
	
	
	
	

Cal Poly Xpress Project
Exploring Interactive Storytelling through Digital Multimedia Platforms

Eugene Bistolas

June 2012

Advisor: Dr. Michael Haungs, Dr. Aaron Keen

Cal Poly XPress

Project Overview

 The primary goal of the Cal Poly XPress project is to deliver a framework for immersive,
interactive storytelling and educational material in a mobile environment. The Cal Poly XPress
(CPXpress) project acts as a new creative tool for educators and storytellers, unique from
traditional mediums utilized in the past. Leveraging today’s powerful new interaction
technologies, CPXpress allows creative individuals to deliver new engaging and simulating
experiences to their audiences that were previously not achievable.

The ever-increasing power of mobile devices has seen the rise of multimedia
applications that serve similar purposes as CPXpress; however, they are all bounded to the
confines of the mobile device they run on. Additionally, these applications tend to be single
serving, catering to the direct needs of one author while not being openly available for other’s
use. CPXpress differentiates itself from these applications in two ways. Firstly, the user
interactions within the CPXpress framework are directly tied to the user’s environment, utilizing
geolocation and augmented reality technologies to drive the creative process. Secondly, the
CPXpress framework is free and open to all, providing an easy to use, open schema for defining
new stories or material.

CPXpress leverages a wide variety of multimedia and sensor technologies to achieve its
goals. Modern mobile devices have a variety of input mechanisms and sensors, such as
cameras, touch screens, GPS modules, digital compasses, and gyroscopes, all of which are
exposed by the framework to provide creative tools for content authors. The tools provided to
content authors are general enough to support an enormous variety of potential material, such
as interactive stories, tour guides, augmented reality games, and more, only bounded by the
imagination of the author.

The primary plot drive behind the majority of CPXpress applications hinges on
geolocation-based events, allowing the user to organically explore his or her environment,
gaining new information or knowledge based on the locations the user encounters. This puts
importance on environmental interaction first, augmenting the user’s exploration process instead
of requiring direct and constant interaction with the mobile device. These events can have
additional interactions attached to them such as modifying how the event is triggered, such as
time-based filtering, or an action to take after the user encounters it.

CPXpress provides a wide variety of actions that can be performed when the user
encounters one of the aforementioned geolocation-based events, catering to the creative needs
of the content creator. The most common type of event trigger is multimedia playback,
leveraging the powerful multimedia capabilities of the mobile device to present information or
drive the story forwards. These triggers include images, text, video or audio playback, or any
combination of these three. In addition, the device’s camera can be utilized for event triggers as
well. The first trigger type allows the user to take a static image of something in their
environment, often prompted by some clue or text created by the author. The image taken can
then have a variety of filters applied to it, as well as text overlays and other effects, which
provide additional information to the end user. More interestingly, the camera, when used in
combination with the device’s internal gyroscope, accelerometer, and compass, can provide an
augmented reality view of the user’s environment, injecting in real time an image, text, or 3D
model over a live view of the user’s surroundings.

Content creators also have a few other non-multimedia, but still essential tools at their
disposal. The first is the concept of a “Lockbox”. The Lockbox provides an end goal for the user
for mystery solving or story based content, bridging together information learned from several
geolocation-based events and their triggers to solve an overall question or riddle. Content
created for this framework can contain multiple Lockboxes in sequence, unlocking each of these
Lockboxes provides a clue to the next, or presents more events to be explored therefore driving
the plot forwards. The proper use of these Lockboxes can help engage the user and provide

structure to the information presented in the story. In addition, the content author has access to
a journal, whose entries are comprised of events the user encounters during their exploration of
the environment. These journal entries can be used as a record-keeping device, allowing the
user to go back and revisit events already encountered, or as a place for the user to gain
different, supplemental information about the event, perhaps a clue or other piece of information
needed to unlock a Lockbox. These journals are unique for every story stored on the device, and
persistent across all devices the user may run CPXpress on.

The CPXpress framework provides a wide variety of tools for content authors; however,
the content creation capabilities are not present on the mobile device itself. Instead, the mobile
device is utilized as a playback mechanism for pre-made content that is downloaded or
otherwise transferred to the device. Content creation is done via a web-based authoring tool,
providing authors the interface necessary to create new stories to be downloaded to devices.

Cal Poly Xpress Walk-Through

The CalPoly Xpress mobile application contains a myriad of features available to content

authors, as well as a user interface designed with a quality user experience in mind. Below is a
brief walkthrough of the different functions of the CalPoly Xpress mobile application. See the
Software Design section of this document for the technical aspects behind each of these
functions.

 	

Login View: This is the first view presented to the user upon application start, as seen in Figure
1. The images seen in the screenshot above cycle in a two second interval, downloaded from
the CPXPress backend. If this is the first time the user has launched the app, the user will be
prompted to log in via Facebook, as seen in Figure 2. This redirects the user to the Facebook
CPXpress mobile application authentication page, as seen in Figure 3. After the user’s
credentials are verified, the application transitions to the myth selection view.

