wide range of controls

Cons

 Doesn’t take full advantage of bouncing

 Complicates the trampoline mat

 May make the mat less comfortable for

regular bouncing

Figure 13. Buttons adapted to trampoline

16

Concept Selection

After brainstorming for design concepts we must narrow our ideas down to the most feasible options.

To do this we used a decision matrix with a list of the important requirements to our system. Please

see table 3 below.

Table 3. Project WiiHopp Concept Selection Decision Matrix

Based on the decision matrix we found that the Nunchuck as an accelerometer and the

button concepts definitely satisfied most of our requirements. Then, the other three concepts

tied for third with a net score of zero. Concept A and C are similar to the ideas produced in

concept B. Meaning they basically satisfy the same design requirements. Concept C provides

slightly more accuracy than the other two options, but intensifies the problem. So based on this

we are not going to pursue concepts A and C. Concept E is different than any of the other

concepts and may satisfy some design requirements that the other concept might not be able to

satisfy. For these reasons we do not want to throw this idea out just yet. We are going to

continue research and development on this concept in anticipation of revising the decision

matrix.

Selection Criteria

A

Single

Accelerometer

B

Nunchuck as

Accelerometer

C

Multiple

Accelerometers

D

Buttons

E

Strain Gages

Ease of testing 0 + - + -

Ease of integration 0 + 0 - +

Manufacturability 0 + 0 - +

Readability of Outputs + + + + 0

Range of Controls 0 0 + + 0

Software Intensity - 0 - + -

Electronics Intensity - 0 - + -

Trampoline Interference 0 - 0 - +

Cost + + + 0 0

Sum +'s 2 5 3 5 3

Sum 0's 5 3 3 1 3

Sum -'s 2 1 3 3 3

Net Scores 0 4 0 2 0

Rank 3rd 1st 3rd 2nd 3rd

Continue? No Yes No Yes Revise

Concepts

17

Table 4. Project WiiHopp Console Selection Decision Matrix

Criterion Weight

Current Generation Consoles

Nintendo Wii PlayStation 3 Xbox 360

Rating Score Rating Score Rating Score

Price 3 10 30 5 15 4 12

Total Sales 7 10 70 5 35 6 42

2009 Sales 8 10 80 5 40 5 40

Audience Range 10 7 70 9 90 9 90

Sensory Equipment 4 5 20 10 40 7 28

3rd Party Compatibility 8 6 48 6 48 3 24

Fitness Oriented 6 8 48 3 18 6 36

Current Potential 8 7 56 7 56 2 16

Future Potential 8 10 80 8 64 5 40

Total 62 73 502 58 406 47 328

Table 4 is a decision matrix that we used to help us choose which console would be our primary

focus to develop for during this project. The criterion weights vary from 1 to 10 and the ratings

for each criterion also vary from 1 to 10. The higher the number, the better the console fulfills

the criterion. The console with the highest score is the Nintendo Wii, followed by the PlayStation

3. The Xbox 360, according to our decision matrix, is the least desirable platform for

development.

Method of Approach

 In order to produce a video game controller, we plan to start by examining existing

controllers. We are going to start with one of the oldest and simplest gaming systems, the

Nintendo Entertainment System, and take it apart to figure out how its controller works. We

then plan to move up to current generation controllers, such as the Wii Guitar. We’ll also

examine our competitors’ products, like the Wii Balance Board and DDR dance pad to learn how

they’ve used sensors with the Wii console.

 Once we have an understanding of the controller interface and the sensors used, we will

go about designing our product. We plan to build our product in baby steps, first getting the

basic sensors to work with a NES and then expanding on them. As all Nintendo controllers are

backwards compatible we’ll know that our early prototypes will work with the Wii. Once we

move to the Wii and get the basics working, we can possibly take advantage of the Wii’s more

dynamic controller interface.

18

I. Research
a. Disassemble

II. Design
a. Decide on Basic sensors

III. Prototype (adjusting design based on how well the sensors work)
a. Adapt to Wii
b. Get working on NES
c. Get working on Wii

IV. Test
a. Add more advance sensors (time permitting)

Research

Wii Balance Board
 We disassembled the Wii Balance Board and discovered that it uses four strain gages to

measure weight. One is located in each corner of the board. In addition, the strain gages are

placed on finely machined steel bars which are put in bending in order to increase strain.

Figure 14. Wii Balance Board disassembly

19

Table 5. Voltages measured between different wires on one of the strain gages. All values are in VDC. All
measurements made with an Omega multimeter.

White (VDC) Green (VDC) Blue (VDC) Red (VDC)

White -
 Green 1.590 -

 Blue 1.590 0.000 -
 Red No Value 1.590 1.590 -

There seemed to be no readable signal between Red and White. The multimeter just

read "1" or "-1." All other values were simply the voltage of a single AA battery (~1.5V) in the

range 1.590±0.001 VDC. With Derek (148lb) standing on one of the strain gages we could

measure a voltage increase of 0.002VDC.

DDR Pad
 We cut open a DDR Pad to examine its internals and take some measurements. Our test

setup can be seen below in Figure 15.

Figure 15. One of four strain gages in the Wii Balance Board

20

 Seen in Figure 16 are three of the DDR Pad’s internal layers. The top is the colorful

protective coating. The middle layer consists of the upper conductive sheet connected to a

4mm thick foam pad. (Foam thickness varies from manufacturer to manufacturer.) The bottom

layer is the lower conductive sheet with a protective rubber pad below.

Figure 16. DDR Pad test setup

Figure 17. DDR Pad layers

21

Figure 18. DDR Pad circuit board

The DDR Pad consists of 8 buttons: Plus, Minus, A, B, Up, Left, Right, and Down. These

were conveniently labeled on the DDR Pad circuit board. We discovered that when any of the

buttons are connected to the ground it responds as a button press. We measured 3.31VDC and

15mA between each of the buttons and ground. This voltage is reasonable, as the DDR Pad is

supposed to receive an input voltage of 3.3VDC from the Wii.

Accelerometer
 To test the feasibility of using an accelerometer to sense trampoline motions, we

attached a Wii Nunchuck to the bottom of a trampoline mat. We did this by threading string

between the holes in the net and looping it around the Nunchuck controller until it seemed

sufficiently secure. Our test setup can be seen below in Figure 18.

22

Figure 19. WiiHopp team member Derek Simon displaying accelerometer test setup

Figure 20. Close up of Wii Nunchuck attachment to trampoline

After attaching the Nunchuck to the trampoline mat, we measured the acceleration

while performing different actions on the trampoline. Acceleration results can be seen in the

graphs below.

23

We were thrilled with these results, as it seems that one can clearly distinguish between

different motions simply based on data from a single accelerometer. Each type of motion

appears to create its own unique acceleration pattern. We are even able to sense leaning to a

degree. When the gamer leans in one direction, he tilts the accelerometer. Although this does

not change the magnitude of acceleration, it changes the relative direction of gravitational

acceleration. This leads us to believe that we could possible sense leaning as well as bouncing

with an accelerometer.

Management Plan

 In order to stay on task in the design process we have put together a management plan

that defines the responsibility of each team member.

 Derek Simon is in charge of:

I. Gathering information about:

a. JumpSport Trampoline

b. Gaming Systems

II. Documentation of progress on

III. Managing the sensory mounting system

Figure 23. Walking Figure 24. Running

Figure 21. Light bouncing Figure 22. Heavy bouncing

Figure 25. Leaning: front, back, left, right

24

Ben Hoselton is in charge of:

I. Gathering information about:

a. Sensory equipment

b. Games

II. Manufacturing considerations

III. Prototype fabrication

IV. Managing the sensory equipment system

Jeff Christian is in charge of:

I. Gathering information about:

a. Software

b. Modding

II. Testing plans

III. Managing the software system

Also, in order to stay on track, we have a schedule that we are striving to fulfill.

