
Reliable Software Updates for

On-orbit CubeSat

Satellites

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering by

Sean Fitzsimmons

June 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19152709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2012

Sean Fitzsimmons

All Rights Reserved

ii

COMMITTEE MEMBERSHIP

TITLE: Reliable Software Updates for On-orbit

CubeSat Satellites

AUTHOR: Sean Fitzsimmons

DATE SUBMITTED: June 2012

COMMITTEE CHAIR: Dr. John Bellardo, Assistant Professor

COMMITTEE MEMBER: Dr. Fred DePiero, Professor

COMMITTEE MEMBER: Dr. Christopher Lupo, Assistant Professor

iii

Abstract

Reliable Software Updates for On-orbit CubeSat Satellites

Sean Fitzsimmons

CubeSat satellites have redefined the standard solution for conducting

missions in space due to their unique form factor and cost. The harsh

environment of space necessitates examining features that improve

satellite robustness and ultimately extend lifetime, which is typical

and vital for mission success. The CubeSat development team at Cal

Poly, PolySat, has recently redefined its standard avionics platform

to support more complex mission capabilities with this robustness in

mind. A significant addition was the integration of the Linux op-

erating system, which provides the flexibility to develop much more

elaborate protection mechanisms within software, such as support for

remote on-orbit software updates.

This thesis details the design and development of such a feature-set

with critical software recovery and multiple-mission single-CubeSat

functionality in mind. As a result, features that focus on software

update usability, validation, system recovery, upset tolerance, and

extensibility have been developed. These include backup Linux kernel

and file system image availability, image validation prior to boot, and

the use of multiple file system devices to protect against system upsets.

Furthermore, each feature has been designed for usability on current

and future missions.

iv

To my friends, fellow colleagues, and especially my family, who have

made this extremely fulfilling educational journey possible.

v

Acknowledgements

Much of this thesis would not have been conceivable without the plat-

form hardware designer, Austin Williams, the motivator and visionary

for Cal Poly’s CubeSat missions, Jordi Puig-Suari, and the unending

support, knowledge, and guidance from John Bellardo. I would also

like to thank the current team, previous generation members, and all

those who initially helped to form this program; this thesis would not

have been feasible otherwise.

vi

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 CubeSat . 1

1.2 PolySat . 2

1.3 Previous and New Generation Avionics

Systems . 3

1.4 Robust CubeSat Design Goal . 5

1.5 Thesis Scope . 6

2 Development Platform Architecture 9

2.1 Platform Overview . 10

2.2 Memory Organization . 11

2.3 Boot Process . 12

2.4 Limitations and Risks . 14

3 New Avionics Platform Architecture 19

3.1 Approach . 20

3.2 Goals . 20

3.3 System Requirements . 21

3.3.1 Non-Functional Requirements 22

3.3.2 Functional Requirements 23

3.4 Memory Organization . 25

3.4.1 Primary Boot Device . 25

vii

CONTENTS

3.4.2 Platform Overview . 26

3.4.3 Multiple File Systems . 27

3.4.4 Secondary File System . 29

3.4.5 Development Environment Overview 32

3.5 New Boot Process . 32

3.5.1 U-Boot . 32

3.5.2 PCM Support . 33

3.5.3 Validation . 34

3.6 System State Logging . 35

3.6.1 Multiple Image Support 36

3.7 Software Updates . 38

3.7.1 Remote Transfer . 38

3.7.2 Final Validation . 39

3.8 System Limitations . 40

4 Major Subsystems 43

4.1 System State Log . 43

4.1.1 Overview . 43

4.1.2 Requirements . 44

4.1.3 Design . 45

4.1.4 Bootstrap Usage . 48

4.1.5 Linux Usage . 51

4.1.6 Design Success . 52

4.2 Secondary File System . 55

4.2.1 Overview . 55

4.2.2 Requirements . 55

4.2.3 Design . 56

4.2.4 Directory Listings . 58

4.2.5 Error Conditions . 60

4.2.6 Design Success . 61

4.3 Final Update Application . 64

4.3.1 Overview . 64

4.3.2 Requirements . 64

viii

CONTENTS

4.3.3 Software Update Validation 65

4.3.4 System Upset Tolerance 66

4.3.5 Design Success . 68

5 System Results 71

5.1 System Success . 71

5.2 Additional Results . 73

6 Related Works 75

6.1 Ionizing Radiation Tolerant Non-Volatile

Memory . 76

6.1.1 Phase Change Memory Overview 76

6.1.2 Attractive Features . 77

6.1.3 Evaluating Upset Susceptibility 77

6.2 Important Considerations for NAND

Memory . 78

6.2.1 Issues with NAND Flash 78

6.2.2 YAFFS2 Utilization . 79

6.3 Log-based Rollback Techniques For Error Recovery 80

6.3.1 Distributed Systems and Parallel Applications 80

6.3.2 Checkpoint-based Rollback Recovery 80

6.3.3 Log-based Rollback Recovery 81

7 Conclusion 83

7.1 System Success . 83

7.2 Current Progress . 84

7.2.1 Build Integration . 84

7.2.2 Test Modes . 85

7.3 Future Work . 86

7.3.1 Command Structure and Organization 86

7.3.2 Kernel Log Entry . 86

7.3.3 Memory Write Protection 87

References 89

ix

CONTENTS

x

List of Figures

1.1 CP4 post-PPOD deployment . 2

1.2 First Generation Avionics . 3

2.1 AT91SAM9G20 Platform Overview 10

2.2 Potential NAND Memory Layout 12

2.3 Internal First-Stage Bootloader Flow Diagram 15

2.4 High-Level Boot Process Flow Diagram 16

3.1 Avionics Platform Overview . 26

3.2 PCM and NAND Memory Content Overview 28

3.3 Avionics NAND Memory Content 31

3.4 Avionics Boot Process Overview 35

3.5 Avionics PCM Content . 37

4.1 Log Entry Types . 47

4.2 General Log Entry . 48

4.3 Two Possible Log Structures . 49

4.4 Startup Behavior using System State Logs 50

4.5 Log Cleaning Process Flow Diagram 53

4.6 Sample Directory . 57

4.7 Sample Directory with Listings 59

4.8 Sample Directory Listing File Contents 60

4.9 Validation and Recovery Process Overview 62

4.10 Software Update Application Phase 67

xi

LIST OF FIGURES

xii

List of Tables

1.1 Avionics Design Comparison . 4

3.1 Summary of Major System Goals 21

3.2 Summary of Non-Functional Requirements 23

3.3 Summary of Functional Requirements 24

4.1 State Log Tests and Results . 54

4.2 Validation and Recovery Tests and Results 63

4.3 Final Update Tests and Results 70

5.1 Desired Goals and Status . 72

5.2 System Requirements and Verification 73

xiii

LIST OF TABLES

xiv

1

Introduction

1.1 CubeSat

Depending on its mission, a spacecraft may range in physical size and cost drasti-

cally. Typically, satellites serve a multitude of purposes, such as providing interac-

tive television entertainment, or providing communication services like broadband

Internet support [1]. Developed in 1999 by aerospace engineering professor Jordi

Puig-Suari from Cal Poly and professor Bob Twiggs from Stanford at the time [2],

the CubeSat specification completely redefined the common spacecraft model in

terms of physical size, affordability, and development time. This standard pre-

sented an extremely unique hands-on opportunity for academia to develop and

operate their own satellites. Due to these factors, the use of CubeSats has become

widespread and continues to grow in both the industrial and educational realms

today.

The CubeSat is characterized as a pico-satellite with a volume of 1000cm3, and

mass of no more than 1kg [3]. Because of these restrictions, utilizing a CubeSat’s

volume efficiently requires some creativity. These satellites typically use the same

core hardware platform, or the same avionics system with differing payloads to

support various missions (e.g., additional payload hardware to support imaging

capabilities). This allows developers to reuse previously designed systems on

subsequent missions, or to share designs with other developers. Throughout

years of designing for various missions, developers have realized that maximizing

potential payload volume is crucial as missions become more complex.

1

1. INTRODUCTION

In addition to defining this specification, Cal Poly has developed a standard

launch-vehicle deployer for CubeSats, the Poly Pico-satellite Orbital Deployer, or

P-POD. A single P-POD can house up to three 1U, or 10x10x10cm CubeSats for

deployment, as well as other varieties of this form factor (e.g., one 3U). Typically,

multiple P-PODs are integrated as a secondary payload onto a launch vehicle that

contains a primary payload. Combined with the CubeSat standard, the P-POD

provides an attractive opportunity for people to develop and operate satellites

quickly and affordably.

1.2 PolySat

PolySat, Cal Poly’s CubeSat development group, began researching and designing

CubeSat spacecraft shortly after the specification was defined and continues to

today. This team has grown knowledgable in the field over the past decade and

continues to progress in redefining mission capabilities for Cal Poly CubeSats.

To date, PolySat has developed six pico-satellites, two of which are in orbit,

CP3 and CP4, and the team continues to develop for new missions annually.

PolySat’s previous missions, CP1 through CP6, all employed essentially the same

avionics system for radio frequency (RF) communication, power, and data han-

dling. An image of PolySat’s CP4 can be seen in Figure 1.1:

Figure 1.1: CP4 post-PPOD deployment - This image of CP4 was captured

by Aerospace Corporation’s AeroCube-2 CubeSat shortly after P-POD deployment.

2

1.3 Previous and New Generation Avionics
Systems

In the past year, PolySat has designed a more robust, power efficient, and

computationally-capable platform to support more complex and demanding mis-

sion capabilities. Comparisons of these two avionics systems are discussed in the

next section.

1.3 Previous and New Generation Avionics

Systems

Prior to redesigning the avionics system, PolySat utilized a hardware platform

consisting of multiple electrical boards each managing various subsystems on the

spacecraft. This system contained redundant hardware for RF communication,

as well as relatively straight-forward custom firmware for all its microcontrollers.

Each of these microcontrollers typically managed the spacecraft’s RF, command

and data-handling (C&DH), or payload subsystem functionalities. A block dia-

gram overview of this avionics architecture can be seen in Figure 1.2.

Core Avionics

COMM
A

COMM
B

C&DH

Payload

Independent
Controller and

Electronics

Electrical
Power System

Figure 1.2: First Generation Avionics - This block diagram presents an

overview of the original avionics architecture.

In summary, the C&DH is responsible for main operation of the spacecraft,

3

1. INTRODUCTION

including remote command acceptance and response. The payload subsystem

manages the data flow and control of specific scientific or experimental mission

hardware. Although this avionics system has spaceflight heritage, it has encoun-

tered a variety of anomalies, and its use of limited volume is far from effective for

currently desired payloads.

While developing the next generation avionics platform, both hardware and

software redesign decisions were considered due to previously experienced limi-

tations. First, the current hardware consumed almost a third of the CubeSat’s

available volume, which minimized payload potential. Secondly, the software was

not developed in a modular fashion, thus making it inflexible when developing

between missions. Additionally, as seen from results of the previous CPX mis-

sions [4], redundant microcontroller units further increased complexity and may

potentially have caused on-orbit failures. This outweighs the benefit of what the

duplicate hardware intended to provide: robustness.

To remedy these issues and also support future complex missions, the new

avionics system volume was reduced considerably by integrating multiple subsys-

tems together with a single high-performance and low-power microprocessor. As

a result, the complexity incurred by utilizing redundant hardware was essentially

removed. The avionics software architecture was redesigned to employ the use

of the Linux operating system (OS) and to enable more flexible and extensible

software development between missions. Lastly, this powerful microprocessor can

potentially act as a payload controller in addition to supporting the C&DH and

communication subsystems. This prevents the need to use an individual proces-

sor purely for payload control. A summary of the major differences between these

avionics systems is shown in Table 1.1 [4].

Table 1.1: Avionics Design Comparison

Revision Processor Clock Non-volatile Mem. OS Volume

1 3x PIC18 4 MHz 256 KB Custom 0.25 L

2 AT91SAM9 400 MHz 528 MB Linux 0.1 L

4

1.4 Robust CubeSat Design Goal

1.4 Robust CubeSat Design Goal

Hazards in the space environment can range from ionizing radiation to extreme

hot and cold temperature exposure, and thus, examining features that protect

the spacecraft to improve its robustness are important to mission success. In

the new generation avionics, these solutions have exhibited upgrades from the

previous design and now exist in both hardware and software. For example, a

hardware watchdog used to passively detect improper software operation now

includes a secondary long duration watchdog in case of failure. Additionally, the

new avionics has incorporated a software architecture redesign, which provides the

flexibility to develop more elaborate protection mechanisms that were infeasible

in the past.

Since radiation exposure presents a serious problem for spacecrafts and can

cause damaging effects commonly known as single-event latchups (SEL) or single-

event upsets (SEU) [5], features to limit harm from its exposure have been con-

sidered. Either of these events can disrupt proper operation of the software and

considering methods to reduce the risk of single or cascading system failures from

such events is crucial. The redesigned software architecture now includes some so-

lutions to handle potential radiation effects, such as a software watchdog process

designed to detect basic system software anomalies and correct them. Another

solution is the use of backup OS images in case of transient or permanent memory

failure. The latter solution was developed as part of this thesis, and it is discussed

in further detail later.

Despite risks imposed by the harsh space environment, human error will also

limit mission success. This may occur due to an unforeseen circumstance not

considered in the mission software development, or an inaccurate software model

discovered during orbit. Currently, most flight software applications are installed

a final time prior to orbit with hopes of only encountering limited (i.e., not mission

jeopardizing) issues, if any, that were not discovered during integrated testing on

the ground. However, this software development model is not entirely reliable and

fortunately, this new platform facilitates the development of a solution to handle

such potential errors. This solution is on-orbit software update functionality,

which includes support for the Linux kernel, root file system, or both if necessary.

5

1. INTRODUCTION

This feature will both improve the system’s robustness and also provide a

tremendously beneficial capability to increase mission potential: attempting to

complete multiple missions rather than a single mission per developed CubeSat.

Although mission development typically requires a fully tested and integrated

system for a single payload experiment, this flexibility would allow multiple pay-

loads or even a single primary payload with incomplete flight software to fly. This

feature-set would only require minimal software functionality prior to flight, and

final payload experiment software could be completed well after development of

the CubeSat hardware.

1.5 Thesis Scope

The scope of this work includes the design and development of reliable remote

on-orbit software update functionality. There are two main focuses, which in-

clude software update validation, and recovery from potentially non-functional

or inoperable updates. The major goal is to extend the reliability and capabili-

ties of PolySat’s new generation avionics, both in terms of post-launch software

error recovery and potential expansion of a mission’s feature-set. Much of this

implementation relies heavily on hardware or software architecture details of the

avionics system, some of which were designed by other participating PolySat stu-

dents. Their contributions and work are outlined below, as well as identified at

the start of any chapter that may reference such contributions. Works related to

this research have also been identified and discussed, as they have aided in the

design.

This thesis contains six additional chapters, each of which is summarized

below:

• Chapter 2 describes a development platform architecture used during initial

avionics development, whose understanding was crucial for the design of a

software update architecture. Investigation of the development platform

architecture, which included obtaining information about the boot process

and memory hierarchy options, was conducted by other team members in-

cluding myself, Greg Manyak, and John M. Bellardo. The limitations and

6

1.5 Thesis Scope

risks addressed were part of an evaluation of the development board archi-

tecture performed solely as part of this thesis.

• Chapter 3 describes the avionics platform architecture as well as architec-

ture for the software update feature-set, including validation, recovery, and

an updated system boot process. The avionics platform hardware was de-

signed by Austin Williams, which included device component selection and

hardware testing to ultimately form a stable platform that could support

software development. The software update architecture, which includes

the integration and design of multiple software subsystems, was designed

solely as part of this thesis.

• Chapter 4 details the design and implementation for critical software up-

date subsystems or modules that are briefly discussed in Chapter 3. These

three subsystems, including their design, implementation, and testing were

completed solely as part of this thesis.

• Chapter 5 presents results from verification testing of the core design fea-

tures, including performance measurements and requirements compliance.

• Chapter 6 evaluates works related to this research that were considered

during the design phase.

• Chapter 7 concludes the thesis with a focus on the current development

progress and potential future work.

7

1. INTRODUCTION

8

2

Development Platform

Architecture

While initially developing the new avionics hardware, a major amount of devel-

opment support for the chosen microprocessor was obtained from a preexisting

development board available from the manufacturer. This support included ob-

taining information about memory bus interconnects and attractive memory de-

vices supported by the microprocessor. This information assisted in determining

whether these devices should be included on the avionics. Ultimately, the new

avionics platform was designed to contain several elements similar to the devel-

opment platform, whose understanding was crucial to develop software update

functionality. More specifically, these items include the memory device architec-

ture and startup process, as they have implications on the design choices made

in the software update system architecture.

