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Abstract

Real-time Musical Analysis of Polyphonic Guitar Audio

John Hartquist

In this thesis, we analyze the audio signal of a guitar to extract musical data

in real-time. Specifically, the pitch and octave of notes and chords are displayed

over time. Previous work has shown that non-negative matrix factorization is

an effective method for classifying the pitches of simultaneous notes. We explore

the effect of window size, hop length, and other parameters to maximize the

resolution and accuracy of the output.

Other groups have required prerecorded note samples to build a library of

note templates to search for. We automate this step and compute the library

at run-time, tuning it specifically for the input guitar. The program we present

generates a musical visualization of the results in addition to suggestions for

fingerings of chords in the form of a fretboard display and tablature notation.

This program is built as an applet and is accessible from the web browser.
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Chapter 1

Introduction

Music is all around us. We hear it on the radio, on television, in movies, at

coffee shops, and even on our cell phones. As general listeners, we do not need to

have a deep understanding of the science behind music to have an appreciation for

it. Musicians, on the other hand, often spend years learning the intricacies of their

art [23]. They dig deep into the theory, and practice routinely to perfect their

technique. Over time, they are able to train their ears to hear tiny differences in

sound that an average person would barely be able to perceive.

With the rise of computers over the past few decades, many tools have been

created to aid musicians in a variety of ways. Digital tuners are common, and

software for recording and editing audio is readily available [23]. One area that

is still being actively researched is that of music analysis. Computer programs

have been written to try to identify the pitch and duration of specific notes in

audio files for the purpose of automatic music transcription [28]. Many solutions

have been proposed, but most of them are limited in their accuracy, and most are

geared for offline use. That is, they work well for prerecorded audio tracks, but are

not designed for real-time audio input. Other limitations include the inability to
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distinguish between individual instruments when there are many present. While

different instruments create dramatically different types of sounds, even a single

instrument can have a very wide range of sounds. While it is easy for humans to

recognize sounds as belonging to a particular instrument, it is a difficult task for

computers.

In this thesis, we focus on the audio signal of a single guitar, and aim to

analyze and visualize musical information in real-time. In particular, we attempt

to locate notes as they are played, and classify the exact pitch and duration of each

one. This thesis works toward finding an efficient method that can later be used

to aid musicians in practice and performance, giving them a visual interpretation

of the sound they are creating, as well as providing musical analysis of the notes

that they are playing.

The guitar is a dynamic instrument, and many guitar players express notes

in different ways. Sometimes they slide from one note to another, and sometimes

they manipulate the pitch of notes by bending them in various ways. Notes can

be played at different volume levels, as well as with a variety of effects such as

distortion or reverb. Despite these challenges, we desire high resolution in both

the time and frequency domains.

Music can be classified into two main categories, monophony and polyphony.

We call music monophony when there is only one note occurring at any given

time. When there are multiple notes at a time, it can be called polyphony. While

there are many techniques to detect the pitch of a single note, detecting many

simultaneous notes can be much more difficult. On the guitar, there can be as

many as six simultaneous notes (one on each string) that when played together

are called chords.
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Figure 1.1: All E notes on the guitar neck. Different colors represent
different octaves.

To further complicate things, notes with the same pitch can be played from

different strings. For example, the note B2 (with a fundamental frequency of

123.46 Hz) may be played by plucking the sixth string at the 7th fret or by

playing the fifth string at the 2nd fret. Some notes have as many as five different

locations on the fretboard. Due to this, chords of up to six notes can often be

played in different positions along the guitar neck.

We attempt to accurately display these notes in an informative manner as

they are being played. To do this we build from existing work related to an

algorithm utilizing non-negative matrix factorization [3, 8, 12, 17]. Specifically, we

eliminate the requirement for prerecorded note samples, explore different window

sizes, and utilize multi-resolution FFT analysis to efficiently determine the pitch

and octaves of simultaneous sounding notes. In addition, musical analysis of the

notes relating to harmony and melody is provided in real-time, as well as possible

hand positions and fingerings for chords.

3



Finally, this thesis attempts to make such a tool as available as possible to

musicians by requiring minimal steps to get the software running. It is developed

as a Processing (www.processing.org) applet that runs inside the browser, and is

accessible by simply visiting a website. As of now, no other such tool is known

to exist.
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Chapter 2

Background

2.1 Music Theory

Before we discuss the goals of this project, it is important to understand some

basic concepts of how music works. Music is made up of individual notes that

each have characteristics such as pitch, duration, loudness, and timbre.

Pitch is an audible perception of sound in relation to how humans hear.

It is how we perceive tones to be higher or lower when compared to one an-

other. Western music characterizes pitch into 12 different semi-tones which when

grouped together are called an octave, with octaves being repeated over and

over. A pitch class refers to one of the tones, for example the note B, and in-

cludes all instances of B across all octaves. While pitch is logarithmically related

to the frequency of the waveform making up an audio signal, technically it is just

describing how humans perceive music [28].