Figure 1: Initial Login View Figure 2: Connecting to Facebook Figure 3: Facebook Authentication

Myth Selection View: After the user logs into the application, the myth selection screen is
presented as shown in Figure 4. It acts as a launching point for entering the stories already on
device. The tab bar at the top of the view allows the user to switch between Myths already
loaded on the device, Myths purchased but currently stored in the cloud, and a Myth store to
purchase and download new stories. The latter two options are not yet implemented

Shade Selection View: The shade selection view lists all the shades present in the myth, as well
as pertinent details about each shade, visible in Figure 5. To the user, shades act like chapters in
the story they’re about to pursue, breaking down a potentially large amount of content into
smaller, more playable bites. The shade selection view also contains a button to the story’s
Journal, allowing the user to go back and investigate tasks in this story that have already been
completed. Upon pressing one of the shades in the list, the user is presented with a shade detail
screen, which presents descriptive and geographic information about the shade as well as a
start button to begin playing. This is shown in Figure 6.

Figure 4: Story Selection View

Figure 5: Chapter Selection View Figure 6: Chapter Preview

Shade Exploration View: The shade exploration view provides the main gameplay element for
the CPXpress mobile application, and is the view users interact with the most. The dominating
central element in this view is the map, which provides the user with information on events yet to
be discovered as well as previously triggered events as well as seen on Figure 7. Undiscovered
events fade in and out as a function of the user’s distance to the target event, to add a more
organic explorative aspect (compared to displaying all undiscovered events at one time). The
black arrows visible on the first image point to events that have not yet been discovered and are
not currently in the map’s field of view. Since the primary map view is locked to a high zoom
factor, the “perspective” button on the bottom left hand side of the screen provides a 3D
“perspective” like view, zooming out the map and plotting additional triggerable events on the
map for the user to explore, as seen in Figure 8. Additionally, the user is supplied with the
distance to the nearest undiscovered event, giving another subtle navigation clue for organic
discovery.

The bottom of the view contains the current lockbox question for the shade. Pressing
the question pops up the lockbox view, allowing the user to enter their answer as derived from
events they’ve triggered as seen in Figure 9. If they get the question incorrect, a hint (as defined
by the content author) appears, if its answered correctly, the lockbox moves on to the next one
in the shade until all lockboxes are answered.

Event Views: The CPXpress mobile application contains a myriad of event views, which

are presented when the user discovers a new element in a shade. These event views are
designed to provide a wide range of multimedia options for the user, and are broken down into
several different types to serve this purpose.

Figure 7: Shade Exploration View Figure 8: Perspective Shade
Exploration View

Figure 9: Lockbox View

	
Figure 10: Radio View

 Radio Event View: The Radio event view is responsible for the visualization and playback
of RadioEvents.

 Camera Event View: The camera event view is used to display Camera events. When the
user encounters this event, a popup is shown giving a clue of what the user should take a
picture of. Upon dismissal of the hint, the iOS image capture modal popover is presented, as in
Figure 11. At that point, the captured image has a filter applied to it as well as any pre-defined
image or text overlays, and presented to the user as seen in Figure 12.

Figure 11: Camera Capture Figure 12: Image with filter applied

Scrapbook Event View: The scrapbook event view controller is the most versatile of view

types. It displays a wide variety of media, including images, text, and video, expandable to fit the
needs of the content author. Figure 13 demonstrates how text and image content is rendered in
the view, while Figure 14 shows video playback functionality.

	
Figure 15: AR Camera View

Goggles Event View: The goggles event view provides a real-time augmented reality
“goggles” view, as demonstrated in Figure 15. Its capable of displaying a variety of image
content, mapped to a particular geopoint. The goggles view then overlays this media over a live
camera view, allowing for organic content discovery.

Figure 13: Scrapbook Media Figure 14: Scrapbook Video

	
Figure 16: Journal View

Journal View: The journal view is persistent across the myth, shade exploration, and event views
throughout the CPXpress mobile application. It’s designed to provide a way for the user to go
back and revisit their progress through a particular story, or perhaps discover new information
about events that have already been triggered. While the content author defines the media in the
journal, the discovery process through each story on the part of the user is unique resulting in a
unique journal state for every user.

Design and Implementation

Design Requirements

 The CPXpress mobile application, the component of the CPXpress framework under my
charge, was designed to target Apple’s iPhone platform running iOS 5 and above. This design
choice was made for a variety of reasons. Firstly, the pervasiveness of the iPhone among
CPXpress’ potential target users is high, providing a large install base on a platform users
already understand. In addition, the iPhone device, specifically the iPhone 4 and 4S targeted by
this project, have a wide variety of sensors and input methods required to make this project a
success, including cameras, Wi-Fi, GPS, high speed 3G, gyroscopes, accelerometers, digital
compass, high resolution touch screen, and more. All of these integrated technologies are
required to engage CPXpress’ users in a meaningful way. The device is also small and
unobtrusive, lending to the goal of allowing the user to interact with their environment first, and
the device second.