Winter Quarter

Finalize Problem Definition……………………………..…..………………………………….….………Jan. 25th

Design Specifications……………………………………………………….…………..…….………..…….Feb. 1st

Project Objectives………………….………………………………………………….…………...………….Feb. 3rd

Concept Generation…………………………………..………………………………..…….………………Feb. 8th

Concept Selection……………………………………………………………………………….……………..Feb. 10th

Concept Design Review………………………………………………………..……………….…....……..Feb. 15th

 Measure Sensory Outputs of Wii Mote…………………………………….…………………………Feb. 17th

Measure Sensory Outputs of Balance Board……………………..……………….………..…….Feb. 22nd

 Measure Sensory Outputs of DDR Pad……………………………………..……….……….………Feb. 24th

Static Calculations on Legs for Strain Gauges…………………………..……….………………..Mar. 1st

 Acceleration Measurements on Trampoline………………………………………….………..…Mar. 1st

 Design Specifications for Strain Gauges, Accelerometers, Etc……………………….……Mar. 3rd

 Buy Strain Gauges, Accelerometers, Etc…………………………………………..……….……….Mar. 3rd

Conceptual Design Report……………….……………………………………………….……..…..……Mar. 4th

Conceptual Design Review……….……………………….………………………………..…...……….Mar. 11th

 Spring Quarter

Implementing DDR Type Buttons onto Trampoline…………………………….…….……….Mar. 30th

Mounting Accelerometers onto Trampoline……………………….....…………………..…….Apr. 6th

Testing DDR Type Buttons (ongoing)…….…..……………………..………………..………….….Apr. 6th

Testing Accelerometers (ongoing)………………………….…………………….…………….……..Apr. 13th

Writing PC code to analyze DDR Type Button Input (ongoing)……………………………Apr. 20th

25

Writing PC Code to Analyze Accelerometers (ongoing)……………………….……..………Apr. 20st

Calibrating/fine tuning DDR Type Buttons for Use on Trampoline………………………Apr. 27th

Design Report…………………………………………………………………………………….………………Apr. 28th

 Get Accelerometer working with Arduino….…………….…………………………………..……May 4th

Try fabric samples and tape……………………………………………………………………………….May 4th

Integrate DDR Type Buttons hardware to Arduino…………..………………………………..May 11th

Get emulator program working with button design…………………………………….….…May 11th

Mounting single Accelerometer to mat…………..……..…………………………………..….….May 18st

Integrating single Accelerometer hardware to Arduino……………………………….…….May 18th

Writing PC code to analyze single accelerometer (ongoing)………………………….……May 18th

Get emulator program working with accelerometer design……….……………….……..May 18th

System Integration (Accelerometer and Buttons connected to Arduino)……...…..May 25th

Writing PC Code that Analyzes all Systems Simultaneously (ongoing)…….…….……May 25th

Get emulator program working with system………………………………………………..……May 30th

Critical Design Review………………………………………………………………………………..………May 31st

Project update report………………….………………………………………………………………..……June 2nd

Fall Quarter

Writing Homebrew Application for use with the Wii……………………………....…………Sept 21st

Testing buttons complete…………………………………………………………………………..………Sept.28th

Testing accelerometer complete……………………………………………………………………….Sept. 28th

Start laying out manufacturing process………………….………………………………….………Sept. 28th

Test sensory equipment with current games (homebrew?).….…………….………….…Oct. 4th

Finalize Manufacturing Process…………………………………………………………………..……..Oct. 19th

26

Testing

Accelerometer
Testing with the Nunchuck’s accelerometer has proved it is a worthy sensory device for

use on the trampoline. We decided to mount the Nunchuck in a permanent location on the

bottom of the mat so we could take more data and compile some programs to test its sensitivity

in measuring jumping and leaning motions. A picture of the setup is shown below.

The system consists of a stretchy neoprene holder for the Nunchuck to keep it from

slipping out, moving around, or getting crushed from a giant jump. The neoprene holder was

then sewed to the bottom of the mat so that the accelerometer was in the middle of the mat.

The Nunchuck is inserted into the neoprene holder and the extension is plugged into the Wii

mote’s expansion port. The Wii mote interfaces wirelessly through Bluetooth communication to

a computer. The computer can then run a program that accepts info from the Nunchuck and

does a task. A schematic of the system is shown below.

Figure 26. Accelerometer setup

27

We decided to use MatLab to write a test program since we found an existing interface

online between the Wii mote and a PC running MatLab. Also, the MatLab language is widely

used by mechanical engineers.

Using our initial data from the research section, we found that the X-axis of the

accelerometer would be our jumping axis, the Z-axis would be our right and left directions

(positive ΔZ would be left and negative ΔZ would be right), and the Y-axis would control our

forward and reverse (positive ΔY is a forward motion and negative ΔY is a reverse motion). With

this we developed a three dimensional interface between walking around on the trampoline and

moving a ball on the screen. A screenshot of the play surface is shown below.

Figure 28. Screenshot of PC play surface

The details of the directional controls of the system are relatively simple. Basically, if

the directional control acceleration is greater than the initial accelerations it moves in that

direction (when you stand on the trampoline near an edge of the mat, gravity will act on the axis

of the directional motion).

The first step is to get the initial accelerations while off the mat.

Figure 27. Nunchuck Schematic

28

% Calibration
 Wiimote.GetNunchukAccelState(); %gets initial accel state
 X1 = Wiimote.NunchukAccel.X %show in command window
 Y1 = Wiimote.NunchukAccel.Y
 Z1 = Wiimote.NunchukAccel.Z

Then we can relate the change in the accelerations to the initial accelerations.

while (~isButtonPressed('HOME'))%exit program if HOME button pressed
 Wiimote.GetNunchukAccelState();%continues to get accel state
 X = Wiimote.NunchukAccel.X;
 Y = Wiimote.NunchukAccel.Y;
 Z = Wiimote.NunchukAccel.Z;

 %Bi directional controls
 if(Z>Z1+tolerance && Y>Y1+tolerance)%move left and up

 %controls to make ball move up and left

 else(Z>Z1+tolerance && Y<Y1-tolerance) %move left and down
 %controls to make ball move down and left

 else %accels to move in another direction...

This process is done throughout the other directions from hardest directional condition
(bi-directional) to easiest directional condition (singular directions). So that if the user trips a bi-
directional control first it registers as a bi-directional control, but if a singular directional control
came first in the order it would trip that control first and move in a singular direction.

The tolerance value is to set the sensitivity of the acceleration values. The difference
has to be greater than some tolerance value. This allows the programmer to change how easy it
is to make the ball move in the desired direction. A small tolerance means the user only needs
to apply a small force to the mat to get the ball to move directionally, a large tolerance means
the user has to jump on the mat to get the program to pick up a directional movement.

Now that we have covered the two dimensional directional controls we can introduce a
jump to the system using the X-axis.

if(X < jump) % jump is the acceleration required for a jump (-20 m/s)
 hide(obj); % hides previous circle

obj = drawCircle(l, s+j, p); % draws new circle a location j

above the initial location and increases the size of the ball to

give a 3 dimensional effect
 pause(jumppause); % Air time
 hide(obj); % hides in air object
 obj = drawCircle(l, s, o); % draws initial object
 pause(0.001);

else
 % continue with next statement
end

Basically what happens is when the ball jumps it moves up slightly and increases in size
as if it were jumping out of the screen towards the user. This allows for a three dimensional feel
in game play. Jumping can be smoothed out to be a gradual increase from the initial object to
the jumping object but the example just shows a basic jump.

29

The jump statement can now be placed into each directional flag so that if a directional
flag is raised, it will also check to see if a jumping flag is raised. This will allow for directional
jumping. An example of this will not be shown (see the .m file in Appendix E for code).

The final step is to complete the program with a jumping flag so that if there are no
directional flags raised, the object will still jump if a jumping flag is raised. Testing is simplified
by increasing the tolerance to an unreachable amount and the accelerometer will only flag a
jump. Testing of the directional controls can also be simplified by increasing the jump value to
an unreachable acceleration and decreasing the tolerance to a value seen while leaning on a
side of the mat.

The program will continue to run until the HOME button on the Wii mote is pressed.

Pros

 Works great for directional controlling and jumping

 Doesn’t get stuck in loops

 Allows user to set different tolerances for directional or jump movements

Cons

 Uses a simple flag system that allows a left before a right
o This causes problems with ball motion when jumping too hard on the

trampoline because initially a right jump is read as a left jump. This is due to the
swinging motion of the mat as the accelerometer moves down.

The accelerometer test program is able to reliably interpret the user’s motions. Upon
jumping or leaning, it will consistently respond by moving by ball (as seen in Figure 29) in the
intended direction. Overall, our testing demonstrates that a mounted accelerometer will allow
directional and jump controls.

Future Additions to Code

 Calorie values could be calculated from the users mass and acceleration values. We can
introduce a calories burned in game play to see if we can get accurate measurements.

 Stopping at screen limits
o As of right now the ball will continue infinitely off the screen once it leaves the

window

 Smoother jumps and directional movements

Next Step with Accelerometer Design

Incorporate accelerometer with Arduino in order to interface the accelerometer system
with the button system. This may require the use of an off board accelerometer that isn’t built
into the Nunchuck circuit board because the Arduino can’t accept Nunchuck information and
send information to the Wii. It cannot act as a Wii mote that both inputs and outputs data from
Nintendo hardware. We are going to try to mount an accelerometer circuit board onto the
bottom of the mat in a similar design to our first concept in the concept generation section. This
will allow the Arduino to sense accelerometer data while outputting data to the Wii.

