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Since the 1980s, manipulation of quantum systems has be-
come a potentially-profitable but challenging goal [1,2]. A 
systematic theory on controlling quantum systems is pre-
requisite in applications such as chemical reactions and 
quantum information. After almost 30 years of development, 
researchers have made great strides in many aspects, such as 
controllability [3], optimal control [4,5], closed-loop learn-
ing control [6,7], and quantum feedback control [8]. How-
ever, the situation in quantum systems control is very dif-
ferent from controlling classical dynamic systems. For ex-
ample, quantum systems are difficult to observe and gener-
ally are coupled to non-controllable environments. Quantum 
states are easily destroyed by measurement and decoherence. 
Quantum measurement appears as one essential obstacle in 
quantum control because the system state is changed; it is 
difficult to get feedback information without disturbing the 
system state. 

Since quantum measurement unavoidably disturbs the 
state of the quantum system, some researchers have pro-

posed several schemes that employ quantum measurement 
as an external means to control quantum systems [915]. 
Mendes and Man’ko [9] discussed quantum control in a 
geometrical setting provided by the Strocchi map. In their 
paper, quantum time evolution corresponds to smooth Ham-
iltonian dynamics in a classical-like phase space and meas-
urements correspond to jumps in the phase space. They 
found that a unitary non-controllable system might become 
controllable by “measurement plus evolution”. Inspired by 
this idea, Mandilara and Clark [10] proposed a strategy for 
indirect control of a target system through projective meas-
urements on its entangled partner. Zhang et al. [11] pro-
posed a control scheme based on a single-step quantum 
measurement and unitary evolution to steer a non-control- 
lable system from one state to another with a probability 
close to one. Roa et al. [12] studied the problem of mapping 
an unknown mixed quantum state onto a known pure state 
by sequential measurements of two non-commuting ob-
servables. Pechen et al. [13] presented a scheme for control-
ling quantum systems by measuring a set of observables one 
by one until the target was achieved. 
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In quantum computing, the state preparation and readout 
involves transferring a population of discrete quantum states. 
To transfer this population effectively, several methods 
have been proposed [1621]. However, a systematic theory 
of population transfer is still required. In this paper, our goal 
for quantum control is to steer the controlled system to an 
eigenstate of a projective measurement operator. In this case 
we develop a simple and easy control scheme which only 
needs to take the same projective measurement after a uni-
tary evolution several times over until the target state is 
reached. We analyze the control process using the concept 
Markov chains where the target eigenstate is an absorbing 
state; we obtain a condition by which the target eigenstate 
can be reached with the least number of control steps. 

The paper is organized as follows. In Section 1, we recall 
briefly the quantum concepts of evolution and projective 
measurements. In Section 2, we present our scheme that 
involves performing quantum unitary evolution and quan-
tum projective measurement in turn until the target eigen-
state is achieved. In Section 3, we investigate the scheme 
where we prove its finite-step reachability with probability 
one using Markov chains and provide a condition that de-
termines how to reach a target eigenstate with the least 
number of control steps. Since an analytical solution is very 
hard to achieve, we analyze in Section 4 the realization of 
our scheme in various simulations. In Section 5, we give 
numerical simulations of our scheme for a 2-qubit quantum 
system. Finally we conclude our results and discuss some 
potential applications of our scheme in Section 6. 

1  Prerequisites 

1.1  State representation and evolution 

Quantum mechanics is usually represented in the form of 
Dirac and matrix notation, where the state of a quantum 
system is represented by ket, , where  denotes the 

Hilbert space spanned by all the states of the system. The 
evolution of the state can be described by the following 
Schrödinger equation [22]: 

 | ( ) ( ( )) | ( ) .t H u t t   
i  (1) 

Here, ( ( ))H u t


 represents the Hamiltonian of the system, a 

Hermitian operator acting on the Hilbert space  with ( )u t


 

as a set of external control variables. For a d-dimensional 
quantum system, its state can be expressed as 

1
| |

d

i ii
  


   , where {| }i   forms an orthonormal 

basis of . The solution of eq. (1) has the form 

 | ( ) ( ) | (0) ,t U t      (2) 

where ( )U t  is a unitary evolution operator which can be 
solved using the Schrödinger operator equation [22]: 

 ( ) ( ( )) ( ), (0) ,U t H u t U t U I 
i  (3) 

where I denotes the identity operator. Eqs. (2) and (3) de-
scribe the unitary evolution of a closed finite-dimensional 
quantum system under external controls ( )u t


. 