The iOS software platform, which runs exclusively on the iPhone, is also ideal for
CPXpress. Unlike other mobile operating systems, it provides a consistent way to interact with
the device’s sensors and multimedia playback capabilities, virtually guaranteeing a compatible
and consistent user experience across our entire install base. In addition, iOS allows us to
leverage Apple’s extensive application distribution system, giving CPXpress a wider potential
audience as well as a predefined means for acquiring more content for the player.

The CPXpress player is written exclusively in Objective-C for a variety of reasons. Firstly,
Objective-C in combination with Apple’s iOS development environment, XCode 4, compiles
natively to iOS compatible binaries and provides an extensive debugging and analysis suite for
iOS applications. In addition, Apple provides an enormous library of device-specific APIs,
allowing easy access to core device functionality allowing the development process to focus
more on creating a quality user experience over dealing with core device functionality access.
The one downside of this development target is incompatibility with other mobile operating

systems, such as Google’s Android or Microsoft’s Windows Phone 7. While other languages do
exist that compile to iOS, Android, and WP7, they do not offer the same kind of deep device
integration and media playback capabilities required to make an immersive application like
CPXpress.

Software Design
 Core to the CPXpress experience are the stories and content created by authors,
therefore, a robust digital representation of each story needed to be developed for the iOS
implementation of the application. Each story is broken down into three distinct elements: a
myth, shades, and events. The relationship between each of these elements can be seen in the
chart 1 below:

Graph	 1:	 UML	

	

 At the top level, the Myth type represents an entire story object, encapsulating any and
all information for story playback. This includes the story’s name, internal ID, and description. It
also contains Shades, which can be considered to be the story’s chapters. Each shade holds a
subset of information itself, such as its own name, description, a descriptive image used in the
UI, and the Lockboxes associated with that portion of the story.
 Additionally, Shade objects have a reference an array of Event objects, which represent
the information needed to encounter and trigger an event. There are many different types of
Event objects, such as a Camera, Radio, or Scrapbook event, however they all inherit from a
common Event class, which provides information about its location, activation radius,
description, and more. In addition, Events, Shades, and Myths all adhere to the MKAnnotation
protocol defined by Apple, which allows any of these objects to be plotted in an MKMapView in
the user interface.
 Specialized event objects contain additional information to present to the user upon
activation. For example, a RadioEvent object contains URI’s that point to local audio resources
within the main application bundle. A ScrapbookEvent could contain an array of media, such as
videos, images, or text. While a shade stores all event objects as generic Events, the UI
controller classes introspect these Event objects to determine how they should be displayed
upon activation, for example, a CameraEvent would trigger the device to display the camera
viewfinder, and pass the captured image back into CPXpress.
 Myth objects, and their associated Shades and Events are generated by a static
MythXMLParser class, which Myth XML data generated by the content authoring tool. To

NSString Name
NSString ID
NSString Description
NSArray shades

Myth
NSString title
NSString subtitle
CLLocationCoordinate2d coordinate
NSString description
UIImage image
float activationRadius
NSString ID
NSArray boxes
NSArray events

Shade

NSString title
NSString description
CLLocationCoordinate2D coordinate
bool journalable
float activationRadius
JournalEntry entry

Event

NSString audioURI
NSString audioFormat

RadioEvent NSString clue
UIImage overlay
float xpos
float ypos

CameraEvent
UIImage overlay
CLLocationCoordinate2D
coordinate

GogglesEvent

NSArray media
ScrapbookEvent

NSString boxId
NSString question
NSString answer
NSArray hints
bool solved

Lockbox

NSDate timeStamp
NSString description
NSMutableArray media

JournalEntry

MythXMLParser

accomplish this task, the MythXMLParser class utilizes the TBXML library version 1.4 by Tom
Bradley <2>, one of the fastest and most efficient DOM XML parsers for Objective-C. TBXML is
given the resource URI of the requested myth XML, which it then parses it and loads it into
memory as a TBXMLElement. TBXMLElements have knowledge of their own data and attributes,
as well as information on its children and siblings. Using this knowledge, we can iterate through
the parsed information, and load it into a Myth structure. Dr. Aaron Keen, Cal Poly Computer
Science Department, handled all schema development, and will eventually be responsible for
creating the CPXpress authoring tool. This XSD schema document provided a basis for the
parsing algorithm that was used in conjunction with TBXML to load myth data into memory.
 The last major object in the CPXpress project is the JournalEntry class. This class
represents the media stored in an event’s associated journal entry, if such entry exists as
defined by the content author. Journal entries usually contain a simple set of information, such
as a title and description, as well as a specialized Event type as defined earlier for use in the
Shade class. The ambiguity between Events used in Shades and the content in a journal entry
allows us to reuse view controllers for both the journal and event views, simplifying the overall
codebase.

