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Abstract

GPU-Accelerated Point-Based Color Bleeding

Ryan Schmitt

Traditional global illumination lighting techniques like Radiosity and Monte

Carlo sampling are computationally expensive. This has prompted the develop-

ment of the Point-Based Color Bleeding (PBCB) algorithm by Pixar in order to

approximate complex indirect illumination while meeting the demands of movie

production; namely, reduced memory usage, surface shading independent run

time, and faster renders than the aforementioned lighting techniques [8].

The PBCB algorithm works by discretizing a scene’s directly illuminated ge-

ometry into a point cloud (surfel) representation. When computing the indirect

illumination at a point, the surfels are rasterized onto cube faces surrounding

that point, and the constituent pixels are combined into the final, approximate,

indirect lighting value.

In this thesis we present a performance enhancement to the Point-Based Color

Bleeding algorithm through hardware acceleration; our contribution incorporates

GPU-accelerated rasterization into the cube-face raster phase. The goal is to

leverage the powerful rasterization capabilities of modern graphics processors

in order to speed up the PBCB algorithm over standard software rasterization.

Additionally, we contribute a preprocess that generates triangular surfels that

are suited for fast rasterization by the GPU, and show that new heterogeneous

architecture chips (e.g. Sandy Bridge from Intel) simplify the code required to

leverage the power of the GPU. Our algorithm reproduces the output of the

traditional Monte Carlo technique with a speedup of 41.65x, and additionally

achieves a 3.12x speedup over software-rasterized PBCB.
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Chapter 1

Introduction

1.1 Computer Graphics

Computer graphics is, in general, anything produced by a computer that is

not plain text or sound. Although, perhaps a more fitting definition is using a

computer to draw a picture; this is also called rendering. There are a vast array of

different areas in which one may want the help of a computer to render an image,

from the entertaining, like video games and animated films, to the scientific, like

medical visualization and computer-aided design and drafting. Each of these

disciplines can have varying requirements of computer graphics: some need real-

time rendering in order to respond to user-input, and others may trade the real-

time speed for precise simulation. The goal of computer graphics is to identify

the requirements of the application and render the highest quality image given

those restrictions.
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1.2 Ray-Tracing and Global Illumination

In particular, this thesis is concerned with ray-traced rendering using global il-

lumination algorithms, which are most commonly utilized to produce high-quality

photo-realistic images. A ray-tracing algorithm can be classified as a global illu-

mination algorithm when it incorporates not only direct illumination from light

sources, but indirect illumination, or light that is inter-reflected between scene

geometry from the same light sources (Figure 1.1).

(a) Direct Only (b) Direct & Indirect

Figure 1.1: Cornell Box rendered with both direct illumination and
direct & indirect illumination.

Ray-tracing achieves photo-realism by simulating the physics of light using a

scene comprised of light sources, mathematically-defined geometric surfaces, and

a virtual camera (see Figure 1.2). It produces renders that are specifically not

real-time in nature, but meant to take as long as is necessary to produce quality

results. In this setting, we must render life-like images, so an accurate simulation

of light physics is required, but oftentimes we can obtain a convincing result using

approximations. Specifically, ray-tracing follows the opposite path of the light:

2



instead of tracing light rays from the light sources until they happen to hit the

virtual camera, which is very physically accurate, we start at the camera and

trace into the scene.

Figure 1.2: The eye and virtual camera are equivalent, geometry that
lies in the viewing frustum is rendered [2].

Once these primary rays travel from the camera, into the scene, and intersect

with the geometry, we can calculate the shading at that point in order to deter-

mine the color of the primary ray’s associated pixel in the final rendered image.

This shading calculation can vary from a simple direct illumination computation,

to a complex global illumination calculation.

In this thesis, we focus on global illumination techniques 2. We split the

calculation into direct illumination, which is the amount of light that leaves the

source and directly intersects our shading point, and indirect illumination, which

is the amount of light contributed from the diffuse inter-reflections of geometry in

the scene; a phenomenon that is exemplified by the fact that the space under our

desks is not completely dark, or that an illuminated red wall may reflect red light

onto a nearby white box, causing it to appear reddish. These two components

(direct and indirect illumination) are combined into one value that represents the

incoming illumination at our primary ray’s intersection point. We solve for the

amount of this illumination that follows back along the ray to the camera, and

3



we write that value to the primary ray’s associated final-image-pixel. Performing

this ray-tracing algorithm on each such final-image-pixel generates a rendering

of the scene geometry as defined by the light sources and virtual camera, and is

classified as global illumination.

1.3 Monte Carlo Ray-Tracing

One of the most widely used methods for the indirect illumination calculation

in ray-tracing is called Monte Carlo sampling, and it involves randomly and

discretely sampling the hemisphere above an intersection point (Figure 1.3). This

is performed by recursively tracing yet more rays into the scene in order to gather

information about what geometry is nearby and what color it is shaded; this

attempts to solve for the diffuse inter-reflections incident at an intersection point.

Figure 1.3: Monte Carlo sampling of a hemisphere above an intersec-
tion point [30].

In our experience, around 256 of these rays are required, and are traced from

each primary ray intersection point, into the scene, in order to gather enough

shading information about the adjacent geometry to calculate a believable and

4



accurate indirect illumination value. The number of rays that require intersection

calculations, and shading calculations, can quickly escalate into the tens and

hundreds of millions. Renders requiring multiple hours to complete are not rare.

1.4 Point-Based Color Bleeding

Recently, the Point-Based Color Bleeding algorithm was developed at Pixar

by Per H. Christensen [8] for indirect illumination. Instead of tracing rays, as

in Monte Carlo ray-tracing, discretized surface elements (surfels) are rasterized

onto a cube of eight-by-eight-pixel images, approximating the hemisphere used in

the Monte Carlo ray-tracing (Figure 4.1). Once the surfels have been rasterized

onto the pixels of the cube faces, the pixels are weighted and convolved into one

value representing the indirect illumination at a point.

The surfels are comprised of a location, surface normal, surface area, and

shaded color computed from the direct illumination (Figure 1.4). The benefit of

this technique is that the surfels can be precomputed and stored in a point cloud,

separate from the scene geometry, and reused. This lends itself well to reduced

memory usage, surface shading independent run time, and faster renders than

Monte Carlo ray-tracing, all of which are very useful properties for Pixar and

movie production in general.

1.5 Our Contribution

This thesis is primarily concerned with performing the indirect illumination

calculation faster than the Monte Carlo sampling method, without sacrificing

render quality. We achieve this by extending PBCB to utilize the specialized

5



Figure 1.4: Surfels for the Cornell Box scene. Note that the surfel size
has been reduced to exhibit the surfel shape and distribution.
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rasterization capabilities of the modern heterogeneous architecture chips’ graphics

processing unit (GPU) to rasterize the point cloud onto five eight-by-eight-pixel

images arranged into a cube above each primary ray intersection point; this

technique approximates the hemisphere that is used in the radiance integral (see

Section 2.1). Also, we contribute a preprocess where the scene’s geometry is

transformed into triangles (the preferred geometric shape for GPU-rasterization)

and assigned color values based on direct illumination calculations evaluated per

triangle vertex.

In this paper, we:

• review important rendering related equations and techniques,

• provide an in-depth description of the PBCB algorithm,

• present our PBCB extension and surfel generation preprocess,

• discuss and analyze our validation techniques and results.

Our contributions, leveraging the modern heterogeneous chips, realize much

faster render times compared to Monte Carlo ray-tracing, while maintaining vi-

sually similar results (Figure 1.5). We achieve this by avoiding the numerous and

costly intersection and shading calculations inherent in Monte Carlo Ray-tracing,

and in some cases achieve an order of magnitude speedup.

7



(a) Monte Carlo (b) GPU PBCB

Figure 1.5: Cornell Box with indirect illumination using both Monte
Carlo Sampling and GPU PBCB.

8



Chapter 2

Background

In our background section we will cover concepts that form the underpinnings

of our thesis work. Specifically, we will discuss radiance in Section 2.1 in order

to understand why sampling a hemisphere is integral to any global illumination

algorithm. We discuss the Phong reflection model in Section 2.2 because we use

this simplified lighting model in our algorithm. Section 2.3 describes the concept

of anti-aliasing, which is a feature of our algorithm. We cover octrees in Section

2.4, which are used in Christensen’s PBCB implementation [8] in order to store

the surfel cloud. Monte Carlo integration is the basis for the Monte Carlo ray-

tracer we have implemented for comparison against our GPU PBCB algorithm,

and is discussed in Section 2.5. And lastly, we address the system architecture

characteristics of the CPU and GPU, as well as how heterogeneous chips are

changing them, in Sections 2.6 and 2.7, respectively.
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2.1 Radiance

Radiance is a general term for the amount of light energy being transmitted

through an area on a surface in a specific direction. Or more simply as the

measure of brightness and color of a single ray of light [2].

In order to understand how to calculate radiance, we must first understand

radiant flux and flux density. Radiant flux, φ, is a measure of energy (measured

in joules) per second. Flux density is the instantaneous amount of radiant flux

over an area, and is written as:

E =
dφ

dA
(2.1)

We can now define radiance as the flux density with respect to a projected area

and a solid angle, or:

L =
d2φ

dA ∗ cos θ ∗ dw
(2.2)

Incoming radiance, or irradiance, is the radiance arriving at a surface, or the flux

density of arriving light. We can define this in terms of radiance, where x is a

surface point and w′ is the incoming ray direction, as:

E(x,w′) = L(x,w′) ∗ cos θ ∗ dw′ (2.3)

Further more, we integrate over a hemisphere to solve for the incoming radiance,

at point x, in all directions:

E(x) =

∫
L(x,w′) ∗ cos θ ∗ dw′ (2.4)

Ultimately we are interested in the reflected radiance: the amount of irradiance

that is reflected by a surface back towards our virtual camera. This is based

on the material properties of the surface, which is typically represented by a

10



Figure 2.1: Incoming radiance in a hemisphere about a point, reflecting
towards the camera [21].