1.2  Quantum projective measurement 

According to the von Neumann postulates [22,23], when an 

observable  is measured, the expectation value corre-

sponds to one of the eigenvalues of . For a d-dimensional 

quantum system, let j (j=1, 2,…d) denote the eigenvalues 

of  with corresponding eigenvectors j. The observable 

operator can be expressed as 

 
1

| |,
d

j j j
j

  


 A  (4) 

where | |j j   can be called as projector Pj. 

Taking the eigenvector set {j} of the measurement op-
erator as the basis of the state space, then the Hamiltonian 
and unitary evolution operator can be expressed in matrix 
form, and any state in the state space can be expressed as a 
superposition of these eigenstates. If the system before 

measurement is in state 
1

| |
d

j jj
  


   , then after a 

projective measurement, the system will collapse to one of 
the eigenstates j with probability 

 2| | .| |j jP      (5) 

A simple example of a quantum projective measurement 
is the Stern-Gerlach measurement with neutral spin-1/2 at-
oms, the spin resulting from an unpaired electron. As de-
picted in Figure 1, the beam is shot from the source and as it 
traverses the inhomogeneous magnetic field, the beam splits 
in two. The observable can be diagonalized as 

 
1 1

| | | |,
2 2

A      (6) 

where  and  are eigenstates for spin-up and spin-down 
respectively. If an atom before measurement is in the su-

perposition state 0 1 2| ( ) | |t       , where 1 and 2 

are complex numbers satisfying |1|
2+|2|

2=1, after meas-
urement, the atom will be detected by the upper detector 
with probability |1|

2 and by the lower detector with proba-
bility |2|

2. 

2  Multi-step evolution and measurement control 

By combining unitary evolution and quantum projective  
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Figure 1  Stern-Gerlach experiment setup for neutral spin-1/2 atoms. 

measurements, we propose a method to exercise control 
over a quantum system and to steer it towards a target ei-
genstate T. Our quantum control scheme works as fol-
lows: initially, the system is in an initial state 

0
0| |j jj

     . We perform a measurement  on the 

system. According to the quantum measurement postulate, 
the system will be in one of the eigenstates i of  with a 

certain probability 0 2| |i ; if that eigenstate is not equal to 

T, we choose an appropriate evolution time iT   and 

control variables ( )iu t  to produce a unitary evolution 

operator iU   conditioned on the output state i of the 
measurement. We subsequently let the system evolve under 

control variables ( )iu t  for a period of time iT   with its 

final state in 1| (1) | |i
i j jj

U         . We perform 

 on the system again, and if the output state *| (1)   is 

equal to | T  , we have achieved our goal; otherwise, if 
*| (1) | l    , we choose an appropriate lU   to evolve the 

system under control variables ( )lu t  for a period of time 
lT  , then perform the projective measurement  once again. 

We combine each iU   and  as one control step. If the 

output state is not equal to the target eigenstate, we repeat 
the control step until the target eigenstate |T is attained. 

In each control step, based on the i-th output state i of 
the last measurement, we choose a unitary evolution opera-

tor iU   to apply to the system and then perform the pro-
jective measurement that instantly collapses the state to an-
other eigenstate j with a certain probability. If we focus 
on just the output state of each measurement, the control 
process could be described by discrete-time equations: 

 *| ( 1) | for | ( ) =| ,i
i ik U k          (7) 

  * 2Prob | ( 1) | ,| | ( 1) |j jk k            (8) 

where | ( )k   and *| ( )k   are the respective states be-

fore and after the projective measurement at step k, and 
iU   is the unitary evolution matrix which is chosen based 

on the i-th output eigenstate from the projective measure-

ment. 
The control algorithm of the multi-step evolution and 

measurement control can be described as follows. 
(1) Given an initial state 0 and a target eigenstate T. 
(2) Apply the projective measurement to the controlled 

system. 
(3) Decide if the output state of the measurement is the 

target eigenstate T, in which event the control process 
ends; otherwise, go to step (4). 

(4) Choose appropriate control variables ( )iu t  and 

control period iT   to produce a unitary evolution matrix 
iU   depending on the output eigenstate i of the projec-

tive measurement. 
(5) Let the controlled system evolve under control varia-

bles ( )iu t  for a period of time iT   which corresponds to 

the unitary evolution matrix iU   chosen in the step (4), 
then go to step (2). 