Initial investigation of the memory device architecture, available options, and

boot process on the development platform was conducted by Greg Manyak. Fur-

ther investigation and evaluation of its implications on the avionics platform,

as well as recommendations of how each memory device should be used on the

avionics were conducted as part of this thesis. The final design decisions regarding

hardware aspects for the avionics, such as specific memory component selection,

were made by Austin Williams.

9

2. DEVELOPMENT PLATFORM ARCHITECTURE

2.1 Platform Overview

The manufacturer of the newly chosen microprocessor, Atmel R©, provides a con-

venient introductory development board option that was used extensively for ini-

tial avionics development. This system-on-a-chip, or SoC, the AT91SAM9G20,

incorporates an ARM9 based architecture, specifically the ARM926EJ-S proces-

sor (v5), and it includes a variety of features, such as standard peripheral bus

interfaces. The development unit also includes different potential primary and

secondary non-volatile memory options. All of these options were heavily con-

sidered to be included on the new avionics due to their flexible use with the

AT91SAM9G20, as well as individual tradeoffs. A block diagram presenting the

critical elements of the AT91SAM9G20 platform architecture is presented in Fig-

ure 2.1 below [6]:

AT91SAM9G20-EK Dev. Unit

AT91SAM9G20

32K
SRAM

64K
ROM

32 MB
SDRAM

256 MB
NAND

32 8

Shared parallel bus

uSD

8 MB
Dataflash

MMC

SPI

Figure 2.1: AT91SAM9G20 Platform Overview - This block diagram illus-

trates the various non-volatile, volatile, internal, and external memory devices and

their interfaces to the avionics microprocessor.

An understanding of these memory options and how they can support various

embedded applications is discussed.

10

2.2 Memory Organization

2.2 Memory Organization

The number of external non-volatile memory devices available on the development

platform allows for up to three primary methodologies for storing and booting

Linux, as well as storing other desired data. These devices include NOR and

NAND flash components, and a potential microSD card component. The phys-

ical differences and limitations between NAND and NOR flash components are

important to consider, and these are described in a future section. The Atmel R©

NOR flash device is also known as Dataflash R©, which is a specific technology

name dedicated to external NOR flash devices included with the AT91 family of

hardware [7].

On the AT91SAM9G20 development board, every external memory device

has varying capacity and interfaces: 8MB Dataflash R© with a serial peripheral

interface (SPI), 256MB NAND flash with an 8-bit parallel interface, up to 32GB

microSD (non-SDHC required to utilize as a boot device) with a MultiMediaCard

interface (MMC), and 32MB volatile SDRAM with a standard parallel interface.

Typically, one of these non-volatile external memory devices is utilized as the

primary boot device, which allows for three boot device options. This boot device

contains primary dependencies for Linux, as well as other startup dependencies.

Any remaining non-volatile memory devices can be used for secondary or tertiary

data storage.

The primary AT91 Linux support group as well as the microprocessor man-

ual [6, 8] detail the variety of system memory and boot options available to the

user, including a commonly recommended option used during early development.

This option was to utilize NAND flash as the primary boot and secondary data

storage device. In this configuration, the NAND flash contains all the primary

Linux components, as well as other startup dependencies. A sample memory

content mapping for such a configuration is shown in Figure 2.2 [8].

The primary components that make up Linux are commonly known as a sys-

tem images, which are compressed files containing specific elements of the Linux

OS. These main images include the kernel, which is actually the core of the OS,

and secondly, what’s known as the root file system. The kernel is a separate pro-

gram that executes in volatile memory, and it is responsible for hardware control,

11

2. DEVELOPMENT PLATFORM ARCHITECTURE

NAND Flash Contents

AT91
Bootstrap U-Boot U-Boot

Env.
Linux
Kernel

0x0 0x10000000

Linux
File System

Figure 2.2: Potential NAND Memory Layout - This diagram illustrates a

content mapping of NAND flash that could be used with the AT91SAM9G20.

system scheduling, and system I/O after full system startup. The root file sys-

tem is actually the primary directory and file tree hierarchy that contains all the

dependencies the system needs to properly run, such as other programs, libraries,

and modules. The default file system utilized with this configuration is a journal-

ing flash file system, or JFFS2 [9]. By maintaining these two primary components

into separate image files, the Linux dependencies are essentially organized and

simpler to program or flash onto the target hardware. For this NAND flash con-

figuration, the kernel image size was roughly 1.5MB in size, and the initial root

file system size was roughly 15MB.

In addition to these critical elements is the bootstrap program, which exists

as a multi-stage program. More specifically, two of these stages are the AT91

bootstrap and U-Boot. These stages are all primary components necessary for

startup and full system boot.

2.3 Boot Process

Bootloaders, or bootstrap programs are typically required with hardware that

uses an operating system. They will execute as the hardware is initially powered

and usually reside on a processor-internal ROM or similar device. Their primary

responsibility is to perform low-level hardware initialization for devices such as

memory or oscillators, which are necessary prior to loading an actual OS. In the

case of the AT91SAM9G20, it contains an internal bootstrap program (a.k.a,

RomBoot) on its 64KB ROM, which performs these tasks at a minimal level.

12

2.3 Boot Process

Utilizing the internal bootstrap is actually not required with the microproces-

sor and an external 16-bit flash memory device can be used instead. However, this

requires the user to provide an independent firmware solution that will perform

the necessary low-level configuration. This application must also be able to exe-

cute in place, which means it does not require content copying to RAM [10]. The

option to choose between the processor’s internal bootstrap or external bootstrap

is hardware configurable using one of the microprocessor’s external pins known

as the Boot Memory Selection, or BMS pin. To avoid the inconvenience of hav-

ing to develop a first-stage bootstrap solution for the development platform, the

processor was configured to always boot using its preexisting internal bootstrap.

By design, this internal bootloader only acts as a first-stage program, which

results in a very limited hardware configuration when done executing. This inter-

nal bootstrap can support multiple primary boot devices dynamically, and it will

actually attempt to search and detect a suitable second-stage bootstrap program

that can be loaded from other external memory devices. When the first-stage

completes execution, control is handed to the second-stage bootstrap, which is

ultimately responsible for loading the OS. By default, this second-stage bootstrap

program for the development board is developed by Atmel R© and known as AT91

Bootstrap.

On startup, the internal bootstrap immediately probes the SPI, parallel, and

MMC buses for external memory devices that may contain a valid program ex-

ecutable (i.e., contains a valid ARM instruction code sequence). If one is dis-

covered, it is copied into internal SRAM and system startup continues. Two

independent 16KB banks of SRAM exist in the microprocessor which altogether

may be used for the second-stage bootstrap since the internal first-stage actually

executes in place via memory mapping.

After the first-stage completes scanning, if a valid bootstrap executable has

not been detected or perhaps no external memory devices exist, an in-system

programming utility also contained within the internal ROM is loaded. This

is known as SAM-BA, and this executes and awaits any activity on the main

microprocessor’s USB device or debug RS232 serial port. This allows the system

to be reprogrammed or perhaps troubleshooted in the event that the user may

13

2. DEVELOPMENT PLATFORM ARCHITECTURE

not want to fully boot the system. A flow diagram depicting the overall behavior

of the AT91 first-stage internal bootstrap is show in Figure 2.3 [6, 10].

Lastly, U-Boot is an optional third-stage bootstrap following the second-stage

AT91 Bootstrap that manages other setup and passing control to the Linux OS

when finished executing. U-Boot is known as a Universal Boot Loader, and it

supports several other processors including many from the AT91 family. Al-

though U-Boot’s configuration, which mainly involves final steps in loading the

OS, can be handled by the AT91 Bootstrap standalone, such an option was not

readily available for the development board. Other information regarding Linux

dependencies (e.g., kernel image address offset in NAND) that are necessary to

boot exist in the U-Boot environment in memory.

A high-level diagram showing the overall flow of each of these stages in the

boot process is shown in Figure 2.4 [6, 8]. Aside from the first and second stages,

each stage is loaded into external SDRAM before executing, including the Linux

OS.

Since multiple memory device configurations are supported by the AT91SAM9G20,

the user can leverage this flexibility to design a specific startup sequence suited

to a desirable application. In the case of the avionics, a few primary memory

configurations were heavily considered due to their recommendations by online

support [8]. This included potentially utilizing NAND flash as a primary boot

and secondary data storage device. However, before finalizing the memory con-

tent layout for the avionics, a few common issues regarding these technologies

were considered.

2.4 Limitations and Risks

NAND and NOR memory technology have implications on the overall functional-

ity of the system that must be considered prior to their use. Unfortunately, they

suffer from a couple disadvantages. These memories primarily differ in their in-

ternal memory cell arrangement and thus, their potential capacities and low-level

interfaces differ significantly. NAND’s cell structure is only limited to multiple-

byte serial, rather than random single byte memory access and it can have greater

density. The opposite is actually true for NOR memory.

14

2.4 Limitations and Risks

Initialize main
clock,

peripherals, etc.

Execute SAM-BA

Valid second
stage SPI

device found

Begin bus
probing for next
bootstrap stage

Yes Copy contents from
SPI memory device

into SRAM
Remap SRAM and

continue startup

No

Valid second
stage NAND
device found

Yes Copy contents from
NAND memory

device into SRAM

No

Valid second
stage microSD
device found

Yes Copy contents from
microSD memory
device into SRAM

No

Await RS232 serial
or USB activity

Remap SRAM and
continue startup

Remap SRAM and
continue startup

Figure 2.3: Internal First-Stage Bootloader Flow Diagram - This depicts

the various buses probed by the first-stage bootloader application, which intends to

load a second-stage bootstrap into internal SRAM, or load the SAM-BA in-system

programming utility.

15

2. DEVELOPMENT PLATFORM ARCHITECTURE

Load AT91
Bootstrap

Second-Stage
from NAND to

SRAM

Load U-Boot
Third-Stage

from NAND to
External SDRAM

Load Linux OS
from NAND to

External SDRAM

Scan External
Memory Devices

Continue Full
System Startup

AT91 Internal
First-Stage

Startup

Figure 2.4: High-Level Boot Process Flow Diagram - This illustrates the

various stages of the AT91 boot process.

Due to its larger capacity, NAND memory is organized into larger segments,

such as pages, and these define the smallest multiple-byte read or write access

portions (e.g., 1024 bytes) allowed from or to the device. Secondly, NAND’s

cell structure can degrade and wear-down over time due to frequent use, and

this limitation must be managed to improve overall device lifetime. Managing

this degradation is known as wear-leveling [11], which is a technique to handle

and limit the occurrences of forming unusable memory blocks on the device.

These issues are only briefly mentioned here but more detail regarding them are

presented in the next chapter and related works Section 6.2.2.

The default development board architecture employs a single 256MB NAND

flash device as a primary boot and secondary storage device. Given its capacity,

this could be feasible for several missions with reasonable data storage require-

ments, but this is not an ideal memory layout. Since electronic components are

susceptible to radiation induced upsets in space, relying on a single memory de-

vice to contain the primary Linux image components (i.e., Linux kernel and root

file system images) for a mission is quite risky and unreliable. Additionally, this

would result in all persistent memory-write activity occurring on a single device.

This increases the risk of data corruption from overlapping writes, perhaps due

to managing memory blocks, or failure of a memory protection mechanism within

Linux. Moreover, this device could become a single point of failure for the mission

16

2.4 Limitations and Risks

if it happens to fail entirely. Fortunately, the flexibility of the AT91SAM9G20

internal bootstrap allows for multiple memory device configurations. This has re-

sulted in a memory hierarchy on the avionics that utilizes an independent primary

boot memory device and independent secondary storage device.

Moving the critical Linux dependencies to a primary boot device does not

completely solve the reliability problem since this device could also fail. However,

such an event is less likely to occur on the avionics primary boot device due to

its unique technology. In short, the primary boot device does not depend on

standard electrical means to store bits as would a NAND device and thus, it

becomes less susceptible to radiation induced upsets.

Lastly, another risk encountered by using multiple external memory devices

is the increase in system complexity. By utilizing a new primary boot device,

support for the device must be added to the existing AT91 Bootstrap and poten-

tially U-Boot if not already existent. A more complicated boot process is then

needed that may result in a higher potential for error occurrence.

One main advantage to multiple memory devices, however, is the separation

of critical system components from a secondary storage system such as NAND.

This will help to prevent potential data corruption on a single memory device.

Secondly, there would no longer be a single memory device that could poten-

tially become inoperable and end a mission completely. This memory hierarchy

could tolerate a secondary storage device failure since it could now still fully

startup with the primary Linux components intact on a different device. These

advantages clearly outweigh the risk of the increased complexity that results from

adding an independent primary boot device.

Many of these concerns, including complexity and failure modes, have been

considered in the development of the software update architecture. Additionally,

a firm understanding of the details regarding the existing development platform,

such as boot process and memory hierarchy, was necessary to form a desirable

avionics software update solution.

17

2. DEVELOPMENT PLATFORM ARCHITECTURE

18

3

New Avionics Platform

Architecture

After much consideration regarding potential memory architectures and boot

methodologies for the avionics system, the platform was actually designed very

similarly to its development unit predecessor. One key difference is that multiple

external memory devices are utilized rather than a single NAND device. A pri-

mary memory boot device is used to store primary boot components, including

Linux and its accompanying bootstrap. Since these platform architectures are so

similar, understanding the development unit has aided in the design of software

update features.

While considering software update functionality for this system, a few ma-

jor concerns came to mind. These items include but are not limited to update

validation, and potential recovery options if perhaps the update is inoperable

but still used by the system. Another major consideration is a remote uplink

or upload mechanism to support communication for an orbiting CubeSat. Since

communication windows with the spacecraft may only last a few minutes, it may

require multiple links, or ‘passes’ before a software update can be completely

uplinked. Although important, this last consideration is only briefly discussed

since multiple solutions to this problem are already available within Linux and

the preexisting avionics software architecture.

At a high level, multiple modules were developed to address these concerns,

one of which involves Linux image validation, either for pre-launch default system

19

3. NEW AVIONICS PLATFORM ARCHITECTURE

images, or updated ones. A recovery process has also been designed to aid in sys-

tem recovery if such functionality is ever necessary. The discussion of this avionics

platform architecture focuses on a new memory hierarchy, boot process, and how

each of the software update modules integrate within the platform. These soft-

ware update modules, including system state logs, secondary file system, and

final update application were developed as part of this thesis.

The choice to include multiple memory devices on the avionics unit was made

collaboratively by Austin Williams and Greg Manyak. Their primary uses in

comparison to the development platform architecture, including isolating a pri-

mary boot device, using multiple file systems, updating the boot procedure to

support validation and recovery as a two stage process, were developed as part

of this thesis.

3.1 Approach

The most desirable software update feature-set includes a reliable, robust, and

extensible system and thus, a variety of design decisions were necessary to achieve

these characteristics. Initially, a set of goals and requirements were established,

which presented the need to develop independent major subsystems that are archi-

tected to support such functionality. Elaboration of these goals and requirements

are discussed.

3.2 Goals

One main goal focuses on developing a reliable solution to update the avionics

system software. When referring to the system software, this means that any

critical Linux component, such as the kernel, should be updatable in addition to

other system files. To facilitate this, validation and recovery mechanisms must

exist.

Validation is necessary to ensure that the system can apply and use updates

properly. If these updates cannot be validated, upsets on the system can result

from attempting to use an update that does not contain valid data. Additionally,

the system must be able to recover in case this event occurs. Software update

20

3.3 System Requirements

corruption may occur from other events, such as a bit-flip upset, so this validation

should generally apply to all Linux dependencies that exist on the system, whether

or not they are updates.

Since the space environment can present unpredictable resets within the sys-

tem, the software update functionality should tolerate these occurrences to a

reasonable degree. Minimally, any part of the software update process should not

upset the system further if an unexpected reset does occur.

Another major goal is to create an extensible solution that can be employed

on several future missions. Therefore, it only depends on a few major hardware

requirements that will unlikely change between missions, and rather, the software

has very minimal or no dependencies on any specific mission. A summary of these

major goals can be found in Table 3.1.

Table 3.1: Summary of Major System Goals

Goal Description

1 Update support for all major software components

2 Validation and any necessary recovery for all system updates

3 Reasonable tolerance of unexpected system upsets

4 Extensible solution for current and future missions

From these few major goals, a set of system requirements was generated.