 The CPXpress application adheres strictly to the model-view-controller (MVC) design
paradigm as outlined by Apple’s application development requirements. While the Myth, Shade,
and Events objects represent the data source for the application, classes were also written to
drive the primary user interface. Below is a brief outline of the CPXpress mobile application user
interface and the technical design considerations that went into making them a reality.

Login View Controller: As the first view presented to the user upon application start, the Login
view controller has the responsibility of verifying a user’s credentials, and if none exist,
prompting the user for the creation of new credentials. If this is the first launch of CPXpress, or
there is no preexisting user credentials cached to disk, the login view controller requests the
user log in via Facebook. Facebook authentication was chosen because of its easy, one click
login, and its tight integration with the Parse backend. User credential data is then persisted to
Parse, along with all of their progress through the Myths on their device which can be restored
to any device or synced to a different iPhone if needed.

Myth Selection View Controller: This view controller is initialized and presented after the user
successfully logs into CPXpress. At this point, the MythXMLParser has already parsed all myths
loaded on device into memory, which will persist for the duration of this application session.
Since a normal list view would lack visual appeal to the user, a randomly chosen background is
presented semi-transparently behind the myth options, which moves with a parallax effect as the
user scrolls the list. This is accomplished via the UIScrollView class handling user scroll
interaction while computing a translation transform that is applied to the background image
view.

Shade Selection View Controller: The shade selection view is a visual representation of the
shades present in a particular myth, responsible for giving the user information on the location,
description, and content of all the shades. This is done in a similar manner to the myth selection
screen, with the notable exception of the list element. Each shade in the list contains a visual
representing the shade, a title, and the distance to the shade. This distance is calculated via
GPS location updates provided by a CLLocationManager, part of Apple’s CoreLocation
framework. GPS data is updated at one-second intervals, which in turn updates the distance
labels on the shade list items.
 Upon pressing one of the shade list items, the item expands to fill the full view, providing
a detailed description of the shade as well as a map pinpointing its exact location. This is done
via a custom UIView subclass called a ShadePreviewView. This shade preview can scroll
dynamically with the help of a UIScrollView to display descriptions of any length, as defined by
the content author. Animation between the list state and details state is handled by the UIView

CoreAnimation framework, interpolating animations between to pre-defined view frame sets as
well as varying visible content within each preview by modifying the preview view’s subview’s
alpha properties.

Shade Exploration View Controller: The shade exploration screen, technically speaking, is the
most complex in the CPXpress mobile application. While previously described views rely solely
on Apple’s UIKit and Foundation frameworks for UI rendering, the shade exploration view relies
on several other frameworks as well to perform its functions. Firstly, the map view relies on not
on Apple’s MapKit framework, but the Route-Me open source map view library, with map tile
data sourced via CloudMade. This alternative map source was chosen for aesthetic reasons,
since Apple’s MapKit does not have theming options available. A custom CloudMade theme
was created for CPXpress that matches the overall UI theme for the app.
 Additionally, a 3D “perspective” view was created to offer an additional view to assist
shade exploration. Unlike the normal flat map view, which is zoomed in to only show the user’s
immediate surroundings, this perspective view is zoomed out and provides an overhead view of
a greater surrounding area. Events within this area are plotted on the map, only visible in this
mode and not the other. This transformation leverages CALayer’s CoreAnimation properties,
allowing for the generation of a transformation in 3D space. The map view’s transformation
matrix is directly accessed to provide a 45 degree X-axis rotation as well as a perspective skew
at the top of the view. In addition, the view is dropped a pixel offset in the negative Z-axis
direction to provide the “overhead view” illusion. This transformation is then stored, and applied
to the map view whenever the user presses the perspective button on the lower left hand corner
of the screen.

The CoreLocation framework is used for GPS and heading tracking, accurate to 5ft
under optimal conditions. CoreLocation is used with event activation logic, tracking the positions
of each event, displaying an “event found” notification when an event comes within range.
Additionally, the map rotation in conjunction with the user’s current heading is powered by
CoreLocation as well, taking digital compass heading data and translating it into a local view
transform applied to the MKMapView. However, heading data from CoreLocation is often times
jumpy and inaccurate, while functional for the purposes of this application it was not visually
appealing. To solve this, the CoreMotion framework comes into play, taking highly accurate
gyroscope data and applying it to the MKMapView rotation transformation instead of the digital
compass data. The compass was then used to calibrate the gyroscope on a regular basis (2
second update interval), whenever the device detected that compass output was stable.

Arrow overlays are also visible when the map is not in an overhead perspective view.
These are simply UIImageViews with a modified anchorPoint property to ensure rotation around
the center of the map view. The technical complexity comes into play in calculating the rotation
transform necessary to ensure the arrows point in the appropriate directions, in this case,
towards any event not within the map’s current field of view. The Haversine algorithm was used
to accomplish this task, as it is capable of calculating the bearing between two points on a
curved surface. For the purposes of the CPXpress mobile application, the Haversine function
was implemented as such:
 double deltaLong = targetLong - currLong;
 double y = sin(deltaLong) * cos(targetLat);
 double x = cos(currLat) * sin(targetLat) - sin(currLat) * cos(targetLat) *
cos(deltaLong);

 double radiansBearing = atan2(y, x);
These four lines of code generate a bearing in radians towards a target event.

