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To evaluate the efficiencies of different sampling methods for a rare and clustered population, we investigated the sampling ef-
fects for the two species Tamarix chinensis (Salt cedar) and Elaeagnus angustifolia (Russian olive) in western Inner Mongolia 
with two-stage sequential sampling, which is a new sampling method, traditional simple random sampling and two-stage sampling. 
Based on two-stage sequential sampling and two-stage sampling, each population was partitioned into four primary sampling 
units, and then two of them were randomly selected. Sampling designs were simulated based on the conditions of five secondary 
sampling unit areas, two criterion values, five initial secondary sampling units and two sequential secondary sampling units in 
1000 repetitions. To evaluate the performance of the sampling designs for each method, the variance and relative error of the den-
sity estimates were used. The relative sampling efficiencies of the three sampling methods were compared using the same final 
sampling sizes. We analyzed the sampling efficiency generated by two-stage sequential sampling and found that it yielded smaller 
variances than those of simple random sampling and two-stage sampling in all sampling designs, and that two-stage sampling was 
more efficient than simple random sampling. Density estimates from the two-stage sequential sampling were very close to the true 
values. We also determined the optimum secondary sampling unit areas for the two species in the two-stage sequential sampling. 
It was best for Tamarix chinensis and Elaeagnus angustifolia when the secondary sampling unit areas were 200 and 100 m2, re-
spectively.  
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The number of individuals in a population is a fundamental 
piece of information for the conservation and management 
of rare species. However, problems such as biases and limi-
tations often occur when surveying rare and clustered spe-
cies and estimating their population size because of their 
rarity and patchy distribution. Traditional sampling methods 
may lead to the inclusion of a vast majority of quadrats 
without individual observations, and thus large variances of 
population estimates. Fortunately, adaptive sampling is a 
proven and highly efficient way to sample clustered rare 
events [1–6]. However, the edge units produced by sam-

pling neighborhoods, which contribute little or nothing to 
the precision of estimates, have proven to limit the effi-
ciency and applicability of adaptive cluster sampling. In 
addition, navigating among all units in a neighborhood can 
be logistically difficult [7]. Thus, a new sampling design— 
two-stage sequential sampling (TSSS), with efficient esti-
mators for adaptive TSSS, was proposed by Salehi and 
Smith [8]. TSSS does not require a neighborhood and does 
not generate edge units in the sampling, but does exploit 
clustering in the population to find rare events. Various 
methods for evaluating the proposed sampling design have 
been tested [9]. Salehi and Smith [8] simulated the sampling 
of two real biological populations and one artificial popula-
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tion, and concluded that TSSS is easy to implement and can 
be applied to a wide range of populations, and furthermore, 
that TSSS is more efficient than conventional sampling in 
the designed cases. Brown et al. [10] discussed how best to 
design adaptive two-stage sequential sampling. However, 
all of the designed cases only considered the effect on sam-
pling efficiency produced by sampling size (the number of 
sampling units) in a fixed sampling unit area. In fact, the 
population can be divided into quantities of sampling units 
with different sampling unit areas when simulation designs 
are conducted. For TSSS, different initial sampling sizes, 
different unit areas and different criterion values will all 
affect the estimation results for a given population. For in-
stance, the estimation efficiency may be good in a given 
unit area, but not good or better in another unit area. So it is 
for criterion values. Therefore, it is necessary to further 
study and analyze the population estimation effects in as 
many sampling designs (i.e. different sampling sizes, unit 
areas and criterion values) as possible to investigate the 
properties of TSSS.  

To evaluate the efficiencies of TSSS in different initial 
sampling sizes, unit areas and criterion values, this study 
simulated the sampling of two rare species Tamarix chinen-
sis and Elaeagnus angustifolia in western Inner Mongolia of 
China and compared TSSS with traditional simple random 
sampling (SRS) and two-stage sampling (TSS). Finally we 
determined the optimum secondary sampling unit areas for 
the two species by TSSS. 