3.3 System Requirements

The system requirements are organized into primary non-functional and func-

tional requirements. The non-functional requirements refer to desired character-

istics or attributes of the software update behavior as a whole, rather than what

the actual system should be designed to do and perform. The latter are presented

as functional requirements in a section directly following the non-functional re-

quirements.

21

3. NEW AVIONICS PLATFORM ARCHITECTURE

3.3.1 Non-Functional Requirements

The primary non-functional requirement relates directly to the avionics platform.

This requirement states that the software updates should be fully compatible

with the Linux distribution, software architecture, and hardware architecture

on the avionics. The Linux distribution for the avionics is quite unique to the

hardware, and the underlying hardware is also organized with a specific hierarchy

and startup model. Unless the software update features are designed to function

on the new avionics platform, it would not be feasible to remotely update it.

The next requirement states that the system should support a reusable and

reliable remote uplink mechanism that can tolerate high latency. Since the com-

munication link window is typically limited in terms of duration and number

of occurrences per day, a solution to periodically collect transmitted data is re-

quired. This application or similar should validate this data and properly form it

into an update when complete. It would be most beneficial if this solution could

be reused on the avionics regardless of the mission that may want to support

software updates.

An dual extension of the previous requirement is that first, the avionics must

also contain communications hardware support in addition to a higher-level soft-

ware application to manage the communication link. Secondly, there must be

non-volatile memory storage available to temporarily contain software updates

until they are complete and then applied to the system. Without these sub-

systems, which include a hardware transceiver to receive and transmit RF data

packets, remote software updates to the avionics system would not be feasible.

Next, software updates for the avionics should have reasonably sized memory

footprints to account for their uplink time and limited non-volatile storage. If

updates were rather large in size, it may not be feasible to fit them onto an

existing memory device on the system, and more time would be consumed when

uplinking any updates to the system. Although a long latency software update

may be tolerable, if the update is immediately critical to mission success, the

avionics may not receive the update prior to a potential failure.

Furthermore, only minor changes, if any, should be required for subsequent

missions utilizing this avionics platform to perform software updates. In other

22

3.3 System Requirements

words, the software update functionality should not only be usable on a single

mission, but flexible enough to be used on future missions.

The last non-functional requirement states that the actual updates should

have a specific format known by the system, whether that’s on a per-file basis,

or perhaps an entire compressed Linux image file. The software update system

can thus expect a specific set of potential update formats, which is ultimately

necessary to validate and apply the updates.

A summary of these non-functional system requirements can be found in Ta-

ble 3.2:

Table 3.2: Summary of Non-Functional Requirements

Requirement Description

1 Compatible with avionics software and hardware architectures

2 RF hardware support to receive and transmit packet data

3 Software support for high latency remote data transfer

4 Available non-volatile device for temporary update storage

5 Small memory footprint for software updates

6 Minor changes to support software updates for other missions

7 Specifically formatted updates

3.3.2 Functional Requirements

As for the functional requirements, the first states that the system should perform

recovery in case of non-functional or corrupt software update use. Although soft-

ware updates should be validated prior to the system applying them, they could

still become inoperable perhaps due to transient memory failure (e.g., transfer of

a complete software update between external memory devices). A system reset

would most likely be required for a critical system update to take effect, such

as updating a Linux component, so the avionics should recover from failure to

startup with an unusable update.

Secondly, the software update system should perform low-overhead and ro-

bust validation of any software updates prior to their use. Although remotely

transferred data typically utilizes protocols to perform validation on a per-packet

23

3. NEW AVIONICS PLATFORM ARCHITECTURE

basis, it’s appropriate to also validate the complete software update. This vali-

dation should not incur large delays on the system that may impact other com-

ponents. In other words, other important subsystems may depend on fair use of

the processor, and these validations should not impact their overall performance

negatively.

The next functional requirement states that the software update system should

tolerate unexpected global system upsets, such as unexpected reboots. If the

software update application process perhaps does not complete prior to a system

reset, this should not cause further errors upon system startup. Although this

goes hand-in-hand with the first functional requirement, there may be other com-

ponents aside from the update that are necessary to perform a software update

(e.g., a request to apply the update). If any of these components become invalid

due to a reset, the system should still allow for future updates and not upset the

avionics on subsequent startup.

The last functional requirement states that the software update system should

be able to apply the updates properly to the system when finally uplinked. If the

software update functionality could not apply the software updates, the updates

could not be used. A summary of these functional system requirements can be

found in Table 3.3:

Table 3.3: Summary of Functional Requirements

Requirement Description

1 System recovery for inoperable or corrupt software update use

2 Robust and low-overhead validation of software updates

3 Tolerance of unexpected system upsets during the update process

4 Application of software updates to the system

These sets of requirements have encouraged many of the architectural and

design decisions for software update functionality.

24

3.4 Memory Organization

3.4 Memory Organization

In comparison to the development platform architecture, the new avionics plat-

form utilizes a memory device layout that is almost identical aside from an ad-

ditional primary boot memory device. Important differences regarding actual

internal memory content organization and the primary boot device technology

are discussed.

3.4.1 Primary Boot Device

When deciding to use a separate primary boot device to store critical components,

such as Linux, the goals were to isolate these dependencies from a secondary

storage device and to reliably store them. Since the Linux images and bootstrap

dependencies are vital to any mission’s success, ensuring their validity on this

device is essential. The main concern with choosing the proper memory device is

considering its susceptibility to fluctuating radiation and temperature levels from

space. If highly susceptible to upset occurrences, these critical dependencies could

permanently corrupt and prevent proper system boot. Thus, a couple different

solutions were explored to store these software images reliably.

The first solution involved investigating a programmable read-only memory

(PROM) device, or one-time programmable read-only memory. These devices are

essentially a sequence of hardcoded bits burned into silicon using fuse or anti-fuse

technology to form internal electrical connectivity [12]. With this manufacturing

process, the structural integrity of the circuitry is unlikely to change. Thus, they

are essentially impervious to radiation induced state change like other common

electrical-based memory. Upon continued research, it became impractical to con-

sider this solution since it was expensive and not a widely available service by

national manufacturers. It would have also significantly increased the avionics

hardware complexity.

Next, the second and final solution was to utilize a low-cost and low-power

phase-changing memory device (PCM). Although the hardware designer had al-

ready chosen to use this device on the avionics, it was not clear at the time how

to use it most effectively. Further discussion of the chemical properties and the

inherit robustness of this technology is presented in related works Section 6.1.1 at

25

3. NEW AVIONICS PLATFORM ARCHITECTURE

the end of this paper. Due the overwhelming amount of research to commercialize

this technology in a low-cost and practical form, it became feasible to integrate

on the avionics platform. This device was chosen as a reliable option for storing

critical data because its technology is inherently tolerant to space environment

conditions.

3.4.2 Platform Overview

The avionics platform memory hierarchy has an external memory device layout

containing a 16MB capacity PCM device that stores the system’s primary Linux

images and bootstrap components. Additionally, there are 128MB SDRAM,

512MB NAND flash, and up to 32GB MMC devices utilized. A block diagram re-

flecting this layout is shown in Figure 3.1, whose differences from the development

platform architecture are highlighted.

Avionics Platform

AT91SAM9G20

32K
SRAM

64K
ROM

128 MB
SDRAM

512 MB
NAND

32 8

Shared parallel bus

uSD

16 MB
PCM

MMC

SPI

Figure 3.1: Avionics Platform Overview - This block diagram illustrates

the various non-volatile, volatile, internal, and external memory devices and their

interfaces to the avionics microprocessor. Differences from the development unit

architecture are highlighted.

The SDRAM and NAND flash components only have minor differences from

the development unit architecture, which are slight increases in memory capacity.

26

3.4 Memory Organization

The avionics also supports a tertiary memory device, or uSD MMC interface for

up to 32GB additional storage. For missions requiring large amounts of data

acquisition, this option is readily available with a provided uSD card device.

On the development platform, the critical Linux components would be con-

tained as two compressed kernel and root file system images in NAND flash. The

total estimated memory footprint of these components is 16.5MB. In this configu-

ration, the Linux kernel is copied to SDRAM at startup, and the root file system

is simply mounted from NAND. Any file system change requests are always re-

flected due to the non-volatile nature of the NAND device. This startup and

Linux usage has influenced a couple key design decisions of the software update

architecture.

3.4.3 Multiple File Systems

On the development unit, individual memory footprints are approximately 1.5MB

compressed for the kernel image, and 15MB compressed for the root file system.

However, storing these Linux images similarly in the 16MB capacity PCM would

not be feasible given this memory footprint. Thus, the decision to separate the

larger root file system image into two independent file system images was made.

The first, the primary root file system, contains Linux dependencies that are

always required for system startup and that are necessary for mission critical

components. This primary file system is stored on the PCM device, and the file

system type is JFFS2. The secondary file system is designed only to contain

non-critical, convenient system files that should not be necessary to complete a

mission. This secondary file system consists mainly of larger file system compo-

nents and is stored on the NAND device as JFFS2. A sample of this memory

content configuration is shown in Figure 3.2.

With the primary root file system stored on PCM, Linux has been configured

to make use of this file system by copying its contents directly to SDRAM prior

to using it. One key difference between this and mounting a file system directly

from NAND is that any changes made to the file system are no longer persistent.

In other words, changes made during a Linux session are reflected only until next

system startup since the entire file system state is stored in SDRAM. Beforehand,

27

3. NEW AVIONICS PLATFORM ARCHITECTURE

Phase Change Memory Contents

....

NAND Memory Contents

Secondary
File System

0x0 0x20000000

....Bootstrap
Components

Linux
Kernel Image

0x0 0x1000000

Linux
Root File System Image

Figure 3.2: PCM and NAND Memory Content Overview - This diagram

shows a sample memory content layout with Linux dependencies stored on the

PCM and secondary file system stored on NAND.

the entire file system was directly mounted from the NAND device, which means

its state is always stored in a non-volatile fashion.

A couple primary advantages are presented by utilizing the images this way.

One of these advantages is simpler and less overhead image validation. This is due

to the fact that primary file system validation does not have to be recalculated,

or tracked every time there is a file system change. If the primary file system was

contained within NAND, all changes to the file system would have to be tracked

in order to validate the file system on a subsequent reboot. This is not only a

more complex validation process, but performing it continuously can induce more

unnecessary overhead in the system.

Another key advantage is that reduced memory footprints for Linux updates

has resulted. More specifically, each of these file systems can now be indepen-

dently updated rather than as a single large file system image. If the primary file

system was stored only on NAND, smaller updates such as single files or direc-

tories could be directly uplinked rather than entire images. This behavior may

seem desirable, but this requires file system changes to be actively tracked on the

system. Unfortunately, this behavior is complex and undesirable.

Overall, software updates for the Linux kernel and primary root file system

consist entirely of new images that can be easily validated with a single checksum.

28

3.4 Memory Organization

However, in order to support validation and use of the secondary file system,

a new process is necessary since any changes to the file system would persist

by default. To validate and update this file system more simply, this default

persistent behavior was removed, and the secondary file system is mounted read-

only on startup. This file system can then be mounted with write capability only

temporarily to apply an update to it. This actually makes validating changes

to the secondary file system much simpler, since each update would only require

changing the file system a single time, rather than continuously tracking file

system changes.

3.4.4 Secondary File System

The secondary file system stored within NAND flash on the system has been de-

signed only to contain extra dependencies rather than those necessary for proper

Linux operation. Additionally, since this file system is stored on NAND flash,

it can support a much larger memory footprint than one contained on PCM.

The primary root file system stored on PCM has an approximate 3MB memory

footprint with this dual file system setup, and the secondary file system has an

approximate 25MB memory footprint.

However, this additional file system requires its own validation and potential

recovery steps because it should not be used by the system if any files happen

to become corrupt. In summary, this validation process is performed prior to

mounting the file system and consists of validating checksums that are stored for

each individual file or directory. When an update is applied to this file system, a

new checksum for the updated file is generated and saved.

Before deciding to validate the file system in this manner, another option was

considered. This option involved using soft-links to refer the entire secondary

file system to another location in NAND, which is also known as a soft-linked

file system. Soft-links are special files in Linux whose data refers to a relative or

absolute path elsewhere on the system [13]. As a result, any changes requested

to the secondary file system would have been reflected elsewhere in a temporary

location rather than at the default paths of the secondary file system. These

29

3. NEW AVIONICS PLATFORM ARCHITECTURE

changes would then have to be collected sometime, not necessarily tracked con-

tinuously, and applied to the file system in bulk. This method of validation was

not used since the alternative method of mounting read-only and making single

file system changes was systematically simpler.

The decision to store multiple partitions of this file system on NAND was also

made to support potential recovery and multiple secondary file system versions.

Five partitions of this file system exist with a max size of 32MB to allow for

expanding the secondary file system size. This number of partitions was cho-

sen to support two primary configurations. The first configuration would be two

uniquely versioned, or updatable partitions, each with a recovery partition, and

the second would be four uniquely versioned partitions. The first option allows

for up to two unique secondary file system versions to exist, whereas the second

option allows for four. Each of these options would leave room for a last parti-

tion to act as an ultimate fallback partition that cannot be updated. In order

to recover a partition if it cannot be validated, another partition of the same

version must exist. These are the most likely configurations foreseen that may be

desired for current and future missions. If a circumstance arises where additional

partitions may be needed, support for them could be added with minimal effort.

Initially, each of these file systems is a copy of the other. The only time when

these are not identical is during a software update procedure when one of these

is updated with new files. Thus, the other partitions initially act as a backup in

case unexpected behavior results when attempting to update the currently used

partition.

The rest of the capacity available in NAND is allocated as a general data

partition, and this is always in read-write mode. It exists to contain any desired

set of data, including data gathered from the mission and temporary storage of

software updates as they are uploaded. Since uploading these updates will require

numerous communication links, such a partition is necessary. The amount of

storage available in this partition, roughly 350MB, will also allow for simultaneous

software updates, such as simultaneous root file system and kernel image updates

(i.e., uplinking one before the other is actually complete). This feature may be

useful depending on mission requirements.

30

3.4 Memory Organization

This data partition actually employs Yet Another Flash File System, or

YAFFS2. Due to issues regarding potential NAND memory cell, or block degra-

dation and limited read and write cycles, the decision to use this file system was

made. This data partition will more than likely experience the most amount of

read and write activity while storing mission data and temporary software up-

dates. This file system is designed to efficiently utilize the NAND memory cells

to extend their lifetime, and to handle any degraded block occurrences. More in-

formation regarding this file system can be found in related works Section 6.2.2.

A memory content layout of NAND to reflect these details is presented in

Figure 3.3:

Avionics NAND Memory Layout

Secondary
FS 1

Secondary
FS 2

Secondary
FS 3

Secondary
FS 4

Secondary
FS 5

General
Data

0x0 0xA000000 0x20000000

Figure 3.3: Avionics NAND Memory Content - This diagram shows the

actual memory content layout of NAND on the avionics system.

By utilizing the NAND flash in this form, two primary operating modes have

been established. These are known as degraded and non-degraded mode for the

avionics. This NAND device does not actually have to be functional for the

system to properly run given that components for Linux are stored on another

device. Thus, the avionics can tolerate a NAND flash failure while still operating

at a minimal, or degraded level. The non-degraded mode means both the primary

boot device and secondary NAND device are functioning properly.

Fortunately, creating this multiple-image Linux environment was accomplish-

able by slightly tweaking an existing tool. This tool has been used throughout

development of the new avionics, and it has been used to generate the develop-

ment environment and Linux dependencies for this platform.

31

3. NEW AVIONICS PLATFORM ARCHITECTURE

3.4.5 Development Environment Overview

The primary tool used to develop for the AT91SAM9G20 and create an envi-

ronment on a host machine for cross-compilation and Linux image generation

is known as buildroot [14]. In short, it supports multiple architectures and it

presents a simple configuration interface for any user to begin embedded Linux

development, such as on the AT91 family of hardware. Much of the dynamic

configuration and build process is handled by a variety of scripts and standard

Makefiles common in a Linux build environment, which were slightly modified

to generate three separate primary Linux images. Buildroot will also generate

a variety of dependencies, such as everything contained in a cross-compilation

toolchain, expected root file system, kernel source, and extended file system for

the desired target. In this case, the desired target is the AT91SAM9G20. Addi-

tionally, the target file systems are easily customizable just by modifying, adding,

or removing any files on the host machine that resemble the final content of these

file systems. These changes are then reflected after simply rebuilding buildroot.