Duration quantifies how long a certain note lasts, and is measured in “beats”

or fractions of beats which are in turn grouped into measures.
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Timbre is often referred to as the “color” of the note. It is what allows hu-

mans to hear the difference between a guitar and a piano, even if they are played

at the same pitch. In addition, similar instruments may have different timbres.

For example, two different models of an electric guitar may sound slightly differ-

ent. While timbre is easy for humans to distinguish, it is a lot harder to write a

computer program to do the same thing.

Often times, notes are described in the context of scales. If 12 consecutively

pitched notes are grouped together and played in succession, they are called a

chromatic scale. Other scales, made up of fewer notes can be constructed, and

characterized by the intervals between each note. Major scales, are considered to

sound “happy”, and minor scales are considered to sound “sad”.

Chords occur when more than one note is played at the same time. They are

named according to which notes from the scale are present. For example, if the

chord includes the first, third, and fifth notes of the major scale, it’s considered

to be a major chord. There are many different types and variations of chords.

On many instruments, it is possible to play the same note in different ways.

For example, on a guitar, the same note may exist in various places on different

strings. To complicate manners, guitarists use many different techniques when

playing notes. Some use their fingers to pick notes, and some people use a plec-

trum (also called a pick). They often use different volumes, and sometimes alter

notes by bending the strings or moving quickly from one note to another. In this

thesis, we strive to gather enough data to analyze the expression of each note as

much as possible in addition to identifying its pitch.
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Figure 2.1: (a) All the pitch classes form a chromatic scale (b) Only
the notes included in the C major scale (c) The notes that form a C
major 7 chord
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Figure 2.2: Fretboard displaying an open C major chord

2.1.1 Guitar

This thesis focuses on analyzing the sound generated by electric and acoustic

guitars. Standard guitars have six strings and usually at least 21 frets. Strings

are numbered from the right to the left when looking directly at the fretboard,

with the first string having the highest pitch and the sixth string having the

lowest pitch. Individual notes are played by pressing down on a string above

a certain fret and picking (plucking) the string. As the frets get closer to the

body of the guitar, the pitch of its corresponding note increases in semi-tone

intervals. Fingering charts can be used to describe which frets must be held

down on different strings for a specific chord to sound. Figure 2.2 shows how to

play an open C major chord.

One of the characteristics of the guitar is that there are many different ways

to play the same note. In standard tuning, the lowest note of the guitar is the

E on the open sixth string. Five frets up is an A note which sounds the same
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as the open note on the fifth string. These notes that have the same pitch but

different locations are said to be enharmonic. Some notes may occur as many

as five times throughout the neck. The notes of the open strings from the sixth

string to the first string in standard tuning are EADGBe with the capital E being

two octaves lower than the lowercase e. In addition to standard tuning, guitarists

may prefer to use an alternate tuning, where strings are tuned different to notes,

for example DADGAD. This changes the location of notes throughout the guitar

neck, thereby creating different hand and finger positions for making chords.

To actually produce the sound, acoustic guitars have a hollow body where the

vibrations from the strings resonate. In contrast, electric guitars use magnetic

coils at the bridge of the guitar to translate the vibrations into an electrical signal

that is fed to an amplifier. Some acoustic guitars also have a microphone preamp

built into them, allowing them to connect to an amplifier as well.

Throughout this thesis, we use an electric and acoustic guitar with analog

outputs that connect to a Line 6 GuitarPort, an analog-to-digital converter, that

connects to a computer via USB.

2.1.2 Harmonics

When we talk about the pitch of a note in terms of its frequency, what we

are really referring to is its fundamental frequency. For example, the note A2

has a fundamental frequency of 110 Hz. Real-world musical notes are made up

of the fundamental frequency as well as a number of harmonics that occur at

integer multiples of the fundamental, e.g. 220, 440, 880, 1760 Hz, etc. This makes

analysis difficult, because the first harmonic of the note (in this case, found at

the frequency 220 Hz) also represents the fundamental frequency of a note with
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the same pitch class that is one octave higher (A3). Research has shown that the

strength and characteristics of harmonics have a lot to do with the overall timbre

of a note.

2.1.3 Music Representation

There are many different ways for musicians to represent music. The most

common is in the form of sheet music using standard musical notation. On

instruments where the same note might have multiple different locations, it is

difficult to directly map notes to hand positions. Only highly trained musicians

can sight read musical notation. Instead, many guitarists use tablature, another

music representation that uses numbers to represent fretted notes on different

strings.

Musical Notation

Music notation is used by a wide variety of musicians to represent the musical

structure of songs. It includes information about the dynamics of the song, tempo,

key and time signatures, as well as all of its notes and their respective pitches.

The dynamics refer to how loud or quiet parts of the song are supposed to be

played. Tempo is the speed at which the piece should be performed, usually

measured in beats per minute (BPM). The key signature contains information

about which key the song is in as well as indicating which notes should be played

sharp or flat (a semi-tone higher or lower) by default. The time signature has

to do with how the notes are counted and divided into measures, or sections of

beats. This, along with the the actual notes themselves determine the rhythmical

structure of the music. Each note contains both information about its duration
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Figure 2.3: Music notation (top) and guitar tablature (bottom)

signified by the shape and if it is filled in or not, as well as its pitch information

signified by where the note is located vertically on the staff. Rest notes may be

marked as well, specifying the amount of time for silence between notes. Sheet

music is read with time flowing left to right, with special markings for parts

that might be repeated multiple times, or where to jump to after a chorus. See

Figure 2.3 for a short piece of sheet music.