30

Buttons
Through further testing and concept generation, we have modified and improved our

original button design. At first, the buttons were going to be placed on the mat, or jump surface

itself, as shown in the concept generation section. After further consideration to the function of

the system we are designing, it was decided that we would try and preserve the jump surface as

much as possible. At first our idea was to move the buttons to the edge of the mat and arc them

according to the mat’s circumference. In this design, the buttons appeared too small and hard to

distinguish and they were still on the mat itself. This led us to our final design concept: placing

the buttons off the mat and inserting them into the dense foam pads that cover the

trampoline’s bungees. In this way the buttons will be large, clear, easy to step on, and the mat

surface is perfectly preserved for the ultimate jumping experience.

The button assembly consists of a lower layer of very dense thick foam (trampoline

bungee cover), a flexible plastic sheet used to hold the lower conductive layer, a thin foam of

medium density with holes in it to allow contact between the upper and lower conductive

layers, and a top conductive layer attached to another flexible plastic sheet for stability. This

layered sandwich is what is inserted into the canvas flaps that cover the bungees of the

trampoline. When stepped on, the two conductive layers connect and send a signal in the form

of a button press to the Wii, Arduino, or computer.

This eventual button

configuration sounds simple enough,

but a great deal of testing went into

material selection. The dense foam

came with the trampoline and is

almost ideal for the button design, so

it has remained unchanged. The

conductive layers took much iteration

to come up with a final design. At first

we considered using conductive

cutouts from our DDR pad but we did

not like the cheap and flimsy feel of

the material, as well as the crinkling

sound it made. Next, we tried using aluminum screen. This not only was not a very good

conductor, it was very difficult to attach to the button assembly. It had trouble connecting

through the holes, and it permanently deformed after repeated use. We have narrowed the

material down to either a conductive copper tape or highly conductive EMF shielding fabric.

These materials have extremely low resistance, are flexible, and are easy to attach to other

materials. We first tested all of these conductive layer designs on the floor and connected their

leads to LEDs. We chose our design based on which material types most consistently and stably

lit up the LED. We discovered the need to keep the conductive material from creasing and

sliding around. We settled on a linoleum type material that is tough, flexible, won’t fray or crack,

and holds glue very well.

Figure 29. Cutting out the buttons

31

Lastly, we needed a foam layer with holes in

it to allow the conductive layers to make contact. We

tried using the foam from the DDR pad, but it was

too thin and flimsy and would give us false

connections. Next, we tried a car wash sponge but

found it to be too thick, dense, and difficult to test.

We have narrowed down our foam selection to two

types: ½ inch craft foam of fairly low density and thin

rubbery foam of medium density used to line

toolboxes. Both foams work so we have not yet

decided between these two foam types and are

currently testing both. For the holes in the foam, we

are using a ½ inch leather punch to make rows and columns of holes in the foam. Each hole is

about 1” apart in each row (edge to edge distance) and the columns are spaced in the same

fashion.

We have successfully used these buttons on the trampoline and to play emulator games

on the computer such as SNES’ Mega Man X and classic Super Mario Bros on the Wii.

Next Steps

The next step for the buttons

is to finalize our material choice and

build a complete set of 6 buttons.

Once this is done we will run the wires

around the trampoline and clean up

the connection to the Arduino by

soldering them to pin headers or using

a known type of data connection such

as USB. We have yet to decide on a

suitable method for sealing the

buttons. For our prototypes we have

been taping the layers together, but

we would like to sew them together

for our final product.

We also plan to conduct static and dynamic tests of our different button designs in

order to quantify their reliability. For static tests, we will attach each button to an LED that will

turn on when the button is pressed. We’ll then load the button with weight, increasing the

weight until it registers a button press. For a dynamic test, we will have one person play a DDR

game while another person watches and tracks the accuracy of their dance steps. DDR games

classify each step as either “perfect,” “great,” “good,” or “miss.” After a large number of button

Figure 30. Foam test sample with holes

Figure 31. Testing two different button constructions

32

presses (~100) we’ll examine the data to see if certain buttons have a higher hit rate than others

and use that design in the rest of our buttons.

Figure 32. Conceptual design sketch of button layer diagram

33

Figure 33. Conceptual design sketch of button layout

34

Arduino
We began specifically developing the Arduino as

a Wiimote extension. We purchased an extension cable,

cut it in half, and soldered it to a pin header in order to

connect the Arduino to the Wiimote (Figure 36). We

rewired the Arduino’s circuit board to contain 6 buttons

(Figure 37). Once this was done, we made some

modifications to existing code online until the computer

was able to recognize the Arduino as any type of existing

extension controller. Which type of extension controller

is determined by certain variables in the Arduino code.

The Arduino code maps Arduino

buttons to certain Classic Controller

buttons. Using a Mac program called

DarwiinRemote, we’ve been able to get a

computer to connect to the Wiimote via

Bluetooth and recognize the Arduino as a

Nintendo Classic Controller extension.

DarwiinRemote is a Mac program that

allows one to connect a Wiimote (with

extensions) to a computer over Bluetooth.

It then maps the extension controller

buttons to specific keyboard keys allowing

the Wiimote to be used to play games on

the computer. We’ve also used a Snes9x, a

Super Nintendo emulator, to play SNES

games using the Arduino. Snes9x maps

keyboard keys to SNES controller buttons.

Thus, in this setup, the Arduino buttons

correspond to Classic Controller buttons, which are mapped to keyboard keys, which are

mapped to SNES controller buttons.

Once all of these are set properly, play goes quite smoothly. There is no detectable lag

in the Arduino’s output and all button presses are consistently recognized. We have tried this

setup on an actual Wii but have had limited success. The Wii will only recognize the Arduino as

Nunchuck extension, regardless of how it’s programmed to be recognized. As a Nunchuck, we

Figure 34. Arduino to Wiimote connection cable

Figure 35. Arduino with buttons and extension cable

35

can successfully send button and joystick values, but not accelerations. We plan to continue

testing our controller on a computer and developing it for use with the Wii.

See Appendix F for details on the Wiimote expansion port, Wiimote extension signals,

and I2C protocol.

Static Button Testing
 In order to asses our different button designs, we designed a set of static and dynamic

tests. For the static test, we wanted to measure the force required to activate a button press.

The static test consisted of wiring each button to an LED and placing it on a scale. We slowly

added weight to the button until the LED turned on, indicating a button press.

 We repeated this process processing each button in both a forward foot position and a

sideways foot position (Figure. 36 below), since these are the two ways in which we expect the

buttons to be pressed, depending upon their position on the trampoline mat. We used actual

human feet in order to most accurately simulate an in-game setup.

The results from these tests are seen below in Figures 37-39.

 The most significant differences in the buttons we tested were in hole size and spacing

of the foam layer. We tested combinations of large and small holes with sparse and dense

spacing as defined below.

Table 6. Quantified button parameters

Small Hole Diameter Large Hole Diameter Sparse Dense

.375 in 0.50 in 1.5 buttons/in2 2 buttons/in2

 It is worth noting that we had been using all of these buttons ahead of time, so we knew

that all of the designs worked. With this test we sought to quantify what made certain buttons

better than other

Figure 36. Static button test setup. Left: Forward foot press. Right: Sideways foot press.

36

Figure 37. Static button force test results (forward foot placement)

Figure 38. Static button force test results (sideways foot placement)

 Based on these test results, the each button appears to perform consistently. In other

words, Button 1 is consistently requires the third greatest amount of force to activate. We

decided to plot the average force required to activate each button, as seen below.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Fo
rc

e
 (

lb
f)

Test #

Button 0
Button 1
Button 2
Button 3
Button 4
Button 5

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10

Fo
rc

e
 (

lb
f)

Test #

Button 0
Button 1
Button 2
Button 3
Button 4
Button 5

37

Figure 39. Analysis of static button tests. Each line represents the average value of force required to make each
button connect

 The results of this test were fascinating. It is clear that the buttons fall into two distinct

groups. However, once we actually labeled each button with its appropriate hole layout, we

arrived at an interesting result. The buttons with small holes took significantly more force than

those with large holes. This is expected. But, this force paled in comparison to the force

difference as a result of spacing between the holes.

 In comparing, sideways and forward button presses, we found that the relative ranking

between buttons was consistent. This was a reassuring result. However, the forces were not

the same. On average, it took 1.4 times as much force to press the button when stepping

sideways than when stepping forward. We attribute this difference to the fact that a sideways

step is distributed over a greater surface area than a forward step (one’s heel is contacting the

button in addition to the ball of their foot). This increase in surface area means that more force

must be applied to achieve the same amount of pressure.