3.5 New Boot Process

To further support this new memory content layout and software update func-

tionality, an updated boot process has been put in place.

3.5.1 U-Boot

On the development unit, AT91 bootstrap’s default behavior acts as a second-

stage in the boot process and loads U-Boot into SDRAM. However, since the

memory footprint of U-Boot and its accompanying environment were unnecessary,

they were removed from the boot process. This was done to free additional

memory in the PCM and to remove the overhead of using a third-stage in the

boot process.

To remove U-Boot, the Linux kernel configuration that was originally sup-

ported by U-Boot needed to be added to the AT91 bootstrap. Fortunately, the

AT91 bootstrap source is provided as freeware by the manufacturer, which allows

for customizing it for the avionics. It’s important to note the limited internal 32K

32

3.5 New Boot Process

SRAM available for the AT91 bootstrap, because if this program size limitation

is exceeded, the bootstrap binary cannot fully execute within the microprocessor.

Fortunately, this limitation did not prevent the necessary additions that would

achieve the desired boot behavior. A bit of guidance available from [15] was

used to support loading Linux, which contains valuable information regarding

necessary steps to boot Linux on ARM architectures.

The AT91 bootstrap sets up the required Linux tags and command-line pa-

rameters for the kernel to startup properly on the avionics. For example, one

of these tags includes specifying whether an initial ram-disk for the kernel is in-

cluded on an external memory device, or as part of the Linux kernel image. Either

option is allowed in Linux, and the former is currently the case for the avionics.

An initial ram-disk is used as a default file system by the kernel during system

startup. This file system is special since it contains dependencies that are neces-

sary for the kernel to start important services and to complete additional system

configuration. This initial ram-disk is used prior to mounting the actual primary

root file system. In the case of the avionics, the initial ram-disk is identical to the

primary root file-system image, so a separate initial ram-disk is not necessary to

store on the PCM. This is a completely valid configuration for Linux, although

it is not common to have identical initial ram-disk and root file system images.

3.5.2 PCM Support

To support interfacing with the PCM device on startup, additions to the AT91

bootstrap were necessary. Since a standard SPI interface driver already existed

within the AT91 bootstrap for Dataflash R©, adding support for the PCM was not

difficult. The only requirements were to add a specific command-set to support

the PCM, such as for reading and writing from and to the PCM device.

The internal first-stage bootstrap stored within the AT91SAM9G20 needed

to be compatible with the PCM at a minimal level. This is due to the fact that

the second-stage AT91 bootstrap is stored in the PCM and must be read by the

first-stage. Since the first-stage bootstrap cannot be changed because it’s located

on an internal ROM, the basic read functionality performed by the first-stage

needed to be compatible with the PCM device command-set. Fortunately, basic

33

3. NEW AVIONICS PLATFORM ARCHITECTURE

read operations with SPI-based flash devices are common, including those of the

PCM, so the necessary compatibility existed.

3.5.3 Validation

A major subsystem of the software update architecture is the validation process.

This exists in two forms, one of which is Linux system image validation, and

the other, secondary file system validation. To facilitate updating either of these

components, validation is performed at different steps during the startup process.

First, validation of system images occurs while initially booting using a robust

checksum algorithm and computing a checksum on each image during the boot-

strap phase. By doing this at startup, system image updates can also be easily

validated since they are copied to the same primary boot device before being

used by the system. Performing validation at startup will detect invalid images

on the PCM and prevent the system from potentially booting using invalid im-

ages. This event could be caused by invalid read operations from the PCM or a

corrupt image being saved to the PCM. Although all updates transferred to the

avionics will be verified, transient memory corruption can occur while applying

any update from temporary NAND storage.

Fortunately, a low overhead and reliable algorithm was chosen to achieve vali-

dation, which is the MD5 cryptographic hash. This generates a 128-bit checksum

regardless of the input data size and produces drastically different results with

even a single bit difference. To employ this checksum, the bootstrap was cus-

tomized to compute checksums on each of the Linux images before loading them

into SDRAM. These checksums, image sizes, and memory offsets are compiled

as part of the bootstrap each time a new set of images is programmed into the

PCM.

Secondly, a validation process for the secondary file system was designed that

would be executed after Linux starts. This process would run prior to mounting

the secondary file system from NAND. As previously mentioned, two solutions

were considered that would perform with low-overhead. The final solution that

was simpler and reliable maintains an MD5 checksum for each individual file and

34

3.6 System State Logging

directory within the file system. It scans the file system hierarchy recursively en-

suring each file is valid by computing its corresponding checksum and comparing.

This file system is mounted read-only such that unanticipated changes do not

occur without updating any checksums for the requested file system change. To

apply new updates to this file system after they are uplinked, a checksum for the

corresponding change is calculated and the file system is remounted read-write

to apply the change. After applying and validating the update, the file system

is again remounted as read-only to prevent any further changes. If any of these

steps happen to fail and recovery is necessary, other copies of the partition are

used to attempt to recover any damaged or missing files.

A flow diagram showing the overall behavior of this boot process can be seen

in Figure 3.4.

Copy Linux
Kernel to

SDRAM and
Begin Execution

Load Root File
System and

Continue Startup

Validate and
Mount

Secondary File
System from

NANDValidate Linux
Kernel and Root

File System
Images

AT91
Bootstrap
Startup

Figure 3.4: Avionics Boot Process Overview - This diagram illustrates an

overview of the avionics boot process, including validation of Linux images and

secondary file system.

3.6 System State Logging

Another major subsystem designed to support software update functionality is

an overall system state storing mechanism. This state would be contained as

a set of simple messages to facilitate things such as software update application

requests, or boot attempt failure and success messages. In order to recover from a

35

3. NEW AVIONICS PLATFORM ARCHITECTURE

potential boot failure, having knowledge such as the number of boot attempts and

successes is critical recovery info. To essentially unapply a software update, the

system must be aware that the update is non-functional. This could be discerned

simply by knowing how many times the system was able to boot or not boot

successfully using an update. Additionally, with this information stored as a set

of messages, it would be simple to request a software update to be applied to the

system, since this could be done by logging a single message.

This system state information exists in the form of a statically sized log stored

in PCM. A linked-list data structure is employed in the implementation of the

log to enable memory wrap-around support and cleanup of old message entries.

Logs on many systems act similarly by wrapping in memory after reaching max

capacity. Without performing this way, the log would have to stop collecting

data until it could be cleaned by the system, and this behavior is typically not

desirable.

Access to this state information would need to be available from different parts

of the system, such as the bootstrap and Linux OS. Since it is stored in PCM,

it can already be accessed by the bootstrap. However, support for this device

did not already exist within the Linux kernel, but it was entirely feasible to add.

The existing SPI device kernel driver was modified similarly to the bootstrap to

support the PCM command-set. After performing the necessary modifications,

the PCM could be accessed from user-space in Linux.

3.6.1 Multiple Image Support

To ultimately upload software image updates and store them in the PCM, func-

tionality to store multiple copies of Linux images was employed. Otherwise, only

a single image set (i.e., kernel and root file system) can be used at a time and

an updated image set must replace the original set. This approach can be fatal

to the system if an original working image set is potentially replaced with an

inoperable one. This would also allow for the system to recover and fallback to a

preexisting image set if a new set of images cannot be used.

Currently, there are two sets of kernel and root file system images, which are

initially copies of each other until a software update replaces one of these sets.

36

3.6 System State Logging

Backup images are only used in the event of failure, or exceeding a max number

of boot attempts with a specific set of images. By default, one initial kernel and

root file system set is always made available for recovery, and it is not allowed to

be modified. This ensures that there is always a known working set of images for

recovery.

Since the PCM has a max capacity of 16 MB data storage, all of it is utilized

effectively to leave storage for future software updates and to have backup Linux

images available in case recovery is needed. Two copies of the system state log,

which are initially identical to one other, are also stored in PCM in case the data

in one happens to become corrupt due to unexpected upsets. These two logs are

designed to contain the exact same sets of data and thus, they are resynchronized

if any desynchronization is detected.

Figure 3.5 shows the final content memory layout of the PCM on the avionics.

...

Phase Change Memory Layout

Customized AT91
Bootstrap

Kernel
Image 1

Root
FS Image 1

System
Log 1

0x0

0x1000000

... Kernel
Image 2

Root
FS Image 2

System
Log 2

Figure 3.5: Avionics PCM Content - This shows the typical content organi-

zation of each item contained within the PCM device.

Intentional gaps of memory have been placed between each image, log, or

bootstrap pieces in the PCM. This was done to reduce the likelihood of over-

lapping these components when perhaps a software image update is written. If

this event were to occur, the overwritten data would not be usable. This extra

precaution is simple and could prevent a major error from occurring, which may

not even be recoverable.

37

3. NEW AVIONICS PLATFORM ARCHITECTURE

3.7 Software Updates

Overall, individual steps of the validation and recovery process have been de-

scribed. To fully perform a system update, it must be remotely transferred to

NAND and then copied to its corresponding destination. Potential solutions for

remote transfer are discussed, as well as the final validation process.

3.7.1 Remote Transfer

Supporting reliable software update transfer via RF involves several features.

The majority of these include verification of individual data packets as they are

sent and received between the spacecraft and ground. Additionally, these packets

may be received out of order, lost or dropped and need to be re-requested, and

eventually, they all must be merged into a single update file. Fortunately, utilizing

Linux on the avionics provides preexisting solutions to handle this. These include

standard network data transfer utilities that have been developed and tested by

several other users, such as a standard file-transfer protocol, or ftp [16, 17, 18].

These solutions are inherently more reliable and robust than one that could be

developed as part of this thesis.

Ftp achieves reliable data transfer by employing a standard networking pro-

tocol known as transmission control protocol, or TCP [19]. Although this incurs

additional overhead for a satellite link, it does suffice as data transfer solution.

A custom ftp utility is currently being developed by another PolySat student to

improve data transfer performance for the link between the avionics system and

the ground. This will eventually be used in place of standard ftp. Other utilities

such as scp [20] can be used, which essentially uses the same protocol as ftp but

instead with an encrypted and secure data connection.

Typical communication data rates on past PolySat missions have ranged from

1200 to 9600 baud. Although baud rate is actually the signal modulation rate

for a digitally modulated transmission, the effective data rate is approximately

the same given the encodings usually used for communication (e.g., non-return-

to-zero, or NRZ). An estimated time for remote transfer of a 1.5MB software

update at 9600 bits per second with protocol overhead, including packet loss and

packet latency, would be roughly seven to ten days. This highly depends on other

38

3.7 Software Updates

factors of the communication link not considered here, such as ground station

elements and orbit, but this is a reasonable estimate derived from communication

experience on past satellites.

This estimation also assumes only a single ground station is available to

remotely transfer a software update, which may not be the case. Several so-

lutions are independently or collaboratively being developed to network addi-

tional ground stations across the globe to support satellite operations, such as

GENSO [21]. These solutions may be widely used in the near future, which would

effectively increase the overall communication link time for satellites. The result-

ing advantage is that software updates or other data could be transferred more

quickly, which may be critical to mission success depending on the nature of the

update.

3.7.2 Final Validation

The last major subsystem for software update functionality is final validation

and application of the software update to the system. Final validation must be

performed prior to and after transferring the completed update or unintended

upsets may be introduced into the system. The primary cause of such an upset

would be transient memory corruption, and thus, the data may not be written

correctly to its destination or even to temporary storage.

To help prevent such an upset, the software update’s MD5 checksum is trans-

ferred to the avionics prior to actually updating the system. This MD5 can be

used in comparison with the transferred data and decide whether to proceed with

applying it to the system. After receiving and validating this final checksum, the

software update is either copied to PCM if it’s intended to be a Linux update, or

copied to the secondary file system if intended to be a file update. Lastly, a boot

request message is placed in the system state logs so the bootstrap may load the

proper image from PCM on subsequent startup.

39

3. NEW AVIONICS PLATFORM ARCHITECTURE

3.8 System Limitations

Although the overall system supports all desired functionality, a few primary lim-

itations of the software update architecture exist that should be briefly addressed.

Multiple images are supported by the software update architecture, but only

one additional set. If storing more than one update for Linux was desired so they

can both be readily available and used, this is currently not possible. Depending

on the mission requirements, this may or may not be an ideal configuration.

This is simply a limitation of the PCM capacity, and it would not be difficult

to support additional sets of images in PCM with a larger capacity device. An

undesirable solution to this problem could be to store multiple image updates on

NAND flash and continue to apply them to the PCM when desired. However,

this would require writing a new set of images each time to the PCM to reflect

a new update, and this could increase the likelihood for data corruption on the

device.

Secondly, there are multiple copies of each critical component contained in

the PCM except for the AT91 bootstrap. Unfortunately, this is a limitation of

the internal first-stage bootstrap, which is hardcoded to search for a valid second-

stage bootstrap from physical address zero on all external memory devices. This

is why the second-stage bootstrap starts at address zero in the PCM, but also the

reason why a copy cannot be stored directly after it. If a copy of this bootstrap

was located directly after the original, it would not be usable and could not be

detected by the first-stage bootstrap.

The worst-case failure that could occur from this is corruption of the boot-

strap, thus preventing the system from ever properly booting. One potential so-

lution considered was to contain a copy of this second-stage bootstrap on NAND

flash. Since the first-stage internal bootstrap scans multiple external memory

devices at startup, the thought was that a corrupt bootstrap in PCM would be

skipped and the copy on NAND flash could be used. However, this is not the case,

since the first-stage internal bootstrap will still attempt to use the one provided

in PCM if any remnants of it exist. To actually remove all data associated with

the second-stage bootstrap, it needs to be completely removed from PCM with a

sequence of erase commands. The resulting corrupted or damaged second-stage

40

3.8 System Limitations

bootstrap due to a radiation upset or overlapping memory write would most likely

not resemble that of a second stage that’s been completely erased (i.e., remnants

of it will most likely always exist after corruption).

Because the PCM is inherently robust against radiation induced upsets, per-

manent corruption of the bootstrap is unlikely to occur from radiation. However,

this does not prevent another subsystem from accidentally overwriting its con-

tents. A solution to this potential scenario is to utilize the memory-protect feature

available in the PCM device. This feature allows for any region of memory to be

write protected if commanded, and thus, any accidental writes that would result

in overwriting the bootstrap could be prevented. An implementation to support

write-protecting this memory space has not yet been developed but could be an

extension to this thesis.

41

3. NEW AVIONICS PLATFORM ARCHITECTURE

42

4

Major Subsystems

The three major systems that play key roles for overall software update func-

tionality are described in further detail. The overall design and independent

verification for each subsystem are presented. The design decisions, implemen-

tation, and testing details regarding these subsystems were a major part of the

work that encompasses this thesis.

4.1 System State Log

4.1.1 Overview

The system state log is a major subsystem utilized on the avionics, which is de-

signed to support validation and recovery of critical system components. This

mainly includes the Linux kernel and root file system images, but it also en-

compasses maintaining an overall boot state for the system. This system boot

knowledge is necessary in order to decide when recovery of the system is nec-

essary, and to request application of Linux image updates. To support system

image validation, this log must also store other important Linux image and sec-

ondary file system data, such as image lengths and associated MD5s in order to

validate and load images at startup.

This subsystem acts as a message-passing log that is contained within the

PCM and has a static size of 128KB. More information regarding common log

structures and protocols is presented in related works section 6.3. There are two

43

4. MAJOR SUBSYSTEMS

copies of the system state log, where one should be used in case the other happens

to reflect an invalid state or contains improper data. Data is stored in the log

in the form of separate entries or messages. These entries are designed to be

collected in subsequent or appending fashion and removed or cleaned when no

longer needed by the system.

4.1.2 Requirements

There are a few primary requirements regarding information that the system state

log should maintain, and how it should be used.

In order for the avionics system to recover from potential error, some type

of information to discern when the system should recover is necessary. In other

words, the system may fail to boot by attempting to use a corrupt Linux image,

or by encountering an unexpected reset prior to full startup. However, unless

these failed boot attempts are tracked and acknowledged by the system, recovery

from these scenarios are not possible. Storing this critical information in a reliable

device such as the PCM makes the most sense, and by doing this, these logged

messages can be viewed at the bootstrap or Linux OS level.

To allow for software updates to be applied to the avionics, some type of

message or request to apply an update is necessary. Since all system updates

must be applied on subsequent reboot of the system, the system state log should

handle supporting this type of request. This would enable functionality for a

desired update to be used on a subsequent system startup.