Unfortunately, this information on its own is not enough to generate a rotation transform to apply
to the arrow UI element. At this point, a delta between this bearing and the device’s current
compass heading is calculated, and subsequently negated. This radian value is then used to
create a CoreAnimation rotation transformation that is individually applied to each of the arrow
views.

Event Views: CPXpress leverages several different view controllers to display Event multimedia
content. Each of these views are built to be generic, capable of displaying the widest set of
multimedia possible within the design constraints of the iOS platform. In addition, each has a
button pointing back to the user’s Journal, allowing them to see new information logged by this
event as well as the ability to reference past triggered Events. Each event view is detailed below,
as well as any pertinent technical details.
 Much like the Event data types, each event view used in CPXpress is subclassed from a
single EventView view controller. This allows for a common set of functionality and a uniform UI
experience across all event views without duplicated programming effort. As new event view
types are added, they can be easily integrated as a new subclass of an EventView.

 Radio Event View Controller: As mentioned previously, the Radio event view is
responsible for the visualization and playback of RadioEvents. Audio playback is handled via the
AVFoundation and MPMediaPlayer frameworks provided by iOS. These frameworks allow for the
fast and efficient playback of media located within the application bundle resources, without
much development effort. The audio URI’s stored within a RadioEvent are passed to an
instanced MPMediaPlayer object, which is bound to the play/pause button for user-controlled
playback. Audio visualization is pulled from the peak left/right channel audio levels as detected
by the MPMediaPlayer object. This data is then plotted against time via the F3PlotStrip class by
Brad Benson <1>.

 Camera Event View: The camera event view is responsible for properly rendering the
contents of a CameraEvent. Upon initial activation of this event, a UIAlert is instanced and
displayed, containing clue information for the user to interact with. In this case, a UIAlert was
chosen as the notification method, due to its tight integration with iOS and user familiarity due to
its pervasive use throughout the rest of the iPhone operating system. After the alert is dismissed,
a UIImagePickerController is instanced and presented to the user. The UIImagePickerController
is a built-in Apple provided class to access the device’s camera functions in a manner that
utilizes consistent UI and UX standards as the rest of iOS. After the user has captured an image
using the UIImagePickerController, hopefully of content prompted by the previous UIAlert clue,
the image is passed back to the CPXpress application in memory as well as saved to disk on the
user’s mobile device.

At this point, the image is ready for filter and effects modifications. To accomplish this
task, CPXpress leverages the CoreImage framework provided by iOS. First, the image is
rescaled from its original size (either 5 or 8 megapixels) to match the screen resolution of the
mobile device. This reduces the overall memory footprint of the image, as well as providing
fewer pixels to apply the effects and thereby increasing overall performance. Next, a CoreImage
filter is constructed with the appropriate filter options, including the filter type, intensity, and
other filter-specific properties. The rescaled image is then fed into the CoreImage filter, which
produces a new copy of the image with the filter applied. The old, rescaled image is then
discarded; the new one is then displayed for the user and persisted to disk.

Scrapbook Event View Controller: The scrapbook view controller takes any scrapbook

event, represented as an array of different media types including text, images, and video. Text
and images are loaded from the local application bundle resources and placed in a UIScrollView,
which allows the view space to dynamically expand to fit all content in the ScrapbookEvent
object. Images loaded into the UIScrollView are resized to fit the width of the device’s display, to
reduce the overall memory footprint of the view as well as eliminate unsightly and uneven
horizontal scrolling.

Video content in the scrapbook view, however, is handled via MPMoviePlayerController.
The MPMoviePlayerController acts in a similar manner to a MPMediaPlayer, as used in the Radio
event view, taking in a video URI located in the application bundle resources. Upon activation, it
presents a full-screen video player which adheres to the standard UX and UI conventions for

video players as used in the rest of the iOS platform. Activation is triggered via a button,
rendered in-line with any present text or image content.

Goggles Event View Controller: The goggles event view controller provides an

augmented-reality style view, leveraging the device’s camera, gyroscope, and compass to
display digital information over a live view of the user’s surroundings. The SM3DAR library by
Spot Matrix is leveraged to accomplish this task. SM3DAR acts in a very similar manner to
Apple’s MapKit framework, in fact, much of its capabilities are subclassed directly from MapKit.
However, it also has the ability to tap into the device’s camera, gyro, and accelerometer to
display an augmented reality view. Points of interest are added to SM3DAR in the same manner
as MapKit, as long as a class adheres to the MKAnnotation protocol, it can be used as a
SM3DAR point.