1  Data and methods  

The study area is located in western Inner Mongolia along 
the Huanghe River Valley, which has an area of 1 km2 cen-
tered on 40°15′37.8″N and 106°56′28.0″E. The region is 
typical of areas with rare and clustered desert vegetation 
such as Elaeagnus angustifolia and Tamarix chinensis. The 
study area was divided into 100 plots, each of which was 
100 m × 100 m. For boundary measurements, the starting 
points were always the southwest corners of the plots. The 

distance between points was measured by an electronic total 
station, and plot coordinates were recorded by a differential 
global position system. Each plot was further divided into 
100 survey units, each of which was 10 m × 10 m. The bor-
der measurement accuracy was 1/100 in principle, namely 
every 10 m error for 10 cm. We measured and recorded the 
ground diameter and height of all desert vegetation (shrubs 
and trees) in all plots. The spatial distributions of the two 
investigated species in the survey region are displayed in 
Figure 1, and it can be seen that their distributions are spa-
tially rare and clustered. 

2  Two-stage sequential sampling 

TSSS is adaptive in the sense that the final sample depends 
on observed values, but it avoids the use of neighborhoods 
and the sampling of edge units. The TSSS sampling proce-
dure is as follows. 

The population is sampled in two stages. Suppose that a 
total population has NT units. The population is partitioned 
into M primary sampling units (PSUs) and the quantity of 
secondary sampling units (SSUs) is Ni (i=1, 2, …, M). Usu-
ally the number of Ni is the same. Firstly, we choose a sam-
ple of m PSUs from the M PSUs without replacement. Then, 
we take an initial simple random sample of ni1 units without 
replacement from PSU i (i=1, 2, …, m). Let criterion value 
(C) be the condition that if satisfied for at least one unit in 
PSU i causes a predetermined number of additional units ni2 
to be selected at random from PSU i. 

Here Murthy’s estimator is used to devise unbiased esti-
mators for the design [11]. 

The population total is estimated as follows:  
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where î  is the estimator for the sum of the values of the 

ith PSU, and i is the inclusion probability for PSU i. m is 
the number of PSUs sampled.  

 

Figure 1  Distributions of the two species. (a) Tamarix chinensis; (b) Elaeagnus angustifolia. 
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where i′ is the inclusion probability for PSU i′. ii′ is the 
joint inclusion probability for PSUs i and i′. M is the total 
number of PSUs. i is the sum of the values (e.g. the number 
of plants) of the ith PSU,  ˆvar i  is the variance of î . 

The unbiased estimator of  ˆvar   is  
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 ˆ ˆvar i  is the estimator of variance for î . The relevant 

computational formulas for î  and  ˆ ˆvar i  are given by 

Salehi and Smith [8]. 

3  Simulation sampling designs 

It is often infeasible to analytically derive the sampling dis-
tribution for estimators across a range of populations and 
designs. The results reckoned by different samples are dif-
ferent and also differ from the true value. Thus, the result 
obtained by a once-only sample cannot confirm whether the 
sampling method is good. We should compare various sam-
pling methods in as many repetitions as possible.  

To permit experimental comparison across populations 
and designs, a simulation study was conducted to evaluate 
the sampling designs. Simulation makes it possible to eval-
uate the sampling distribution of the estimators based on 
repeated sampling. Comparisons across multiple popula-
tions and a broad range of designs can result in robust rec-
ommendations [12,13].  

Considering the characteristics of rare, aggregate popula-
tions, and the results of the relative error of density esti-
mates in many repetitions, the simulation study designed the 
least number of sampling units as 50 and the smallest SSU 
area as 5 m × 5 m. 

The SSUs mainly did not expand when C increased to 3 
or 4. As C continued to increase, the initial population was 
close to that of SRS. So the largest C was no more than 2. 

Thus, C was set at 1 or 2. When the value of a selected unit 
was equal to or greater than C, a quantity of additional units 
is added to the sample. 

In the simulation designs for the total population, we 
considered that the relative density errors estimated by 
TSSS were less than 5% in different SSU area designs, and 
that the mean density estimates were invariable as repeti-
tions increased to 1000. The different sampling designs are 
presented in Table 1.  

In the simulation study, sampling without replacement 
was replicated 1000 times and the sampling units were 
square. The two populations (Tamarix chinensis and Elaeag-
nus angustifolia) were partitioned into four PSUs, and then 
two of the PSUs were randomly selected. TSSS was simu-
lated in 5 SSU area designs (25 m2 (5 m × 5 m), 100 m2  
(10 m × 10 m), 200 m2 (10 m × 20 m), 400 m2 (20 m × 20 m), 
500 m2 (20 m × 25 m)), 5 initial SSUs (SSU_n1=50, 100, 
150, 200 and 250) and 2 sequential SSUs (SSU_n2=40 and 
80). For traditional TSS, without sequential SSUs, the sam-
pling stages were very similar to those of TSSS, while SRS 
proceeded in only one stratum. The final sampling sizes of 
TSS and SRS were the same as those (the units sampled N = 
SSU_n1+SSU_n2) of TSSS. 