Lastly, the system state log should support storing a series of subsequent or

chained messages that can be simply appended or removed when desired. This

structure allows for messages to simply be scanned, added, or removed from the

log as necessary. If the data was perhaps organized such that specific sections

of memory were designated for storing only certain message types, the process

to scan, add, and remove entries would be less flexible. With a standard log

structure, any log entry type can precede the next and vice versa.

44

4.1 System State Log

4.1.3 Design

Four types of message or log entry types have been designed for the log to support

its desired functionality. The first is a boot attempt message, which simply

denotes an attempt to boot using a specific set of Linux images and a secondary

file system. This message type allows the system to determine when recovery is

needed by simply counting boot attempts and checking whether the max number

of attempts for a specific image version has been exceeded. The max number of

boots attempts allowed per Linux image or secondary file system is five. Multiple

versions of these system images can exist, and thus, the versions of each image

used are marked accordingly in a boot attempt.

The second entry type is a boot status message, which is used to signify a

successful boot for a specific Linux image or secondary file system. This boot

status signifies that one of these components successfully loaded during startup.

This boot message does not signify that all three components necessary for startup

were successful, as the system could not discern the proper boot state if this

were the case. In other words, the boot status success message must represent

independent successful startup for each image type in order to determine which

image or secondary file system may be corrupt or unusable. When either of these

Linux components is successfully loaded, a boot status success message is placed

in the log with the component’s corresponding version number.

The third entry type is a file table entry, which is designed to contain in-

formation to support different versions of the Linux images and secondary root

file system for software updates. Without these, software updates would not be

possible. There are three file table entry types, which are Linux kernel, root file

system, and secondary file system tables. Each table contains specific informa-

tion for one of these dependencies, such as MD5, memory address in PCM, and

so on to support multiple versions. Each file table can support information for

up to seven versions of a Linux image or secondary file system. These tables are

updated during a software update to reflect the new contents in memory, such as

the content in PCM after a software update is applied.

The last entry type is a boot request, which is used to request that the system

load a specific Linux image set and secondary file system on subsequent startup.

45

4. MAJOR SUBSYSTEMS

Since there are version numbers associated with each image and secondary file

system partition, these are specified in a boot request. The bootstrap scans this

boot request on the next system startup and responds by attempting to startup

using the requested images. An overview of these entry types and their contents

is shown below in Figure 4.1.

The boot request entry is very similar to a boot attempt, except that asso-

ciated file table information regarding each image is not specified. This is not

necessary since the bootstrap will just attempt to use the first encountered image

descriptions from each file table that match the desired versions in a boot request

entry. However, in a boot attempt, since the same version of multiple images can

exist, specific information contained in the file table for the image used during

startup must be noted.

The file table entries mostly contain information regarding the Linux kernel

and root file system images, but only some of these fields are leveraged for the

secondary file system partitions. Fields not specifically utilized in a secondary

file system table are the MD5 and length fields, since one specific MD5 cannot

apply to an entire secondary file system, and storing its static partition size or

length is not necessary because it’s already known. Compatibility modes for each

image and secondary file system are also defined to ensure incompatible image

combinations are not used on startup. These modes exist as a set of three (one

for the Linux kernel, one of the root file system, and one for the secondary file

system) minimum version numbers that are compatible with a specific image. For

example, a kernel image can have a minimum version of the root file system and

a minimum version of the secondary file system with which it’s compatible.

A log entry has a general form that can be designated as one of these specific

entries when needed. Each log entry is the same size, 256 bytes, which allows

for up to 512 entries to exist per log. This size was chosen to accommodate the

largest entry type and some margin in case extra fields are added in the future.

The general form of a log entry is shown below in Figure 4.2.

The entry contents depend on the type of entry, whose specific fields are

described in Figure 4.1. The entry MD5 is used to validate each entry prior to

being used by the bootstrap. The sequence number for each entry acts as an

entry counter for all entries contained in the log, which is incremented for each

46

4.1 System State Log

Boot Attempt Entry

Kernel
Version

Root File
System
Version

Secondary
File System

Version

Associated
Kernel Table

Associated
Root File
System
Table

Associated
Secondary
File System

Table

Boot Status Entry

Kernel, Root File
System, or Secondary
File System Version

Associated File Table

Status

Boot Request Entry

Kernel
Version

Root File
System
Version

Secondary
File System

Version

File Table Entry

Table Type

Image
Description

(up to 7
supported)

Image
Address
Offset

Image
Length

Image
Version

Image
Compatibility

Image MD5

Figure 4.1: Log Entry Types - This figure overviews each log entry type and

their associated fields.

47

4. MAJOR SUBSYSTEMS

General Log Entry Contents

Sequence
Number

Time
Stamp

Entry
Type Unused

44 2 6 16

MD5Entry
Contents

Varies

Figure 4.2: General Log Entry - This figure shows a single general log entry,

and additional fields and sizes that are included in every entry.

new entry appended. New entries are only added to the end of the log, and the

end is identified based on the max sequence number that exists in the log. Since

the entries are organized by ascending sequence number, it’s easy to determine

the starting and ending entries for each log.

The log entries do not actually have to begin at the memory address starting

point for each log, and they do not have to end at the designated memory address

stopping point (i.e., the log memory bounds in PCM). When the log entries are

scanned, a linked-list data structure is used to support this organization. Thus,

the head of the entry list is wherever the lowest sequence number entry is located

in memory. The tail is located wherever the highest sequence number entry is

located in memory. This allows the log structure to wrap in memory such as

a wrap-around buffer if needed. Two sample log structures representing two

distinct possible entry organizations are shown in Figure 4.3.

4.1.4 Bootstrap Usage

In order to support using software image updates and validating them on startup,

the AT91 bootstrap was further customized to scan each log for the current boot

state. If any images or secondary file systems have attempted to boot and failed

at least five times, the corresponding component is no longer considered valid.

Thus, it is skipped until a corresponding boot status success message is placed

into the log sometime in the future.

If a boot request message is encountered while scanning these logs, the re-

quested Linux image and secondary file system versions are loaded during startup.

48

4.1 System State Log

....

....

Sample Log Structure 1

Log Entry
1

Log Entry
2

Log Entry
3

Log Entry
4

Head Tail

Memory
Address Start

Memory
Address End

Sample Log Structure 2

Log Entry
3

Log Entry
4

Log Entry
1

Log Entry
2

HeadTailMemory
Address Start

Memory
Address End

Figure 4.3: Two Possible Log Structures - This figure demonstrates two

possible log structures that may exist using a linked-list data structure.

A boot attempt is written to the log as the last step prior to loading the kernel

image.

Since multiple versions of the same log entry may exist, the bootstrap only

utilizes the latest version of each log entry type. The latest versions will reflect

the most current system state, and the latest version of a specific log entry is

identified by the highest sequence number among a given set of entries of that

specific type. However, all boot attempt entries are considered during startup

since these are counted to ensure the number of boot attempts for a specific

image set and secondary file system has not been exceeded. An overall flow

diagram representing the startup behavior using these system state logs is shown

in Figure 4.4.

The compatibility modes defined for each Linux image and secondary file

system must be recognized, as any boot request should specify versions that are

compatible. If this is not the case, the bootstrap will continue to iterate through

each file table until a valid combination of these main components can be used.

This new combination is chosen to resemble, by version number, the originally

requested image set as much as possible (i.e., by starting at the requested version

numbers and decrementing).

49

4. MAJOR SUBSYSTEMS

AT91 Bootstrap
Startup

Requested
Images

Compatible

Find Next Valid
Combination of

Images

Yes

No

Write Boot
Attempt Message

Scan Each Log
and Obtain

Latest System
State

Load Linux
Image

Parse File Tables
of Requested

Images

Validate Images
via MD5

Figure 4.4: Startup Behavior using System State Logs - This flow diagram

illustrates the startup behavior of the AT91 bootstrap while utilizing the system

state logs.

50

4.1 System State Log

4.1.5 Linux Usage

The system state logs are also used at the Linux level. More specifically, this is

done with a user-space process to write boot status success messages, and to clean

the log. Although the default SPI driver within the Linux kernel did not support

the PCM, it was modified to include support for the PCM’s command-set.

At startup, two boot status success entries are written for the current kernel

and root file system images to signify their proper startup. These should actu-

ally be done independently rather than in unison, which is currently the case.

However, kernel space support for writing a corresponding boot status success

message would need to be added, and this development should be an extension

to this thesis.

After writing the necessary boot status messages, the log is cleaned to re-

move any unnecessary entries that are no longer needed. The only entries that

need to be preserved in the log are the latest versions of each entry type. For

example, if multiple boot attempts were made for a specific set of Linux images,

only the latest boot attempt entry needs to be preserved after the system fully

boots. Additionally, if either log happens to become desynchronized from the

other due to a system upset or invalid write command to the PCM, they need to

be resynchronized. This resynchronization process, if needed, is also performed

while cleaning the logs.

A user-space process was written to perform this cleaning as a final step at

startup. In short, the process obtains the latest state from both system logs.

Then, it deletes any entries that are no longer needed based on their respective

sequence numbers (i.e., only entries with the highest sequence number for each

type are preserved). This procedure is performed for both logs.

One thing to consider while cleaning is fragmentation of the logs. This means

log entries should not be erased such that the resulting log has unused sections

of memory between the head and tail entries. This is similar to fragmentation of

a hard disk drive in a desktop machine that may occur from frequently deleting

and writing new files. A fragmented log would result in inefficient storing of log

entries, since it’s structured to always append new entries. Thus, unused memory

51

4. MAJOR SUBSYSTEMS

for new entries would exist within the log itself rather than only after the tail

entry.

The cleaning process is designed to detect any fragmentation that would result

before cleaning any entries. If fragmentation would result from cleaning the log,

all entries that should be preserved are copied to the end of the log before any

entries marked for deletion are actually erased. After copying any necessary

entries to the end, the entries marked for deletion are erased. An overall flow

diagram representing the cleaning process is shown in Figure 4.5.

If the logs are not synchronized, the entries to preserve are copied to the

end of the log prior to cleaning regardless of any detected fragmentation. The

entries marked for preservation are the latest versions of each type of entry from

both logs (i.e., the union of all entries from both logs). This is a simpler repair

scheme than attempting to determine which specific entries are desynchronized

from either log and then attempting to repair the entries individually.

4.1.6 Design Success

Overall, the system state logs and associated subprocesses such as the cleaner

have been implemented to function with desired behavior.

A critical feature of the logs is enabling system recovery if it’s necessary to

perform at system startup. By maintaining an overall system boot state, this

desired behavior is achieved. The boot attempts can be used to determine when

a set of Linux images or secondary file system are not behaving properly and

thus, a different version of each component can be used instead.

The other critical feature allows for application of software updates, which

necessitates two distinct log entries. First, an associated file table is updated

to provide necessary information for booting with a specific Linux image or sec-

ondary file system. Next, a boot request entry is written to request that the

AT91 bootstrap attempt to load the desired versions of the Linux components

and secondary file system on subsequent startup.

Lastly, the structure of the log is maintained as a series of subsequent entries

that are ultimately appended to one another. This has resulted in the flexibility

to scan, append, and clean the logs in a simple fashion.

52

4.1 System State Log

Scan System
Logs and Obtain

Latest State

Logs
Synchronized

Copy Preserved
Entries to End of

Log

Yes

No

Compare States
for

Synchronization

Logs Will
Fragment If

Cleaned

No

Yes

Compare States
to Detect

Fragmentation

Delete Unneeded
Entries

Figure 4.5: Log Cleaning Process Flow Diagram - This diagram shows the

behavior of the cleaning process that’s executed at system startup.

53

4. MAJOR SUBSYSTEMS

To test these primary log features, various small test cases were first conducted

followed by tests that encompass functionality of all of these elements. The latter

test cases are discussed. Recovery from using a requested image set on the system

was conducted by manually rebooting multiple times until the max number of

boot attempts was exceeded. On final startup, the bootstrap considered these

images invalid and ultimately loaded fallback images. The logs were then cleaned

and boot success messages were placed into the log to signify successful startup.

On subsequent startup, the original images were once again considered valid and

properly loaded.

The majority of testing for applying software updates was completed with the

final validation and application process, which is detailed as the last subsystem

in this chapter. However, to initially test functionality for file table entries and

boot requests, a small utility was used to manipulate boot request and file table

entries to ultimately request different boot combinations. Tests such as compati-

bility detection between various image sets and versions, and the ability to store

multiple versions within file table entries were conducted.

Lastly, the cleaning process was tested for basic cleaning cases, and also tested

to verify that system state log corruption would not result from unexpected resets

while cleaning. If an entry is copied or erased during an intermittent reset, this

entry will most likely be corrupt on subsequent startup. In such a case, the

corrupt entry was either meant to be deleted, or it’s a copy of another, so the

system state is actually unaffected. The cleaning procedure is conducted in a

way such that the overall system state is not lost while the procedure takes place,

whether or not a reset occurs.

A summary of these tests and their results are provided in Table 4.1.

Table 4.1: State Log Tests and Results

Primary Test Result

File table and boot request compatibility Proper system startup

Multiversion data stored in file tables Verified using debug output

Recovery from boot request image use Recovered with fallback images

Desynchronized and fragmented cleaning Proper cleanup of logs

Upset tolerance while cleaning Successful log cleanup on next startup

54

4.2 Secondary File System

4.2 Secondary File System

4.2.1 Overview

The secondary file system is used to contain non-critical components that are

not required for full Linux operation. Its main purpose is to store all convenient

Linux dependencies that are not necessary to store within the primary root file

system. This both decreases the software image update footprint for the primary

root file system, and also results in a simpler validation process for the Linux

images.

This file system is stored entirely on NAND and exists as five separate par-

titions that may be used for performing software updates and recovery. Only

four of these partitions may be updated to a newer version, which results in an

updated file hierarchy. One partition is not modifiable so that it can be used as

a fallback partition in case additional recovery is necessary. Recovery of the file

system is only possible if a second partition of the same version exists, since the

file system hierarchy state between the two need to be identical. If such a version

does not exist for recovery or recovery with a specific partition fails, the fallback

partition is ultimately mounted for use.

To use this file system reliably, a validation and recovery procedure was de-

veloped in the form of a Linux user-space process. This process runs after Linux

startup and attempts to validate the secondary file system by comparing individ-

ually stored MD5 checksums for each file. This is done prior to initially mounting

the file system so whether it’s the default secondary file system or an updated

one, they’re always validated. If recovery is necessary due to a detected invalid

file, a partition of the same version is also mounted and the corresponding file is

copied for repair. If no recovery partition is available or the recovery fails, the

fallback partition is mounted.

4.2.2 Requirements

In order to reliably use this file system and any updates applied to it, it should be

validated and a recovery mechanism needs to exist. These are the two primary

55

4. MAJOR SUBSYSTEMS

requirements for this process, which are necessary to prevent the use of invalid

updates and to recover if such an event does occur.

This process is required to use standard file system calls and services available

from Linux in order to perform efficient validation and recovery of these files.

This will also ensure that this process can be used in other Linux distributions if

necessary, as well as future missions. Other standard system utilities should be

used and executed for the recovery procedure, such as rsync to copy files between

partitions, rather than manually copying file contents during recovery. These

preexisting Linux utilities are more reliable and efficient for performing simple

operations and should be used when possible.

This process should support all necessary Linux file types that may exist in

the secondary file system. Currently, only regular files, directories, and symbolic

links exist within this file system. These are the only file types supported by the

validation and recovery process, although support for others in the future may

be added.

4.2.3 Design

To prevent continuously tracking file system changes for validation, the secondary

file system is mounted read-only so that it cannot be dynamically modified. If

the partition was mounted read-write, a process or service would always need

to be executing to detect any file system changes and to constantly recalculate

validation or checksum data for the files. A simpler solution is to perform these

steps on a specific partition only when a request to update that file system is

made.

During a file system update, the secondary file system to be updated is

mounted read-write to apply the desired update. Updates cannot be applied to

the currently used partition since it may be in use by a Linux process or service.

The current secondary file system is only ever mounted read-write during a re-

covery procedure, which would occur at initial Linux startup. After any recovery

procedure is performed, the secondary file system is remounted read-only.

To validate the file system prior to mounting it at startup, an MD5 checksum

is calculated for each file and compared to a known MD5 for the file. If the MD5

56

4.2 Secondary File System

checksums do not match, recovery is attempted for this specific file. The MD5s

of the entire file system hierarchy are pre-calculated using another utility that’s

executed on the entire file system prior to it being flashed to NAND.

