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Abstract In this paper, a photo-modulated transistor based on the thin-film transistor structure was fabricated on the

flexible substrate by spin-coating and magnetron sputtering. A novel hybrid material that composed of CdSe quantum dots

and reduced graphene oxide (RGO) fragment-decorated ZnO nanowires was synthesized to overcome the narrow optical

sensitive waveband and enhance the photo-responsivity. Due to the enrichment of the interface and heterostructure by RGO

fragments being utilized, the photo-responsivity of the transistor was improved to 2000 A W-1 and the photo-sensitive

wavelength was extended from ultraviolet to visible. In addition, a positive back-gate voltage was employed to reduce the

Schottky barrier width of RGO fragments and ZnO nanowires. As a result, the amount of carriers was increased by 10 folds

via the modulation of back-gate voltage. With these inherent properties, such as integrated circuit capability and wide

optical sensitive waveband, the transistor will manifest great potential in the future applications in photodetectors.
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1 Introduction

In the last few years, photo-modulated thin-film transistors

(TFTs) have found widespread applications in photo-sensi-

tive materials [1–3] such as in the electronic and electro-

optic components. For applications in integrated circuit [4,

5], amorphous metal oxide semiconductor (AMOS)-based

TFTs have been utilized in phototransistors and photo-sen-

sors due to their high sensitivity, electron mobility, and on/

off ratio. Because of the wide band gap (*3.3 eV) and a

large exciton binding energy (60 meV), ZnO not only can be

considered as a promising candidate for ultraviolet (UV)

photo-sensors but also can be used as an active layer for

photo-modulated TFTs [6–8]. Due to the rapid development

of tunable semiconductor quantum dots (QDs), they have

been focused on applications in optoelectronics devices,

such as light emitting devices and photodetectors [9–12]. By

taking into consideration of the recent research work in

optoelectronics devices, the size-tunability of theQDs can be

useful in detecting more regions of optical spectrum [13].

Compared with the traditional photo-modulated transis-

tor, as reported by Yuyu Bu [14], photo-sensitive waveband

and fast response speed can be improved by using hybrid

materials containingZnOnanowires andQDs.However, due

to the mechanism of carrier transfer, low photo-responsivity

was still a challenge in photo-modulated TFT application

[15]. In order to improve the performance of the hybrid
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materials containing ZnO nanowires and QDs, graphene was

exploited. Graphene as an atomic layer with remarkable

electric and optical properties was considered as a highly

desired material in applications in photodetectors, biological

imaging, and telecommunication system [16–18]. Based on

its linear electronic dispersion and the electrons transferred

along the surface, graphene can be used as an efficient

intermediary material for injected electrons. In addition,

high drift velocity of the charge in graphene also allows for

more efficient separation of electron from the site of injection

[19–22]. Compared with the monolayer graphene, reduced

graphene oxide (RGO) with similitude electric properties

can be utilized to provide defect energy states [23, 24]. In

addition, due to the existence of narrow photo-sensitive

waveband and discontinuity distribution, hybrid materials

containing ZnO nanowires/RGO fragments and QDs/RGO

fragments were not recommended for use in photo-modu-

lated transistors [25].

In this paper, a photo-modulated transistor with TFTs

structure is demonstrated using CdSe QDs/RGO fragments

decorated on the surface of ZnO nanowires as the active layer

[16]. CdSe QDs, as an electron donor, was attached to the

RGO fragments to expand the photo-sensitive waveband.

RGO fragments were exploited to provide a favorable photo-

responsivity. Eventually, the characteristics, such as pho-

tocurrent, responsivity, and rectifying capability, and the

performances of this devicewere alsomeasured and analyzed.