4  Evaluated indicators 

The survey data for the simulation study were imported into 
the software SAMPLE (it can be downloaded from http: 
//www.lsc.usgs.gov/aeb/davids/acs/) to simulate sampling. 
To evaluate the performance of the different sampling de-
signs, the variance (E(v)) and relative error of the density 
estimate were used. We evaluated the different sampling 
methods by their relative sampling efficiency. Relative sam-
pling efficiency is the ratio of variance from a traditional 
sampling design to variance from a candidate design with 
equal final sampling sizes. The relevant formulas are as 
follows:  

The density estimator and the variance for TSSS in the 
ith sampling occasion are respectively ˆ

i  and ˆvar( )i  (i 

=1, 2, …, n). 
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Table 1  Designs for simulation samplinga) 

Total area (m2) N N_PSU S_PSU (m2) N_SSU S_SSU (m2) 

1000000 40000 4 250000 10000 25 (5×5) 

1000000 10000 4 250000 2500 100 (10×10) 

1000000 5000 4 250000 1250 200 (10×20) 

1000000 2500 4 250000 625 400 (20×20) 

1000000 2000 4 250000 500 500 (20×25) 

a) N, total number of population units; N_PSU, number of PSU; S_PSU, area of PSU; N_SSU, number of SSU; S_SSU, area of SSU. 
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̂  is the estimator for the population total, which is calcu-
lated by eq. (1). A is the total study area. 
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ˆ( )E   expresses the mean density estimated in certain repe-

titions. n represents the number of repetitions. 
The variance of the density estimates for TSSS in ith 

simulated sampling occasion is:  
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ˆ ˆvar ( )i  , which is calculated by equation (3), is the variance 

of ̂  in the ith sampling occasion. For TSS and SRS, the 

density in the i occasion sampling is TSS SRS
ˆ ˆ= T

i
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where NT is the total number of sampling units in the popu-
lation, as defined above. ŷTSS and ŷSRS are the values of each 
sampling unit estimated by TSS and SRS methods, respec-
tively. Their computational formulas and the variance esti-
mators can be found in Song [14]. 

The variance of density estimates in n repetitions is:  
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The relative sampling efficiency is:  

 ˆˆEfficiency( ) ( ) ( )yE v E v  , (8) 

̂  is the population density estimated by TSSS. ( )yE v  is 

the variance of the density estimated by a traditional method 
with the same final sampling size as TSSS. ˆ ( )E v  is the 

variance of the density estimated by TSSS.  
The formula for the relative error of the density estimate 

is  

Relative error of density estimate 

 
Density estimate True density

 = 
True density


. (9) 

5  Results and discussion 

Through the simulation study, the densities estimated by 
TSSS were close to the true densities in different sampling 
designs. The true densities of Tamarix chinensis and Elaeag-
nus angustifolia were 0.00194 and 0.0034 m2, respectively. 
The biggest relative errors of the density estimates were 
3.714% for Tamarix chinensis and 2.567% for Elaeagnus 
angustifolia, and the results indicated that the differences 
between the estimated and true densities were small. The 

mean relative errors of the density estimates for TSSS were 
1.3% for Tamarix chinensis and 0.689% for Elaeagnus an-
gustifolia in 5 initial SSU_n1, 2 SSU_n2 and 5 SSU areas 
when C was 1 to 2. The relative errors of the density esti-
mates for all simulation designs were smaller than 5% (Fig-
ure 2).  

Some related studies did not consider the relative errors 
and variance estimates for TSSS itself in various sampling 
designs. In our study, the relative errors were smaller than 
5%, showing that TSSS was suitable for the species studied. 
Variance estimates can not only judge whether a sampling 
method is bad or good, but can also measure effects in dif-
ferent sampling designs. Variance estimates in different 
initial sampling sizes, unit areas and C could be useful to 
find the regularity for various designs and determine the 
proper design for the species of interest. The density vari-
ances for Tamarix chinensis and Elaeagnus angustifolia 
estimated by TSSS were less than 0.01 in different simula-
tion designs (Figure 3). 