BRDF (bi-direction reflectance distribution function). BRDFs are defined per-

surface, and represented as f(x,w′, w). They solve for the ratio of radiance that

is transmitted from an incoming direction, w′, to an outgoing direction, w, at

a surface point, x (see Figure 2.1). Incorporating the BRDF, the equation for

reflected radiance is:

L(x) =

∫
f(x,w′, w) ∗ L(x,w′) ∗ cos θ ∗ dw′ (2.5)

2.2 Phong Reflection Model

The Phong reflection model is a simplified shading model used to calculate

reflected radiance, given one incident light ray. It is most commonly used in

scenarios that require fast computation, such as real-time graphics applications.

It was presented by Phong in his University of Utah Ph.D. dissertation in 1973

[25]. The equation calculates the reflected radiance using three color-vector terms:

an ambient, diffuse, and specular.

The ambient component represents indirect illumination as a constant amount

11



Figure 2.2: The vectors involved in the Phong Reflectance Model [2].

of reflected radiance added to all shaded points. This is the simplest term, but

also poorly represents the subtleties of indirect illumination.

we’re

The diffuse component represents direct illumination using Lambertian re-

flectance of the incoming radiance. Lambertian refers to Lambert’s cosine law,

which states that, for perfectly diffuse surfaces, the diffuse reflected radiance is

proportional to the cosine of the angle between the surface normal and the light

vector, θi. This is clamped in the range [0,1] to avoid subtracting light, and is

commonly referred to as the n · l factor [2], a convention we shall adopt in this

thesis. Figure 2.2 visualizes these components.

The specular component represents the shininess we can view from certain

angles on highly reflective surfaces. Specular reflectance is calculated by raising

the cosine of the angle between the surface normal and the half vector (the vector

12



halfway between the view and light vector), θh, to the shininess of the surface, s.

Each of these components represent the ratio of incoming radiance, Clight to

reflected radiance, Cout, but the reflected radiance is also scaled by the surface

material’s color characteristics, Cmat, as well as ambient, diffuse, and specular

characteristics (represented by the scalar ratios: Mamb, Mdiff , and Mspec, respec-

tively). Combining these components we get the final Phong reflection model

equation:

Cout = (Mamb∗Cmat∗Clight)+((n·l)∗Mdiff∗Cmat∗Clight)+((n·h)s∗Mspec∗Cmat∗Clight)

(2.6)

2.3 Anti-aliasing

Anti-aliasing combats aliasing, the artifacting caused by under-sampling. A

typical example of this in signal processing, where an analogue signal is sampled

as some rate to determine its amplitude at that point in time. If the sample rate

is too low (i.e. under-sampling) then the signal will not be accurately captured

because the signal’s characteristics between samples was lost. This can be seen

in Figure 2.3.

This occurs in computer graphics due to the limited sample rate provided

by our display devices. To illustrate this point, imagine attempting to display

a sphere with four pixels. More typically we experience aliasing in computer

graphics as jaggies, or lines that should be smooth but are jagged (see Figure

2.4).

In order to combat this phenomenon, techniques for anti-aliasing have been

developed. These can take many forms [19], but generally it involves some form

13



Figure 2.3: The blue signals are being undersampled by the red dots,
which leads to inaccurate reconstruction as evidenced by the dotted
green line [2].

Figure 2.4: Jagged edges apparent along the silhouette edges of the top
triangle are reduced via anti-aliasing techniques in the lower triangle
[12].

of over-sampling (i.e. rendering the image at a multiple of the display resolution)

to compensate for the fixed sample rate of our display devices. By over-sampling

the rendering, we can capture the subtleties of the image in software, and can

down-sample the image in a way that helps alleviate the fixed display sample

rate.

The simplest form of this technique is called super-sampling: where we render

an image at some multiple of the desired final resolution, and down-sample the

14



large image back to the desired final resolution by averaging the extra pixels

into one value. For example, if we wish to render a 300 by 300 pixel image, we

might render an intermediate image at 600 by 600 and then each final pixel is

represented by 4 intermediate pixels, which can be averaged into one final pixel

value; this is called 4x super-sample anti-aliasing.

However, in order to reduce the aliasing artifacts to an acceptable level, we

usually require a large super-sample rate. This can result in unacceptably long

render times. The main reason we require high super-sample rates in ray-tracing

is the regular pattern created by generating rays that pass through the center of

each pixel. Generally in ray-tracing, the more random you can make a sample

pattern (while not missing important features), the less aliased your final image

will be. Therefore, we randomly jitter the direction of each ray within the bounds

of the pixel. This facilitates lower super-sample rates.

An example image of anti-aliasing in our rendering algorithm can be seen in

Figure 2.5.

2.4 Octree

Octrees are a type of spatial data structure. These data structures are useful

in order to accelerate queries about what objects are adjacent to a point, or what

objects overlap or are spacially close. Due to their hierarchical construction, they

typically improve spatial queries from O(n) to O(log n) [2].

Octrees enclose the entire scene in an axis-aligned bounding box, and recur-

sively, as well as regularly, subdivide the the box in all three dimensions (x, y ,

and z). This produces eight equal-sized child boxes, hence the name octree. An

15



(a) No Anti-aliasing (b) 9x Anti-aliasing

Figure 2.5: Our simple Cornell box rendered with no anti-aliasing, and
9x box-filtered anti-aliasing.

illustration of this can be found in Figure 2.6.

2.5 Monte Carlo Integration

Monte Carlo integration is a technique used to evaluate integrals [24]. By

repeatedly evaluating randomized discrete samples, we converge on the true eval-

uation of the integral. On average, these evaluations correspond to the correct

solution, therefore we average multiple runs of the algorithm. We do not arrive

at the correct solution in this way, but one that is statistically close.

We use Monte Carlo to evaluate the complex integral in Equation 2.5. It

is almost impossible to create a closed-form representation of the terms in this

equation, and therefore Monte Carlo lends itself to its evaluation. To evaluate

the incoming radiance at a point, we can generate randomized sample vectors

(rays) over the domain of integration, the unit hemisphere. We then average

16



Figure 2.6: The hierarchical levels of an octree [37].

these samples in order to obtain a result that is close to the true evaluation.

The main drawback of Monte Carlo integration is that it only converges at

a rate of O(n−1/2), with n being the number of discrete random samples. This

means that increasing the number of samples by 4 would only reduce the error

by half [24]. And because each sample requires one or more rays to be traced

against the scene geometry and shaded at their intersection point, it quickly

becomes cost-prohibitive to obtain low-error results. Error in this technique is

exhibited by adjacent pixels that have disparity in their brightness and color, or

noise.

Most of the current research in Monte Carlo for computer graphics is aimed

at reducing this error through methods other than increasing the sample count

[24]. One technique we use to better distribute the sample rays across the unit

hemisphere is to discretize the hemisphere into a grid of sample directions with

higher density in areas of higher importance, namely the top of the hemisphere

where the n · l factor is largest, and jitter each sample direction by a random

amount. This is an example of stratified sampling, combined with importance

sampling.

17



2.6 CPU versus GPU

The CPU and the GPU are both processors, but have quite different archi-

tectures due to their purpose. The CPU is considered a serial processor that

handles general computation, which is typically thought of as instruction-driven,

and involves executing unpredictable instructions on irregular data and likely in-

cludes branching. The GPU, on the other hand, is a stream processor optimized

for data-driven graphics rendering of more regular data with predictable memory

access [2].

Because of their differing purposes, the CPU and GPU have traditionally

been divided into two physically separate components of a computer system’s

architecture connected by the PCI bus. The application running on the CPU

will transmit rendering data and instructions over this bus to the GPU, which

will process this input and produce a rendering. Depending on the purpose of

this rendering, it can either be displayed on a monitor attached directly to the

GPU, or transmitted back over the bus to the CPU for additional processing. As

is common in multiprocessing systems, the two common problems we experience

are load balancing and communication [2].

Load balancing can take place between the CPU and GPU, as well as inter-

nally within the GPU. The programmer is generally responsible for handing the

load balancing between these two components, while the GPU itself leverages

FIFO queues between stages to avoid stalling any part of the pipeline.

The latency and bandwidth of the bus connecting the CPU and GPU can

cause communication problems as well. The theoretical maximum one-way band-

width of the PCI Express 2.0 bus is 8.0 GB/s [28], while if we wanted to render

300 million triangles per second we would require a rate of 10.2 GB/s just to
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transfer the triangles to the GPU [2]. If we want to saturate this bandwidth, we

must be constantly streaming data across the bus, however this is not always the

use-scenario. Many times we wish to transmit data to the GPU, process it, and

send it back to the CPU. In this case, the PCI bus can become the bottleneck as

it is designed for one-way streaming of data.

2.7 Heterogenous Chip Architectures

The traditional architecture for systems with both CPU and GPUs involves

the PCI bus, which connects these two disparate components. However, recent

advancements have allowed chip densities so high that both CPU and GPU can

fit onto one silicon chip. These architectures, that combine CPU and GPU, are

called heterogeneous chips.

Intel has released both Sandy Bridge and, more recently, Ivy Bridge archi-

tectures [17] that adhere to this ethos, and AMD has released Fusion [4]. By

combining both the CPU and GPU onto one chip, the hardware can bypass the

shortcomings of the PCI bus to more quickly communicate.