The whole control process is illustrated in Figure 2 for a 
4-dimensional quantum system. Here, the objective is to 
steer the system from the initial state 0 to the expected 
target state 4| |T    . Initially, we perform a projective 

measurement on the system, collapsing the system to one of 
its eigenstates i. If 4i  , let the system evolve under 

iU   then follow up with the projective measurement. The 
output state will be in j with probability pij. If j=4, we 

have achieved the control goal; otherwise, we apply jU


 
allowing the system to evolve and again take the projective 
measurement until the target eigenstate |4 is achieved. 

3  Markov chain approach 

As inferred from Section 2, our scheme is probabilistic in 
nature. Hence, there might be situations where, after many 
(even infinite) control steps, we have not attained the target 
goal. We shall further investigate the properties of the con-
trol process using Markov chains and provide a condition 
that determines whether we can attain a target state in finite 
number of steps by the proposed approach. 

Proposition 3.1.  The multi-step evolution and meas-
urement control scheme is a Markov chain with the target 
eigenstate as an absorbing state. 

Proof.  As the initial state is not always one of the ei-
genstates for the projective operator, we need first to make a 
projective measurement to return an output eigenstate which 

we denote by *| (0)  . If it is not the target eigenstate, we 

perform a controlled evolution followed by the projective 

measurement. The output eigenstate is denoted as *| (1)  . 

Analogously, we could express the output eigenstate of step 

k in our control scheme as *| ( )k   giving with probability 
* 2(| ( ) | ) | | ( ) |i iP k k         . In this sense, our aim is to 



2236 Liu W F, et al.   Chin Sci Bull   June (2012) Vol.57 No.18 

 

Figure 2  Process of multi-step evolution and measurement control in a 4-dimensional quantum system where the target state is |4. pij is the transition 
probability from state |i to state |j in one iteration of a control step. Ui {i=1, 2, 3} is the unitary evolution matrix conditioning on the output eigenstate |i 
of the projective measurement. 

prove that * * *{| (0) ,  | (1) , |  (2) ,  }       is a Markov 

chain. 
The proof of the above assertion is as follows. The  

probability of *| ( ) | jk     is 2| | ( ) |j k    = 
* ( 1) * 2| | | ( 1) |k

j U k    , where 
* ( 1)kU   is the con-

trolled-evolution operator depending on the output eigen-

state *| ( 1)k    of the projective measurement. Thus, the 

probability for collapse to *| ( ) | jk     is only depend-

ent on the state at step k1 and does not depend upon prior 
states before this step. Hence, the controlled evolution and 
measurement scheme is a Markov chain. 

In this scheme, the target state is one of the eigenstates of 
the projective operator; if the output state of the measure-
ment is just the target eigenstate, we exit the procedure 
successfully. From the Markov chain point of view though, 
the system remains in the target eigenstate and cannot  
jump to other states. In this sense, the target eigenstate is  

an absorbing state of the Markov chain *{| (0) ,   
* *| (1) ,  | (2) , }   . 

Without loss of generality, we assume that the initial 
state is 1|    and the target eigenstate is | d  ; if not, we 

simply reorder the eigenstates. In addition, we assume all 
operators are represented in the eigenbasis. The state of the 
Markov chain lies in the space set 1 2{| , | , | }d      with 

| d   as an absorbing state. Let pij denote the transition 

probability from state | i   to state | j   in one control 

step; then we get a one-step state transition probability ma-
trix P with ij-th entry pij satisfying 

 

2| | | | for ,

0 for and ,

1 for and .

i
j i

ij

U i d

p i d j d

i d j d

    
  
  

 (9) 

Here, iU   is the matrix form of the unitary evolution op-

erator in the eigenbasis and 
1

1
d

ijj
p


 . It should be not-

ed that the i-row vector of P depends only on iU   and 

independent of jU


, j≠i. Taking the 4-dimensional system 
in Figure 2 as an example, the one-step state transition 
probability matrix is 

1 1 1 1

2 2 2 2

3 3 3 3

2 2 2 2
11 21 31 41

2 2 2 2
12 22 32 42

2 2 2 2
13 23 33 43

| ( ) | | ( ) | | ( ) | | ( ) |

| ( ) | | ( ) | | ( ) | | ( ) |
.

| ( ) | | ( ) | | ( ) | | ( ) |

0 0 0 1

U U U U

U U U U
P

U U U U

   

   

   

 
 
   
 
  

 

(10) 

Here, 2| ( ) |i
ij jip U   is the modulus-square of the ji-th 

entry of iU  . We could rewrite P into block-matrix form: 

 ,
1

Q R
P

O

 
  
 

 (11) 
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where Q is a (d1)(d1) matrix with ij-th entry qij=pij, R is 
a column vector with i-th entry ri=pid, and O is a zero row 
vector. 