Journal View: The journal view controller is responsible for tackling two major problems:
backend synchronization and UI.
 Background synchronization is paramount to the operation of the Journal view. To
accomplish this task, CPXpress relies on the Parse service for user account creation and
management, as well as object management for individual users of CPXpress. Essentially, Parse
acts as a cloud based, schema-less database and file storage system for mobile applications,
set up in such as way that very little setup is required on the part of the application developer.
Parse provides a robust iOS framework for interacting with their cloud services, allowing object
retrieval and persistence, complex queries, and local device caching without significant
additional development effort. Since the data persisted to Parse by CPXpress is simple in
nature, it suited the needs of this project well. Additionally, it allows users to synchronize their
progress in CPXpress across multiple devices, and potentially multiple platforms in the future.

 To accomplish user progress persistence, a very loose structure was defined within the
CPXpress mobile application, which was then associated with the user’s Parse object. Every
user that logs into CPXpress has an associated PFUser object, as generated by the Parse login
systems. This PFUser object acts as a dictionary on device, capable of having additional values
and keys associated with it. After modifications are made, it can be asynchronously persisted
back to Parse. This takes network load off the main thread, resulting in a responsive UI across
the application regardless of network activity. The structure defined for user progress
persistence can be seen below:

Graph	 2:	 Parse	 UML	

 As demonstrated by the above diagram, each user has an associated array of mythSave
objects. MythSaves are PFObjects, the most basic unit of object storage in Parse, and acts like
a dictionary in the same manner as a PFUser. Each mythSave represents one of the myths
present on the user’s device, including its ID and an array of shadeSave objects that represent
all the shades contained within that myth. ShadeSaves, PFObjects as well, contain a set of keys
that correspond to the events in the shade, its values being a Boolean YES or NO to indicate

Username
password
FB AuthData
mythSaves[]

User : PFUser

mythID
shades[]

mythSave : PFObject

shadeID
<K/V storage, keys are event
ID's, values are BOOL event
completed status>

shadeSave : PFObject

completion status. The Journal view simply access and re-synchronizes the user’s current
PFUser object, and can then reach into that object to retrieve progress the user has made
through the myth.

 Visualizing this progress data is the second major problem tackled by the Journal view.
Reusing previous view controller code from the shade selection view, it presents each shade
visually in the same manner. Completed events that have associated journal entries appear
below the visual shade representation, shifting the content for other shades downwards in the
view. Pressing one of the completed events in this view presents a new Scrapbook event view
controller, rendering media from the Scrapbook event stored in that event’s journal entry
property.

Cal Poly Xpress Technical Analysis

 While the Cal Poly Xpress mobile application’s primary focus is on overall user
experience, it is important to note the significance of the technical performance of the
application and how it affects this goal. By analyzing several key data points about the
application, it may be possible to improve the overall performance and stability of the application
leading to a superior user experience. All analysis is done via Apple’s Xcode 4.3 Instruments test
suite. The Instruments suite inspects running processes on a tethered iOS device, and can
gather information on memory usage (including individual object allocation and deallocation
within the program stack), CPU and memory usage, estimated power draw, network
connectivity, disk use, GPU usage, and more. Given the capabilities of the CPXpress mobile
application, several performance metrics will be analyzed: CPU and memory usage, estimated
power draw, and network activity. The data gathered from Instruments will be used to make
recommendations for optimizing the performance and reliability of the Cal Poly Xpress mobile
application.

CPU Usage Analysis

 CPU utilization plays a direct role in the overall performance of the Cal Poly Xpress
mobile application. A breakdown of CPU utilization by type was obtained using the Instruments
test suite, as a user performed a series of tasks mimicking an average use case for the
application. CPU utilization was divided into four parts: overall system CPU utilization,
foreground application utilization relative to overall CPXpress CPU utilization, as well as audio
and graphics CPU utilization calculated in the same manner as foreground application utilization.
A plot of these utilization characteristics over time can be seen below:

	
Figure 16: Overall system CPU utilization

	
Figure 17: CPU Utilization By Type

 As seen by Figure 16, the CPXpress mobile application constitutes a relatively constant
load on the device’s CPU, hovering around 60% total utilization for the duration of the
application lifecycle. However, several spikes in overall utilization can be seen, especially the
drastic spike to 75-80% upon application launch. This spike is directly related to the
MythXMLParser class, reading through myth data located in the local application bundle and
loading it into memory. This parsing process is extremely CPU intensive, and actively adds 1-2
seconds to the launch time of the CPXpress project. This leads to the conclusion that this
content layout is not appropriate for a mobile environment; instead, some format that does not
require parsing would be optimal. For example, placing content in a CoreData database would
greatly increase local access speeds. Optimally, future versions of CPXpress can download