In systems utilizing the traditional architecture, rendering small scenes that

require final data processing on the CPU would have been cost-prohibitive due to

the latency required to transfer data from CPU to GPU and back again. However,

with heterogeneous chip architectures, we can almost ignore this latency in our

algorithms; allowing for new-found simplicity.
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2.8 Review

In this section we have covered the important concepts that frame our explo-

ration of GPU-accelerated Point-Based Color Bleeding. The concept of radiance

gives us the motivation to sample a hemisphere, while Monte Carlo integration

allows us to discretely sample in order to estimate the integral over that hemi-

sphere. We use the Phong reflection model in order to calculate the reflected

radiance after gathering the irradiance samples. Anti-aliasing is a feature of our

renderer, although not essential to the functioning of our renderer. We addressed

the octree spatial data structure used in Christensen’s PBCB [8] for surfel storage.

Lastly, we compared and contrasted the CPU and GPU in order to motivate our

use of the GPU to accelerate our algorithm, and covered the wrinkles introduced

by new heterogeneous chip architectures.
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Chapter 3

Related Work

In this section we discuss the methods for computing indirect illumination

relevant to our thesis. Although radiosity and photon mapping are other popular

global illumination algorithms, we did not have freely available implementations

that would accept our scene format, and in the interest of scope, we did not

implement our own versions. We do not cover them here and leave it to the

reader if further knowledge of the subject area is desired [13, 18].

We first cover the Monte Carlo gather method, which we have implemented

for comparison with our GPU PBCB algorithm. This method produces highly

realistic results, but at the cost of copious computation, which in our experience,

can easily require multiple hours of rendering time on commodity hardware. Our

GPU PBCB algorithm is meant to produce comparable results, much faster.

We also discuss the basic PBCB algorithm, which we have extended to lever-

age the rasterization power of the GPU. The PBCB algorithm as developed by

Christensen at Pixar [8] utilizes a software-based rasterization. It is here that we

feel leveraging the power of the GPU can accelerate the algorithm and produce
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Figure 3.1: Point distribution on a sphere: left is näıve point sampling
that results in higher point density near the poles, right is correct
sampling [36].

faster render times.

Lastly, a promising area of research that we do not cover here is maximal

Poisson disk point set generation on 3D surfaces [10]. The goal of this research is

similar to our surfel generation goal; that is to say, they both strive for uniform

distribution of points on 3D surfaces. Although the technique presented in [10]

does not address transformed spheres or boxes, it may be possible to extend their

ideas to cover these types of geometry.

3.1 Monte Carlo Gather

The Monte Carlo gather method is used in ray-tracing for indirect illumi-

nation, and receives its name from the Monte Carlo integration approximation

discussed in Section 2.5. Instead of computing the true outgoing radiance inte-

gral, which is all but impossible except in the simplest of cases, we discretize the

integral and compute its approximation. We begin our description of this method
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at the time a ray-geometry intersection is found.

The first step is to generate the randomized sample vectors used to discretize

the integral over the hemisphere. To this end, the algorithm leverages a hemi-

sphere sampler: a function that takes two floating point variables as input, and

produces a sample point on the hemisphere, see Figure 3.1 (it should be noted

that identical input always results in identical output). Typically, samplers are

designed to produce a uniform random distribution over the hemisphere when two

uniform random variables, u1 and u2, are used as input. The following equations

[24] describe this mathematically:

x = cos(2πu2)
√

1− u21

y = sin(2πu2)
√

1− u21

z = u1 (3.1)

However, in some cases a uniform distribution over the hemisphere is not

desired. We have found that using a purely uniform random distribution over

the hemisphere does not result in visually acceptable noise levels until we reach

approximately 256 sample vectors (see Figure 5.1).

In the case of indirect illumination computation, sample points near the top

are more highly weighted then those near the bottom due to the n · l factor used

in the Phong Shading model (see Section 2.2). Therefore, a technique called

importance sampling [24] is used to create a non-uniform sampling (even though

the input variables are from a uniform distribution) of the hemisphere, where the

sample density increases where the n·l factor is largest: the top of the hemisphere.

We refer to this as a cosine-weighted hemisphere sampler because the likelihood

of generating a given sample point is proportional to the cosine of the angle

between the vector represented by the sample point and the unit hemisphere’s
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vertical vector <0, 1, 0>. This is described mathematically in equation 3.2 [24].

x = cos(2πu2)
√
u1

y = sin(2πu2)
√
u1

z =
√

1− x2 − y2 (3.2)

An algorithm implementing equation 3.2 is used to generate a desired number

of cosine-weighted sample points on a unit hemisphere. These sample points are

treated as vectors to describe the direction of sample rays used to gather incom-

ing radiance information. In order to convert from a vector in unit hemisphere

coordinates to a vector in world space coordinates we use Algorithm 3.1. This is

a standard coordinate system transformation between surface, or object, space

and world space.

Algorithm 3.1 Transform from unit hemisphere to world space.

function HemisphereTransform(surfaceNormal)

if |surfaceNormal.y| = 1 then

tangent := <1, 0, 0>

else

k := <0, 1, 0>

tangent := k − ((k · surfaceNormal) ∗ surfaceNormal) //Gram-Schmidt Process

normalize(tangent)

end if

binormal := surfaceNormal × tangent
transform :=

( tangent.x surfaceNormal.x binormal.x
tangent.y surfaceNormal.y binormal.y
tangent.z surfaceNormal.z binormal.z

)
return transform

end function

The next step is to use these transformed vectors as ray directions to perform

a recursive ray tracing computation. Each computation returns the incoming

radiance, just as the primary rays return incoming radiance written to a final

image pixel. These incoming radiance values are convolved into one indirect

illumination value for the point we are attempting to shade by computing their
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arithmetic mean. This results in an indirect illumination value used in the current

shading computation.

Typically, the shading computations returned by the rays generated by the

Monte Carlo method use direct illumination only, but because light can reflect off

multiple surfaces in reality, multi-bounce Monte Carlo gather can be performed

as well, to increase realism. This is where the Monte Carlo method is used

recursively to calculate the indirect illumination contribution to the incoming

radiance along one of the Monte Carlo sample rays. However, this is incredibly

computationally expensive, and not used in this thesis.

Lastly, it is important to note that the number of samples used directly affects

the presence of noise in the final image. Figure 5.2a illustrates how noise levels

are reduced by increasing the number of Monte Carlo samples.

3.2 Point Based Color Bleeding

Point Based Color Bleeding is a technique for indirect illumination computa-

tion developed by Christensen at Pixar. It specifically addresses concerns relevant

to movie production, namely: surface shading independent run time, reduced

memory usage, and faster run times than Monte Carlo gather [8]. It leverages

rasterization instead of ray-tracing to compute the indirect illumination compo-

nent of a shading computation.

The PBCB algorithm approximates the radiance integral by gathering incom-

ing radiance samples as rasterized cube-face pixels. When computing the indirect

illumination at an intersection point, the hemisphere is approximated by a 5-faced

cube, called a cube-map, where each face is an 8-by-8 pixel texture (see Figure
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4.1). The primitives that are rasterized are called surfels (surface elements) and

are generated as a preprocess.

Surfels are required due to the limitations and requirements of the rasteriza-

tion step: rasterization cannot support complex geometry common in ray-tracing

(e.g. non-planar surfaces, like spheres, or NURBS [26]), and in order to make it

as fast as possible, it should not perform any complex shading. Each surfel is

composed of a location, surface normal, radius, and color, and can be concep-

tualized as a disk (see Figure 3.2). In order to adequately capture the shading

information with one color per surfel, the geometry is point-sampled at a desired

density and a surfel is constructed per sample point. (As an aside: we should

mention that [8] does not describe a point-sampling algorithm, and we have de-

veloped our own as described in Section 4.2.1) The surfel’s location is defined by

the sample point, its normal is defined by the source-geometry’s surface normal

at the sample point, its radius is defined such that there are no gaps between

surfels, and its color is computed by shading the sample point using only direct

illumination. In this way, a direct-shaded surfel cloud representation of a scene’s

geometry is generated, as in Figure 1.4, and stored in an octree (see Section 2.4).

This spatial data structure is used in order to facilitate fast spatial lookups and

provide a level of detail to the surfel representation when desired. That is to say:

a hierarchical node in the octree can average all of its child surfels or nodes into

an amalgamation and present them as a single surfel.

During the course of the standard ray-tracing algorithm, the PBCB technique

is used to compute the indirect illumination component required to shade an in-

tersection point. For one point, a 5-faced cube-map is constructed such that each

face is composed of an 8-by-8 pixel texture. This approximates the hemisphere

used in the Monte Carlo gather technique (see Figure 1.3). The surfels are then
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Figure 3.2: Surfels as disks, from Per H. Christensen’s slides on the
subject [9].

Figure 3.3: Close surfels are ray-traced, at average distance they are
rasterized directly, and at long distance they are averaged [9].

convolved onto the cube-map using a proprietary algorithm [8]. What we do

know about the algorithm is that, for very close surfels, rays are traced through

the pixel to perform accurate shading, for average distance, the surfels are di-

rectly rasterized, and for distant surfels, a node from the surfel octree is used as

an average representation of all the surfels in that area (see Figure 3.3). Figure

4.1 illustrates the result.

With the surfel cloud rasterized onto the cube-map, each pixel represents the
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incoming radiance from its direction. The center of the pixel can be interpreted

as if it were a sample point on the unit-hemisphere and the pixel’s color can be

weighted using the n · l factor to compute the incoming radiance value from that

angle. These incoming radiance values are scaled by the surface color (see Section

2.2) and averaged to compute the final indirect illumination contribution to the

shading computation for an intersection point.
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Chapter 4

GPU Point Based Color Bleeding

4.1 Algorithm Introduction

Indirect illumination presents a computationally expensive problem. Poten-

tially, the entirety of a scene’s geometry could contribute illumination to any

given point for which we try to compute indirect lighting. For Monte Carlo ray-

tracing, intelligent randomness, spatial data structures, and attention to writing

performant code can help alleviate the problem, but we can do better.