Guitar Tablature

An alternative form of music representation is called tablature, or tab for

short. Specifically suited for fretted string instruments like guitar, it looks similar

to music notation, but rather than signifying pitch, the horizontal lines each

correspond to a single string of the instrument. Notes are designated by numbers

that correspond to the fret that must be held down on each respective string.

There are symbols to represent a variety of techniques and dynamics that can be

traced loosely to standard music notation. While some tabs includes timing and

rhythm information, the majority of tabs do not. There are many websites such

as Ultimate-Guitar.com that host tabs for popular music [1].

These websites allow people to create their own tab and share them with

the world. Creating tablature can be time consuming and is very error prone.
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Because of this, many tablature online is of poor quality and is often based on

guesswork. In many cases, not only are tabs incomplete versions of the song,

but they include incorrect hand positions as well as incorrect or missing notes.

There are also different meanings for accuracy. One one side of the spectrum it

could mean that every note is written exactly as played by the original recording.

One the other side, the tab may be simply recording the correct pitches, or

a simplified way of playing the song. Even with an education of basic music

concepts, creating accurate tablature requires excellent hearing to distinguish

minor differences between notes and chords.

2.2 Computers and Sound

Sound is made up of energy in the form of waves. When it is converted from

an analog to digital signal, it is discretized into a series of samples that describe

the amplitude of the waveform at each moment in time. The number of samples

received per second is called the sampling rate. A common sampling rate for

music is 44100 samples per second and is the standard for CD quality audio.

To process this data for spectral analysis, computers typically take a window

of samples (for example, 1024 samples), do some processing, and then wait for

the next window. Window size is important as larger windows contain more

information about the signal but are received less often than smaller windows.

With a window size of 1024, windows will be received every 23 milliseconds,

whereas 8192-sample windows would be received every 186 milliseconds.

In order to gain information more often, sometimes a sliding window is used

with a hop size parameter. For example, if the actual buffer size is 512 samples,

the computer can save the last few windows and do calculations on a larger

12



Figure 2.4: An example showing a hop size of 8 with an effective
window size of 32

window of say 4096 samples. This introduces overlap which can help reduce

artifacts and improve resolution in the frequency domain.

2.2.1 Detecting Pitch of Single Notes

There are two main approaches of detecting the pitch of a sound. The first

is by analyzing information in the time domain (the explicit data contained in

the samples), and other is by analyzing the frequency domain (the distribution

of the different frequencies spread throughout the frequency spectrum). One

popular time domain algorithm is called autocorrelation [28]. It looks for the

highest peaks of each wave in the sample window, and measures the distances

between them. With these distances, the period of the wave can be inferred, and

the frequency can be detected. This method works well for individual pitches or

notes, but when there is more than one note sounding at a time, the algorithm

is unable to classify them.

To analyze a sample window in the frequency domain, a common technique is

to run the samples through a function called the Fourier transform. This function

takes in an array of amplitudes at discrete points in time, and outputs an array

of frequency bins that contain the magnitude and phase of different parts of

the frequency spectrum. By locating the bins with the largest magnitudes, it

13



MIDI # Pitch Freq (Hz)
40 E 82.4
41 F 87.3
42 F#/Gb 92.5
43 G 98.0
44 G#/Ab 103.8
45 A 110.0
46 A#/Bb 116.5
47 B 123.5
48 C 130.8
49 C#/Db 138.6
50 D 146.8
51 E#/Eb 155.6
52 E 164.8
53 F 174.6
54 F#/Gb 185.0
55 G 196.0
56 G#/Ab 207.7
57 A 220.0
58 A#/Bb 233.1
59 B 246.9
60 C 261.6
61 C#/Db 277.2
62 D 293.7
63 E#/Eb 311.1
64 E 329.6

MIDI # Pitch Freq (Hz)
65 F 349.2
66 F#/Gb 370.0
67 G 392.0
68 G#/Ab 415.3
69 A 440.0
70 A#/Bb 466.2
71 B 493.9
72 C 523.3
73 C#/Db 554.4
74 D 587.3
75 E#/Eb 622.3
76 E 659.3
77 F 698.5
78 F#/Gb 740.0
79 G 784.0
80 G#/Ab 830.6
81 A 880.0
82 A#/Bb 932.3
83 B 987.8
84 C 1,046.5
85 C#/Db 1,108.7
86 D 1,174.7
87 E#/Eb 1,244.5
88 E 1,318.5
89 F 1,396.9

Table 2.1: MIDI note names with associated pitch and frequency in
Hz.

is possible to see which frequencies are present. In the case of a guitar note,

the bin containing the fundamental frequency as well as any bins containing the

frequencies of any harmonics will have significant magnitudes.