From these results, we conclude that while hole size is very significant, hole spacing is

much less significant. They can be used together as coarse and fine adjustments to tune the

buttons to the desired activation force. In our case, we decided a button sensitivity of 25 lbf

was most desirable, and tuned the buttons accordingly.

Dynamic System Testing
 Dynamic button tests were performed using a sample size of 9 players. We chose two

different games to play, each of which highlighted a different component of the controller. The

game Dance Dance Revolution (DDR) used all of the buttons on the trampoline while Mario Kart

64used the accelerometer.

0

10

20

30

40

50

60

70

80

1 1.2 1.4 1.6 1.8 2

Fo
rc

e
 (

lb
f)

Test #

Button 0
Button 1
Button 2
Button 3
Button 4

Sparse

Dense

Small
Holes

Large
Holes

ΔF
Hole Size

ΔF
Hole Spacing

38

Mario Kart 64

For Mario Kart, each player raced one time with a traditional controller and then again

using the trampoline. The time differences, in favor of the traditional controller, are displayed in

the table below. The testing results confirm that the trampoline is a competitive and viable

controller option.

Table 7. Increase in Mario Kart lap times while using trampoline as the controller. Since time differences are small,
we see that the trampoline is a competitive alternative to a traditional controller.

Δtave 1.73 seconds/lap

Last Lap Δtave 2.24 seconds/lap

On average, users raced 1.73 seconds slower per lap when playing on the trampoline

than they did with a traditional controller. However, we attribute much of this difference to

adjusting to the new controller scheme. Most people all familiar with a traditional video game

controller, but no one has used the steering mechanism implemented in our trampoline, and

thus, we expect a learning curve.

On average, players lap times decreased throughout the race. This was true with both

the trampoline and traditional controllers. However, in comparing the time differences for only

the last lap, we found that the trampoline produced times that were slower by 2.24 seconds.

This is greater than the average difference for all laps. From this we conclude that improvement

with the trampoline is slower than with a traditional controller. In other words, it takes longer

to learn and adjust to the trampoline’s controller layout than to the traditional controller.

However, we believe that with enough practice, the trampoline will prove to be a controller that

is competitive with traditional controllers. As it is, the difference is on the order of a few

seconds, which is minor enough to demonstrate that the trampoline is a viable controller

alternative.

Dance Dance Revolution

For Dance Dance Revolution (DDR), each person played a song and their game statistics

were recorded and graphed.

39

Figure 40. Button accuracy for trampoline directional pad in DDR. Since accuracy is similar for each button, we
conclude that all buttons are performing equally well.

Because the distribution of accuracy is very similar for each of the directional buttons,

we conclude that all of the buttons are performing equally well. Additionally, below we have

compared the percentage misses for each button. (Perfect, great , and good all qualify as hits

with varying accuracy).

Figure 41. Percent of missed button presses in DDR. Since percentage misses is 5% or less for each button, this
indicates that all buttons perform reliably.

Left

Down

Up

Right

0

10

20

30

40

50

60

70

% Perfect
% Great

% Good
% Miss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Left Down Up Right

%
 M

is
s

40

 This graph indicates that users were able to successfully press all buttons at least 95% of

the time. Additionally, with numbers this small, we assume that most, if not all misses are due

to user error and not the malfunctioning of our buttons.

 We believe that button placement can explain the difference between the % Misses for

each button. The Up button, with the lowest miss rate (<1%) is placed directly in front of the

user and is easily visible to the player. The Left and Right buttons are also easily accessible, but

are more in the player’s peripheral vision. This results in similar miss rates that are higher than

that of the Up button. The Down button is located behind the player, making it difficult for

him/her to see the button and know where he/she is stepping. Thus, the Down button

produced the greatest number of misses.

 The results of these tests lead us to believe that our trampoline controller functions

reliably. Users are able to play various games with the controller and to achieve similar results

to the traditional controller.

User Feedback
 We prepared a survey for all users of our system. The results from the survey were

generally very positive and we gained some valuable suggestions for future modifications. A

summary of the quantitative results can be seen below. The entire survey can be seen in

Appendix G.

Table 8. Average feedback scores from users. Scores are on a scale from 1 to 10, where 10 is best.

Average

Overall Functionality 7.3

Lag/sensitivity 7.3

Ease of Use 7.2

Overall Enjoyment 8.9

Building

Our final product will consist of a trampoline outfitted with buttons and an

accelerometer in the center of the mat. The buttons will be labeled on the pad surrounding the

trampoline. Both the buttons and the accelerometer will connect to the Arduino which will

interface with a Wiimote.

Accelerometer
We decided to use a single accelerometer in the center of the mat. However, due to

limitations of the Arduino, we could not have it communicate with both the Nunchuk and the

Wiimote. As a result, we decided to use a bare accelerometer. This simplified many parts of our

41

design, including communication with the Arduino and mounting to the trampoline mat. It also

reduced the danger of bottoming out and crushing the accelerometer, since the bare

accelerometer is much slimmer than the Nunchuk.

In order to attach the accelerometer to the Arduino we have run a wire out to the

center of the trampoline mat. The wire is threaded into the mat at 3 support points. The

connection must be solid enough to withstand heavy bouncing without transferring any extra

vibrations to the accelerometer. We have also given it enough slack (~4 inches) at the transition

across the bungees in order to absorb bounces without being put in tension.

By default, the Arduino reads in XYZ accelerations as integers from 0 to 1023. In order

to adjust for any offset in initial accelerations, we have added a button to zero the values. After

the button is pressed, all accelerations are read relative to this zero reference point.

In order to send the accelerations as joystick values, they must be converted to integers

between 0 and 63 with 31/32 being the center (no movement/no acceleration). We multiply

the accelerations by the factors necessary to both reduce it to this range and ensure that the

range of accelerations experienced on the trampoline spans the range of joystick values. With

this conversion, the Arduino is plugged into the Wiimote disguising itself as a Classic Controller.

The Wiimote is then connected to the computer through Bluetooth using a program called Wiiji.

While there are many computer programs that can be used to simply connect a Wiimote, this

one is unique in that it recognizes the Classic Controller’s joysticks as computer joysticks. The

Wiimote-Arduino-accelerometer combination can then be used to play any game that will run

on a computer. However, in order to simulate Wii games, we have been testing with games on

a Nintendo64 emulator. Nintendo64 is an older generation gaming console from Nintendo. An

emulator is a program that runs programs or games designed for a different system, thus allows

use to test N64 games on a computer.

Using the accelerometer as a joystick only uses the X and Y accelerations. This leaves

the Z acceleration to be mapped to another button. For example, when the user exceeds a

certain value by jumping, the player’s character could be made to jump. This action could be

changed to suit different games.

Mounting the accelerometer was a difficult task for us because the accelerometer is just

a one inch by one inch by two mm circuit board with a little accelerometer mounted in the

center. There are no holes or mounting points manufactured into the circuit board. For testing,

we glued a brass rod to the back of the circuit board so that it hung over the edges of the board,

then we sewed it to the center of the mat. This worked well because it mounts the

accelerometer firmly to the bottom of the mat so that it cannot change its axis while in game

play. See Figure 38 for the current setup with the brass rod sewed into the mat and the three

wire support points.

42

Figure 42. Mounted accelerometer with brass rods sewed into mat

For final manufacturing we are going to use a glue that cross threads into the

trampoline surface then cover the accelerometer with a polypropylene surface. So the

accelerometer would be glued then sandwiched into place so that it was protected from moving

and from users. The next step would be to add some protection for the circuit board. Since the

accelerometer is in the center of the mat, it is in danger of being crushed if someone bottoms

out the trampoline. To protect the accelerometer we are going to add a foam donut that goes

around the circuit board. When bottomed out, the accelerometer will not experience pressure

because the force will be absorbed by the foam pad surrounding the accelerometer.

Accelerometer Protector
 When bouncing on the trampoline, it is quite easy to bottom it out when jumping in the

middle of the mat. The problem with this is the accelerometer has to be mounted directly in the

center of the mat in order to detect leaning in all directions equally. We decided to make a

foam ring to surround the accelerometer that protects it when the trampoline is bottomed out.

This assembly can be seen in Figure 37. The ring is attached to the mat using a standard hot glue

gun which worked unexpectedly well. After the ring was secured we tested it by jumping on the

trampoline hard enough to bottom out the mat on a hard wood floor. We did this multiple times

and the accelerometer remained unharmed, validating our design.