For regular files, the corresponding MD5 checksums are calculated on the file’s

contents. For symbolic links, the MD5 checksum is calculated on the file path

referenced by the link. This does not ensure that the link is not dangling or lost,

which means the destination file being referenced by the link does not actually

exist. However, the file that the link references will also be validated, and any

dangling links will be detected and repaired.

Lastly, directories are unique and usually contain references to several other

files contained within the directory. This is also known as a content or entry

listing. For example, the data for a directory will contain a listing of files that it

references, including path and other attributes of each file. A sample directory

referencing three files is shown in Figure 4.6.

/bin

reg_file_1

link_1

dir_1

Sample Directory

Figure 4.6: Sample Directory - This diagram shows a single directory structure

with three file entries that would be contained in its directory listing.

To ensure the listing of a directory is valid on the file system, a simple check-

sum cannot be used. Instead, a listing file that contains the proper listing contents

for each directory must be saved within the file system for validation. These di-

rectory listings are stored as hidden files in the same file system. Although only

57

4. MAJOR SUBSYSTEMS

the paths and modes for each file need to be contained within a listing to vali-

date a directory, MD5s for each file within the directory are also recorded. This

prevents the need to use another mechanism for storing the MD5 information

for regular files and soft links. This information is ultimately needed to validate

these files.

To support multiple versions of the secondary file system, the current version

of each partition is contained in a file table log entry. This file table entry is

parsed to identify other partitions that may have the same version that can be

used for recovery.

Lastly, to maintain the overall state of the system, a boot success entry is

saved to both system state logs once a secondary file system is mounted. This

is done by the validation and recovery process as a last step prior to completing

execution.

4.2.4 Directory Listings

A few more details regarding directory listings should be addressed, since these

contain all critical validation information for the secondary file system.

Validation of any directory listing file must be performed before using the MD5

information stored within the actual listing. To solve this problem, a directory’s

corresponding listing is stored one directory above its designated directory, and

an MD5 for this file is also maintained. The directory listings for the root or ‘top’

directories of the file system hierarchy are actually stored in the primary root file

system image. A sample structure of these files for a couple directories is shown

in Figure 4.7.

Each directory listing name is prefixed with .listing. followed by its associated

directory name. For example, the listing .listing.bin refers to a directory listing for

the directory bin. The directory listing and its associated directory are assumed

to exist in the same directory. In the given example, two directory listings are

presented, one which contains information for the entries contained in /bin, and

the second which contains information the entries contained in /bin/dir 1.

The necessary data to store in the listing to validate a directory includes any

file names referenced by the directory, and their modes. A mode of a file on

58

4.2 Secondary File System

/bin

reg_file_1

link_1

dir_1

Sample Directory Structure with Directory Listings

/.listing.bin

.listing.dir_1

Figure 4.7: Sample Directory with Listings - This diagram shows a simple

directory structure with listing files that would contain directory listing contents.

most Linux file systems consists of a permission state that defines who can and

cannot access the file. In addition, the actual directory mode corresponding to a

directory listing should also be saved within the listing. To further make use of

this directory listing file, MD5s for regular files and soft-links are stored for their

validation.

The original solution to this problem was to preserve the directory listing and

associated MD5s for regular files and soft-links as separate entities. However,

using a single file to contain both sets of information is a simpler solution and

does not have any drawbacks from the original solution.

The mode for the directory is the first set of data in the listing file, but all

data following is associated with the entries contained within the directory. This

information is semicolon delimited and consists of three main parts. The first part

is the file’s mode, followed by the file name, and lastly its MD5. Any information

regarding a subdirectory entry would be contained in its associated listing file,

which should exist in the same directory. A directory listing sample that contains

59

4. MAJOR SUBSYSTEMS

data for two general file entries is shown in Figure 4.8.

Sample Directory Listing Contents

....Directory's
Mode

Next Entry
Mode

Entry File
Name

Entry
MD5

44 Varies 16

Next Entry
Mode

4

Figure 4.8: Sample Directory Listing File Contents - This diagram illus-

trates the content structure within the directory listing file. The size in bytes for

each field is also shown.

Each of these fields is semicolon delimited to simplify parsing. One initial

concern was the file system naming allowed for JFFS2, since the directory listings

depend on a delimiter. JFFS2 in fact does not allow semicolons in its file names,

although it may be allowed on other standard Linux file systems. Additionally,

a static field size of 16 bytes is always assumed for the MD5 so that parsing it

does not depend on the delimiter.

To validate the file system, a recursive tree traversal is executed starting

at the root of the secondary file system. Before traversing any subdirectories,

their associated directory listings are scanned and validated by comparing each

file’s mode, name, and MD5 for correctness. This process is repeated until all

directories within the secondary file system have been traversed.

4.2.5 Error Conditions

If any errors are encountered during traversal of the secondary file system, re-

covery is attempted if possible. However, some errors are not recoverable, such

as some encountered from Linux file system calls being used by the validation

process. During traversal of the directory tree, an overall error state is kept to

use for future recovery.

Errors for which recovery is necessary include invalid comparison between any

file mode, name, or associated MD5 for a file. If one or more of these fields do

not match, the file is flagged for recovery. If either of these errors occurs on a

60

4.2 Secondary File System

regular file or soft-link, it can simply be copied from another partition of the same

version for recovery.

A special case is presented when an error condition is detected on a directory

listing. In this event, the associated directory contents are not scanned until the

listing is recovered. If perhaps any of these errors occurs on an entire directory, an

attempt to copy the entire directory contents from a recovery partition is made.

Prior to copying any of these files for recovery from a recovery partition,

they are validated on their corresponding file system. These files are actually

copied between partitions using a standard Linux utility known as rsync, which

is designed to preserve the file’s mode and timestamps when copied. Once all

flagged files are recovered, they are again validated on the current partition. If

after recovery the file system is still invalid, another attempt at recovery is made

using the next available recovery partition. This process is repeated until all

available recovery partitions are exhausted. If full recovery is not achieved, the

fallback secondary file system partition is ultimately mounted.

Lastly, if an unexpected system reset occurs during any of these procedures,

validation and recovery would resume on subsequent system startup. If a reset

occurs prior to the full validation of a secondary file system, an attempt to validate

it again on reboot will be made. This validation process is executed every time

Linux starts until a secondary file system can be properly mounted. If a reset

occurs during the recovery process, an additional recovery attempt is performed

on next startup, regardless of whether the past recovery attempt completed.

An overall flow diagram illustrating the behavior of the validation and recovery

process is shown in Figure 4.9.

4.2.6 Design Success

This process has been successfully implemented and tested to meet the desired

requirements. Although a variety of test cases were conducted for validation,

much of the testing process is similar, and this is summarized.

The primary requirements to validate and recover the secondary file system

have been met by first testing functionality for each individually, and then to-

gether. The Linux process was executed and its recovery state was output for a

61

4. MAJOR SUBSYSTEMS

Scan Initial
Directory Listing

Invalid Entry
Detected

Validate
Associated
Directory

Yes
Flag for Recovery

No

Continue
Directory
Validation

Scan Next
Subdirectory

Listing

Validate Next
Subdirectory

All Entries
Validated

No

Yes

Figure 4.9: Validation and Recovery Process Overview - This flow diagram

shows the overall behavior and primary subtasks of the validation and recovery

process.

62

4.2 Secondary File System

small file system hierarchy to verify invalid files were not detected. This same

test was then conducted on a much larger file hierarchy that would actually rep-

resent the secondary file system, and eventually conducted on the secondary file

system itself. In these cases, the file systems were properly validated but recover

attempts were not made.

Initially, a few cases not considered were discovered during testing, and the

process was remedied to account for these issues. These include multiple soft-link

file dependencies, such as a link that points further down into the file system, or

links that depend on other links in the system.

To verify the recovery scheme would actually recover, an invalid file was inten-

tionally placed into the file system and valid recovery partitions were defined. The

Linux process was run to attempt to replace the file from an available recovery

partition. When complete, the originally invalid file was able to be revalidated,

even after reboot. Lastly, recovery partitions were made unavailable when needed

for recovery. As a result, the system would ultimately mount the fallback parti-

tion as expected.

An overview of the primary test cases and their results are presented in Ta-

ble 4.2.

Table 4.2: Validation and Recovery Tests and Results

Primary Test Result

Validate 10-15 entry size file system Properly validated

Validate 800-900 entry size file system Properly validated

Recover single file Recovered and revalidated

Recover multiple files Recovered and revalidated

Recovery partition unavailable Fallback partition mounted

This process was implemented using a variety of standard I/O system calls

available within Linux and additional libraries. Because of this, the validation

portion of the process may be run on another host machine architecture if desired,

but with a couple minor tweaks (e.g., default starting path for file system to

validate may be different on another machine).

63

4. MAJOR SUBSYSTEMS

To meet the final requirement, all potential file types that may be encountered

in the secondary file system are fully supported by this process. This currently

includes directories, soft-links, and regular files.

4.3 Final Update Application

4.3.1 Overview

Before any updates are applied to the system, a final validation process is exe-

cuted. This simply validates the full update file prior to copying it to its des-

tination memory device. Only three update types are possible: kernel image,

root file system image, or secondary file system updates. The validation and

update application steps are performed using a process that is always executing

on the system. The final validation and software update application sequence

begins when the process is commanded remotely via RF. In order to support

receiving and transmitting commands remotely, this application was integrated

with a preexisting software architecture that was designed by Greg Manyak and

implemented by several past students.

4.3.2 Requirements

The final validation process is rather simple and only a couple primary require-

ments exist. First, this process must be able to receive a valid command from the

avionics RF system. The data contained with this command should consist of a

file path referring to a software update file to apply, its type, a version number,

an offset number, and MD5 of the update file. The secondary file system is only

limited to applying updates one file at a time, and thus, must be commanded

for each subsequent update desired. Additionally, a command to update the sec-

ondary file system must include a destination path to signify where to apply the

update, since this can be applied anywhere in the file system.

The second requirement states that this recovery process must update the

system state logs, or directory listings to reflect any applied updates. This in-

cludes updating associated file tables for any Linux image as well as for secondary

64

4.3 Final Update Application

file system updates. Additionally, a boot request entry must be written to the

system state logs such that a subsequent system reboot will attempt to use the

applied update. This boot request must only be written if the software update is

properly validated after being copied to its destination.

4.3.3 Software Update Validation

When the software update process receives a command to apply a system update,

it will use the provided MD5 and compare it to one calculated on the desired

update file. If the update does not exist or the update file cannot be validated,

the command is not accepted and a corresponding error code is generated by the

process. If the desired update file is validated, it will be copied to its destination

depending on the update type.

For Linux images, this destination is the second available image-set slot in

PCM, and for a secondary file system update, this is any destination path pro-

vided with the command. The destination path for a secondary file system update

may or may not be a file that already exists on the file system. In case the file to

update already exists on the file system, the preexisting file is simply overwritten

when the update is validated and applied. Since these updates cannot be reflected

immediately for either the primary Linux images or the secondary file system, a

subsequent reboot is required to apply the software update.

After a Linux image is copied to the PCM, the image is validated once again

by reading it from the PCM. This process is done to account for and correct any

transient memory disruptions that may have ultimately corrupted the update

image. Once the image is fully validated this way, its associated file table in

the system state log must be updated. Since these file tables are parsed by the

bootstrap upon startup, it is necessary to update them to reflect the existing

system state. The latest file table entry associated with the software update is

scanned, and information regarding the update image is inserted into the file

table. This information includes version, memory address offset, length, and

MD5. All of these fields are critical information necessary for the bootstrap to

properly load the system image on subsequent system startup. Lastly, a boot

65

4. MAJOR SUBSYSTEMS

request is placed within the system state logs to request the system to use this

update on next startup.

After a secondary file system update is applied, the file is validated after being

copied to its designated partition in NAND. This is done similarly to a Linux

image update to detect any potential memory corruption that may occur. Once

the update is validated, the corresponding secondary file table entry is updated

similarly to how the Linux image file tables are updated. However, the MD5

and length fields are disregarded since they are not relevant to the secondary

file system. The next important step is only necessary for secondary file system

updates, which requires the directory listing that contains the new update file to

also be updated. This is performed by determining whether the software update

is a new or preexisting file, and updating the directory listing entry accordingly.

Lastly, a boot request is placed in the system state logs to request the system to

mount this file system on next startup.

An overall flow diagram representing this process’s behavior is shown in Fig-

ure 4.10:

A couple important considerations should be acknowledged prior to any user

requesting the system to apply an update. The version number that’s provided

with a software update should not conflict with any preexisting version numbers

for the Linux images or secondary file system partitions. In other words, system

images or secondary file system partitions with the same version can exist, but

any update applied to the system should reflect this properly. If two partitions

are marked as the same version but contain different file tree hierarchies, this

desynchronization could result in undesirable error occurrences.

4.3.4 System Upset Tolerance

To ensure the update process does not cause additional upsets in the system, its

specific order of steps have been designed to prevent further upsets. In summary,

these steps include copying the software update, final validation, updating a file

table, and writing a boot request in this respective order. During any part of

the update process, if a step happens to fail or prematurely exit due to a system

reset, the system will not try to use the update.

66

4.3 Final Update Application

Receive
Software Update

Command

Software
Update Valid Generate and

Return Error

Yes

No

Copy Update to
NAND or PCM

Software
Update Valid
After Copy

Generate and
Return Error

Yes

No

Update System
File Tables

Update Directory
Listing If

Necessary

Generate Boot
Request Entry

Figure 4.10: Software Update Application Phase - This diagram illustrates

the validation and application steps performed by the final update Linux process.

67

4. MAJOR SUBSYSTEMS

All of these items depend on each other uniquely such that they must all exist

in proper form to apply an update. More specifically, updated files tables must

properly reflect the state of the Linux images or secondary file systems before a

boot request can be used. Lastly, the software update content contained in PCM

or NAND flash must be valid before it can be used, and this step is performed

before any file tables are updated. Thus, if any part is missing that another

depends on, the software update is not applied.

4.3.5 Design Success

This subsystem has been successfully implemented and tested to meet the desired

requirements. A Linux process has been written to perform all necessary subtasks,

some of which have been implemented with preexisting solutions that already

exist in the avionics software architecture.

One main component is the ability to send and receive commands that should

be transmitted over RF to enable remote commanding. Fortunately, being able

to receive and send commands on the spacecraft was simply added to the process.

The standard software architecture on the avionics actually uses Unix sockets to

perform interprocess communication (IPC), which has also been integrated for

use with RF communication.

The second requirement states that this subsystem must perform necessary

file table and boot request entry updates as a final step to apply an update. This

functionality has been successfully implemented in the process, and the updated

file table and boot request entries are inserted into the system state logs to apply

a system update. Much of the information necessary to update these entries is

included with the update request command parameters, such as desired version

type, and associated MD5. However, preexisting boot request and file table

entries are taken into account since their preexisting state must also be reflected

in new entries (i.e., preexisting entry information may need to be merged with

new entries).

A couple primary testing techniques have been used to validate this sub-

system. To test remote communication capability of this process, commands

to apply software updates were sent using a preexisting command client. This

68

4.3 Final Update Application

client was developed for other testing on the avionics and has sufficed for similar

communication testing. Overall, simple commands were first tested for receive

functionality and for commanding software updates. Commands to update either

a Linux image or secondary root file system were successfully received, and any

error codes that were generated by the process were successfully retransmitted.

To test software update application functionality, the process was commanded

to perform all three types of potential software updates independently. One of

each type of update was transferred to temporary NAND storage, and then copied

to their respective destination devices as the updates were applied.

To ensure individual Linux images were applied properly, the expected kernel

and root file system image versions were viewed upon system startup. The over-

all system log state is printed at startup, and this capability was leveraged for

some of this testing. Initially, the first boot cycle used specific versions of these

images for startup, and these were noted. After a system image was updated,

the expected version number change was verified on subsequent system startup.

Additionally, the overall state of the file table entries and boot requests were

viewed for verification. An extremely similar setup was used to test secondary

file system updates with single file updates.

Lastly, manual resets of the avionics platform were conducted during different

phases of the update process to simulate unexpected system resets. This was done

to ensure the system would not create additional upsets upon subsequent startup

if the software update did not succeed. Resets were performed intermittently

during the final validation, file table, and boot request entry update phases.

Upon system reset, no unexpected error occurrences were observable and the

system was still able to boot using the original secondary file system partition or

Linux images. The software update process could still run successfully to apply

an update even after experiencing an intermittent system reset.

An overview of the primary test cases and their results are presented in Ta-

ble 4.3.