2.2.2 Detecting Pitch of Chords

These methods work well on individual pitches, but when multiple notes occur

at the same time, they do not work for various reasons. First, measuring the

14



highest peaks will only allow for the most prominent frequency to be found. Due

to the nature of harmonics, looking at the Fourier transform output alone is not

enough to figure out which notes are making up the signal. This thesis explores

algorithms to overcome this challenge.

With standard six-string guitars, up to six simultaneous notes can be played

at the same time. Many times, notes of the same pitch class are played on different

strings but in different octaves. To form good estimations of which hand position

and fingering are being used, we would like to know both the specific pitch class

and which octave (determined by the pitch) each note corresponds to. There are

a few different ways to go about detecting multiple pitches sounding at the same

time.

First, special hardware can be employed to record the pitch of each string

individually. With certain kinds of MIDI pickups, a guitar can output the signal

of each individual string separately. The pitch can be computed from each string

so that it is clear which note comes from which string, and the fingering of chords

can be inferred unambiguously. The downside to this approach is that the guitar

has to be specially built or modified to allow for the output as most guitars are

not built this way.

Non-negative matrix factorization has been shown as an effective method to

find the individual note components of a single audio signal by projecting the

FFT onto pre-computed note templates. This allows it to work with a single

microphone and no modifications to the guitar. This algorithm is described in

detail in the following sections.
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Figure 2.5: Physical wave form of a single guitar note

Figure 2.6: Physical wave form of guitar chord

Figure 2.7: Physical wave form of a single note with distortion
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(a) 440 Hz sine wave (b) 440 and 1300 Hz sine waves

(c) FFT of one sine wave (d) FFT of both sine waves

Figure 2.8: Wave forms of one (a) and two (b) sine waves, along with
their resulting FFT outputs (c) and (d)

2.2.3 Shape of Guitar Notes

Time Domain

In the time domain, the note envelope is the shape of the amplitude or loud-

ness of a musical note throughout its entire duration. The envelope is made up

of four main parts. The first part, called the attack, is when the note is first

picked, and can be seen as a sharp increase in amplitude from zero to the peak.

After the attack, the decay is the period during which amplitude falls down from

the peak to the main portion of the note called the sustain. During the sustain,

the note gradually falls until the release, when the note is silenced or becomes

inaudible. By paying attention to the relative amplitudes, note onsets can be

inferred by sudden increases in amplitude. While this can suggest timing and

temporal location of a note, it does not show us which pitch or how many notes

are being played at a time.
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Frequency Domain

As mentioned previously, the Fourier transform, (specifically the discrete

Fourier transform) takes in a vector of audio samples and produces a vector

of frequency bins with both magnitude and phase information corresponding to

different ranges of the spectrum. The equation for the DFT is shown in Figure 2.1.

Xk =
N−1∑
n=0

xne
−i2πk n

N k = 0, . . . , N − 1 (2.1)

Because calculating the DFT is on the order of O(N2), a fast Fourier transform

(FFT) is used instead to calculate the same result in O(NlogN) operations. When

the FFT is taken repeatedly over short periods of time (often using overlapping

windows), the result is called a short-time Fourier transform or STFT. The STFT

can be visualized to show the change in local frequencies over time.

The Fourier transform result gives us information about equal spaced fre-

quency bands from 0 Hz up to the Nyquist frequency which is equal to half of

the sampling rate. The number of useful bands is equal to half of the number

of samples in the input window. So, for example, if we are using a window of

1024 samples and using a sampling rate of 44.1 KHz, we will end up with 512

frequency bands spanning the total range of frequencies between 0 and 22050 Hz.

In addition to there being many notes with lots of harmonics, different notes

may have overlapping harmonics. For example, the first four harmonics of the

note A2 are 110, 220, 330 and 440. For E2, they are 82.4, 164.8, 247.2, and 329.6.

At 44.1 KHz, it would take a very long window size to compute an FFT with high

enough resolution for 329.6 and 330 to end up in separate bins. As more notes

are sounding simultaneously, there is a larger chance of harmonic overlap. Also,
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(a) Single note at 440 Hz (b) Four notes played as a chord

Figure 2.9: Resulting FFT of real guitar notes

this shows that bandwidth of the FFT bins is important. For example, with a

window size of 1024 samples, the bandwidth of FFT bins will be 43.1 Hz. The

lowest notes on the guitar have fundamental frequencies that differ by less than

10 Hz, so at this resolution, many of the first harmonics will overlap with each

other, making it difficult to distinguish between notes.

Another issue with the FFT output is that during the initial attack, there is

a lot of noise associated when the finger or pick strikes the strings. Not until the

actual sustain are frequency bins generally representative of the true harmonics

of the sounding notes. While this attack period is very short, it must be taken

into account.

Before FFT is computed, we apply the Hanning windowing function to the

sample buffer. Window functions are used to scale the samples in the time do-

main, (often in the shape of a bell), and help to reduce edge effects that cause

spectral leakage in the resulting FFT.
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Chapter 3

The Algorithm

This thesis tackles the problem of detecting exactly which notes are being

played on a guitar in real-time. While the Fourier transform gives us information

about which frequencies are present in a signal, we need to do further analysis to

determine which notes make up the signal, taking into account the characteristics

of note harmonics. Non-negative matrix factorization has been shown to be a

useful tool in sound separation, used offline in the context of drums [3] and

guitar [17], as well as piano in real-time [8].