Brass rods

Support points

43

Figure 43. Mounted accelerometer with brass rods sewed into mat

Because the hot glue worked so well in attaching the protection ring, this gave us the

idea that the accelerometer itself may be able to be hot glued directly to the mat as well. Our

idea was to use super glue (which attached better to the accelerometer board than hot glue) to

attach a thin foam pad directly to the accelerometer. Then we would use hot glue to glue the

foam/accelerometer assembly to the mat itself in the same way we attached the protector ring.

Buttons
 The system of buttons, as can be seen in Figure 34, was successfully implemented into

the actual trampoline and used to play a DDR game. There are 6 buttons on the trampoline

which are up, down, left, right, A, and B. The “up” button corresponds to the forward facing

direction of the trampoline and is the button that the user will orient themselves with while

playing a game. The bottom foam layer describes in Figure 33, which comes with the

trampoline, actually has an orientation itself and dictates the way the button is assembled and

inserted into the pouch. The pad has one square edge and one round edge. The square edge is

meant to be inserted first into the pouch because of the shape of the pouch. Each button is then

connected to the Arduino using speaker wire. The wires are run around the inside edge

underneath the mat and are given enough slack so that they are not pulled or jerked when the

user jumps on the trampoline. In order to quickly insert or remove pads, a quick release

mechanism is going to be added to each button so that the buttons can be taken out of the

pouch without redoing the wiring. With this button setup we were successfully navigate game

menus, select things on screen, and play DDR completing songs with reasonable scores. Our

DDR skills being the only thing keeping us from scoring higher. See the figure below for the

current control layout.

44

Figure 44. Current trampoline control layout.

 Now that we have a few buttons that work relatively well, we need a way to quantify

the quality of each button design so that we can choose the best design for our project. We

came up with a couple of different tests for static and dynamic testing of the button assemblies.

The static test can be accomplished with a shoe sole and some weights. We will place the

button on a hard surface and connect it to our Arduino circuit that can read a button press.

Then we will place the shoe sole on top of the button in different orientations and then place

weights on the shoe sole until we received a button press through the Arduino.

The dynamic testing will be completed using the trampoline and a DDR game. We will

play the DDR game with a certain button configuration then tally up the number of good and

bad button presses. This will be done through the DDR game itself. At the end of the song the

DDR game tells the user how many good and bad button presses they had. We will record this

data with multiple users in order to get a fair reading of each button configuration. The DDR

statistics window is shown below.

X-axis

Y-axis

Accelerometer

Square edge

Round edge

45

Figure 45. DDR statistics shows perfect, great, good, ok, bad, and missed button presses.

Final Button Design
 After reviewing the data from our static button test we rebuilt all of the buttons in a

consistent manner using the top test result of densely spaced large holes. During the rebuild we

also added electrical quick-releases to each button for ease of removal or repair. This was done

not only so we could investigate a button problem but also so we could try different buttons in

different positions on the mat to verify their sensitivity. Afterwards we tested all of the buttons

again to make sure they were of the appropriate sensitivity. These results were then validated

during our dynamic testing session where all buttons performed excellently and users did not

notice any button performing worse than any other.

Recommendations and Conclusions

Button Size
 Feedback from users at the dynamic button testing review suggested a new layout of

the buttons. The major concern by most users was the size of the buttons. Along the same lines

as this issue, a lot of users at the expo were hitting their heels on the back button while playing

DDR. Most users were stepping on the buttons with the ball of their feet so the heel tends to

overhang the back button. While bouncing the button gets pressed down and the heel strikes

the trampoline frame. We suggest that either the outer ring of the trampoline frame be a larger

diameter or the buttons overlap the mat a bit to allow for a larger button. We also found that

most button misses were due to users pressing slightly off the side of the button because they

couldn’t see it while playing DDR. Larger buttons would decrease the amount of button misses

due to the larger surface area.

46

Button Layout
 Another suggestion we got from our users at the dynamic button testing was on the

location of the buttons. DDR pads have users stand directly in the center of the mat, and

directional buttons are directly in front or to the side of the user. D-pad and joystick controllers

work the same way. Our controller has left and right in front of the users side (Refer to Figure

44). This button layout is not intuitive to most people and the DDR game involves constant

looking at the screen. We found that most users did adjust accordingly as there is a learning

curve to all new controllers but it was slower than we would have liked to see. We designed the

button layout based on the existing pads in the trampoline we received from JumpSport, so we

weren’t left with a whole lot of options with our lack of sewing skills. Our suggestion is to

redesign the button layout to have left and right parallel with the TV and centered with respect

to the user. This will give the user the most intuitive button layout. The A button could then be

placed in between up and right, B button between up and left, 1 button between down and

right, and the 2 button between down and left. This would allow for a lot of available buttons

for menu selection and scrolling. Then game play could be achieved with the larger directional

buttons or an occasional tap on a smaller A button. Figure 13 gives an example of a possible

setup.

Accelerometer Mount and Gyroscope
We ran into issues with trying to mount things to the mount without inhibiting the use

of the trampoline or damaging the material. Initially we sewed the accelerometer into the mat

to hold it securely in place. This worked great for our proof of concept but we had trouble

coming up with a mount design that could be easily manufactured. The hot glue on the

accelerometer protector seemed to work well but we were not able to test this method. Hot

glue may be a viable option for mounting but would have to be further analyzed.

A gyroscope may be a beneficial piece of hardware for the controller. An accelerometer

works great for getting the jumping accelerations to figure out if the user is jumping, running,

walking, etc., but a cheap accelerometer doesn’t allow for a large range while leaning on one

side of the trampoline. A gyroscope may be a better piece of hardware for this aspect of the

controller. If the user were jumping on the left side of the trampoline, the accelerometer

outputs would make it hard to figure out that left were being pressed. A gyroscope on the other

hand would show a rotation to the left then back to center. It would clearly show that the user

was trying to control to the left.

Get Working With Wii / Package Electronics
 Our project involved quite a bit of software engineering that our background in

mechanical engineering did not prepare us for so we were not able to get the product working

with the Wii. We used a microcontroller to fake a classic controller that worked on an emulated

gaming system. It is crucial for the project to have it working on a gaming system in order for it

to be a viable option as a controller. We proved the concept of it by getting it working on the

controller but we do not possess the abilities or time to get it working on the Wii. We suggest

47

writing a Wii Homebrew application in order to test the controller then eventually getting it to

work with current games or even making new games specifically for the controller.

 We used an Arduino microcontroller which is considered a general purpose

microcontroller. We are not experts on microcontrollers and don’t know where to start in order

to find a microcontroller that satisfies exactly what we need it to do. This would be a crucial

step to minimize costs on the product. The circuit board and wiring could also be minimized in

order to save manufacturing costs as well as the total size of the unit. It would be nice to have

the controller completely wireless, either by plugging the unit into a Wii mote or by

incorporating Bluetooth into the device so it communicates directly to the Wii. We didn’t look

into power use of the unit either. The final unit should be battery powered and be able to

power the device for as long as a Wii mote. The device could be powered by the Wii mote itself

just like any other Wii extension.

 Users told us that the stability bar was a must have for the controller. It allowed users

to shift their weight faster in reaction to game motions. One suggestion for the bar is to add

buttons directly to it so that the user does not need to hold the Wii mote for gameplay. For

instance, the acceleration and brake buttons for Mario Kart could be incorporated in the bar so

the user can keep a firm grip on the stability bar.

Manufacturing Process
Another important step in developing the product further is thinking towards the

manufacturing process of the controller. The buttons need to be designed in a way that’s cheap

and easy to manufacture. Manufacturability should be taken into consideration for the

mounting of the hardware and the packaging of the electronics. The whole product needs to be

streamlined for manufacturing. One suggestion for the button design is the conductive material

could be a conductive paint that could be sprayed or brushed on. The accelerometer and any

other hardware mounted to the mount could be adhered with some type of hot glue.

The final step in the controller design process would be to get some kind of license

agreement with Nintendo. This will help with marketing the product and interfacing with

current and new games. Game designers may be more interested in developing games for the

controller if it were licensed by Nintendo.

48

Engineering Conclusions
After completion of a project it is important to re-evaluate the original design

specifications. Table 2 is partially reproduced below for reference.

Table 2. Project WiiHopp Formal Engineering Requirements

Spec # Parameter Description Requirement or Target
(Units)

Tolerance

1 Length of Assembly 30 minutes Max

2 Customer Survey on Use 80% positive Min

3 Customer Survey on Fun 90% positive Min

4 Energy Used by User 13 Calories/Min Max

5 Price $50 +/- $10

6 Response Time 16 ms +/- 2

7 Test Games 50% effective Min

8 Test Movements 95% effective Min

9 Customer Survey on looks 90% positive Min

10 Pass/Fail Pass

 Upon evaluation of our final product we can conclude that some requirements were

met, some were not, and some were found to be irrelevant, not available, or negligible.