69

4. MAJOR SUBSYSTEMS

Table 4.3: Final Update Tests and Results

Primary Test Result

Remote command transaction Received and executed

Error code generation Generated by invalid command or other error

File table entries updated Validated on subsequent reboot

Boot requests updated Validated on subsequent reboot

Reset at different phases No further upsets encountered

70

5

System Results

Each major subsystem has been individually tested and verified, and this chapter

briefly discusses the overall system design success and compliance with origi-

nal system requirements. The system was designed to provide software update

functionality for critical components of the avionics system, and to conduct this

process reliably by considering validation and recovery. This system has achieved

the desired functional behavior and met system requirements.

5.1 System Success

After each subsystem was independently tested, they were integrated as a whole

unit to perform system state logging, recovery from invalid software updates,

validation, and the application of software updates. Each of these subsystems

currently work in unison and have been tested together to achieve overall desired

software update functionality.

This system has resulted in two main processes that execute at startup. One

is responsible for validation and recovery of the secondary file system as well as

writing boot success messages. The other is responsible purely for cleaning and

synchronization of the system state logs. Additionally, a third process is executed

on the avionics for final application of the software updates when a remote request

is provided.

Each major goal of the system has been realized, and a summary of this is

provided in Table 5.1.

71

5. SYSTEM RESULTS

Table 5.1: Desired Goals and Status

System Goal Status

Support for major component software updates Achieved

Validation and recovery of software updates Achieved

Tolerance of system upsets Achieved

Extensible solution for avionics Achieved

This system does not only apply to a single mission, but it is tightly integrated

with the current software and hardware architecture of the avionics. Since it is

anticipated that these architectures will not vary much for future missions, this

software update system can and should be used on future missions.

To some degree, tolerance of system upsets has been achieved. The overall

system is designed to handle potential resets that may occur during the update

process and recover if necessary. A concern during system design was handling

memory corruption of any element in PCM, including the system state logs and

Linux images. To handle these cases, these images are validated on startup and

recovery is performed as necessary with backup images or backup secondary file

system partitions. Additionally, if an upset occurs that corrupts data in either

system state log, whether it’s a radiation induced bit flip or a reset occurs while

log entries are being written, the other log copy can be used to resynchronize

the two. Overall, bit flip corruption is tolerated for any region of memory in the

PCM except for the bootstrap region, or the log regions if both happen to become

corrupt.

Unfortunately, these scenarios are unrecoverable. For example, if the system

can not boot for some reason using any set of images within the PCM or because

the bootstrap region is corrupt, this would result in a mission failure. In this

case, a software update could not be applied to attempt to recover the system.

Additionally, if both system state logs are corrupted such that they cannot be

synchronized, this may result in undesirable behavior, or an inaccurate system

state representation at startup.

Lastly, all system requirements have been met, and these are summarized in

Table 5.2. Each requirement was met and verified in different ways. The right-

72

5.2 Additional Results

hand column presents summarized justifications for how each system requirement

was met.

Table 5.2: System Requirements and Verification

System Requirement Justification

Compatible with overall avionics Solution developed for avionics

Available RF support hardware Functional remote file transfer

High latency remote data transfer Preexisting solutions for support

Temporary update storage NAND flash utilization

Small memory footprint updates Average 1-2 MB footprint

Minor changes between missions Only a couple foreseen

Specific formats Supports compressed images or individual files

System recovery Verified with system testing

Robust and low overhead validation MD5 checksum and system performance

Tolerance of unexpected upsets Verified with system testing

Application of software updates Verified with system testing

5.2 Additional Results

A couple additional performance tests were conducted to measure the overhead

incurred from the new startup, validation, and recovery procedures. The most

costly procedure is the validation and recovery of the secondary file system. After

a series of time tests using the Linux time utility, an average wall-clock time of

20 seconds is required for validation and single file recovery. These tests were

conducted with an empty microprocessor cache to emulate system startup.

Although this performance is not ideal, the system still recovers and validates

properly, which is the most important result. Currently, no planned missions

depend on a quicker validation of the secondary file system. An extension to this

validation procedure has been considered, and it has been partially developed.

This feature is priority-based file validation, which is performed by simply includ-

ing a file that contains entry names of files that are validated in a priority fashion

73

5. SYSTEM RESULTS

before any others. If any files need quicker validation for a future mission, this

feature can be fully developed.

Secondly, an average time to clean the system state logs was obtained to

estimate the overhead of a worst-case log clean procedure. Depending on the

number of entries to delete, the cleaning process may require several more or less

seconds than the results provided. The test was conducted with cases of deleting

5 and 15 entries. The average wall-clock time to complete the cleaning of these

entry sets was approximately 2 to 5 seconds. Although these results are useful

to note, the cleaning process may only ever need to clean 1 to 2 entries at a

time because they are cleaned at every system startup. Thus, the performance

overhead from cleaning and synchronizing the system state logs may only ever

require milliseconds of time.

74

6

Related Works

During the design and development phase of this thesis, a variety of works were

evaluated for guidance. A series of papers that influenced major design decisions

are summarized and detailed descriptions of their contributions to this thesis are

presented. A summary of each design decision is presented below:

1. To store software updates and images reliably, a few decisions were made

regarding the different memory components and in what fashion they’re

stored. Eventually, the decision to place critical data on a non-volatile

phase-change memory device was made to limit the potential radiation ef-

fects that may occur and upset the system. Discussion of the research

investigating the benefits of using phase-change memory in a space envi-

ronment, specifically its inherent radiation tolerance, are presented.

2. NAND memory technology has a variety of attributes that must be consid-

ered to use it effectively and retain its lifetime. These attributes exist due

to its manufacturing process and internal structure. More detail about this

internal structure and a preexisting solution used on the avionics to help

utilize this technology efficiently are discussed.

3. The system state log maintained provides capabilities necessary for software

updates, such as recovery in case of update failure, and software update

application requests. It provides common features found in many other

log-based implementations for other applications, such as checkpointing and

75

6. RELATED WORKS

rollback techniques for error recovery. The system state log used for software

updates was designed with the guidance of these works.

6.1 Ionizing Radiation Tolerant Non-Volatile

Memory

Since doses of ionizing radiation can cause undesirable memory upsets and poten-

tially incorrect software behavior, mechanisms to assist in limiting or preventing

drastic consequence from these circumstances should be employed. The platform

hardware designer initially chose to utilize a structural phase-change non-volatile

memory in an unknown fashion, but additional research showed that storing the

most critical data (i.e., kernel and root file system images) on this device would

potentially result in more desirable behavior on the avionics. For example, if the

kernel and root file system become corrupted on-orbit, the system would fail to

reboot or not boot at all and the planned mission could not continue. Storing

this data on such a device should help to prevent such occurrences.

These papers [22, 23, 24] discuss the underlying technology behind phase-

changing, or chalcogenide memory cells (PCM) and their effectiveness to tolerate

the space environment.

6.1.1 Phase Change Memory Overview

PCM technology utilizes chalcogenide based alloys within memory cells by rep-

resenting bit states with two different structural phases of a specific alloy, rather

than with traditional electrical charge. These two unique structural forms, known

as amorphous and polycrystalline states, exhibit different but identifiable optical

and resistive properties, thus allowing for representation of standard electrical

bit states. Adjusting the alloy physically requires thermal activation, which is

achieved by applying different levels of electrical potential to heat the material

at varying periods of time. Ultimately, these cells require no extra energy to

maintain, but only to set various structural phases. This creates an inherently

non-volatile and radiation tolerant memory device [24].

76

6.1 Ionizing Radiation Tolerant Non-Volatile
Memory

As rare as it seems, this technology has actually been commercially used in

CD and DVD disk production for several years. When writing data to a disk, a

high-power laser thermally forms differently phased memory cells whose states are

then read with a low-power laser by pointing and measuring different reflections

produced from each cell. Fortunately, continued developments have improved

this technology and made it a suitable device for this avionics platform.

6.1.2 Attractive Features

Although this memory behaves differently from standard non-volatile semicon-

ductor memory (e.g., EEPROM, flash), there are a number of features in addi-

tion to invulnerability to ionizing radiation that make it an attractive standard

memory alternative for space applications. This technology also has reduced sus-

ceptibility to harsh thermal environments while maintaining low manufacturing

costs, low power consumption, and achieving DRAM speeds [22]. It also utilizes a

standard electrical bus interface and practical physical size for simple integration

into this platform. These features form a strong argument for establishing this

unique memory permanently onto this platform. Furthermore, experimentation

to help measure its actual robustness to radiation exposure has been conducted

and summarized results are provided.

6.1.3 Evaluating Upset Susceptibility

Despite existing models of expected radiation doses within certain spacecraft

orbits, the actual absorbed radiation by electronic components will vary due

to factors such as the current solar cycle, and exact proximity to the Earth’s

poles [25]. Additionally, depending on the microelectronic device, upsets can

occur with exposure ranges between 1000 rad(Si) and 10 Mrad [26]. Thus, to ac-

curately evaluate electronic component tolerance with radiation levels similar to

those in space is difficult. However, a couple experiments conducted in these pa-

pers measure susceptibility to upset or latchup events with comparable radiation

exposure [23, 24].

For both experiments, variations in successfully reading bits (i.e., reading back

expected bit states after writing) occurred with increased irradiation of different

77

6. RELATED WORKS

PCM devices. One experiment tested with a 64 Kbit memory array while the

other with a 4 Mbit using exposure levels between 0 and 30 Mrad. However,

the occurrence of incorrect reads due to these upsets was low at high irradiation

levels and did not affect the actual memory cell contents since further subsequent

reads were successful.

Based on these results, utilizing a PCM device on the avionics suits as an

ideal application. Since the kernel and file system images, including potential

backups, are read only during boot from the PCM, the number of expected read

operations performed should be minimal. Utilizing the PCM in this fashion will

help to prevent critical system memory corruption that may occur and recovery

from potential read failures during boot, both of which are crucial for mission

success.

6.2 Important Considerations for NAND

Memory

Flash memory has become the standard for embedded system non-volatile mem-

ory use due to several attractive features, such as low-power consumption and

low cost. Two distinct types exist, NAND and NOR, which in short, differ in

their memory cell arrangement. Each device has a cell arrangement that corre-

sponds similarly (at the transistor level) to how NOR or NAND logic gates are

architected [11], hence their naming. This creates fundamental interfacing dif-

ferences between both types and necessitates considerations of how each should

be employed. These papers [27, 28] discuss the limitations of NAND technology

that were considered prior to its use on the avionics, and offers existing solutions

designed to extend device lifetime and improve reliability.

6.2.1 Issues with NAND Flash

Despite the number of advantages, some disadvantages exist that should be recog-

nized. The serially structured memory cells within a NAND device facilitate high

storage density, but this means data cannot be accessed randomly like in RAM

devices. Thus, a serial method to read or write data in large subsets known as

78

6.2 Important Considerations for NAND
Memory

pages must be used instead of other common addressing schemes that access data

in a truly random (i.e., byte-wise) fashion. This introduces extra overhead when

reading from or writing to a NAND device, and may reduce efficiency depending

on the circumstance (e.g., only a subset of the data is needed from a single page

read). This serial behavior does not significantly degrade performance for the

avionics since the average number of read and write operations would be minimal

for applications on current missions. This should still be noted since this may

differ for future missions.

Another issue is anticipated page failure caused from imperfect manufacturing

processes, and inherit limited lifetime of the memory. Typically, sections of the

memory known as blocks have a limited number of write cycles before completely

deteriorating, and some blocks are expected to be damaged directly after man-

ufacturing. To avoid using these blocks, the manufacturer will test and “mark”

any as reference so they are not used. To limit producing bad blocks and to de-

tect and avoid newly formed bad blocks, software solutions have been developed

and proposed in these papers. Since integration of such a solution allows for a

subset of tolerable memory failures and improved robustness, these options were

explored. Fortunately, these solutions happen to exist in the form of file systems,

several of which Linux already supports.

6.2.2 YAFFS2 Utilization

Yet Another Flash File System (YAFFS) was originally developed as the first

optimized NAND file system for Linux, and it is also used by the popular An-

droid mobile software stack [27]. YAFFS2 was established soon after to support

additional features for current NAND flash devices, and it eventually became an

addition to the avionics Linux build.

The features provided from this file system make it an ideal candidate for

improving reliability of a NAND device. The design of this file system attempts

to prolong the total lifetime of the memory by utilizing dynamic wear leveling

techniques. These techniques uniformly distribute several write operations among

multiple, instead of single blocks [28]. Ultimately, this limits the number of

write cycles performed on individual blocks such that they degrade slower over

79

6. RELATED WORKS

time. YAFFS2 also employs bad block management methods that perform write

verification and remapping of data to new blocks in the event of write operation

or entire block failure [27]. Such features should provide extreme benefit to the

system, especially in the form of a robust and well-tested file system.

6.3 Log-based Rollback Techniques For Error

Recovery

Log-based and checkpoint-based rollback recovery protocols have been a prime

subject of research for some time due to their core issues and the solutions devel-

oped for them. Log-based or checkpoint-based rollback recovery is used to rewind

the system state to a previous known or preserved working state if a failure is

encountered. Among other systems, distributed systems make use of rollback

recovery techniques for error recovery similar to the log-based technique used in

this thesis. The papers [29, 30, 31] were evaluated for guidance during its design.

6.3.1 Distributed Systems and Parallel Applications

A distributed system typically uses multiple nodes to act as a cluster to perform

extreme large-scale computations. For several applications, this is a more efficient

solution than one that could be developed serially [30]. However, unless these

nodes can handle errors gracefully by perhaps recovering to a previous state, the

distributed system will eventually degrade in its performance and overall service

as nodes encounter errors. One of the most common fault tolerant techniques

used for these parallel applications is checkpoint-based rollback recovery.

6.3.2 Checkpoint-based Rollback Recovery

Generally, the checkpoint-based rollback recovery protocol periodically store the

snapshots of a system’s application or multi-application state in order to be re-

stored if ever necessary. One major problem to consider is known as the domino

effect, where under some recovery scenarios, rollback may be propagated so deep

80

6.3 Log-based Rollback Techniques For Error Recovery

that all previous computational work completed by one or multiple nodes is

lost [31].

There are three primary types of checkpoint-based rollback recovery proto-

cols, two of which are not vulnerable to the domino effect. The first type of

checkpoint-based protocol is known as an uncoordinated checkpointing scheme.

This essentially means any node or application executing on a node decides when

to save its local state into ‘stable’ memory. It’s assumed that a reliable memory

source exists on which this state can be stored, which is categorized as a ‘stable’

device. This type of protocol is actually less complex than others, but does suffer

from the disadvantage of the domino effect.

Coordinated checkpointing is the second type of protocol where all nodes

or applications must organize and synchronize their individual checkpoints such

that a single consistent application checkpoint is generated and saved [30]. In this

scenario, generating a checkpoint induces more system overhead and it’s usually

more complex. However, this significantly reduces the complexity of restoring a

preserved state since only a single checkpoint needs to be evaluated rather than

multiple. More importantly, this checkpointing scheme does not suffer from the

domino effect.

The last type is quasi-asynchronous, or communication-induced checkpoint-

ing, which is a hybrid of the previous two. This scheme does not require global

coordinated checkpointing and nodes can perform checkpoints leisurely, but some

applications or nodes can be forced or required to perform a checkpoint when nec-

essary. Forcing checkpoints results in the avoidance of the domino effect, but this

protocol is the most complex of the three.

6.3.3 Log-based Rollback Recovery

Log-based rollback recovery is an extension of checkpoint-based, except that it

involves message recording as an additional mechanism to save and restore state.

This rollback recovery technique is extremely similar to that of the system state

log solution designed in this thesis. One primary advantage is that this protocol

will result in a more recent state recovery during rollback than checkpoint-based

recovery. This behavior is usually desired because during recovery, losing the least

81

6. RELATED WORKS

amount of application state from error is more beneficial. In a distributed system,

all messages communicated among all nodes during checkpoint-based recovery are

now saved with a log-based rollback recovery system. Thus, their most recent

states prior to any error can easily be recalled.

This recovery technique depends on a piecewise deterministic model, which

assumes the system can be modeled as a sequence of deterministic states that

begin with the execution of a non-deterministic event [29]. A deterministic event

could be storing system state log entries at different startup points on the avionics,

while a non-deterministic event would be an unexpected system reset. Thus, the

system has complete knowledge of non-deterministic events that would transition

the system to a subsequent state if such an event occurred. For example, a non-

deterministic reset on the avionics prior to saving boot status success messages

during Linux startup will result in a retry to boot using the same Linux images.