From Markov chain theory, we can recast the k-step state 
transition probability matrix P(k) into block-matrix form: 

 
( )

( ) ,
1

k k
k k Q R

P P
O

 
   

 
 (12) 

where ( ) 2 1( )k kR I Q Q Q R     . Since d is an 

absorbing state of the Markov chain, the i-th entry ( )k
ir  of 

R(k) denotes the transition probability from state i to the 
target eigenstate d in k steps. It should be noted that the 
probability includes attaining d in less than k steps. 

From the view of Markov chain, the argument that a state 
j is reachable from i means that there exists m≥1 such 

that the m-step transition probability ( )m
ijp >0. Using these 

ideas, we have the following propositions and lemmas 
based on the analysis of absorbing Markov chains devel-
oped in [24]. 

Proposition 3.2.  (Finite-step Reachability with Proba-
bility) If the target eigenstate is reachable from all eigen-
states, for any given probability p(0,1), there exists a finite 
k such that after k steps the state has reached the target ei-
genstate with probability greater than p. 

Proof.  If the target eigenstate is reachable from all ei-
genstates in the sense of Markov chain, then for i{1, 
2,…d1}, there exist finite numbers mi and positive num-

bers pi, such that ( ) 0im
i ir p  .  

Let m=maximi and pm=minipi. Since ri
(k+1)=ri

(k)+(QkR)i≥

ri
(k), for all initial eigenstates, after m steps, the system will 

reach the target eigenstate with probability greater than pm. 
In other words, the probability that the system will not reach 
the target eigenstate after m steps is less than 1pm1. If the 
system does not reach the target eigenstate after 2m steps, it 
cannot reach the target eigenstate in m steps and cannot 
reach the target eigenstate in the next m steps. Thus the 
probability that it does not reach the target eigenstate after 
2m steps is less than (1pm)2. Analogously, the probability 
that it does not reach the target eigenstate after lm steps is 
less than (1pm)l. 

For p(0,1), choose l large enough to make sure 
(1pm)l1p, and let k be an integral number not less than 

(1 )log (1 )
mpm p  . Then, after k steps, the state will reach 

the target eigenstate with probability greater than p. 
The above proposition shows that the state of the con-

trolled system will converge to the target eigenstate with 
probability one after finite control steps. However, the more 
control steps used, the higher the cost. Hence, we need to 
optimize the unitary evolution to reach the target with less 
number of control steps. 

Lemma 3.3.  If the target eigenstate is reachable from 

all eigenstates, then IQ is nonsingular and 

 1

0

( ) .k

k

I Q Q






    (13) 

Proof.  If the target eigenstate is reachable from all ei-
genstates, from the proof of the above proposition, we could 
conclude that after m steps, the probability of reaching the 

target eigenstate from state i is ( )m
ir > pm>0; thus the sum 

of the entries of any row in Qm is less than 1. As a result, we 

have lim k

k
Q


=0. 

Let ( )I Q x =0, that is x=Qx. By iteration, we have 

x=Qnx. Since Qn→0, we have Qnx→0. Hence the only solu-
tion is x=0. Thus IQ is nonsingular. Note that 

 2 1( )( ) .k kI Q I Q Q Q I Q         (14) 

Letting k tend to infinity we have 

 1

0

( ) .k

k

I Q Q






    (15) 

Define N=(IQ)1 as the fundamental matrix for P. From 
[25], we have the following lemma. 

Lemma 3.4.  The ij-th entry nij of the matrix N is the 
expected number of steps that the chain is in state j before 
being absorbed into the target eigenstate if it starts in state 
i.  