Specification 1

 This specification is irrelevant to our project as we did not focus on the

manufacturability or packaging of a final design, but more on a proof of concept. We do believe,

however, that this requirement can be met if our project continues along the same

development path.

Specification 2 and 3

 These requirements were met.

Specification 4

In our project testing we did not asses heart rates of direct energy during the dynamic

testing session, however, we proved that the product could be variable intensity and therefore

can say that we met this target.

Specification 5

 For the same reasons as Specification 1, we believe that this requirement can be met.

Specification 6

This specification is met because our target is the response time of the Wii Remote and

we used the Wii Remote to communicate with our various devices in our product.

49

Specification 7

 Our system was designed to work with several games but can be made compatible with

any game through software. We did not focus our project on software development so this

requirement does not apply to our project.

Specification 8

As shown in our Dynamic system testing of buttons, users performed with an average

missed button hit of only 5%. We can safely attribute this to user error though and state that

this requirement is therefore satisfied.

Specification 9

 This specification is irrelevant as we did not design our product to involve aesthetics or

survey users on the overall system appearance.

Specification 10

The previously specified pass/fail requirements of wireless capabilities, and battery

powered were achieved.

 All of these engineering requirements were also validated through overall product

functionality and user enjoyment.

Final Comments
 The project was a total success! Based on the results from our user feedback, and our

own use of the system, we believe that we have demonstrated and built a viable design for

integrating a trampoline with a video game console. We receive user feedback such as, “Tons of

fun!,” “great for the casual gamer,” and “Flat ground will never be good enough again!”

 We would like to thank our dedicated advisor, Professor Kim Shollenberger, and our

sponsor, JumpSport, Inc. for their great idea and support.

50

References

1. http://electronics.howstuffworks.com/xbox-three-sixty5.htm

2. http://wiire.org/Wii/Wiimote

3. http://internetgecko.com/sony/gaming-consoles-battle-news-xbox-360ps3wii

4. http://www.modchip-wizard.com/images/xbox-360/Xbox-360-controller.jpg

5. http://www.crutchfield.com/S-K9s8Lnd5hbA/learn/learningcenter/home/TV-

connections.html

6. http://www.fernsnutrition.com/jump_sport_fitness_trampoline_350.html

7. http://www.cdc.gov/HealthyYouth/obesity/

8. http://todbot.com/blog/wp-content/uploads/2007/11/bionic_arduino_class4.pdf

9. http://wiibrew.org/wiki/Wiimote/Extension_Controllers

10. http://www.esacademy.com/en/library/technical-articles-and-

documents/miscellaneous/i2c-bus.html

http://electronics.howstuffworks.com/xbox-three-sixty5.htm
http://wiire.org/Wii/wiimote
http://internetgecko.com/sony/gaming-consoles-battle-news-xbox-360ps3wii
http://www.modchip-wizard.com/images/xbox-360/Xbox-360-controller.jpg
http://www.crutchfield.com/S-K9s8Lnd5hbA/learn/learningcenter/home/TV-connections.html
http://www.crutchfield.com/S-K9s8Lnd5hbA/learn/learningcenter/home/TV-connections.html
http://www.fernsnutrition.com/jump_sport_fitness_trampoline_350.html
http://www.cdc.gov/HealthyYouth/obesity/
http://todbot.com/blog/wp-content/uploads/2007/11/bionic_arduino_class4.pdf
http://wiibrew.org/wiki/Wiimote/Extension_Controllers
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus.html

51

52

Appendix A: QFD

Larger is Better

Nominal is Best

Smaller is Better

L
e
n
g
th

 o
f

a
s
s
e
m

b
ly

 (
m

in
)

C
o
s
to

m
e
r

s
u
rv

e
y
 o

n
 u

s
e
 (

%
)

C
u
s
to

m
e
r

S
u
rv

e
y
 o

n
 f

u
n
 (

%
)

E
n
e
rg

y
 u

s
e
d
 (

C
a
lo

ri
e
s
/M

in
)

P
ri
c
e
 (

d
o
lla

rs
)

R
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
)

T
e
s
t

g
a
m

e
s
 (

%
)

T
e
s
t

m
o
v
e
m

e
n
t

(%
)

C
u
s
to

m
e
r

S
u
rv

e
y
 o

n
 l
o
o
k
s
 (

%
)

Is
 i
t

w
ir
e
le

s
s
 (

y
e
s
/n

o
)

P
o
w

e
re

d
 b

y
 W

ii
m

o
te

 (
y
e
s
/n

o
)

Specifications

A B C D E F G H I J K 1 2 3

1,2,3 Easy assembly 1 5 4 5 4

1,2,3 Ease of use 2 10 4 4 5

1,2 Fun 3 15 5 2 3 Strong - 9

3 Variable intensity 4 7 5 1 5 Medium-3

1,2,3 Cheap 5 5 3 2 3 Weak - 1

1,2,3 Resposive 6 14 4 3 NA

1 Works with current games 7 10 2 5 NA Relationship Strength

1,2,3 Reads multiple types of movements 8 14 5 1 NA

1,2,3 Asthetically pleasing 9 10 4 3 4

1,2,3 Wireless 10 5 5 5 NA

1,2,3 Powered by Wiimote 11 5 5 5 NA

Targets

3
0
 m

in
u
te

s

8
0
 %

 p
o
s
it
iv

e
 f

e
e
d
b
a
c
k

9
0
 %

 p
o
s
it
iv

e
 f

e
e
d
b
a
c
k

1
3
 C

a
lo

ri
e
s
/M

in
 +

/-
 3

$
5
0
 +

/-
 $

1
0

1
6
 m

ill
is

e
c
o
n
d
s
 +

/-
 2

 m
ill

is
e
c
o
n
d
s

5
0
 %

 e
ff

e
c
ti
v
e

9
5
 %

 e
ff

e
c
ti
v
e

9
0
 %

 p
o
s
it
iv

e
 f

e
e
d
b
a
c
k

P
a
s
s

P
a
s
s

Weighted Importance 9 21 9 9 9 9 9 9 9 9 9

% Importance 8 19 8 8 8 8 8 8 8 8 8

F
it
n
e
s
s
 T

ra
m

p
o
lin

e

Now

U
s
e
rs

111

W
iiH

o
p
p

W
ii

F
it
 B

a
la

n
c
e
 B

o
a
rd

Im
p

o
rt

a
n
c
e

It
e
m

 N
o

.

Customer Requirements (Whats)G
ro

u
p

in
g

C
u
s
to

m
e
r

D
e
s
c
ri
p

ti
o

n

53

Appendix B: Console Research

The data in this figure is from the table on the next page.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50 55 60 65

D
ay

s
U

se
d

 (
D

e
ce

m
b

e
r

2
0

0
8

)

Age Group (years)

 Console Use by Age

Xbox 360

Nintendo Wii

Playstation 3

54

http://www.emarketer.com/Article.aspx?R=1007055&AspxAutoDetectCookieSupport=1

55

Appendix C: TV Connection Types

Description of TV Connections. Article from http://www.crutchfield.com/S-

K9s8Lnd5hbA/learn/learningcenter/home/TV-connections.html. [5]

The back panel of today's HDTVs may look intimidating, but we'll help you make the right

connections for the most common video components.

Video connection types

HDMI

HDMI can carry both high-definition video and high-resolution multichannel audio. It's generally your best option

for high-def video, since it can carry full 1080p signals, and it's your only option if you're connecting a 3D video

source to your 3D TV. For an in-depth look at HDMI, see our HDMI connections article. For more info on 3D TV,

see our intro to 3D, or check out our in-depth 3D TV FAQ.

Signal type: digital

Maximum resolution: 1080p

Component video

Component video is also high-def-capable, which makes it a good alternative when HDMI isn't an option. This

three-jack connection splits the video signal into three parts (one brightness and two color signals). This analog

connection delivers an extremely accurate picture with clearer color reproduction and less bleeding than S-video

or composite video (below).

Signal type: analog

Maximum resolution: 1080p (however, many video components will only send video up to 1080i via component

video)

S-video

This 4-pin connection usually provides a sharp picture by transmitting the chrominance (color) and luminance

(brightness) portions of a video signal separately. The signals can then be processed separately, reducing

interference. S-video connections generally outperform composite connections (below), but don't measure up to

component video (above).