2 Experiment Sections

2.1 Fabrication of ZnO Nanowires

The CdSe QDs/RGO fragment-decorated on the surface of

ZnO nanowires was utilized as the active layer and photo-

sensitive layer (Fig. 1a). The fabrication process of ZnO

nanowires was illustrated in the following: First, a piece of

silicon (001) wafer was washed sequentially with acetone,

ethanol, and deionized water for 10 min, respectively. The

quartz boat filled with 0.2 g zinc powder was covered by

the silicon wafer before being transferred to the chamber.

With a flow rate of 20 sccm (Ar2:O2 = 3:1), the pressure of

chamber under 7.5 9 10-3 torr and controlled temperature

of plasmon-enhanced chemical vapor deposition (PECVD)

of 800 �C, high-quality ZnO nanowires with a length of

25 lm and a diameter of 150 nm was obtained. The aspect

ratio is higher than 150 as shown in Fig. 1b.

2.2 Synthesis of CdSe QDs/RGO Fragments

Graphene oxide (GO) was purchased from Hengqiu Gra-

phene Technology (Suzhou Co. Ltd.). It was made to react

with a reducing agent NaBH4 to produce the RGO

fragments of *5 lm in diameter. N-type CdSe QDs

modified with tri-n-octylphosphine oxide (TOPO) of

*7 nm in diameter were utilized as the photo-sensitive

material [purchased from Mesolight Inc (Suzhou Co. Ltd)].

The hybrid CdSe QDs/RGO fragment solution consisted of

5 mg mL-1 CdSe QDs and 1 mg mL-1 RGO solution. In

order to obtain CdSe QD-decorated RGO fragments,

hybrid solution was then oscillated in ultrasonic bath

before it was filtered by the membrane material.

2.3 Manufacture of the Device

The three-terminal gated photo-modulated transistor was

fabricated on the substrate of polyethylene terephthalate

(PET). The PET coating with ITO layer and SiO2 insulating

layer was deposited by magnetron sputtering process. After

ZnO nanowires were dispersed in ethanol, the dispersion

solution was spin-coated on the SiO2 substrate at a speed of

2000 r min-1. Afterward, the hybrid solution of CdSe QDs/

RGO fragments was spin-coated on ZnO nanowire film at a

speedof1000 r min-1. Finally, thermal annealingwas carried

out at a temperatureof 180 �C topromoteuniformityofhybrid

material layer and remove the solvent before the electroplat-

ing process with the mask (W:L = 100 lm:20 lm) for the

electrodes. The channel of the device was characterized by

scanning electron microscope (SEM, FEI Quanta 200, Hol-

land) and the hybrid material samples were characterized by

transmission electron microscope (TEM, JEM-2100, Japan).

The morphology of the hybrid material containing RGO and

ZnO nanowires is shown in Fig. 1c. It can be seen that ZnO

nanowires of * 150 nm in diameter and *25 lm in length

are covered by RGO fragments and are thus in close contact

with the RGO fragments. In the inset of Fig. 1d are shown the

diameters of CdSe QDs, which are of *7 nm, with clear

crystal lattices. In addition, the clear crystal lattices demon-

strate the high crystallization of the CdSe QDs.

3 Results and Discussion

From Fig. 1d, it can be seen that the size of RGO fragments

is much larger than that of CdSe QDs. The CdSe QDs were

only distributed on the surface of RGO fragments. This

confirms that CdSe QDs were blended with RGO frag-

ments and the contact is constructed between RGO frag-

ments and ZnO nanowires.

Figure 2a shows the Raman spectrum (carried on Ren-

ishaw, England) of the graphene and RGO, where the peak

intensities of D band and G band are, respectively, located

at 1350 and 1580 cm-1 for RGO. It is clearly evident that

the defect states of RGO existed because the peak inten-

sities of D band and G band shifted [26, 27].

248 Nano-Micro Lett. (2016) 8(3):247–253

123



The dimension of channel area is 100 9 20 lm2. When

the incident power intensity of 10 lW cm-2 is applied, the

photo-responsivity was recorded, which can be calculated

using Eq. (1) [25], and the transfer characteristic curve is

shown in Fig. 2b.