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

0.00%	

10.00%	

20.00%	

30.00%	

40.00%	

50.00%	

60.00%	

70.00%	

80.00%	

Run	
time	

Foregro
und App
Activity

Audio
Processi
ng

Graphic
s

content directly from the Internet on an as-needed basis, entirely negating the need for local
storage in the first place.
 Figure 17 represents a breakdown of CPU activity by type over the same application
lifecycle as Figure 16 by foreground application activity, as well as graphics and audio tasks. At
application start, a large spike in foreground app activity is recorded, corresponding to the
observations noted in Figure 16. However, this plot brings to light other CPU loads previously
not observed that impact overall performance. The first one is a spike in graphics tasks on the
CPU, around when the Shade Exploration screen is instanced and becomes visible. The Shade
Exploration screen relies primarily on CoreAnimation for all visual effects, which provides a
certain amount of GPU acceleration to increase performance. The GPU is used to ensure a
60fps target for all animations created within the view, however, it is apparent that the CPU still
plays a significant part in making this happen, making up about 30% of the application’s CPU
utilization at that time. To alleviate this CPU load, the Shade Exploration view could be rewritten
to be an OpenGLES view, which relies 100% on the GPU for rendering.
 The largest foreground application CPU utilization spike seen in Figure 2 is due to the
RadioEvent view’s plot-based visualizer. Unfortunately, this visualizer has no GPU acceleration
at all, as it does not leverage CoreAnimation for plot generation. Switching this visualizer to one
that utilizes OpenGLES or CoreAnimation should ease CPU load in this view.

Memory Utilization

	
Figure 18: Memory Consumption per task

 Cal Poly Xpress relies on iOS 5.0’s ARC, or Automatic Reference Counting for memory
management, leaving very little developer interaction in the memory allocation or deallocation
process. However, a general analysis was performed of real system memory usage over a
variety of tasks to determine the effectiveness of ARC. As seen from the Figure 18 below, ARC
has a very liberal memory usage model, allowing the application to use 100-120MB of system
memory for some tasks. At this point, it was observed that ARC forces the deallocation of
application content to bring memory usage down to more manageable levels, however, this
process comes with a temporary decrease in performance and therefore the overall user
experience of the app. To alleviate this issue, design choices can be made in the CPXpress
application programming to reduce memory usage. This includes

• Shade selection view

0	
20	
40	
60	
80	
100	
120	
140	

o The shade selection view has the potential to play host to a large number of
views, depending on the number of shades in the particular selected myth. More
shades results in an exponentially higher number of views that need to be
instanced for the preview, such as the map, image, and description views.
However, these views are not always visible to the user. If fewer views could be
instanced at once, and then reused for different content later for other previews,
the overall memory consumption could be reduced.

• Myth parsing
o At application start, all myths on device are parsed and loaded into memory.

This is an unnecessary process, and consumes needed memory resources.
Persisting myth data to disk instead of memory would be a more efficient
option.

Estimated Power Consumption

	
Figure 19: Estimated Power Consumption

 Power consumption is determined via XCode’s Instruments Energy analysis template.
This analysis process differs slightly from CPU and memory consumption metrics, as it does not
run tethered. Instead, energy logging is enabled on a target test device while untethered from
power or a computer. At this point, the CPXpress mobile application is used in the same manner
as the other two tests. Upon application termination, the target test device is plugged back into
Instruments, which proceeds to offload power log data, parsing it into human-readable
information.
 Power consumption is measured on an estimated 0 to 20 scale, 20 indicating maximum
power consumption, 0 indicating relatively average power consumption. Unfortunately, these are
only estimates; there are many variables that could potentially impact device battery life during
normal user operation including other applications open on the device and the state of the
device’s internal sensors. The power consumption analysis is helpful, however, for generalizing
the potential power draw of different operations within the CPXpress mobile application,
exposing any glaring power drains that may be present.
 A few interesting conclusions were drawn from the analysis of the power consumption
data. Firstly, GPS did not appear to have a significant impact on overall power usage, even
though CPXpress leverages it extensively for the majority of its functions. This could be due to
the efficiency of the CoreLocation framework provided in iOS. Spikes in power consumption
were seen during high periods of CPU utilization, perhaps indicating that high CPU load should

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

16.00	

18.00	

20.00	

be avoided. GPU utilization did not appear to have a major effect on power consumption as well,
moving the exploration view over to a GPU-accelerated OpenGLES view should alleviate power
drain further.

Related Works

 Upon extensive research, it has been determined that there are no mobile applications
to date that match the exact goals of the CPXpress project. However, there are several products
and applications that do fulfill a subset of the CPXpress project’s capabilities, or are similar in
nature.

National Geographic Parks for iPhone

	
 The National Geographic Parks application for iOS provides an informative guide to
several US national parks. Similarities to the CalPoly Xpress project include geocode events, as
well as the ability to present relevant information based on current user coordinates. However,
this application is single-purpose, and does not have the ability to allow the user to organically
discover their environment via the device’s location services.

Source: http://itunes.apple.com/us/app/id518426085?mt=8&src=af&ign-mpt=uo%3D6

Layar Reality Browser

 The Layar application provides an augmented reality view of a wide variety of
information culled from a variety of online sources, such as Yelp and Wikipedia. Similar to the
CPXpress mobile application, its primary purpose is to overlay digital information over the user’s
physical environment. Additionally, its capable of being used for a variety of purposes,
depending on the information source selected. However, it does not lend itself to the story telling
paradigm established by the CPXpress project, instead acting as a reference tool, a way to get
information out of the internet and into the real world.