Generally, as shown in Figure 3, in a certain SSU area, C 
and quantity of PSUs, the larger the number of initial 
SSU_n1 or SSU_n2 sampled, the smaller the variances ac-
quired. The variances for SSU_n1=200 and SSU_n2=250 
were similar. Considering the sampling cost, SSU_n1=200 
would be appropriate. It would be better still when SSU_n2= 
80 then SSU_n2=40. The variances would increase with 
increasing C in a certain quantity of SSU_n1 and SSU_n2. 
The variances decreased as the SSU areas increased when C 
was invariant. Taking Elaeagnus angustifolia for example, 
the TSSS variances for different SSU areas, C and SSU_n1 
when PSUs=2 and SSU_n2=80, are presented in Figure 4. 

TSSS was adaptive in a sense. The condition to adapt 
was based on the observation of a unit meeting or exceeding 
a predetermined C. Whenever the value of the variable of 
interest (e.g. the number of plants) of a selected unit satis-
fied a specified condition, say C, then additional units were 
added into the sample according to the sampling method, 
which is different from traditional sampling methods. For 
the results above, generally speaking, for a smaller C, the 
more units with target were likely added to the sample. 
Thus, the variances were less and the estimations were more 
accurate. As C increased, the variances increased and the 
superiority of TSSS was less convincing. Thus, the overall 
survey may be close to the traditional SRS. Therefore, it was 
better to design C=1 to make good use of TSSS advantages. 
The population was divided into different SSU areas and as 
the SSU areas increased, units with larger values were more 
easily satisfied for C. Thus, more targets in units participat-
ing in the estimation could enhance the accuracy. 

Commonly, a candidate sampling method was compared 
with traditional sampling techniques by the relative sam-
pling efficiency presented by Thompson and Seber [15], the 
ratio of variances from the traditional sampling method and 
TSSS (e.g. variance of SRS divided by variance of TSSS). 
When the ratio was greater than 1, the efficiency of TSSS  
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Figure 2  The relative errors in different SSU areas. C, SSU_n1 and SSU_n2 for the two species estimated by TSSS. 

was higher in the same final sampling size. The efficiencies 
of TSSS relative to SRS and TSS were usually greater than 
1 in different SSU areas, C and quantities of PSUs, SSU_n1 
and SSU_n2 (Figures 5 and 6).  

In Table 2, Effa>1 and Effb>1 which indicated that the 
efficiencies of TSSS were higher than those of SRS and 
TSS with the same final sampling sizes. The relative errors 

of the density estimates would be larger when C was en-
larged when the other design indices were fixed, while the 
efficiencies of TSSS relative to SRS and TSS decreased 
(Table 2; Figures 2, 5 and 6). Relative to TSS with the same 
sampling sizes, TSSS had higher efficiencies than SRS in 
different designs.  

Very different sampling designs have been examined by  
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Figure 3  The variances in different SSU areas. C, SSU_n1 and SSU_n2 for the two species estimated by TSSS.  

different studies. Some simulations studied the sampling 
effects when the total PSUs were sampled, which is close to 
stratified sampling [8]. In this study, the quantity of PSUs 
sampled was fixed and no more than the total number of 
PSUs. For different populations (species), the sampling ef-
ficiency would be different because of their distinctive dis-
tributions. Research on the population of freshwater mussels 

by Salehi and Smith showed that the efficiencies of TSSS 
relative to traditional sampling methods were no more than 
2 [8]. Those for the population of blue-winged teal were no 
more than 2.5 [10]. In this study, the efficiencies of TSSS 
increased rapidly as SSU_n1 increased, e.g. the TSSS was 
never less than 2 times more efficient than SRS for the species 
studied when SSU_n1 was 100 (Figures 5 and 6). Therefore,  
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Figure 4  The variances for different SSU areas. C and SSU_n1 when PSUs=2 and SSU_n2=80 for Elaeagnus angustifolia estimated by TSSS. (a) 
SSU_n1=50; (b) SSU_n1=100; (c) SSU_n1=150; (d) SSU_n1=200; (e) SSU_n1=250. 

for different population distributions, there would be dif-
ferent suitable sampling methods and designs. 