Our algorithm uses rasterization, rather than ray-tracing, to determine the

radiance during the indirect shading computation. Rasterization has traditionally

been used in real-time graphics due its high throughput, but we can leverage

that same throughput to reduce our time spent calculating indirect illumination.

However, we want to also gain hardware acceleration, and GPU rasterization

algorithms require specific input, namely triangles. Thus, we preprocess our

scene geometry to convert it into a triangle-based surfel cloud, and store it in

GPU memory. At render time, we can leverage the GPU to quickly rasterize
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these surfels, in parallel, onto cube-maps to capture the radiance at a point.

Figure 4.1 visualizes the rasterization of surfels onto a cube-map.

Figure 4.1: Surfels being rasterized onto an 8x8 cube [9].

In this way, each cube-map pixel represents the radiance at the location of

the cube-map, in the direction of that pixel. This is analogous to the way Monte

Carlo ray-tracing casts a ray and calculates shading at its scene intersection to

represent radiance, in the ray’s direction, at the ray’s origin.

In this chapter, we further discuss our GPU Point-Based Color Bleeding algo-

rithm: Section 4.2 explains our preprocess for generating triangle-based surfels,

Section 4.3 follows with an explanation of our rendering pipeline. By combining

our indirect illumination algorithm with GPU-hardware specifically designed for

fast and parallel rasterization, we achieve quantitatively similar results in less

time than Monte Carlo ray-tracing.

As an overview, the algorithm steps are as follows:
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Algorithm 4.1 Psuedocode for our GPU Point-Based Color Bleeding algorithm.

function GPUPointBasedColorBleeding(scene)

for all geomPrimitive in scene do

surfels += GenerateSurfels(geomPrimitive, 500) //see alg. 4.6

end for

rays := GenerateRays(scene.imageDescription)

for all ray in rays do

intersection := Intersect(ray, scene)

direct := DirectIllumination(intersection, scene)

indirect := IndirectIllumination(intersection, scene)

finalColor := direct + indirect

image.writeToPixel(ray.index, finalColor)

end for

WriteToDisk(image)

end function

4.2 Surfel Generation

The PBCB algorithm relies on the abstract representation of a scene’s geom-

etry as surfels in order to leverage the power of rasterization. Real-time graphics

applications also utilize rasterization, but do not use surfel representations. This

is because they target specific framerates between 30 and 60 frames per second,

allowing 16 to 33 milliseconds for the computation of Phong shading, texture

mapping, bump mapping, and other techniques, such as dynamic shadows, on

a per pixel basis. In the case of PBCB, rasterization must perform as fast as

possible. To achieve this, additional computations of the kind referred to earlier

(e.g. dynamic shadows) are avoided, and the rasterization algorithm simply uses

the color of the surfel, computed as the direct illumination at the surfel’s location

on the source geometry, directly as the pixel’s color.

The reason why the PBCB algorithm does not simply rasterize the geometric

primitives as a whole is because each primitive would only be represented by one
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color, resulting in inaccurate indirect illumination. Another benefit of surfels are

that they are uniform in size and therefore are amenable to binning in spatial

data structures. Our thesis does not incorporate a spatial data structure because

the GPU does not require one itself and simply brute force rasterizes the entire

surfel cloud in parallel. However, we discuss how a spatial data structure could

be incorporated in our future work section on the topic (see Section 5.6.5).

In the traditional PBCB algorithm, surfels are disks, but our GPU PBCB

algorithm cannot use this representation. The GPU is specifically designed to

render images quickly by parallelizing the work, thus increasing throughput.

However, we gain this performance at the cost of generality: the GPU can only

process triangles as input data. Therefore, we must translate the representation

of our geometric primitives into triangles (see Figure 4.2).

Each geometric primitive uses the same general algorithm to generate surfels,

with differences in how the initial points are generated. We begin by generating

a random distribution of points on the surface of the primitive, and use those

points as the center for each triangular surfel. There has yet to be developed

any algorithm with which to generate a uniformly random distribution of points

on arbitrarily transformed geometry in linear time. Sampling untransformed

geometry can be performed in linear time, but the subsequent transformation

will result in a non-uniform distribution. In fact, Paul Bourke’s methods in [6]

and [7] require specific geometry that has not been transformed to generate a

point distribution, and operate in polynomial time.

Our distribution algorithm is novel in its support for arbitrarily transformed

geometry, but still requires polynomial time. However, because surfels are gen-

erated as a pre-process; the run time does not affect our results. In general, we

calculate our point distributions by first generating random points on the sur-
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Figure 4.2: The surfels generated for our Cornell Box with area light.
Note that the surfel size has been reduced to exhibit the surfel shape
and distribution.

face of our untransformed geometry, transforming these points, then pruning the

two closest, repeatedly, until we achieve the desired number of points. While in

theory this algorithm does not achieve a mathematically uniform distribution, in

practice it distributes the points well enough to achieve our goal of quantitatively

similar results to Monte Carlo ray-tracing, is simple to understand and imple-

ment, and meets our requirement of supporting arbitrarily transformed geometry.

One major limitation of this algorithm is that it sacrifices extra work at the cost

of simplicity: in the case of untransformed geometry, we could generate exactly

the number of points required, but instead we proceed with the oversampling and

culling without it being a necessity.

Once a point, p, has been computed, the three triangle vertices are generated
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by adding the point’s surface tangent vector, v, to p to solve for the first vertex,

then we rotate v by 120 degrees to solve for the second, and once more for the

third. The length of v is determined by multiplying the distance between the

two closest sample points on the geometry and a constant. The goal is to have

coverage over the surface of the geometry without superfluous gaps or overlaps.

We have found that doubling the distance results in satisfactory coverage.

Figure 4.3: The construction of our triangular surfels; v is the surface
tangent, at the sample point, p. Its length is determined by the two
closest sample points on a given geometric primitive, multiplied by
two. The other vertices are constructed by rotating the first by 120◦.

We discuss the general surfel generation algorithm in Section 4.2.2. We also

discuss the specific point generation algorithms for boxes, spheres, and triangles in

Section 4.2.1. In Section 4.2.2 we discuss our algorithm for constructing triangular

surfels, and in Section 4.2.3 we discuss our storage method for these surfels.

4.2.1 Point Generation

In order to generate surfels for any of our geometric primitives, we first gen-

erate a point distribution to act as center points for our surfels. The strategy we

use for point distribution is stratified stochastic sampling.
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Box

Points for the box primitive are generated per side. Each side is divided

into a u-v grid, with a point for each intersection. We jitter the points to add

randomness, which helps during the culling process explained later in this section,

and to help mask any artifacting that can result from regular patterns. The

pseudocode can be seen in Algorithm 4.2. Point distributions for a box can be

seen in Figure 4.5.

Sphere

Point generation for a sphere is based on a uniform sampling algorithm [24]

that requires two uniform random variables as input. Instead of using entirely

uniform random variables, u and v, we step through u and v coordinates, which

effective subdivides the sphere into a grid. Again we jitter the coordinates to

help randomize our surfel cloud. The psuedocode can be seen in Algorithm 4.3.

Point distributions for a sphere can be seen in Figure 4.7.
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Algorithm 4.2 Generate stratified stochastic sample points for a box.

function SampleGeometry(box, numSamples)

pointsPerSide := numSamples/6

pointsPerDim := sqrt(pointsPerSide)

for each side in boxSides do

for u := 0...pointsPerDim do

for v := 0...pointsPerDim do

α := (u+rand(0, 1))/pointsPerDim

β := (v+rand(0, 1))/pointsPerDim

if side = small z-plane then

x := (1− α) ∗ box.start.x+ α ∗ box.end.x
y := (1− β) ∗ box.start.y + β ∗ box.end.y
z := box.start.z

else if side = large z-plane then

x := (1− α) ∗ box.start.x+ α ∗ box.end.x
y := (1− β) ∗ box.start.y + β ∗ box.end.y
z := box.end.z

else if side = small x-plane then

x := box.start.x

y := (1− α) ∗ box.start.y + α ∗ box.end.y
z := (1− β) ∗ box.start.z + β ∗ box.end.z

else if side = large x-plane then

x := box.end.x

y := (1− α) ∗ box.start.y + α ∗ box.end.y
z := (1− β) ∗ box.start.z + β ∗ box.end.z

else if side = small y-plane then

x := (1− α) ∗ box.start.y + α ∗ box.end.y
y := box.start.y

z := (1− β) ∗ box.start.z + β ∗ box.end.z
else if side = large y-plane then

x := (1− α) ∗ box.start.y + α ∗ box.end.y
y := box.end.y

z := (1− β) ∗ box.start.z + β ∗ box.end.z
end if

point := box.modelTransform∗ <x, y, z>
points += point

end for

end for

end for

return points

end function
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Algorithm 4.3 Generate stratified stochastic sample points for a sphere.

function SampleGeometry(sphere, numSamples)

numPointsU := sqrt(numSamples)

numPointsV := numSamples/numPointsU

for i := 0...numPointsU do

for j := 0...numPointsV do

u := (i+rand(0, 1))/numPointsU

v := (j+rand(0, 1))/numPointsV

z := 1− 2 ∗ u
r := sqrt(max(0, 1− z ∗ z))
φ := 2 ∗ π ∗ v
x := r∗ cos(φ)

y := r∗ sin(φ)

point := <x, y, z> ∗ sphere.radius+ sphere.center

point := sphere.modelTransform ∗ point
points += point

end for

end for

return points

end function

Triangle

We generate our triangle sample points by modifying a uniform sample pattern

algorithm [24] in a similar manner to our sphere point generation. The original

algorithm requires two uniformly random variables as input, and will generate a

uniformly distributed random point on the triangle. By discretizing the u and v

values and stepping through them, we effectively walk a uniformly distributed grid

across the triangle’s surface area. Again, we jitter the sample point location in

order to eliminate any regular patterns. The psuedocode can be seen in Algorithm

4.4. Point distributions for a triangle can be seen in Figure 4.9.
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Algorithm 4.4 Generate stratified stochastic sample points for a triangle.

function SampleGeometry(triangle, numSamples)

numPointsU := sqrt(numSamples)

numPointsV := numSamples/numPointsU

v0..1 := triangle.vertex1− triangle.vertex0

v0..2 := triangle.vertex2− triangle.vertex0

for i := 0...numPointsU do

for j := 0...numPointsV do

u := (i+rand(0, 1))/numPointsU

v := (j+rand(0, 1))/numPointsV

// Inside or outside the triangle?

if u+ v < 1 then

point := triangle.vertex0 + u ∗ v0..1 + v ∗ v0..2
else

point := triangle.vertex0 + (1− u) ∗ v0..1 + (1− v) ∗ v0..2
end if

point := triangle.modelTransform ∗ point
points += point

end for

end for

return points

end function

With the previous point distribution algorithms, we must address the issue

of non-uniform scaling. For example, if we are generating points for a box scaled

more in the y-axis than the x- or z-axis, then our computed sample points will

be further spaced apart along that axis. This leaves us with a sampling pattern

that is not uniform, but stretched in one direction.