R ¼ Itotal � Idark

P
¼ Iph

qS
; ð1Þ

where P represents the optical power, Itotal denotes the

total current, Idark is the dark current, Iph implies the

photocurrent, q indicates the optical incident power den-

sity, and S is the effective area for photo-electric reaction,

respectively. When the drain–source voltage of 5 V is

applied and the wavelength of incident light is 580 nm,

the responsivity of the CdSe QDs/RGO/ZnO nanowires

calculated was of *2000 A W-1, which is approximately

2 orders of magnitude larger than that of CdSe QDs/ZnO

nanowires. Four devices have been assembled and mea-

sured at the same conditions with the drain–source volt-

age being 5 V and back-gate voltage being 8 V,

respectively. The standard deviation of the photocurrent

shown in Fig. 2c is found to be below 1 % when the

incident wavelength is at 580 nm.

The energy band schematics of two kinds of devices are

illustrated in Fig. 2d. The charge transfer takes place across

the interfaces of CdSe QDs/RGO/ZnO nanowires. In the

CdSe QDs/ZnO nanowire hybrid materials, CdSe QDs are

regarded to possess the optical property, where carriers can

be generated and transferred from the ligand-capped CdSe

QDs to the ZnO nanowires. Before the recombination of

the electron–hole pairs in CdSe QDs happens, the charge

can be injected into ZnO nanowire (ECB = -4.2 eV,

EVB = -7.7 eV) and then drifted to the source electrode

under the bias. In the meanwhile, an equal number of

carriers can be provided by the drain electrode to satisfy the

conversation of charge in the channel (Fig. 2d, left). Since

vacuum energy level is considered as the reference of

potential energy, valence band (EVB) and conduction band

(ECB) of CdSe QDs can be also measured, which were

-4.1 and -6.2 eV. The Fermi level of graphene was

reported to be -4.5 eV [19], which is much lower com-

pared with the conduction band of CdSe QDs (Fig. 2d,

right). Therefore, after incorporating with RGO, electrons

can be transferred more efficiently from the conduction

band of CdSe QDs to graphene due to the more favorable

energy barrier between the interface of CdSe QDs and

lAlA RGO/Quantum dots
ZnO nanowire
SiO2

ITO
PET

500 nm

20 μm

5 μm

2 nm

100 nm

RGO & QDs
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Fig. 1 Characterization of flexible photo-modulated transistors. a The structure of the CdSe QDs/RGO decorated on the surface of ZnO

nanowires photo-modulated transistor. b SEM image of ZnO nanowires. c SEM image of hybrid materials. d TEM image of the CdSe QDs/RGO/

ZnO nanowires and CdSe QDs inset
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RGO. Furthermore, the electrons can jump more efficiently

from the Fermi level of the graphene to the defect level and

transfer to the ZnO nanowires when the electrical field is

constructed by the positive back-gate voltage directed to

source electrode. Consequently, due to the more favorable

energy of CdSe QDs/RGO/ZnO hybrid, it can effectively

promote the transfer of charge from CdSe QDs to ZnO

nanowire. Moreover, fewer traps existed at the interfaces

across CdSe QDs/RGO fragment/ZnO nanowire hybrid. As

a result, electron annihilation is decreased and the carrier

separation in hybrid material is benefited. Based on

Fig. 2b, due to the enrichment of the interface and

heterostructure by RGO fragments being utilized, the

photocurrent has been improved approximately 100 folds.

According to Eq. (1), the corresponding photo-responsivity

of the transistor with RGO fragments is induced by

approximately 100 folds.

To investigate the optical absorption characteristics of

CdSe QDs, RGO fragments, ZnO nanowires, and CdSe

QDs/RGO/ZnO nanowire hybrids, absorption spectra are

respectively recorded and characterized in Fig. 3a. Com-

pared with the optical absorption spectra of CdSe QDs/ZnO

nanowire hybrid, the optical absorption intensity is

enhanced for CdSe QDs/RGO/ZnO nanowires at

wavelengths from 200 to 650 nm. Meanwhile, it can be

proved that the optical absorption can be increased for the

visible-light photo-modulated TFTs based on CdSe QDs/

RGO/ZnO nanowires with excitonic transition peak at

wavelength of 580 nm (Fig. 3a).