Source: www.layar.com
Geocaching

 The Geocaching application for iOS facilitates the new, popular sport of geocaching, or
finding physical objects in a user’s environment via GPS location services. With the exception of
the physical object aspect of geocaching, the goals here are very similar to that of the CPXpress
project. However, much like Layar, it does not support the storytelling features that CPXpress
touts.

Source: http://itunes.apple.com/app/geocaching/id292242503?mt=8

Conclusion

 As demonstrated, the CalPoly XPress mobile application has proved the concept of
location based storytelling and educational material to be a feasible option on today’s mobile
devices. CPXpress leverages the full technology stack available in iOS 5.0+ and the iPhone 4
and 4S to create an engaging augmented-reality experience for the end user. Additionally, it
provides a new, innovative creative tool for content authors to create their stories with. The
potential applications for the CPXpress project hare huge, its up to the creativity of our users to
bring it to its full potential.

Future Work

 The CPXpress mobile application in its current form is capable of performing a wide
variety of tasks, however, there are many areas in which future development would benefit it
greatly. A few of these key development tasks are outlined below

• Parse persistence for Myth data
o Currently, myths are required to be located in the local application resource

bundle for the CPXpress project. This is inconvenient, as it requires the content
authors to recompile and reload the application upon every content
modification. Additionally, requiring all content to be local on device requires a
significant amount of disk space, a rare commodity on mobile devices. The
Parse object storage service has proven to be extremely effective at storing user
sync and persistence data, and already has tight integration with the CPXpress
mobile application. It would not be difficult to migrate myth content over to
Parse as well, providing one, central, cloud-based solution for myth and user
data storage. Additionally, this would alleviate the distribution problems in the
current rendition of the project, as it would not require a content author to
recompile the application upon myth modification. Instead, modifications could
simply be pushed from the authoring tool to Parse, where it would immediately
show up on the end user’s device.

• Desktop Authoring Tool
o Currently, CPXpress content is generated via the creation of an XML file that is

compliant with the CPXpress schema developed by Dr. Keen. This, along with
associated multimedia content for that story has to be manually loaded on the
mobile device in order for users to interact with it. While the XML development
process was effective for the purposes of this project from a development
standpoint, it is not user friendly for non-technical content authors. Therefore,
the creation of a graphical web or desktop-based authoring tool would be an
important asset for the CPXpress project. Such a tool would make content
creation for the project extremely accessible especially to non-technical
persons, leading to an increase in overall content for the CPXpress mobile
application.

• Indoor Navigation
o The CPXpress mobile application, at this time, is the most effective in outdoor

environments. This is due to the sensors available on the iPhone 4 and 4S
leveraged by the project, and their ineffectiveness indoors. In an indoor
environment, GPS and digital compass readings become unreliable to the point
of being useless, rendering the CPXpress mobile application ineffective.
Therefore, a new method of indoor navigation needs to be investigated. Possible
options include QR code based navigation, utilizing the device’s camera.
However, this would remove some of the organic exploration features that are
central to the project’s goals. Additionally, new emerging technologies may
provide for accurate indoor navigation in the near future, the use of devices that
support this feature would greatly enhance indoor navigation.

• Cross-Platform Compatibility
o While the CPXpress mobile application targets iOS 5.0+ and the iPhone line of

devices, it would be remiss not to recognize the large install base of other
mobile platforms today. Additionally, these other mobile platforms are host to
devices that are very similar to the iPhones used for CPXpress, and would be
prime candidates for the project. If development resources allow it, it would be a
good idea to port the project to other platforms such as Google Android or
Microsoft Windows Phone 7.

• Social Integration

o The current integration of the CPXpress mobile application is restricted in terms
of user experience to one user at a time. Social media integration could be
explored to facilitate collaborative organic discovery, or perhaps the sharing of
information found in CPXpress event encounters with peers.

References and Resources

1. Benson, Brad. F3PlotStrip. N.p., n.d. Web. <https://github.com/ChiefPilot/F3PlotStrip>.

2. Bradley, Tom. TBXML. Computer software. Vers. 1.4. N.p., n.d. Web.

<http://www.tbxml.co.uk/>.

3. Bukovinski, Matej. MBProgressHUD. Vers. 0.4. N.p., n.d. Web.

<https://github.com/jdg/MBProgressHUD>.

4. Morrissey, Jason. JMTabView. Computer software. N.p., n.d. Web.

<https://github.com/jasonmorrissey/JMTabView>.

5. OpenStreetMap. CloudMade. N.p., n.d. Web. <http://cloudmade.com/>.

6. TestFlight Inc. TestFlight. Computer software. N.p., n.d. Web. <https://testflightapp.com>.