3.1 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is a family of algorithms to separate

an input matrix V into two component matrices WH such that the terms in

both are non-negative. In the context of detecting components of sound, the

input matrix V is built from the STFT of the input audio. In other words, each

column represents the FFT of a single window of samples. W represents a library

of note templates where each column corresponds to the FFT representation of
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a certain note averaged over its sustain. H is then referred to as the activation

matrix, with values corresponding to which note templates are contributing to

the total sound at different points in time.

NMF is a good candidate for this problem because the magnitude of frequency

bins is always non-negative. When more than one note is sounding at the same

time, the resulting FFT contains magnitudes that are the sum of the FFTs of the

individual notes (see Figure 2.8). This technique has been shown as an effective

algorithm for polyphonic music transcription in a number of different studies [8].

3.1.1 How it works

To begin, an approximate factorization of the matrix is computed, and a

cost function is used to evaluate it. Then the factor matrices W and H are

modified with multiplicative updates until the cost function is minimized. The

basic problem can be modeled by equation 3.1.

V ≈ WH (3.1)

In some studies, both W and H are initialized with white noise, and in others

the template library is pre-computed. After each iteration, the cost is calculated,

and the process continues until it converges or a certain number of iterations have

occurred.

Cost functions

Following the work of Dessein et al., we use a beta-divergence cost function

that interpolates between Euclidean distance and Kullback-Leibler divergence [8].
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Template Note Library

We also used a fixed note template library W that is computed prior to

running the actual algorithm. For each note, we record a short sample, and take

the average of many FFT frames from the main part of the note sustain. In

previous work, this template library needed to be built from samples recorded

from the specific guitar for which it would be used for. In our work, created three

template libraries, one with a nylon stringed acoustic guitar, one using an electric

guitar with a clean tone, and one with an electric guitar with distortion.

When building the library, it is important that the guitar is in tune. When

this library is used in practice, the guitar’s tuning should match the tuning of

the library.

In section 4.4.1 we generate this library at run-time specifically for the current

guitar, but unless otherwise mentioned we use a library computed from pre-

recorded note samples as described here.

3.1.2 Real-time NMF

For this algorithm to work in real-time, the problem is simplified to calculate

the activation row of each FFT frame as their corresponding sample window

arrives each time. That is, as each column of v arrives, we calculate the row of

H that will contain a note activation value for each template.

v ≈ Wh (3.2)

For example, say our input column v is represented by Figure 3.1 (a), and we

have an input note template library of 30 templates, three of which can be seen
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(a) Input FFT column V (b) Note template 1

(c) Note template 2 (d) Note template 3

Figure 3.1: (a) Input FFT column V (b,c,d) FFT of note templates

in (b), (c), and (d). The goal is to figure out which combination of notes make

up the input column when added together.

After running the updates on the column h until the cost function converges,

we will get values corresponding to each note template.

3.1.3 Interpreting the NMF output

In practice, the NMF algorithm does not simply return exactly which notes

are present. The results must be thresholded above some value to get rid of the

noise of notes that are not actually sounding. Often, notes that are an octave
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(a) The note templates that add up to the

input FFT

(b) Note activations H corresponding to 3

specific note templates

Figure 3.2: (a) The combination of all the present note templates that
make up the input FFT (b) The note activations (simplified, with no
noise shown)

above an actually sounding note will show up as a false positive. Similarly, if the

NMF cost never converges or ends up to be high, it indicates that the current

results are not accurate, and are not recorded.

Because of errors like these, the NMF data is averaged over a specified number

of frames. Another strategy to reduce error is to only recognize new notes when

there is a spike in amplitude, indicating a note attack.
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Chapter 4

Experimental Analysis

4.1 Overview

In this chapter we will discuss the approach we took of studying the different

aspects of the NMF algorithm. In the first section we describe the main goals

of the system. Next, we describe the system we built to evaluate the effects

of different configurations of the program. We then describe the main tunable

parameters and strategies we use to maximize the performance and accuracy of

the results. Finally we present the results, and an example program utilizing our

findings.

4.2 Goals

There are many different uses for a software tool that has the ability to ac-

curately characterize guitar chords from a microphone input [7]. In this thesis,

we present a tool to give a musician real-time feedback of which notes are being
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played in terms of a specific key and scale. To maximize the real world potential

for such an application, we evaluate the program’s accuracy, speed, accessibility,

and usefulness, each of which are detailed in the following sections.

4.2.1 Accuracy

There are many different aspects of music that we aim to characterize from

the input sound. First, we want to know the pitch class and octave of each

individual note, including all notes that might be sounding at any given moment

in time. While it is easy to hear when a note begins (also called the note onset),

it is difficult to measure exactly how long a note lasts, and when it is no longer

considered to be sounding. Due to this, we focus primarily on the location of the

onset set of a note. In some cases, we estimate how long a note lasts, and which

notes may be overlapping.