Signal type: analog

http://www.crutchfield.com/S-K9s8Lnd5hbA/learn/learningcenter/home/TV-connections.html
http://www.crutchfield.com/S-K9s8Lnd5hbA/learn/learningcenter/home/TV-connections.html
http://www.crutchfield.com/Learn/learningcenter/home/hdmi.html
http://www.crutchfield.com/learn/HDTV/3D.html
http://www.crutchfield.com/learn/HDTV/3D-TV-FAQ.html

56

Maximum resolution: 480i

Composite video

This is the most universal video connector, found on most TVs made in the last 20 years. Picture quality is a big

step up from RF (below), but typically not as good as S-video (above).

Signal type: analog

Maximum resolution: 480i

Coaxial or RF

Probably the most common way folks shortchange their TV's picture quality is through the overuse of RF-type

connections. There's a reason the RF inputs on TVs are usually labeled "Antenna" or "Cable" — those are the

signals they were designed for. RF-type connections should generally be limited to bringing signals into your A/V

system from outside your house: TV antenna, cable TV jack, or satellite dish. If you find yourself tempted to use

RF because it's a simple one-cable hookup, and that cable is usually included free in the box, remember that it's

the lowest-quality type of video connection. Once the signal has reached your set-top box, use the highest-

quality connection from the types listed above.

Signal type: analog

Maximum resolution: about 350i

Appendix D: Wii Mote Circuit Board

Wii Mote circuit board layout from http://wiire.org/Wii/Wiimote [2].

Figure 1. Wii Mote Printed Circuit Board, top view.

http://wiire.org/Wii/wiimote
http://wiire.org/Image:Wiimote_top.jpg

57

Figure 2. Wii Mote Printed Circuit Board, bottom view.

Chip listing:

 U1:
 U2:

 U3: ST Microelectronics M24128-BWP - "412A" "BWP" (128kbit I2C eeprom - tssop-8)

 U4: Analog devices ADXL330 - "XL" "330K" "#0614" "3464P" (accelerometer - 16 pin LGA)

 U5: suspected to be Microchip TC1027 - "628" "3322" (quad comparator -16 pin QSOP) - could
possibly be a Mitsumi chip (the logo is similar)

 U6: Unknown manufacturer - "U7849" "6Q19" (Likely Audio DAC chip, due to proximity to U7 Speaker
amp, and lack of another chip to perform this function - 16 pin tsop)

 U7: Rohm BH7824FVM - "H78" "2 4" "HN" (audio driver (speaker AMP) for mobile telephone - MSOP-
8)

 U8: Broadcom BCM2042 - "BCM2042KF8C" "C80830 P13" "788899 N1" (Broadcom bluetooth & 8051
- probably 88pin FBGA)

Appendix E: Nunchuck Accelerometer Program

%JumpAndMove3D.m

addpath C:\'Program Files'\WiiLAB\WiiLAB_Matlab\EG111-H

addpath C:\'Program Files'\WiiLAB\WiiLAB_Matlab\WiimoteFunctions

addpath C:\'Program Files'\WiiLAB\WiiLAB_Matlab\WiimoteFunctions\...

 BouncingBallFunctions

addpath C:\'Program Files'\WiiLAB\WiiLAB_Matlab\WiimoteFunctions\...

 GraphingFunctions

clc

global Wiimote;

initializeWiimote();%Program to initialize the Wiimote

uiwait(msgbox('Wanna Play WiiHopp?'));

createWindow(900, 675, 400, 300);

setTitle('WiiHopp (Sponsored by JumpSport)');

%Stuff

center=200;%center of window

http://wiire.org/Chips/M24128-BWP
http://wiire.org/Chips/ADXL330
http://wiire.org/Chips/TC1027
http://wiire.org/Chips/BH7824FVM
http://wiire.org/Chips/BH7824FVM
http://wiire.org/Chips/BCM2042
http://wiire.org/Chips/BCM2042
http://wiire.org/Image:Wiimote_btm.jpg

58

l=200;%initial ball position

s=100;%y of ball

o=5;%object size

p=10;%jump ball size

x = [l l];

y = [0 155];

obj = drawCircle(l, s, o); %Initialize Object

if(isWiimoteConnected() > 0) %if the Wiimote is connected

 % User directions

 t1 = text(center, 290, 'Step Off Trampoline to Calibrate', ...

 'HorizontalAlignment', 'center', 'FontSize', 16);

 pause(1);

 t2 = text(center, 275, 'Push A when off trampoline', ...

 'HorizontalAlignment', 'center', 'FontSize', 16);

 waitForButtonPress('A');

 hide(t1);

 hide(t2);

 % Calibration

 Wiimote.GetNunchukAccelState(); %gets initial accel state

 X1 = Wiimote.NunchukAccel.X %show in command window

 Y1 = Wiimote.NunchukAccel.Y

 Z1 = Wiimote.NunchukAccel.Z

 pause(0.1);

 if (X1 == 0 || X1 == Inf || X1 == -Inf)%if Wiimote gives a false accel

 initializeWiimote();

 Wiimote.GetNunchukAccelState(); %gets initial accel state

 pause(0.001);

 X1 = Wiimote.NunchukAccel.X %show in command window

 Y1 = Wiimote.NunchukAccel.Y

 Z1 = Wiimote.NunchukAccel.Z

 pause(tiny);

 if (X1 == 0 || X1 == Inf || X1 == -Inf)

 close; %closes window

 Home;%errors out of program

 else

 end

 else

 end

 t3 = text(center, 290, 'Get back on trampoline', ...

 'HorizontalAlignment', 'center', 'FontSize', 16);

 pause(1);

 hide(t3);

 t4 = text(center, 290, 'Jump to move the ball.', ...

 'HorizontalAlignment', 'center', 'FontSize', 16);

 pause(1);

 hide(t4);

 t5 = text(center, 290, 'Ready?', 'HorizontalAlignment', 'center', ...

 'FontSize', 16);

 pause(1);

 hide(t5);

 t6 = text(center, 290, 'JUMP!', 'HorizontalAlignment', 'center', ...

 'FontSize', 26);

 t7 = text(l, 10, 'HOME to quit', 'HorizontalAlignment', 'center', ...

 'FontSize', 16);

 pause(0.1);

%Acceleration tolerances

 tolerance=1;%for directional accel's

 t=1;%for bidirectional accels

 jump=-40;%required accel to jump

%Pause time

 tiny=0.01;%pause time after moving

%Distance of Controls

 j=40;%height of jump

 d=4;%distance moved sideways

59

 c=4;%distance moved up and down

 while (~isButtonPressed('HOME'))%exit program if HOME button pressed

 Wiimote.GetNunchukAccelState();%continues to get accel state

 X = Wiimote.NunchukAccel.X;

 Y = Wiimote.NunchukAccel.Y;

 Z = Wiimote.NunchukAccel.Z;

 %Bi directional controls

 if(Z>Z1+t*tolerance && Y>Y1+t*tolerance)%move left and up

 hide(obj);%hides ball

 s=s+c; %moving up

 l=l-d; %moving left

 obj = drawCircle(l, s, o);%draws new ball

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

 elseif(Z<Z1-t*tolerance && Y>Y1+t*tolerance)%move right and up

 hide(obj);

 s=s+c;

 l=l+d;

 obj = drawCircle(l, s, o);

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

60

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

 elseif(Z>Z1+t*tolerance && Y<Y1-t*tolerance)%move left and down

 hide(obj);%hides ball

 s=s-c; %lateral moving

 l=l-d; %longitudinal moving

 obj = drawCircle(l, s, o);%draws new ball

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

 elseif(Z<Z1-t*tolerance && Y<Y1-t*tolerance)%move right and down

 hide(obj);

 s=s-c;

 l=l+d;

 obj = drawCircle(l, s, o);

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

61

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

% Directional Controls for right and left

 elseif(Z>Z1+tolerance)%move left

 hide(obj);%hides ball

 l=l-d;

 obj = drawCircle(l, s, o);%draws new ball

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

 elseif(Z<Z1-tolerance)%move right

 hide(obj);

 l=l+d;

 obj = drawCircle(l, s, o);

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

62

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

 % Directional Controls for up and down

 elseif(Y>Y1+tolerance)%move up

 hide(obj);%hides ball

 s=s+c;

 obj = drawCircle(l, s, o);%draws new ball

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

 elseif(Y<Y1-tolerance)%move down

 hide(obj);

 s=s-c;

 obj = drawCircle(l, s, o);

 pause(tiny);

 %Jumping Controls

 if(X < jump)

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

63

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

 % do nothing

 end

 pause(tiny);

%If not moving directionally, just jump

 elseif (X < jump)%just jumpAnd a very merry unthank -you to Dr. Ma se.
 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j, p);

 pause(0.1);

 hide(obj);

 obj = drawCircle(l, s+3*j/4, 3*(p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/2, (p+o)/2);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s+j/4, (p+o)/4);

 pause(0.05);

 hide(obj);

 obj = drawCircle(l, s, o);

 pause(tiny);

 else

%If nothing is triggering than just sit still

 end

 end

 pause(0.1);

 close; %close window

else % If Wiimote not connected tell user

 text(center, 290, 'Wiimote is not connected. Please try again.', ...