Proof.  Let X(k) be a random variable equaling 1 if the 
chain is in state j after k steps, and 0 otherwise. We have 

 ( ) ( )Prob( 1 ,)k k
ijX q   (16) 

 ( ) ( )Prob( 0) 1 ,k k
ijX q    (17) 

where ( )k
ijq  is the ij-th entry of Qk. Since X(k) is a 0–1 

random variable, ( ) ( )( )k k
ijE X q . The expected number of 

steps for which the chain is in state j in the first k steps, 
given that it starts in state i, is clearly 

 (0) (1) ( ) (0) (1) ( ) .( )k k
ij ij ijE X X X q q q         (18) 

Letting k tend to infinity we have 

 (0) (1) (0) (1) .( ) ij ij ijE X X q q n        (19) 

The ij-th entry nij of N gives the expected number of 
steps that the process is in the state j from initial state i 
before being absorbed. Hence the sum of the entries of the 
i-th row of N gives the expected number of steps before 
being absorbed into the target eigenstate from the initial 
state i. 

Proposition 3.5.  (Least Step-number Condition) For 

the initial eigenstate 1 and target eigenstate d, if iU  , 
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i=1, 2,…d1, is chosen to minimize the sum of entries of 
the first row of N, the controlled system can reach the target 
eigenstate with the least number of steps. 

Proof.  Since the ij-th entry nij of N gives the expected 
number of steps that the process is in state j from initial 
state i before being absorbed, the sum of the entries of the 
first row of N gives the expected number of steps before 
being absorbed if it starts from initial state 1. As a result, 
if the control action is chosen to minimize the sum of the 
entries of the first row of N, the controlled system can reach 
the target eigenstate with the least number of control steps 
in expectation. 

The above proposition gives a least step-number condi-
tion to steer a system to the target eigenstate. In our scheme, 
the control action is chosen based on the output eigenstate 
of the projective measurement. The i-th row of P depends 
only on the corresponding control action conditioned on the 
i-th output eigenstate of the measurement. Hence, we have 

d1 control actions { 1U  , 2U  ,… 1dU   }. The control ac-
tion group forms the state transition probability matrix P. 
To reach the target with the least number of control steps, 
we choose the best control action group according to the 
least step-number condition. 

4  Analysis of simulated realization 

In Section 3, we have presented the scheme of multi-step 
evolution and measurement control in theory. However, for 
most quantum systems in practice, it is difficult to get an 
analytical solution. Hence, the numerical solution is dis-
cussed in this section and some experimental simulations 
with discussions will be presented in the next section. 

4.1  Approximation to least step-number condition 

Since the relation between the control action and the sum of 
the entries of the first row of N is not clear enough to guide 
us to choose the best control action, we take an approxima-
tion to get a simpler and easier way to choose the control 
action. 

As 2 3( )N Q I Q Q Q      and the norm of matrix 

Qk decreases as k grows, we could take the sum of finite 
sequences of Qk to approximate N. We call  

 2 3( , ) kS Q k I Q Q Q Q       (20) 

as the k-th order approximation of N(Q). The corresponding 
expected steps before being absorbed is  

 1( , ) ( , ) ,TT Q k e S Q k c   (21) 

where 1 [1 0 0]Te    and [1 1 1]Tc   . 

The first-order approximation T(Q,1) is 

 1 1( ,1) ( ) 1 (1 ).T
dT Q e I Q c p      (22) 

In this case, we maximize p1d to minimize the expected 
number of steps before being absorbed. In other words, we 
choose the control action for which the one-step transition 
probability is the largest to transmit the initial eigenstate to 
the target eigenstate. 

The second-order approximation T(Q,2) is 

 

1 1 1
2

1 1 1
1 1 1

1

1 1
1

( ,2) ( ) 1

3 2 .

d d d
T

j k kj
j j k

d

d k kd
k

T Q e I Q Q c p p p

p p p

  

  





     

  

 


 

(23)

 

To minimize T(Q,2), we just need to maximize 

1

1

1 1
2 d k k

d

k dp p p



 . Note that pkd, k=1, 2,…d1, are inde-

pendent of each other and of other factors involved in 
T(Q,2). Hence we could choose the unitary evolution matrix 

kU   to maximize pkd once the output state of the measure-

ment is k. However, for 1U  , the optimal problem be-

comes hard to treat. As 11
1

d

kk
p


  and the coefficient of 

p1d is always larger than p1k, kd, we could change 1U   to 
maximize p1d and get a fairly good solution but that might 
not be the best. As a result, the control law is to choose the 
control action for which the one-step transition probability 
is the largest for transition to the target eigenstate from the 
output eigenstate of the measurement in each control step. 