One of the common errors in polyphonic note classification is finding the

correct pitch of a note in the wrong octave. Because notes in different octaves

will have different locations on the fretboard, we take special care to find the

correct octave of each note in a chord.

When only a single note is being played at a time, it is useful to know the

exact frequency of the note and how far away it is from the true pitch frequency.

Often times, especially in lead guitar, players will bend notes up to other notes,

or use vibrato (bending the note up and down) as an effect. Unfortunately, the

NMF algorithm we use does not account for these notes. The autocorrelation

method described earlier has the ability to determine the exact frequency of a

single note, but NMF would require many more templates in order to classify

these notes.
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4.2.2 Speed

In addition to being accurate, we want the application to work in real-time.

In order to do this, we require an efficient method for analyzing audio samples.

Much work has been done on recorded sound in [3, 12, 17], but there are fewer

projects that can accurately do so in real-time [8]. We measure the time it takes

to return a new data point in milliseconds, and aim to minimize this duration.

4.2.3 Accessibility

Once this tool is complete, we hope to maximize the ease in which real mu-

sicians can access it. We would like to be able to host it as a web application,

and allow people to simply visit a website without downloading any additional

software. The current implementation has been developed as a Processing appli-

cation which can be exported as a Java applet.

4.3 System Design

4.3.1 Platform

While there are many different programming languages and platforms that

support audio programming, we were focused on developing a program that would

be able to be run inside the browser. Also, we wanted to something that could

be eventually ported to mobile devices. While HTML5 has introduced new APIs

for manipulating audio in the browser, there is not yet any common functionality

to provide microphone access to the browser.

After trying out different environments, we decided to use Processing (www.processing.org),
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a Java-based programming language designed for quick prototyping. With Pro-

cessing it is easy to create small sketches with both graphics and audio, and

export them to applications or Java web applets. There are also numerous li-

braries available to simplify quick GUI creation, as well as audio programming,

and music manipulation. In addition, because Processing is based on Java, it

should be relatively straightforward to port the project to the Android operating

system that is also based on Java.

4.3.2 Template Library Generation

To begin the analysis of NMF on detecting guitar notes, we first recorded

sample notes for each of the different pitches on the first five frets of the guitar

neck. Notes were recorded from a nylon string acoustic guitar, a clean electric

guitar, and a distorted electric guitar. Following the work of [8], we built note

template libraries in the form of matrices with rows representing different note

templates. We used these note template libraries for the majority of this thesis

except where we explictly discuss generating the template libraries at run-time.

4.3.3 Processing Audio Input

Within the Processing environment, we used a common audio library to cap-

ture raw microphone data. In most cases, we directed the input to the Line 6

USB device that connected the analog guitar input to the computer. This allowed

us to have a clear signal without very much noise. We have also run tests while

playing guitar into a regular laptop microphone with promising results.

The input samples are windowed and run through an FFT function also pro-

vided by the same library. Each output FFT is stored in a circular buffer in
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order to preserve past frames for visualization as well as future computation. In

addition, note activations (the output vector h from the NMF algorithm) are

also stored in buffers for the same purpose. These buffers are encapsulated as

objects with member functions written to return both the raw values or averages

over the n most recent values. This data is used in combination with amplitude

information to detect note onsets and filter out noise.

4.3.4 Graphical Interface and Visualization

During this work, two main programs were developed. The first program was

used for the majority of the experimentation, and was built to display different

aspects of the audio in real-time using different visualizations. The other program

is an example of an application of this algorithm to be used in a program to

transcribe guitar audio in real-time.

FFT Visualization

Throughout this work, there were many times when it was useful to see visu-

ally what data was in the FFT output of both the note templates as well as the

real-time sample windows. Both 2D and 3D visualizations were developed to get

a better sense of how the different frequency bins reacted to different input over

time, especially when different parameters were experimented with.

NMF Visualization

The most helpful view in evaluating the system subjectively was the 3D vi-

sualization of the NMF note template activations. By looking at a visual repre-

sentation of the output, it was easy to manually tweak threshold values to more
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(a) Single Note (b) Chord

Figure 4.1: Real-time 3D visualization of FFT

Figure 4.2: NMF result of playing a chord after thresholding

accurately see which notes were being played at any given moment. When viewed

on the same screen as the overall window amplitude level, it became clear that a

lot of noise and false activations were the result of initial note attacks.

Fretboard Display

When experimenting, it was important to make sure that the resulting acti-

vations were actually the result of the correct pitches being played. To do this,

a fretboard display was created to indicate which frets and strings notes were

played. Although we attempted to classify what string a given note was coming

from, we were unable to do so accurately. This program assumes that the notes

are played as close together as possible with the smallest distance between the
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Figure 4.3: GUI Piano Roll Screen

lowest and highest fret numbers. If there are multiple places on the neck to play

a chord, it is assumed to be played at the lowest possible position, or closest to

the capo.

We do not infer anything about the practicality of the hand positions. Pre-

vious work has been done that stores a database of popular chord positions, and

returns the best match for any set of notes [2]. Another group used a genetic

algorithm to generate the easiest to play tab from a set of notes based on many

different heuristics, such as distance between chords and finger positions [36].