Our solution to this problem is simple, easy to implement, and novel in the

fact that it is geometry and transformation independent. We generate a multiple

of the requested number of sample points on the untransformed geometry, jitter

their location, transform them using the source geometry’s model transformation,

and repeatedly cull the two closest points until we arrive at the desired number

of points. In this way, we work backwards to a more uniform distribution in a
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way that supports arbitrary geometric topology and transformations. It is im-

portant to note that our algorithm discovers the two closest points using a O(n2)

algorithm. This could potentially be accelerated with a spatial data structure

(see Section 5.6.5). Figures 4.5, 4.7, and 4.9 show the result of this process for

varying multiples of the requested number of surfels; notice the coverage issues

caused by not generating more than the requested number of surfels (e.g. Figure

4.5a).

The pseudocode is listed in Algorithm 4.5.

Algorithm 4.5 Create points and repeatedly cull one of the two closest points.

function GeneratePoints(geomPrimitive, numberOfSamples)

points := SampleGeometry(geomPrimitive, 2 ∗ numberOfSamples) //alg. 4.2, 4.3, 4.4

while points.length > desiredNumPoints do

minPointIndex := FindAndRemoveClosestPoints(points)

points.remove(minPointIndex)

end while

return points

end function

4.2.2 Surfel Generation

With the points generated, our surfel generation algorithm is quite simple:

it consists of using the sample points as the center for triangular surfels. The

question we must answer is what surface area will achieve adequate coverage of

the source geometry. Too large of a surface area results in extending our surfel

borders beyond the edges of our geometry as well as excessive surfel overlapping.

Too small of a surface area results in gaps between surfels. Both of these issues

will cause artifacts in our rendering by misrepresenting the source geometry.

Our algorithm uses the distance between the two closest sample points as

the theoretical radius required for disk surfels to adequately cover the geometry.
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In practice, we double this radius in order to ensure coverage. In order for our

triangle surfels to match this surface area, we extrapolate the length of the vector

from triangle surfel center to equilateral vertex using Equation 4.1.

vectorLength =

√
π ∗ radius2√
3 ∗ sin2(60)

(4.1)

However, the random jittering of sample points often results in initial sample

points that are very close together. While the jittering produces the desired

randomness, it also gives us too low an estimate of the required radius; the

result of which can be seen in Figure 4.6a. But the aforementioned point culling

solution (see Section 4.2.1) also solves this problem. By generating a multiple

of the desired number of points, and culling the closest ones, we create a more

uniform distribution with less variance in the distance between adjacent sample

points. We have found that a multiple of two produces visually acceptable results,

while greater multiples do not contribute further. The results of varying number

of generated points (culled to 500) are illustrated in Figures 4.5, 4.6, 4.7, 4.8, 4.9,

and 4.10.

For typical surfel generation times per geometric primitive, see Table 4.1. In

psuedocode, our surfel generation algorithm is listed in Algorithm 4.6. Figure 4.4

is a rendering of the raw surfel cloud in OpenGL without any lighting.
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Figure 4.4: Surfels generated for the Cornell Box scene rendered, with-
out lighting, in OpenGL using a VBO.

Algorithm 4.6 Generate surfels from points on a geometric primitive.

function GenerateSurfels(geomPrimitive, numberOfSurfels)

points := GeneratePoints(geomPrimitive, numberOfSurfels) //see alg. 4.5

minD := FindClosestPoints(points)

vectorLength := 2∗sqrt((PI ∗minD ∗minD)/1.299) //see eqn. 4.1

for all point in points do

tangent := CalculateTangent(point, geomPrimitive)

surfel := new surfel

surfel.v0 := point+ vectorLength ∗ tangent
surfel.v1 := point+ vectorLength∗rotate(tangent, 120)

surfel.v2 := point+ vectorLength∗rotate(tangent, 240)

surfels.add(surfel)

end for

return surfels

end function
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500 pts. 1000 pts. 2000 pts. 4000 pts. 8000 pts.
Box 1ms 430ms 5s 927ms 43s 104ms 6m 24s 819ms
Sphere 1ms 714ms 6s 274ms 51s 286ms 6m 50s 309ms
Triangle 1ms 713ms 6s 341ms 51s 279ms 6m 49s 847ms

Table 4.1: Surfel generation times listed by geometric primitive versus
number of initial points.

4.2.3 Surfel Storage

The surfels are generated on the CPU, but they must be rendered by the GPU.

Therefore, it is logical to store them in GPU memory. This avoids the latency of

transferring data over the CPU-to-GPU bus, which we discuss in Section 2.6. For

this purpose we leverage the OpenGL Vertex Buffer Object, or VBO. This data

structure is an array of vertices paired with colors and normals. Additionally, we

never update the surfel vertex data, so we can store them on the GPU during

our pre-process where they persist throughout our rendering.

Additionally, it is important to note that in Christensen’s PBCB implemen-

tation described in [8] he stores the surfels in an octree (see Section 2.4). This

is because, if the surfels being rasterized are far away, it can be more efficient to

group them together and treat them as one large surfel, with properties that are

the average of the surfels it represents. The octree data structure lends itself to

this practice as these large, coalesced, surfels can be constructed at octree nodes

during the pre-process and used at render time with no additional computation.

In fact, there can be quite a bit less computation, as one surfel is rasterized

instead of many.

We do not implement this feature because our implementation renders it

irrelevant. The purpose of the octree in Christensen’s PBCB implementation

[8] is to reduce the number of surfels rasterized. But our GPU implementation
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(a) 500 points (1ms) (b) 1000 points (430ms)

(c) 2000 points (5s 955ms) (d) 4000 points (43s 88ms)

(e) 8000 points (6m 24s 803ms)

Figure 4.5: Surfel generation for a box, scaled in the y-axis, vary-
ing from 500 to 8000 initial points at quarter size. Generation times
included in parenthesis.
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(a) 500 points (1ms) (b) 1000 points (430ms)

(c) 2000 points (5s 927ms) (d) 4000 points (43s 104ms)

(e) 8000 points (6m 24s 819ms)

Figure 4.6: Surfel generation for a box, scaled in the y-axis, varying
from 500 to 8000 initial points at full size. Generation times included
in parenthesis.
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(a) 500 points (1ms) (b) 1000 points (708ms)

(c) 2000 points (6s 268ms) (d) 4000 points (51s 689ms)

(e) 8000 points (6m 49s 391ms)

Figure 4.7: Surfel generation for a sphere, scaled in the y-axis, vary-
ing from 500 to 8000 initial points at quarter size. Generation times
included in parenthesis.
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(a) 500 points (1ms) (b) 1000 points (714ms)

(c) 2000 points (6s 274ms) (d) 4000 points (51s 286ms)

(e) 8000 points (6m 50s 309ms)

Figure 4.8: Surfel generation for a sphere, scaled in the y-axis, varying
from 500 to 8000 initial points at full size. Generation times included
in parenthesis.
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(a) 500 points (1ms) (b) 1000 points (703ms)

(c) 2000 points (6s 283ms) (d) 4000 points (51s 432ms)

(e) 8000 points (6m 49s 630ms)

Figure 4.9: Surfel generation for a triangle, scaled in the y-axis, varying
from 500 to 8000 initial points at 1/4 size. Generation times included
in parenthesis.
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(a) 500 points (1ms) (b) 1000 points (713ms)

(c) 2000 points (6s 341ms) (d) 4000 points (51s 279ms)

(e) 8000 points (6m 49s 847ms)

Figure 4.10: Surfel generation for a triangle, scaled in the y-axis, vary-
ing from 500 to 8000 initial points at full size. Generation times in-
cluded in parenthesis.
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rasterizes the entirety of the surfel cloud in one rendering pass, we do not require

this optimization, and therefore avoid the system complexity it introduces.

Furthermore, it would actually diminish our performance to implement the

octree feature as it stands in [8]. The VBO stored in GPU memory is static, is

marked as such, and is therefore optimized by the OpenGL subsystem to remain

on the GPU. If we update the geometry we intend to render (i.e. the VBO),

then we incur the cost of at least one CPU-to-GPU transfer of data. We find

this unacceptable for our goals, and therefore omit this implementation detail of

PBCB.

4.3 Rendering

Our rendering algorithm follows standard ray-tracing as discussed in Section

1.2, with the exception of the indirect lighting computation. The pseudocode is

listed in Algorithm 4.1.