4.2  Discretization of control strengths 

To get a numerical solution, we constrain the controlled 
system to the following bilinear system [22]: 

 0
1

i | ( ) ( ) | ( ) ,i

M

m m
m

t H u t H t 


 
    

 
  (24) 

where H0 is the drift Hamiltonian and Hm is the control 

Hamiltonian. ( )i
mu t  is the control strength of Hm if the 

output eigenstate of the measurement at last step is i. In 

addition, we fix the unitary evolution time iT   of each 

control step to T and keep the control strengths { ( )}i
mu t  

invariant during a control step.  
In these settings, after recalling the derivation process of 

the state transition probability, we could easily conclude its 
differentiability with respect to the control strengths. 

Proposition 4.1.  The state transition probability matrix 
is differential with respect to the control strengths. 

Proof.  The Hamiltonian of the bilinear quantum system 
under control conditioning on the output state of the meas-
urement i can be written as 

 0
1

.i i

M

m m
m

H H u H 



   (25) 
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The unitary evolution of the state can be represented as ma-
trix form 

 0
1

i
exp( ( )).i i

M

m m
m

T
U H u H 



  
 (26) 

The projective measurement will collapse the state 

|i
iU     to one of its eigenstates j with probability 

2| ( ) |i
jiU  . The one-step state transition probability from 

eigenstate i to eigenstate j will be 

 2| ( ) | .i
ij jip U   (27) 

Since iU   is a unitary matrix, we have 
1

2| ( ) |i
ji

d

j
U 

 =1, 

and thus it does not need to normalize 2| ( ) |i
jiU   to make 

sure 
1

d

ijj
p

 =1. 

To illustrate the above scheme, we consider the differen-

tiability of P with respect to i
mu . From [25], we know iU   

is differential with respect to i
mu : 

 
0

0 1

0
1

i i( )
exp( ( ))

i
exp( ( ))d .

i
i

i

i

MT

m m
mm

M

m m m
m

U T t
H u H

u

t
H H u H t












 
  



  





 



 

(28)

 

Although the modulus of a complex number is not differen-
tial with respect to the complex number, as the complex 

number ( )i
jiU   is related to a single real parameter i

mu , 

the differentiability of P with respect to i
mu  holds as 

shown below. We could rewrite ( )i
jiU   ( )i

ji mf u   

i ( )i
ji mg u , where fji, gji are both real functions and are dif-

ferential with respect to i
mu . 

 
d ( ) d ( )

2 ( ) 2 ( ) .
d d

i i

i i

i i i

ij ji m ji m
ji m ji m

m m m

p f u g u
f u g u

u u u

 
 

  


 


 (29) 

Hence the state transition probability matrix is differential 
with respect to the control strengths.  

Based on the above proposition, we can deduce the 
probability matrix is uniformly continuous with respect to 
the control strengths. Thus, we can discretize the control 
strengths with errors under tight control. For a better nu-
merical solution, we could discretize the control strengths 
more densely in the expense of a larger computation. How-
ever we need not be concerned that there might exist singu-
lar points with very large errors. 

To apply our scheme in practice, we first discretize the 
control strengths which are generally bounded and get a 

series of control strength groups 1 2
1 2{( , , )}Mk k k

Mu u u . Then, 

we calculate the state transition probability matrix within 
these control strength groups and search for the best group 

1 2( , , )i i i
Mu u u    to transmit the system from the output ei-

genstate i to the target eigenstate with the least number of 
control steps. To simplify the operation, we could make a 
first- or second-order approximation for a calculation of the 
expected number of steps. In operation, we first make the 
projective measurement on the system. If the output eigen-
state is not the target eigenstate, we choose an appropriate 
control strength group for the output eigenstate of the 
measurement that when applied, enables controlled evolu-
tion of the system. For example, if the output eigenstate is 

i, we choose the control strength group 1 2( , , )i i i
Mu u u   . 

After evolution for a period of time T, we make a projective 
measurement on the system again. If the output state is just 
the target eigenstate, we finish the control process success-
fully; otherwise, we continue the above control process until 
the target eigenstate is achieved. 

5  Simulated experiments and discussions 

We now consider two coupled qubits formed from the spins 
of a nuclear and an electron. The drift Hamiltonian is  

 0 0.5 0.1 ,z z z zH S I S I    (30) 

where 2

1

2z zS I   and 22
.