 'HorizontalAlignment', 'center', 'FontSize', 12);

 pause(1.5);

 close; %Close window

end

64

Appendix F: Wiimote Communication

Extension Controller Pinout

Left: Drawing of Wiimote extension connector from http://todbot.com/blog/wp-

content/uploads/2007/11/bionic_arduino_class4.pdf [8]. Right: Picture of actual extension

connection from http://wiibrew.org/wiki/Wiimote/Extension_Controllers [9].

The controller extension port contains 6 pins, two of which are not used. The serial data

and serial clock handle data transfer in accordance with I2C protocol.

1. SCK – Serial Clock

2. N/C - No Connection

3. GND – Ground

4. SDA – Serial Data

5. N/C – No Connection (Note: some extension controls set this pin to high to signal that

they are connected, but this is not needed)

6. +V – voltage input at 3.3 VDC

Nunchuck Data Format

(from http://wiibrew.org/wiki/Wiimote/Extension_Controllers [9])

The Nunchuk is identified by the 16-bit constant 0x0000 (0xFEFE encrypted) at register

address 0xa400fe. It provides three-axis acceleration data, two digital buttons, and an X-Y

analog stick.

http://todbot.com/blog/wp-content/uploads/2007/11/bionic_arduino_class4.pdf
http://todbot.com/blog/wp-content/uploads/2007/11/bionic_arduino_class4.pdf
http://wiibrew.org/wiki/Wiimote/Extension_Controllers
http://wiibrew.org/wiki/Wiimote/Extension_Controllers

65

The Nunchuk reports its information as 6 bytes of data, readable at 0xa40008 and

streamable using Data Reporting Modes that include Extension bytes (unused bytes are filled

with 0x00). The data is packed into the six bytes as follows (after decryption):

 Bit

Byt

e
7 6 5 4 3 2 1 0

0 SX<7:0>

1 SY<7:0>

2 AX<9:2>

3 AY<9:2>

4 AZ<9:2>

5 AZ<1:0> AY<1:0> AX<1:0> BC BZ

SX,SY are the Analog Stick X and Y positions, while AX, AY, and AZ are the 10-bit

accelerometer data (in the same format as described in Wiimote#Accelerometer).

The values returned by the analog stick in the Nunchuk enclosure do not encompass the full

possible range, but rather have upper and lower bounds. These bounds seem to be in the same

range across Nunchuks, but there is some variation. Analog stick X returns data from around 35

(fully left) to 228(fully right), while analog stick Y returns from around 27 to 220. Center for both

is around 128.

The accelerometer data uses the full range of 0-1024. However, the full range is only seen

when moving or rotating the Nunchuk sharply. To measure still Nunchuk rotation in space, the

following approximate bounds apply: X goes from around 300 (fully tilted left) to 740 (tilted

right), turning further starts bringing the value closer to 512 (neutral position). Similarly, Y goes

from around 280 (tilted backwards) to 720 (forwards). Z goes from 320 (upside-down) to 760

(right-side up).

BC and BZ are the state of the C and Z buttons (0=pressed).

Nintendo games calibrate the center position of the Analog Stick upon power-up or

insertion of the Nunchuk. The mechanism for that is unknown.

I2C Protocol
(from http://www.esacademy.com/en/library/technical-articles-and-

documents/miscellaneous/i2c-bus.html [10])

I2C (Inter-Integrated Circuit) Bus Technical Overview

Based on the I2C FAQ by Vince Himpe

In the early 1980's, NXP Semiconductors developed a simple bi-directional 2-wire bus

http://wiibrew.org/wiki/Wiimote#Accelerometer
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus.html

66

for efficient inter-IC control. This bus is called the Inter-IC or I2C-bus. At present, NXP's IC range

includes more than 150 CMOS and bipolar I2C-bus compatible types for performing

communication functions between intelligent control devices (e.g. microcontrollers), general-

purpose circuits (e.g. LCD drivers, remote I/O ports, memories) and application-oriented circuits

(e.g. digital tuning and signal processing circuits for radio and video systems).

All I2C-bus compatible devices incorporate an on-chip interface which allows them to

communicate directly with each other via the I2C-bus. This design concept solves the many

interfacing problems encountered when designing digital control circuits. I2C has become a de

facto world standard that is now implemented in over 1000 different ICs and is licensed to more

than 50 companies.

I2C Bus Protocol

The I2C bus physically consists of 2 active wires and a ground connection. The active

wires, called SDA and SCL, are both bi-directional. SDA is the Serial DAta line, and SCL is the

Serial CLock line. Every device hooked up to the bus has its own unique address, no matter

whether it is an MCU, LCD driver, memory, or ASIC. Each of these chips can act as a receiver

and/or transmitter, depending on the functionality. Obviously, an LCD driver is only a receiver,

while a memory or I/O chip can be both transmitter and receiver.  The I2C bus is a multi-

master bus. This means that more than one IC capable of initiating a data transfer can be

connected to it. The I2C protocol specification states that the IC that initiates a data transfer on

the bus is considered the Bus Master. Consequently, at that time, all the other ICs are regarded

to be Bus Slaves.  As bus masters are generally microcontrollers, let's take a look at a general

'inter-IC chat' on the bus. Lets consider the following setup and assume the MCU wants to send

data to one of its slaves (also see here for more information; click here for information on how

to receive data from a slave).

First, the MCU will issue a START condition. This acts as an 'Attention' signal to all of

the connected devices. All ICs on the bus will listen to the bus for incoming data.  Then the

MCU sends the ADDRESS of the device it wants to access, along with an indication whether the

access is a Read or Write operation (Write in our example). Having received the address, all IC's

will compare it with their own address. If it doesn't match, they simply wait until the bus is

released by the stop condition (see below). If the address matches, however, the chip will

produce a response called the ACKNOWLEDGE signal.  Once the MCU receives the

http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/transmitting-a-byte-to-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/receiving-a-byte-from-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/transmitting-a-byte-to-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/getting-acknowledge-from-a-slave-device.html

67

acknowledge, it can start transmitting or receiving DATA. In our case, the MCU will transmit

data. When all is done, the MCU will issue the STOP condition. This is a signal that the bus has

been released and that the connected ICs may expect another transmission to start any

moment.  We have had several states on the bus in our example: START, ADDRESS,

ACKNOWLEDGE, DATA , STOP. These are all unique conditions on the bus. Before we take a

closer look at these bus conditions we need to understand a bit about the physical structure and

hardware of the bus.

http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/transmitting-a-byte-to-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/getting-acknowledge-from-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html

68

Appendix G: Dynamic Testing/Expo Survey

Player name: .

DDR
Experience Level: 1 2 3 4 5

Easy Song Played: _____________________________________

Warm-up score: ___________________ Warm-up Letter Grade: ___________________

Test score: ___________________ Test Letter Grade: ____________________

of

% hit

perfects

Right
 excellents

Left

 goods

Up
 misses

Down

Hard Song Played .

Score: ___________________ Letter Grade: ____________________

Hard Song Played .

Score: ___________________ Letter Grade: ____________________

69

Mario Kart

Time Trial

Level played: ___

Traditional Controller Trampoline Controller

Lap Time Time

1
 2
 3
 Average

Race Course (Grand Prix/Verses)

Level played: ___

Traditional Controller Trampoline Controller

Lap Time Time

1
 2
 3
 Average

Race Course (Grand Prix/Verses)

Level played: __

Traditional Controller Trampoline Controller

Lap Time Time

1
 2
 3
 Average

70

Survey

Overall Functionality and Usability

1 2 3 4 5 6 7 8 9 10

Pros?

Cons?

Possible improvements?

Additional comments or suggestions

Trends in buttons or accelerometer (Difficulty leaning in one direction or pressing certain

buttons, etc.)

How much, if any lag do you notice in any component of the controller and please specify which

component

0 1 2 3 4 5 6 7 8 9 10

What do you think of the button layout? Any suggestions?

Rate the ease of use/learning curve. Please explain.

1 2 3 4 5 6 7 8 9 10

Rate your overall enjoyment/fun. Please explain.

1 2 3 4 5 6 7 8 9 10

Would you buy it for yourself or someone else?

How much do you think the system should sell for?

Appropriate age range

Appendix H: Expo Poster

71