The indirect lighting computation uses our GPU PBCB algorithm and is the

focus of this thesis. We describe the algorithm in detail in Section 4.3.2, discuss

the performance characteristics in Section 5, analyze our results in Section 5.3,

and discuss future work in Section 5.6.

4.3.1 Ray-Tracing

Our ray-tracing algorithm follows the standards set in publications such as

Peter Shirley’s ’Fundamentals of Computer Graphics’ [31]. First, we generate

a list of rays, one per pixel, by iterating over all final-image pixels. As input

we require a virtual camera definition, which provides a world-space location
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and field of view characteristics such as width and height of the final image. A

ray is composed of an origin point, inherited from the virtual camera’s location,

and direction, calculated as the vector between the origin and associated pixel’s

center.

We then iterate over the list of rays, tracing them against the scene geometry

to calculate their intersection point. The intersection algorithms are based on

concepts from [24], and [35].

Once we solve for the ray’s intersection point with a geometric object, we

calculate lighting. Because light calculations are additive [24], we can split the

calculation into a direct and an indirect computation.

Our direct lighting calculation is quite simple: in the case of point lighting,

we simply trace one shadow ray [24] and if the path to the light is unobstructed,

then we calculate standard Phong shading (see Section 2.2), and in the case of

area lighting we trace multiple shadow rays, in a uniform random distribution

over the area light geometry, and scale the shading by the percent of unobstructed

rays.

4.3.2 Indirect Gather via Rasterization (GPU PBCB)

By using the GPU’s ability to rasterize triangles, we capture the incoming

radiance at a ray intersection point by rasterizing our surfel cloud onto five 8 by

8 pixel textures arranged into a cube about the point. The cube represents the

hemisphere used in the radiance integral (Section 2.1) . Using this technique, we

attempt to realize a speedup over Monte Carlo ray-tracing as well as software-

based PBCB. The psuedocode is listed in Algorithm 4.7.

Our implementation utilizes the OpenGL API, along with helper libraries:
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Algorithm 4.7 Psuedocode for our indirect illumination algorithm.

function IndirectIllumination(intersection, scene)

tangent := GramSchmidtTangent(intersection.normal) //see alg. 3.1

for i := 0...5 do

camera := ConstructCamera(i, intersection.point, intersection.normal, tangent)

pixelData := Rasterize(camera)

for j := 0...64 do

x := j % 8

y := j / 8

right := −(camera.up×camera.direction)

textureCenter := camera.location+(nearP lane ∗ camera.direction)

a := −(7/8)

b := 1/4

//see fig. 4.14

jP ixelCenter := textureCenter + (a ∗ nearP lane + b ∗ nearP lane ∗ x) ∗ right +

(a ∗ nearP lane+ b ∗ nearP lane ∗ y) ∗ camera.up

sampleDirection := normalize(jP ixelCenter − camera.location)

weight :=clamp(intersection.normal·sampleDirection, 0)

if weight > 0 then

indirectColor += weight ∗ pixelData[j] ∗ intersection.surfaceColor

totalP ixels+ = 1

end if

end for

end for

indirectColor /= totalP ixels

return indirectColor

end function
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GLUT and GLEW. Therefore, as a preamble to the algorithm, we must initialize

OpenGL. This requires creating the OpenGL rendering context and associated

buffers, and setting some constant state. In our case, we require an 8 by 8 pixel

color texture and depth texture, and a vertex buffer with which we store our

surfel data. Lastly, we set the constant rendering state by disabling OpenGL

lighting such that the color we calculate in the surfel generation preprocess will

be used directly, and by binding our textures and buffers, which informs OpenGL

on how to use each buffer (e.g. render to color texture, or where vertex, color,

and surface normal data is per triangle in the VBO).

As discussed in Section 4.3.1 and 1.2, the geometry intersection for each ray is

computed, and then we calculate our indirect and direct illumination separately,

combining later, because light is linear [24].

We begin our indirect illumination calculation for each intersection point by

constructing five cameras that hold the render state required to rasterize each

cube face. The cameras store their location, direction, up-vector, field of view,

and near and far planes. The location for each camera is inherited from the

intersection point. The direction is the intersection point’s surface normal for

the camera representing the top of the cube, and for the remaining cameras,

we use the surface tangent, rotated in 90◦ increments. The up-vector for the

cube-side cameras is the surface normal, and the top camera uses one of the side

camera’s direction vector. The field of view is set to 90◦ for each camera such

that their viewing frustums fit together with no gaps (see Figures 4.11 & 4.12).

The near plane is set to 0.01, and the far plane is set to 15, which we have found

offers good results for our test scene because the height of the Cornell Box is 10

units.

Once the cube-face cameras are constructed, we iterate over each, and ras-
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Figure 4.11: Top view of the cameras that comprise our cube map.

Figure 4.12: Side view of the cameras that comprise our cube map.

terize the surfel cloud onto an 8 by 8 pixel texture at the camera’s near plane

(see Figure 4.14). This texture data must then be read back from the GPU,

and convolved into one indirect illumination value. We do this by iterating over

each pixel, and adding its contribution, calculated using the diffuse component

calculation of the Phong reflectance model (see Section 2.2), to the final color.

Because we calculate the pixel’s weight using Lambert’s Law, the bottom half

of the cube-face sides are effectively not contributing due to their n · l factor being

negative. This issue is visualized in Figure 4.13. This problem is unavoidable,

however, because the cameras’ view frustums must be equal in dimensions in

order to properly emulate the hemisphere with uniform distribution.

Once each cube face has been rasterized and convolved, we return the final

color as our indirect illumination value at the intersection point.
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Figure 4.13: A few example rays, used as the l in the n · l weighting
factor for the pixel color values, during cube-face convolution. The red
ray designates that the pixel will not contribute due to a negative n · l
factor.

4.3.3 Final Color Computation

With the direct illumination calculated using the typical Phong shading tech-

nique [25], and the indirect illumination calculated via our algorithm, the final

color is computed by adding the resultant values. This can be done because of

the fact that light is linear [24].

We then write the final color value to our image in memory. We store the

final image in RAM until the rendering is complete, then write it to disk as an

uncompressed TARGA image file.
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Figure 4.14: View of the texture that is rasterized at the near plane
of the camera.

4.4 Review

We have presented a rendering algorithm that achieves an order of magnitude

speedup over Monte Carlo ray-tracing on certain hardware, namely heterogeneous

chip architectures, with the knowledge that the future work discussed in Section

5.6 would extend our results to all hardware.

As an integral step of the algorithm, we have discussed our novel surfel gen-

eration algorithms for each of our supported primitives. Our surfel generation

algorithms not only generate the triangles required by GPU-hardware for ras-

terization, but produce reasonably uniform coverage for arbitrarily transformed

geometry.

Lastly, we discussed our indirect illumination computation: how we store

55



our surfel cloud in GPU memory, rasterize it on to cube-map faces, and finally,

convolve the cube-map pixels into one final color.
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Chapter 5

Results and Discussion

In this section we demonstrate that our GPU PBCB algorithm performs well

on two types of graphics hardware, rendering one of the most ubiquitous scenes

in all of computer graphics: the Cornell Box [14]. We achieve faster render times

at the cost of memory usage. Our rendered images display interesting global

illumination effects such as color bleeding due to indirect illumination, and are

comparable to those produced using the slow, but accurate, Monte Carlo ray-

tracing algorithm.

5.1 Test Environment

Our test results were gathered on a 2011 MacBook Air [5]: 1.8Ghz Intel Core

i7 (Sandy Bridge i7-2677M) [16], 4 GB 1333MHz DDR3 SDRAM, Intel HD 3000

Graphics (on CPU-die) with 384MB VRAM, and a solid-state (flash) hard disk.

Our traditional architecture was represented by a 4.0GHz Intel i7-920 [15], with

6GB 1333MHz DDR3 SDRAM, ATI Radeon HD 5970 with 1GB VRAM [3],

and a standard 7000RPM hard disk. For our software PBCB results, we forced
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OpenGL into a software-only mode.

5.2 Test Scene

Our test scene is an adapted Cornell Box. The Cornell Box was originally

developed to quantify the difference between a Cornell renderer [14] and a real

photograph of the same scene. However, due to its simple and elegant design,

it has been adopted by the field of computer graphics as a standard for global

illumination comparison (see [11, 20, 32, 33]). Since its popularization circa 1985,

it has become iconic and ubiquitous within the world of computer graphics.

This scene was chosen for its ability to showcase the subtleties of indirect

illumination. The overhead area light casts clearly visible soft shadows around

the cubes, and the color bleeding from the walls of the Cornell Box is prominently

displayed in those shadows. Another demonstrative feature is that no direct light

is cast on the ceiling; it is illuminated by purely indirect light.

Our Cornell Box is defined in a modified POV-Ray format [22], developed for

the CSC 473 course at California Polytechnic State University, San Luis Obispo.

It is comprised of 16 triangles, which make up the Cornell box, and 2 rotated and

scaled cubes. This results in 14,000 surfels, following the algorithm in Section

4.2.

5.3 Analysis

Our analysis is threefold, based on the following metrics:

1. time to render one image

58



2. perceived image difference and quality

3. memory requirements

We also discuss scalability in terms of geometric and shading complexity.

5.3.1 Speed

To analyze the speed of our GPU PBCB algorithm, we render our Cornell

Box scene and compare it against both a Monte Carlo algorithm, and a forced

software-mode of OpenGL. We demonstrate a 41.65x speedup over traditional

Monte Carlo method, as well as a 3.12x speedup over the software-based renderer

used in traditional PBCB, represented by an OpenGL software rasterizer. These

results are collected in Table 5.1.