The results demonstrated in Figures 1–6 for different SSU 
areas showed that the sampling effects would be influenced 
by the sampling unit areas. In some related studies [7–10], 
the researchers studied the effects of sampling methods in a 
fixed SSU area. Unlike those studies, the SSU area was not 
fixed in this study. For the determination of the best unit 
area in the simulation study, we determined the optimum 
SSU area for sampling the two targets through analyses of 
the relative errors of the density estimates for different SSU 
areas. The designs proceeded with PSUs=2, SSU_n2=80 and 
1000 repetitions when C was 1 in different SSU areas and 
SSU_n1. The relative errors of TSSS were less than 1%. 

Figure 7 shows that as the SSU areas increased, the rela-

tive errors of Elaeagnus angustifolia and Tamarix chinensis 
presented roughly the same change trend. From a visual 
point of view, the SSU areas less than 100 m2 had greater 
relative errors. The relative errors decreased as the SSU 
areas increased.  

The simulation sampling of Tamarix chinensis was per-
fect when the SSU area was 200 m2 (Figure 7(a)). For Elaeag-
nus angustifolia, the relative errors reduced quickly when 
the SSU area was 100 m2 (Figure 7(b)). Therefore, the sam-
pling effect was best at 100 m2 for Elaeagnus angustifolia. 
That meant that the relative errors of the density estimates 
were larger when the SSU areas were smaller than 100 m2. 
When the SSU areas were larger than 100 m2, the relative 
errors decreased, but the magnitudes of reduction also de-
creased. At the same time, with increasing unit areas,  
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Figure 5  The relative sampling efficiencies of TSSS in different SSU areas. C, SSU_n1 and SSU_n2 for Tamarix chinensis. 

measurement costs would increase.  

6  Conclusions 

In a certain quantity of PSUs, SSU_n1, SSU_n2, SSU area 
and C, the variance of TSSS is smaller than those of TSS 
and SRS. The TSSS density estimates are very close to the 
true values. Based on the same final sampling sizes, we 

know from the above analyses that TSSS is more efficient 
than the traditional SRS and TSS, and that TSS is more ef-
ficient than SRS.  

The PSU area affects both the SSU size and the final 
sampling size for TSSS designs. Only different SSU areas 
are studied here, but the PSU area is fixed. Thus, the PSU 
area that impacts sampling efficiency should be further 
studied. TSSS is one of the adaptive sampling designs used 
to control the final sampling size. Inverse sampling and   
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Figure 6  The relative sampling efficiencies of TSSS in different SSU areas. C, SSU_n1 and SSU_n2 for Elaeagnus angustifolia. 

Table 2  Relative sampling efficiencies, density and variance estimates when the initial SSU_n1 = 200, SSU_n2 = 80 and SSU area was 25 m2 for the two speciesa) 

Species 

Sampling method 

SRS  TSS  TSSS 

D Eff a E(v)  D Effb E(v)  D E(v) NF 

TC(C=1) 0.00186 5.182 0.0097 0.00203 3.880 0.0073 0.00193 0.00187 483 

TC(C=2) 0.00205 5.092 0.0105 0.00204 3.590 0.0074 0.00199 0.00207 395 

EA(C=1) 0.00329 8.245 0.0427 0.00331 6.505 0.0337 0.00346 0.00518 492 

EA(C=2) 0.00364 6.696 0.0393 0.00325 3.695 0.0217 0.00334 0.00588 400 

a) TC, Tamarix chinensis; EA, Elaeagnus angustifolia; Effa, Var(SRS)/Var(TSSS); Eff b, Var(TSS)/Var(TSSS); D, density; E(v), variance; NF, final units sampled 
over 1000 replications.  
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Figure 7  The relative errors of the density estimates estimated by TSSS for different SSU areas when PSUs=2, SSU_n2=80 and C=1.  

restricted adaptive cluster sampling have also been present-
ed to address the problem of sampling size confirmation 
[1,16–18]. An evaluation of the efficiencies between TSSS 
and those methods is worth carrying out. 

How to design an efficient survey is still an interesting 
question for the study of rare and clustered populations. We 
should not always launch an investigation by one sampling 
method alone. Combining one method with another to sur-
vey a population may be more efficient. Thus, a combina-
tion of TSSS with some new methods or traditional design 
such as systemic sampling should be considered. 
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