1
z zI I    We choose the 

control Hamiltonians to be 1 2

1

2x xH S I    and 

2 2

1

2
.x xH I I     Here 

0 1

1 0x
 

  
 

, 
1 0

0 1z
 

   
, 

2

1 0

0 1
I

 
  
 

 are the Pauli matrices. The evolution of this 

quantum system can be formulated as 

  2210 1| ( ) | ( ) ,Ht H u u H t     i  (31) 

where we assume 1  for simplicity. Under constraint 
conditions described in Section 4.2, we make the following 
simulation experiments. 

If we leave the Hamiltonian unchanged during each step 
of evolution, we discretize the control strengths and simu-
late the control process on 10000 samples. In this way, we 
obtain the number of steps required to transform the initial 
state to the target eigenstate for all samples. We then can 
calculate the number of steps required with probability 
greater than 0.98. This is plotted with respect to the control 
strengths in Figure 3. From the numerical solution we can 
find an appropriate control action so that the system evolves 
with the least number of steps. 

If we perform a second-order approximation to obtain the 
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multi-step evolution and measurement control to be applied 

on the system with [ 5,5]i
mu   , we can calculate the con-

trol law quickly and simulate the control process with a 
Monte Carlo method on 10000 samples. The result is shown 
in Figure 4 where most of the samples finish on the target 
eigenstate within two steps. Hence, a second-order approx-
imation can perform the process within fewer steps. 

We have also compared the expected number of steps 
required from first- and second-order approximations. We 

choose here iu [2, 2], and again simulate the control 
process on 10000 samples. We plot sample counts reaching 
the target eigenstate with respect to the number of control 
steps in Figure 5. The system finishes up in the target ei-
genstate in less number of steps in the second-order ap-
proximation than for first-order approximation.  

From the experimental results, one can see the validity of 
our scheme to steer the system to a target eigenstate. If the 
free degree of the control action is large, the number of 
control steps to reach the target eigenstate with a certain  

 

 

Figure 3  Steps required to steer the system from initial state 1 to target 
eigenstate 4 with respect to control strengths (u1, u2) if the control 
strengths are kept constant during each step (the maximum number of steps 
in the simulation is set to 20). 

 

Figure 4  Sample counts reaching the target eigenstate with respect to the 
control steps in the second-order approximation. 

 

Figure 5  Sample counts reaching the target eigenstate with respect to the 
control steps in the first-order (a) and second-order (b) approximation (the 
maximum number of steps in the simulation is set to 18). 

probability could be very small after using the optimized 
algorithm. Although multi-control steps are required in our 
scheme, we just need to measure one observable many 
times. This differs from the scheme proposed by Pechen et 
al. [13] which needs to measure a set of different observa-
bles one by one. The control law of our scheme is simple 
and is easy to realize for quantum spin systems using 
Stern-Gerlach measurements or for photons in quantum 
optical systems with beam splitters as measurement devices. 
For a d-dimensional quantum system, we need only calcu-
late d1 unitary evolution operators off-line to apply during 
system evolution. With first-order approximations, only one 
unitary evolution operator is required; with second-order 
approximation, the unitary evolution operator is chosen 
based on the output eigenstate of the measurement. As the 
control steps go on, the probability to reach the target ei-
genstate will increase; this is an aspect which is different 
from the scheme in [11]. In that scheme, we only perform 
the measurement once, but the algorithm then has a proba-
bility of failure. Here the target eigenstate can be always 
reached after a finite number of control steps. The cost is 
that we need to repeat the control step many times until the 
target is achieved. 

6  Conclusion 

In this paper, we have proposed a simple and easy quantum 
control scheme to steer finite-dimensional quantum systems 
from any initial state to one of its eigenstates by performing 
in turn unitary evolution and projective measurement. We 
have investigated the control process using Markov chains, 
proven its finite-step reachability with unit probability, and 
created an algorithm giving the least number of steps to 
reach the target eigenstate. The main advantage of this 
scheme is that it is designed off-line and can be easily ap-
plied to practical systems. This scheme has potential appli-
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cations to state preparation [26], decoherence-free subspac-
es [27] and sliding mode control [28]. Since measurement 
could weaken conditions required for unitary evolution con-
trol [9], the scheme can also serve as an intermediate pro-
cess to steer a quantum system to any pure state in its cor-
responding Hilbert space. 

This work was supported by the National Natural Science Foundation of 
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