Algorithm Time (traditional) Time (heterogeneous)
16 MC samples 525 sec 565 sec
32 MC samples 790 sec 862 sec
64 MC samples 1962 sec 2137 sec
128 MC samples 3682 sec 4063 sec
256 MC samples 7756 sec 8205 sec
Software PBCB N/A 615 sec
GPU PBCB 236 sec 197 sec

Table 5.1: Render times for a 500x500 Cornell Box scene using our
GPU PBCB algorithm compared against Monte Carlo with varying
numbers of samples and traditional software-based PBCB. We include
data for both traditional system architectures and heterogeneous ar-
chitectures where the GPU and CPU share their die.

As evidenced by our results from image comparisons in Section 5.3.2, we do

not reach a visually acceptable noise level in the Monte Carlo algorithm until

256 samples. Therefore, we will frame our analysis of run time by comparing

our GPU PBCB algorithm against the 256 sample Monte Carlo render. In this
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Algorithm Time Diff. (traditional) Time Diff. (heterogeneous)
16 MC samples +123% +187%
32 MC samples +235% +338%
64 MC samples +731% +985%
128 MC samples +1460% +1962%
256 MC samples +3186% +4065%
Software PBCB N/A +212%
GPU PBCB baseline baseline

Table 5.2: Differences in render times, as percent difference, for a
500x500 Cornell Box scene using GPU PBCB as a baseline compared
against Monte Carlo with varying numbers of samples and traditional
software-based PBCB. We include data for both traditional system ar-
chitectures and heterogeneous architectures where the GPU and CPU
share their die.

case, we attain a 41.65x speedup on our heterogeneous architecture system, and

a 32.86x speedup on our traditional architecture system.

Another important feature of our work is the fact that we extend the basic

PBCB implementation to leverage the GPU hardware to accelerate our algo-

rithm. We were able to capture data for a software-based rasterizer by utilizing

the ability to force a software-mode OpenGL context. This was not possible on

our traditional architecture as it only supported a software-based OpenGL 1.0

context, while we require OpenGL 2.0 features. However, we were able to force

our heterogeneous architecture system to use a software-based rendering context,

and achieved a 3.12x speedup. We expect this speedup to be present on a tradi-

tional architecture system, but not to the same extent as it runs our algorithm

19.8% slower in our tests.

5.3.2 Image Quality

In order to compare image quality, we must determine a baseline for compar-

ison. For this we use rendered images from our Monte Carlo algorithm. Specifi-
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cally, we use an image generated using 256 samples in our Monte Carlo ray-tracer

because we have found this to offer a visually acceptable level of noise. See Figure

5.1 for noise comparisons between varying numbers of samples.

Using the mean absolute error image comparison algorithm implemented in

ImageMagick compare [1], we can determine the difference between our image

rendered using our Monte Carlo ray-tracer with 256 samples per primary ray,

and the image from our GPU PBCB algorithm. The results of comparison with

images rendered using varying numbers of samples in the Monte Carlo algorithm

are collected in Table 5.3.

Algorithm MAE
16 MC samples 3.22%
32 MC samples 2.78%
64 MC samples 2.12%
128 MC samples 1.83%
256 MC samples 1.76%
GPU PBCB baseline

Table 5.3: Image difference for the Cornell Box scene with the emissive
geometry area light using our GPU PBCB algorithm compared against
Monte Carlo with varying numbers of samples and traditional software-
based PBCB. The listed values are mean absolute error computed as
the average over each pixel pair and each color channel.

The error percent values listed in Table 5.3 show us that we have produced

very similar images. This can be verified visually as well in Figure 5.2. Our GPU

PBCB algorithm produces renders that are most similar to the 256 sample Monte

Carlo render, which is only 1.76% different on average. This makes intuitive

sense as the noise in the lower sample rate renders causes a greater difference in

appearance.

The error values are measures of mean absolute error. This is calculated by

computing the difference between pairwise pixel’s color channels and averaging
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(a) 1 sample (b) 16 samples

(c) 32 samples (d) 64 samples

(e) 128 samples (f) 256 samples

Figure 5.1: Noise results from varying numbers of Monte Carlo samples
in a Cornell Box with point light.
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(a) GPU PBCB (b) 256 sample Monte Carlo

(c) Image Difference

Figure 5.2: Our Cornell Box rendered with both 256 sample Monte
Carlo and our GPU PBCB algorithms. Included is an image produced
by using the distance between two colors for all color channels per
pixel.
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them over the entire set of pixels. For example, if our GPU PBCB algorithm

produces a pixel with color values <0.45, 0.50, 0.45>, and the 256 sample Monte

Carlo algorithm produces a pair pixel with values <0.1, 0.2, 0.1>, then the

pairwise distance values are <0.35, 0.3, 0.35>, and the mean absolute error would

be the average of these distances, i.e. 0.3333 or 33.33%.

Lastly, we have generated a difference image that was computed by using

the absolute value of the difference between pairwise pixels in the two renders

produced by our GPU PBCB algorithm and the 256 sample Monte Carlo render.

This allows us to visualize the difference between renders.

It is important to note that the largest area of difference is the emissive ge-

ometry at the top of our Cornell Box. The difference is greatest here because of a

limitation of our algorithm. Because we store direct illumination shaded surfels

as triangles in a VBO on the GPU, we can only represent the color range from

<0, 0, 0> to <1,1,1>. This is actually a limitation of the fixed function graphics

pipeline, as it only supports this range, clamping all color values outside of it.

This is an issue for the emissive geometry, which has a greater than <1, 1, 1>

direct illumination value because it is emitting light. Our Monte Carlo imple-

mentation evaluates the direct illumination on demand without any clamping

of values, and therefore receives the correct illumination values for the emissive

geometry. However, the bright halo effect is not lost entirely in our GPU PBCB

algorithm, so we find this acceptable.

5.3.3 Memory

Our memory usage was gathered by using the memusg script [29]. It polls

the size reported by the unix utility ’ps’ every 100 milliseconds and records the
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largest instantaneous memory usage.

When comparing our Monte Carlo and GPU PBCB algorithms in terms of

memory, it is important to note that they share most of their code. The only dif-

ference is the indirect illumination computation. In this way, Monte Carlo is our

baseline, and our GPU PBCB algorithm adds additional memory requirements.

These are summarized in Table 5.4.

Scene MC Mem. GPU PBCB Mem. Diff.
1 object 17.81 MB 26.5 MB +48.79%
2 objects 17.81 MB 26.6 MB +49.35%
4 objects 17.81 MB 27.2 MB +52.72%
8 objects 17.82 MB 28.5 MB +59.93%
Cornell Box (18 Objects) 17.83 MB 31.8 MB +78.35%

Table 5.4: The memory usage for our Monte Carlo and GPU PBCB
algorithms for varying numbers of geometric objects. Included is the
percent increase in memory usage.

The memory usage of our algorithm shows that we use a baseline of 48.79%

additional memory for one object. This baseline increases linearly with the num-

ber of objects in the scene (see Figure 5.3). This is due to the fact that each

object adds a fixed number of additional surfels.

The baseline increase is due to the fact that our algorithm requires the

OpenGL and helper libraries (e.g. GLUT), as well as the user-mode graphics

driver. These are loaded in to our process’ address space and therefore increase

its memory footprint.

It is also important to note that our Monte Carlo implementation increases its

memory usage over time as well. However, it increases at a much slower rate than

our GPU PBCB algorithm. This is because the Monte Carlo implementation only

needs to store the base geometric object, but our GPU PBCB implementation

stores that object as well as its associated surfels.

65



Figure 5.3: Graph of our GPU PBCB memory usage for varying num-
ber of geometric objects in a scene.

5.3.4 Scalability

Scalability is the ability of our algorithm to scale to varying geometric com-

plexity and image size. Because our algorithm supports only three types of ge-

ometry (i.e. triangle, sphere, and box), geometric complexity is a result of the

number of surfels rasterized. To study this, we compare the render times for our

Cornell Box with varying numbers of surfels generated. The results are collected

in Table 5.5.

Table 5.5 demonstrates that our render times are not affected by the number of

surfels rasterized. This is due to the massive parallelism provided to us through

the GPU. It can rasterize millions of triangles simultaneously, in parallel. For

example, the ATI Radeon HD 5870 in our traditional architecture system can
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Number of Surfels Render Time Mem. Usage Surf. Gen. Time
9000 (500/obj.) 199 sec 31.8 MB 16 sec
18000 (1000/obj.) 198 sec 37.56 MB 115 sec
27000 (1500/obj.) 184 sec 43.03 MB 380 sec
36000 (2000/obj.) 189 sec 48.99 MB 890 sec
45000 (2500/obj.) 192 sec 54.44 MB 1746 sec
54000 (3000/obj.) 202 sec 59.90 MB 2986 sec

Table 5.5: Comparison of GPU PBCB render times for varying num-
bers of surfels rasterized.

process 850 million polygons per second [3]. However, our memory usage and

surfel generation time are not constant.

Our memory usage scales linearly with the number of surfels required. This is

expected and natural given that we are simply generating and storing additional

surfels. This can be seen in Figure 5.4.

Figure 5.4: Graph of our GPU PBCB memory usage for varying num-
ber of surfels generated per object in our Cornell Box scene.
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Our surfel generation time is more interesting. Here we have an exponential

growth curve for our render times based on how many surfels we generate per

object. This is visualized in Figure 5.5. The reason for this is that our surfel

generation algorithm uses an O(n2) algorithm in order to determine the two

closest points (see Section 4.2).

Image Size Render Time Mem. Usage
100x100 8 sec 19.02 MB
200x200 32 sec 20.60 MB
400x400 129 sec 27.02 MB
800x800 506 sec 52.67 MB

Table 5.6: Comparison of GPU PBCB render times for varying image
dimensions.

Figure 5.5: Graph of our surfel generation times for varying number
of surfels generated per object in our Cornell Box scene.