This algorithm required knowledge of all the notes in a piece in advance, which

is not possible in real-time computation.
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Musical Score

The last view is the one that would be most useful to actual musicians. It

shows the pitch of note activations, and displays the note throughout its main

duration. If a specific music key is selected, it displays the notes that are being

played and if they are or are not found in that key. Theoretically, the key could

be inferred based on the notes that have already been recorded, but this is beyond

the scope of our work.

4.4 Parameters

There are many different parameters that affect the performance of the NMF

algorithm. To begin our work, we used a standard sampling rate of 44100 samples

per second. For the majority of our tests, we had success with this rate, however

experiment with other sample rates and discuss the motivations and implications

of such later on. The next parameter is the window size of the incoming audio

buffer. This determines the resolution of the FFT ouput. Because we desire both

real-time calculations as well as larger windows, we slide the window by a hop

size of somewhere between 256 and 1024 samples.

In terms of the NMF algorithm, there are also a number of different param-

eters. First is the number of note templates used. Too few note templates will

result in ambiguous results and too many templates may cause the program to

slow down and invalidate the results. Also, due to the range of guitar note fre-

quencies, most of the interesting FFT data is located in the first 10-25 percent of

the total number of bins. We have found that discarding portions of the FFT can

significantly speed up the matrix multiplications while not degrading accuracy of
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FFT Window Size # of bins Time Size (ms) Bandwidth (Hz)
512 257 46.4 21.5
1024 513 92.9 10.8
2048 1025 185.8 5.4
4096 2049 371.5 2.7
8192 4097 743.0 1.3

(a) 11025 samples per second

FFT Window Size # of bins Time Size (ms) Bandwidth (Hz)
512 257 23.2 43.1
1024 513 46.4 21.5
2048 1025 92.9 10.8
4096 2049 185.8 5.4
8192 4097 371.5 2.7

(b) 22050 samples per second

FFT Window Size # of bins Time Size (ms) Bandwidth (Hz)
512 257 11.6 86.1
1024 513 23.2 43.1
2048 1025 46.4 21.5
4096 2049 92.9 10.8
8192 4097 185.8 5.4

(c) 44100 samples per second

FFT Window Size # of bins Time Size (ms) Bandwidth (Hz)
512 257 5.8 172.3
1024 513 11.6 86.1
2048 1025 23.2 43.1
4096 2049 46.4 21.5
8192 4097 92.9 10.8

(d) 88200 samples per second

Table 4.1: Characteristics of FFT output with respect to sample rate
and window size.
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results.

The majority of the work done in the NMF algorithm is done during the

convergence process which takes place over many iterations. There are a few

different ways to determine if the matrices have converged, and it is important to

limit the number of iterations to preserve the real-time aspect of the algorithm.

Once the iteration phase of the NMF has completed, the output activation

matrix must be interpreted in an intelligent manner. To account for noise, we

found that averaging the output of the past few data points improved accuracy

quite a bit. We must determine the threshold for the minimum amount of an

activation value to be considered an actual note, and not random noise or a

different octave that is not actually being played.

The minimum amplitude threshold used to consider where note onsets occur

must also be carefully chosen.

4.4.1 Run-time Calibration

In order to overcome the requirement to have pre-recorded note samples to

build the note template library, we experimented with generating the library

automatically for a specific guitar. To do this, we have the user play a note

on one string, and use the autocorrelation algorithm to determine its pitch in

the time domain. With that knowledge, we then measure the magnitude of the

harmonics in the frequency spectrum. Once we have the general shape of the

harmonics, we can recreate note templates for all the other notes.

In our experiments, the automatically generated note template library was

fairly accurate, but often gave false positive for notes in the wrong octave. Al-

though the algorithm did not perform as it did with the original template library,
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we believe that it would be possible to generate these libraries more accurately

using more parameters than simply the shape of the harmonics. This would be a

great feature, allowing any guitar to be used with the algorithm without having

to record each and every note beforehand.

4.5 Performance Evaluation

To evaluate the performance of the algorithm, we recorded a number of audio

samples of a single guitar playing single notes and chords, as well as songs in

some cases. We then use these recordings as input to the real-time system. The

output of the system is a list of notes occurring at different times within the

recording, with associated pitches. We evaluate the performance of the system

if it can process these files without audible delay, and by how many correct and

incorrect notes the system outputs.

While building the program, it was easy see visually how well it was perform-

ing. After experimenting with different configurations and parameters, we did a

final evaluation of how well the program performed on single notes, and chords of

two, three, four, five, and six notes. To evaluate the accuracy so we can compare

our results against similar projects, we use recall, precision, and an f-measure [8].