Figure 3b illustrates the transfer characteristic curves of

CdSe QDs/RGO/ZnO nanowires device in the wavelength

ranging from 215 to 580 nm. The result indicates that there

occurred a decrease of current, which fluctuated, from

ultraviolet to red. Traditionally, the balance between the

number of the electrons and holes is maintained and the

material thus remains electrically neutral with the mini-

mum current when the gate voltage equalled to 0 V.

However, the electrons are injected into the RGO/ZnO

nanowires by the built-in field when N-type CdSe QDs are

utilized as the electron donor. In order to achieve the

electric neutrality, a certain amount of holes are ought to be

provided from the RGO/ZnO nanowires when N-type QDs

are doped in the hybrid material. Therefore, the negative

back-gate voltage plays an important role in attracting

holes and achieving the balance between the electrons and

holes when the current is minimum. Additionally, photo-

generated carriers are consistent with the results shown in

Fig. 3a, where the photocurrent is relatively at a high value
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near the wavelength of excitonic transition peak. As

illustrated in Fig. 3c, the photoresponse waveband of the

hybrid material can be expanded and the opportunity for

the exciton separation can be improved. This contributes to

the enhanced photocurrent and photo-responsivity gain.

The photo-responsivity can be enhanced by modulating

the back-gate voltage due to the existence of carrier

transport mechanism [22, 28, 29] (in Fig. 4a, left). It shows

the energy band distribution with adjusting the diverse

voltages of VGS. For the interface of RGO/ZnO nanowires

near the source electrode, a Schottky barrier is formed

between ZnO nanowires and RGO fragments. When Vbias is

applied in the ZnO nanowires and RGO fragments near the

source electrode, electrons in the RGO fragments can be

transferred to the ZnO nanowires. Thus, IS increased as the

bias voltage is increased. In addition, EF(RGO) and EF(ZnO)

levels are shifted upwards as VGS is above zero. In the

meanwhile, the width of Schottky barrier is reduced

simultaneously (Fig. 4b, right). When the photo-modulated

transistor is excited by the incident light (k = 580 nm), the

increment of the photocurrent can be measured by applying

the back-gate voltage as demonstrated in Fig. 4b. It was

found that the value of the applied back-gate voltage is

proportional to the photocurrent. For instance, the pho-

tocurrent reached a value of 0.15 lA when the back-gate

voltage of 8 V was applied. And the photocurrent values of

0.015, 0.05, and 0.10 lA were measured when the back-

gate voltages were 0, 3, and 6 V, respectively. Conse-

quently, the electrons which tunneled from RGO fragments

to ZnO nanowires were easily obtained by applying the

positive back-gate voltage, and this led to 10-fold increase

in the photo-responsivity.
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4 Conclusions

In summary, a novel photo-modulated transistor based on

the TFT structure was fabricated by means of hybrid

material containing CdSe QDs/RGO fragments and ZnO

nanowires. By incorporating the RGO fragment, the

interface and heterostructure of this hybrid material were

improved and the photo-responsivity of this transistor was

improved by *102 times. This novel photo-modulated

transistor with hybrid materials was found to be more

advantageous than that with CdSe QDs/ZnO nanowires in

the visible incident light. In addition, the photocurrent of

this device was improved by 10 times by manipulating the

back-gate voltages. The photo-responsivity (2000 A W-1)

was also enhanced and the photoresponse waveband was

upgraded. Since the process of our experiment was oper-

ated at room temperature, the advantages of using hybrid

materials in photo-modulated transistor suggest that the

transistor can be a potential candidate for applications in

the large-area transparent flexible photo electronics.
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