The other form of scalability we are interested in is how our algorithm scales

to rendered image dimensions. The goal is linear scaling in each dimension,
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meaning that doubling the width and height should quadruple the render time.

The results are collected in Table 5.6, and clearly show that we do indeed scale

linearly in both run time and memory usage.
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5.4 Additional Scenes

In this section we present two additional scenes rendered using our GPU

PBCB algorithm.

Figure 5.6: 500 vertex Stanford bunny [34] in our Cornell Box.

Figure 5.7: A scene with 3 spheres: one green, one red, and one
emissive.
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5.5 Conclusions

In this thesis we have presented a GPU-accelerated implementation of the

Point-Based Approximate Color Bleeding algorithm [8]. We have demonstrated

a 41.65x speedup compared to 256 sample Monte Carlo ray-tracing, as well as a

3.12x speedup over PBCB using a software-based rasterizer.

We have also gathered data that compares traditional architecture systems

with heterogeneous architecture systems that place the GPU and CPU on the

same die and share memory. We found that for our usage scenario, the het-

erogeneous architecture achieves better performance despite comprising weaker

specifications. However, this issue is not fully explored as our algorithm naively

implements the cube-face rasterization. We believe it is possible to further ex-

plore rasterization batching and CPU-GPU parallelization in order to achieve

even further performance gains, in which case the traditional may overtake the

heterogeneous architecture.

Lastly, we contribute a novel surfel generation algorithm that supports ar-

bitrarily transformed geometry. This is important because proper coverage is a

necessity to capture the proper shading in order to calculate indirect illumination

as accurately as possible. And although our generation algorithm shows expo-

nential growth as the number of surfels per object increases, we are pleased with

the practical results in coverage we have obtained on transformed geometry.

The core of ray-tracing has always been about producing beautifully rendered,

photorealistic images. Point-Based Color Bleeding was developed to speedup the

rendering process, while not sacrificing visual quality. Our goal has been to

further push the boundaries of performance by accelerating PBCB with GPU

hardware. Overall, we believe the work we have done demonstrates that GPU-
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acceleration of the Point-Based Color Bleeding algorithm is a viable means to

pursue even faster render times. However, because we do not have an exact

implementation of Christensen’s PBCB algorithm [8], we believe that further

work is required to truly access the comparison between his and our own.

5.6 Future Work

5.6.1 Persistent Surfel Storage

Currently, our algorithm stores the surfels in RAM, not a persistent file on the

hard drive. This requires our renderer to re-generate the surfels for each render.

One of the main benefits of PBCB in production is that it is possible for a scene

to have surfels generated, persistently stored in a file, and loaded at render time

to be reused. This amortizes the cost of the surfel generation process across all

renders for the same scene.

In our renderer, the most effective way to implement persistent surfel storage

would be to write the VBO array memory to a file as binary data, as opposed to

storing it as text mesh-file format. In this way, a simple memory map operation

would map the data directly into the VBO structure without any text parsing

and processing whatsoever.

For our Cornell box scene, the surfel generation takes 16 seconds per render

(see Table 5.5), which could be avoided with persistent surfel storage. And al-

though the surfel generation is not included in our render run time results, the

feature would increase our overall render throughput.
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5.6.2 Dynamic Surfel Surface Area Computation

Having a dynamic density for surfels would help to homogenize the surfel size

throughout the scene. Our algorithm naively creates a user-provided number of

surfels per geometric primitive: for triangles and spheres, exactly the specified

number of surfels are generated, and for boxes, each face generates the specified

number (i.e. specified value multiplied by six per box). This results in variable

surfel sizes across the same geometric primitive at different scales. For example,

the smaller triangles that compose the ceiling of our Cornell box, and the larger

triangles that compose the walls, both generate 500 surfels. Because the primi-

tives have different surface areas, the surfel density is variable, resulting in small

surfels for the small triangles, and larger surfels for the large triangles.

Our proposed solution to this problem is to have a user-provided surfel density

in the form of minimum distance. The current algorithm would be modified to

continue decimating the random points until the specified minimum distance is

met. Another way in which to achieve the same result, in perhaps a more intuitive

manner, would be to have a user-provided surfel surface area. We would then

solve for the minimum distance that would provide such a surface area, and use

that, per the previously described algorithm modification.

Furthermore, it would behoove us to analyze the results of varying the surfel

surface area on final render quality and speed, as well as surfel memory require-

ments. The tradeoffs to consider are that larger surface areas would result in

fewer surfels, thus requiring less memory and reducing render times by requiring

fewer triangle rasterizations. But smaller surfels would increase the sampling

density of the scene’s radiance information, resulting in more accurate indirect il-

lumination values, and would decrease the surfel generation run time by requiring
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fewer passes for the decimation step within our algorithm.

5.6.3 Rasterization Batching

On more traditional CPU-GPU architectures, where the CPU and GPU must

communicate via the PCI bus, care must be taken to avoid synchronous commu-

nication over the slow PCI bus [28]. Due to the latency of CPU-to-GPU com-

munication, it is in our best interest to batch as much of this communication as

possible. In our algorithm, we raster each cube-face serially. This means that

each 8x8 cube-face texture is rasterized, then copied from GPU to CPU memory,

and processed. Therefore, each cube requires 5 data transfers (recall that the bot-

tom of the cube is ignored). For heterogeneous system architectures, like our test

system, this transfer is instant as CPU and GPU share memory. However, this

data transfer is the single most time-consuming task in our algorithm on more

traditional CPU-GPU architectures. The communication from GPU to CPU can

be reduced however.

We can accomplish fewer transfers by packing multiple cube-face textures into

one single texture per cube. In this way, we amortize the cost of one GPU-to-

CPU transfer over 5 textures. The algorithm for this technique would require one

additional render pass, in which the 5 cube-face textures are texture-mapped to 5

screen-aligned quadrilaterals. This creates a texture atlas per cube that requires

only one GPU-to-CPU transfer and can be indexed appropriately to extract the

data for each cube-face.

This idea could be taken further: to batch the entire set of cubes, or some

subset, as available memory and texture size dictates. Potentially, one thread

could perform the standard direct illumination calculations via ray-tracing, while
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another thread rasterizes the surfel cloud onto cube-face textures, but stores

them into one texture atlas for the entire scene. This is a very appealing idea to

us because it would achieve great parallelism, as the CPU and GPU would be

simultaneously leveraged to perform rendering tasks.

5.6.4 Parallelization

We believe the benefits of parallelization are apparent and will not discuss

them further here. Suffice it to say that our algorithm can easily benefit from a

model that divides primary pixels between multiple threads of control. In fact,

this is precisely how our Monte Carlo ray-tracer accomplishes its parallelization.

However, our code relies on the GLUT library [23] to create and manipulate

the OpenGL context. GLUT does not currently support multithreaded appli-

cations. For this reason, although our implementation supports multithreaded

rendering for Monte Carlo ray-tracing, it does not for our GPU Point-Based Color

Bleeding algorithm. We have acquired our results in both cases with one thread

only.

Any solution to this problem will involve porting the OpenGL code that

leverages GLUT to another multithreading-friendly library. The Simple and Fast

Multimedia Library is one such library that is freely available [27]. Preferably,

the library would support one single context that is shared between all threads

of control and serializes their access, but it could also be accomplished while

using GLUT by wrapping the functionality and diligent use of IPC and thread

synchronization. By sharing the context, the surfel data within the VBO memory

does not need to be duplicated.

Another type of parallelization that many applications utilizing the GPU
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leverage is CPU-GPU parallelization. This is where concurrent work is per-

formed on both hardware devices. That is to say: the CPU does not block on

a GPU draw call. This can be accomplished via the process described in Sec-

tion 5.6.3. Here, we can completely divide the rendering process into threads

performing direct illumination via standard ray-tracing and threads performing

indirect illumination via our GPU PBCB algorithm. Because our two types of

illumination have no interdependencies, two final images can be rendered, one

with the direct illumination values, and the other with the indirect illumination

values, and combined after both rendering passes are complete.

5.6.5 Spatial Data Structures

Spatial data structures are meant to answer spatial relationship queries. That

is to say: they can inform us about what objects are nearest to any point in space.

They can be incorporated into our algorithm in two distinct ways. First, our surfel

generation algorithm requires us to solve for the two closest points out of the set

we generate on the surface of our source geometry. We believe an octree would

address our needs [2]. Secondly, we could use a spatial data structure to store

our surfels.

The uniformity of surfels makes them a natural fit for spatial data structures.

Because surfels are all relatively small compared to the source geometry, and

uniform in size, it allows us to more easily subdivide then into groups or bins.

This is important to spatial data structures like the bounding volume hierarchy,

or BVH [24].

In our test scenes, we never produced enough surfels to overwhelm the GPU’s

rasterization pipeline. However, there could be scenarios where there are too

76



many surfels for the GPU to handle in one pass. In these cases, our algorithm

would suffer slowdown from having to rasterize multiple times per cube-face tex-

ture.

To solve this, we could use a spatial data structure to contain our surfels and

provide us a subset of surfels relevant to the current render. Using the hierarchical

view frustum culling algorithm [2] we could cull any surfels that are not the in

the view frustum of a given camera before rasterization.

5.6.6 Surfel Level of Detail

One of the features in Christensen’s PBCB algorithm presented in [8] is the

three levels of detail used for the cube-face rasterization step. We did not imple-

ment this feature, and one of the benefits is that the number of surfels rasterized

is reduced via the octree and coalesced surfels. However, there are also the ad-

ditional rays to trace as well. It is unclear how this strategy will affect the run

times, although we assume for the better. Because of this we believe that a true

replica of Christensen’s PBCB algorithm needs to be implemented, to further

access the viability of GPU-acceleration in PBCB.
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