Recall is the total number of correctly detected notes divided by the total

number of actual notes in the reference recording. It measures how completely

Precision is the number of correctly detected notes out of the total number of

detected notes. F-measure then defines the harmonic mean of the recall and

precision.
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Polyphony Ref C M EO EN Recall Precision
1 29 29 0 3 2 1.00 0.94
2 48 47 1 3 0 0.98 0.94
3 48 47 1 5 0 0.98 0.90
4 64 59 5 4 1 0.92 0.89
5 65 61 4 4 3 0.94 0.90
6 66 65 1 4 1 0.98 0.93

Total 320 308 12 23 7 0.96 0.91

Table 4.2: Evaluation Results. Polyphony is the number of notes in
each chord being tested. Ref is the number of total reference notes. C
is the number of correctly detected notes. M is the number of reference
notes that were missed. EO is the number of incorrect notes that were
in the same pitch class as one of the correct notes. EN is the number
of notes that were not in one of the correct pitch classes.

4.5.1 Test Environment

This evaluation was carried out using a pre-recorded note template library

for a nylon string acoustic guitar. The window size used was 4096 samples with

a 1024 sample hop length, with a sample rate of 44.1 KHz. Separate files were

recorded containing one, two, three, four, five, and six notes at a time in each

one.

This was run on a desktop computer with a six-core 3 GHz AMD Phenom II

processor and 8 GB of ram, running Windows 7 Professional 64-bit. A total of

320 notes were recorded.

4.5.2 Analysis

From our test, we see that overall, the program performs well regardless of

how many notes are played in the chord. These results are also biased by the fact

that they were generated using the same guitar that generated the note templates,

and most notes were played at a constant volume. Playing very quietly or loudly
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would result in less accurate note detection. We also note that recall is higher

than precision in all cases, which indicates that we need to tweak the parameters

to be more strict to avoid the false positive errors.

This test reflects the best performance of our implementation of the NMF

algorithm. Tests with an electric guitar with a clean tone were almost as success-

ful. Unfortunately, the algorithm performed very poorly on a distorted electric

guitar input.
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Chapter 5

Related Work

There have been many projects to analyze the musical qualities of digital au-

dio. Most of them work offline, on already recorded files, and others are good

at detecting monophonic information, but are unable to accurately classify poly-

phonic audio.

5.1 Existing Software

5.1.1 Capo

Capo is a commercial software package that aids musicians in learning how to

play their favorite songs. It allows the user to slow the song down and maintain

the original pitch of the song. In addition, it displays a spectrogram (frequency

vs time graph), and allows the user to select and play individual parts of the song

at a given time. Other features include vocal reduction, to minimize a particular

voice in the song, and tablature inference, a feature to guess which frets would

needed to play a particular piece of music.
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While Capo is a powerful tool for what it is, it does not process audio in

real-time. It takes in sound files (such as mp3) and does analysis on the file as a

whole before outputting useful information. This thesis works to provide similar

features as Capo, but in real-time.

5.1.2 Melodyne Studio

Melodyne is a similar program to Capo in that it analyzes musical data from

an audio file. It also has the power to take apart chords and identify individual

notes. Additionally, Melodyne allows for pitch correcting and editing after the

fact. It has a high resolution in both the frequency and time domains. Unfortu-

nately, like Capo, it does not run in real-time.

5.1.3 Tartini

Tartini is a program that does analyze music in real-time. It can correctly

identify the pitch and loudness of notes as they are played. It also has a feature to

analyze a few different types of note expression, such as vibrato and bending. The

only thing that Tartini is missing is the ability to accurately identify individual

notes from within chords.

5.1.4 Rocksmith

Rocksmith is a video game that allows the user to connect any real guitar to

the gaming console. It then displays notes on the screen and the goal is to pick

or strum the right notes at the right time. It is able to detect individual notes as

well as basic chords to give the user feedback as to whether or not they played

39



the correct note. Reviews of the game suggest that the chords are not always

accurately registered and are usually made up of only a few notes (not using all

six strings).
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Chapter 6

Future Work

While this thesis sheds a light on what is possible with the NMF algorithm

in terms of analyzing guitar notes, this is just a starting point for many different

applications. As web browsers improve and new APIs become available, it may

be possible to implement such analysis directly in JavaScript, eliminating the

requirement for Java to be installed on client machines. Also, as the processor

speeds and memory capabilities of mobile devices continue to improve, it is worth

exploring the performance of this algorithm on a wide variety of platforms. Pre-

vious work has shown that this problem is highly parallel and can benefit from

parallelization on platforms such as CUDA or OpenCL. Furthermore, with the

ability to calibrate note template libraries at run-time, it is feasible that such an

algorithm would work for many instruments other than guitar and piano. With

a solid implementation of this functionality, many useful applications could be

built to aid musicians in a wide variety of ways.
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Chapter 7

Conclusion

In this thesis we explored how computers interact with sound and learned a

lot about pitch detection of a single guitar. We were able to successfully employ

a non-negative matrix factorization algorithm to correctly detect the pitches of

chords with up to six simultaneous notes in real-time. With this analysis data,

we created graphical visualizations both for experimentation purposes and for

example tools for musicians. We were able to display not only which pitches were

sounding, but also which frets on a guitar they might correspond to. This fret

information is used to generate tablature as well as a graphical display of the

fretboard as the guitar is being played.

The NMF algorithm is shown to be a good tool in the context of polyphonic

guitar analysis, and we believe that further study will yield more accurate results

at higher resolutions, opening up the possibilities for many useful applications.
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