This assumes the number of boot attempts has not been exceeded, since this is

required in order for a boot retry.

There are two primary types of log-based recovery protocols, one of which is

used in the system state logs. The first is known as a pessimistic or synchronized

logging technique, which records each event before the event actually takes place

on the system. This simplifies both the recovery and cleaning process for the

system state log. With this scheme, the system state does not depend on any

non-deterministic events that may not be able to be reproduced during recovery.

In other words, the state is only dependent on the deterministic events that are

logged, such as boot attempts, successes, and requests. Additionally, this only

requires that the most recent messages be contained in the log to reflect the

current system state. Older messages, or those with lower sequence numbers, can

simply be discarded for the cleaning process.

The last primary type is optimistic or asynchronous, which is more ambitious

and partially stores its state in volatile memory, as well as non-volatile. However,

this has the drawback of potentially losing critical state if the volatile memory

is recycled due to a system upset. Recovery is still possible, but most likely to a

less recent state since multiple rollbacks may be necessary. A pessimistic rollback

recovery type has been integrated into the system state log due to its overall

robustness, and simplified recovery and cleaning processes.

82

7

Conclusion

7.1 System Success

The design and implementation of the software update feature-set for this plat-

form has been an exceptional learning experience and an overall success. Each

major subsystem has been developed to form a software update architecture that

achieves the desired system goals.

Software updates can now be remotely requested and performed on any major

part of the avionics system, including the Linux kernel, primary root file system,

and secondary file system. This software update feature-set has also been devel-

oped to support current and future missions, which is an invaluable characteristic.

Meeting these two primary goals provides the flexibility to support software up-

date functionality for various components on multiple missions, which may differ

depending on mission requirements and desired functionality. Validation is also

performed prior to any update being used, and recovery options are available if

perhaps the update becomes inoperable. Validation and recovery of critical sys-

tem elements, including Linux, is now always performed at startup to improve

the overall fault tolerance from potential system upsets. Lastly, each major sub-

system was designed to tolerate unexpected system upsets and does not induce

further upsets if such an event does occur.

Although there are many components that form this complex system, it’s

an extremely valuable and desirable solution to have for the avionics. In future

mission planning and mission considerations, the design process may drastically

83

7. CONCLUSION

change given the flexibility now available with this system. For example, if ad-

ditional physical volume is available for a mission, a secondary payload could be

designed. This payload would not have to be related to the primary payload

and should not be mission critical, as the goal is not to deviate from the primary

mission. However, if this secondary payload is simple enough to design while stay-

ing within the desired timeline and budget for a mission, it could be developed,

tested, and flown. Development of the supporting software for this subsystem

could be completed perhaps after developing the primary mission functionality.

The key advantage is that this development could take place before or after the

satellite makes it to orbit.

The ability to update system software will most likely be leveraged more ex-

tensively to remedy issues in software applications that are detected post-launch.

Depending on the complexity of the mission, a variety of scenarios will not be

tested on the ground simply because there are so many. Additionally, there are

always errors encountered in space given the characteristics of the environment.

Hopefully, any encountered errors that may result are recoverable and can be

fixed by a software update. Recovery will most likely be necessary for several

future missions, whether the encountered errors are minor or major.

7.2 Current Progress

This feature-set has not yet flown on any missions, but all upcoming missions

should have this functionality enabled. All major subsystems, including system

state logging, validation, and recovery are functional and have been tested on the

avionics platform. A few convenient but minor additions are still missing that

should be added.

7.2.1 Build Integration

All of these features have yet to be integrated into the overall PolySat software

build system. As they were being developed, a build solution more suited for indi-

vidual development was used. Although this does not make it infeasible to use on

the avionics system, the necessary setup to currently integrate is almost entirely

84

7.2 Current Progress

manual. Most of the preexisting build process, including generating Linux im-

ages and bootstrap binaries is automated, and integration of the software update

features should be done in a similar fashion.

More specifically, generation of the secondary file system directory listings is

done manually, as well as placing initial file table entries for both image sets into

the system state logs. Although the latter cannot easily be performed without

system startup, a small program to write these entries only once could be added

to Linux startup.

Secondly, only one partition of the secondary file system is flashed to NAND

by an auto-generated script when being programmed. This approach is used

for quicker development and testing on the avionics, but ultimately, a separate

flight script should be generated that flashes all five partitions. It would be an

unfortunate mistake to forget to flash all NAND partitions prior to conducting a

mission.

7.2.2 Test Modes

Developers frequently use the avionics platform to test many other software ap-

plications or hardware subsystems. The validation and recovery process used

for the secondary file system will always execute by default once upon avionics

startup, and this may not be necessary depending on what a developer may be

testing. Thus, a test mode should be defined that can enable and disable this

feature in case it becomes an inconvenience while testing other features.

This may also be true for log-based actions for the system state, such as clean-

ing entries. However, this procedure incurs much less overhead than secondary

file system validation, and it should not be an issue.

Although test modes are convenient, adding this functionality should be done

carefully. The developer should be aware of them and not always have them

enabled. Otherwise, testing this feature-set as an integrated unit with other

test applications may present future issues. It is better to always perform such

integrated testing early in case any issues may arise.

85

7. CONCLUSION

7.3 Future Work

A variety of features to use this functionality in flight, as well as to enhance its

reliability can be added as an extension to this work. Three primary components

that would be immediately beneficial are described.

7.3.1 Command Structure and Organization

In order to test this system, a simple command set was developed for the final

validation and application phase for software updates. However, this command

set is probably not the most efficient and it could be designed better.

For example, the data transferred for the command to apply a kernel image

update included the full path name of the file. This is not the most efficient

way to request that an image update be applied to the system over RF. Thus,

a software update application command-set should definitely be redesigned for

overhead efficiency.

Secondly, organization of the update files in NAND could be better defined in

order to make the feature-set more user-friendly. For testing, a naming scheme

only known by myself was used to simply delineate between kernel and root file

system update versions, as well as their temporary location paths in NAND. This

should be predefined for all future missions and known by other developers than

just myself.

7.3.2 Kernel Log Entry

Currently, the boot status success entries for a specific kernel and root file system

image set are logged simultaneously at startup. These entries are written using a

user-space process, which means that it depends on the root file system mounting.

However, this forces a dependency between the two entries in that both images

must be valid in order for their individual success entry to be written. The system

state log and boot process are actually flexible enough to attempt booting with

perhaps a different root file system, or different kernel image if only one of them

happened to be invalid. With this dependency, the number of potentially valid

boot combinations for a set of images is reduced.

86

7.3 Future Work

To enable entry writing within the kernel, this must be done in kernel space

while also creating access to PCM. This kernel space functionality could easily

use the preexisting SPI device driver, but specific components regarding system

state log parsing and similar must be ported to kernel space.

7.3.3 Memory Write Protection

This is probably the most important component necessary to add to the system.

As previously mentioned, without a valid bootstrap, the system will not boot and

it cannot recover. Although nothing should be accessing the PCM device aside

from the couple user-space processes at startup, one may unintentionally attempt

to write to the wrong address, and this may be fatal.

This is a simple extra precautionary measure that will probably prove ex-

tremely valuable sometime in the future. The easiest solution is to add the series

of region write-protection commands to the PCM from the host memory flashing

application. The PCM is flashed using an executable on a host machine that is

responsible for placing all Linux dependencies and bootstrap onto on PCM. This

host application already has an existing interface to the PCM and thus, it would

most likely be a minor addition in order to support memory protection behavior.

87

7. CONCLUSION

88

References

[1] Maral, G. and Bousquet, M. and Sun, Z. Satellite Communications

Systems: Systems, Techniques and Technology. John Wiley & Sons, fifth

edition, 2009. 1

[2] Puig-Suari, J. and Turner, C. and Twiggs, R.J. CubeSat: The

Development and Launch Support Infrastructure for Eighteen Dif-

ferent Satellite Customers on One Launch. In Proceedings of the 15th

Annual AIAA/USU Conference on Small Satellites, 2001. 1

[3] Puig-Suari, J. and Turner, C. and Ahlgren, W. Development of

the standard CubeSat deployer and a CubeSat class PicoSatellite.

In Aerospace Conference, 2001, IEEE Proceedings., 1, pages 1/347 –1/353

vol.1, 2001. 1

[4] Manyak, G. and Bellardo, J. M. PolySat’s Next Generation

Avionics Design. In Proceedings of the 2011 IEEE Fourth International

Conference on Space Mission Challenges for Information Technology, SMC-

IT ’11, pages 69–76, Washington, DC, USA, 2011. IEEE Computer Society.

4

[5] Mehlitz, P. and Penix, J. Expecting the Unexpected- Radiation

Hardened Software. 5

[6] Atmel. AT91SAM9G20 Preliminary. Atmel Corporation, rev. 6384d edi-

tion, May 2009. 10, 11, 14

[7] Atmel. Using Atmel’s Dataflash. Atmel Corporation, rev. 0842d edition,

2002. 11

89

http://dx.doi.org/10.1109/SMC-IT.2011.13
http://dx.doi.org/10.1109/SMC-IT.2011.13

REFERENCES

[8] Various contributing authors for online sup-

port group. Linux & Open Source related in-

formation for AT91 Smart ARM Microcontrollers,

http://www.at91.com/linux4sam/bin/view/Linux4SAM/GettingStarted,

2012. 11, 14

[9] Woodhouse, D. JFFS : The Journalling Flash File System. Technical

report, Red Hat, Inc. 12

[10] Boyer, F., Support and Training Group Engineer. AT91SAM

Boot Strategies Application Deployment. Technical report. 13, 14

[11] Eureka Technology Inc. NAND Flash FAQ. Technical report, Eu-

reka Technology Inc., Memory and other Microelectronics Design. 16, 78

[12] Brown, S. and Rose, J. FPGA and CPLD architectures: a tutorial.

Design Test of Computers, IEEE, 13(2):42 –57, summer 1996. 25

[13] Finnie, S., et al. Hard Links and Symbolic Links,

http://www.linuxclues.com/articles/17.htm, 2008. 29

[14] Various contributing authors and developers for open-

source embedded Linux tool. Buildroot : Making Embedded

Linux Easy, http://buildroot.uclibc.org/, 2012. 32

[15] Sanders, V. and et al. Booting ARM Linux,

http://www.simtec.co.uk/products/SWLINUX/files/booting article.html,

2004. 33

[16] Various contributing authors and developers

for the FreeBSD project. FreeBSD General Com-

mands Manual - FTP, Internet file transfer program,

http://www.freebsd.org/cgi/man.cgi?query=ftp, 2008. 38

[17] Postel, J. and Reynolds, J. RFC 959, File Transfer Protocol,

http://www.ietf.org/rfc/rfc959.txt, 1985. 38

90

REFERENCES

[18] Hethmon, P. RFC 3659, Extensions to File Transfer Protocol,

http://www.ietf.org/rfc/rfc3659.txt, 2007. 38

[19] Various contributing authors. TCP, Transmission Control Pro-

tocol, http://www.networksorcery.com/enp/protocol/tcp.htm,

2012. 38

[20] Rinne, T. and Tatu, Y. and et al. FreeBSD Gen-

eral Commands Manual - SCP, Secure copy program,

http://www.freebsd.org/cgi/man.cgi?query=scp, 2010. 38

[21] Various contributors to the GENSO project. Global

Educational Network for Satellite Operations, GENSO,

http://www.genso.org, 2012. 39

[22] Tyson, S. and Wicker, G. and Lowrey, T. and Hudgens, S.

and Hunt, K. Nonvolatile, high density, high performance phase-

change memory. In Aerospace Conference Proceedings, 2000 IEEE, 5,

pages 385 –390 vol.5, 2000. 76, 77

[23] Gasperin, A. and Wrachien, N. and Cester, A. and Paccagnella,

A. and Ottogalli, F. and Corda, U. and Fuochi, P. and Lavalle,

M. Total Ionizing Dose effects on 4Mbit Phase Change Memory

arrays. In Radiation and Its Effects on Components and Systems, 2007.

RADECS 2007. 9th European Conference on, pages 1 –8, sept. 2007. 76, 77

[24] Maimon, J. and Hunt, K. and Rodgers, J. and Burcin, L. and

Knowles, K. Radiation Hardened Phase Change Chalcogenide

Memory: Progress and Plans. 76, 77

[25] National Aeronautics and Lyndon B. Johnson Space Center

Space Administration. Understanding Space Radiation. Technical

report, National Aeronautics and Space Administration, Lyndon B. Johnson

Space Center, October 2002. 77

91

REFERENCES

[26] Stassinopoulos, E.G. and Raymond, J.P. The Space Radiation

Environment for Electronics. Proceedings of the IEEE, 76(11):1423 –

1442, nov 1988. 77

[27] Maker, F. and Yu-Hsuan, C. A Survey on Android vs. Linux.

Technical report, Departments of Electrical and Computer Engineering and

Computer Science, UC Davis. 78, 79, 80

[28] Tei-Wei, K. and Yuan-Hao, C. and Po-Chun, H. and Che-Wei, C.

Special Issues in Flash. In Computer-Aided Design, 2008. ICCAD 2008.

IEEE/ACM International Conference on, pages 821 –826, nov. 2008. 78, 79

[29] Wang, Y.M. and Huang, Y. and Fuchs, W.K. Progressive retry

for software error recovery in distributed systems. In Fault-Tolerant

Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third Interna-

tional Symposium on, pages 138 –144, june 1993. 80, 82

[30] Treaster, M. A Survey of Fault-Tolerance and Fault-Recovery

Techniques in Parallel Systems. CoRR, abs/cs/0501002, 2005. 80, 81

[31] Elnozahy, E. N. (Mootaz) and Alvisi, L. and Wang, Y. and John-

son, D. A survey of rollback-recovery protocols in message-passing

systems. ACM Comput. Surv., 34(3):375–408, September 2002. 80, 81

92

http://doi.acm.org/10.1145/568522.568525
http://doi.acm.org/10.1145/568522.568525

	List of Figures
	List of Tables
	1 Introduction
	1.1 CubeSat
	1.2 PolySat
	1.3 Previous and New Generation Avionics Systems
	1.4 Robust CubeSat Design Goal
	1.5 Thesis Scope

	2 Development Platform Architecture
	2.1 Platform Overview
	2.2 Memory Organization
	2.3 Boot Process
	2.4 Limitations and Risks

	3 New Avionics Platform Architecture
	3.1 Approach
	3.2 Goals
	3.3 System Requirements
	3.3.1 Non-Functional Requirements
	3.3.2 Functional Requirements

	3.4 Memory Organization
	3.4.1 Primary Boot Device
	3.4.2 Platform Overview
	3.4.3 Multiple File Systems
	3.4.4 Secondary File System
	3.4.5 Development Environment Overview

	3.5 New Boot Process
	3.5.1 U-Boot
	3.5.2 PCM Support
	3.5.3 Validation

	3.6 System State Logging
	3.6.1 Multiple Image Support

	3.7 Software Updates
	3.7.1 Remote Transfer
	3.7.2 Final Validation

	3.8 System Limitations

	4 Major Subsystems
	4.1 System State Log
	4.1.1 Overview
	4.1.2 Requirements
	4.1.3 Design
	4.1.4 Bootstrap Usage
	4.1.5 Linux Usage
	4.1.6 Design Success

	4.2 Secondary File System
	4.2.1 Overview
	4.2.2 Requirements
	4.2.3 Design
	4.2.4 Directory Listings
	4.2.5 Error Conditions
	4.2.6 Design Success

	4.3 Final Update Application
	4.3.1 Overview
	4.3.2 Requirements
	4.3.3 Software Update Validation
	4.3.4 System Upset Tolerance
	4.3.5 Design Success

	5 System Results
	5.1 System Success
	5.2 Additional Results

	6 Related Works
	6.1 Ionizing Radiation Tolerant Non-Volatile Memory
	6.1.1 Phase Change Memory Overview
	6.1.2 Attractive Features
	6.1.3 Evaluating Upset Susceptibility

	6.2 Important Considerations for NAND Memory
	6.2.1 Issues with NAND Flash
	6.2.2 YAFFS2 Utilization

	6.3 Log-based Rollback Techniques For Error Recovery
	6.3.1 Distributed Systems and Parallel Applications
	6.3.2 Checkpoint-based Rollback Recovery
	6.3.3 Log-based Rollback Recovery

	7 Conclusion
	7.1 System Success
	7.2 Current Progress
	7.2.1 Build Integration
	7.2.2 Test Modes

	7.3 Future Work
	7.3.1 Command Structure and Organization
	7.3.2 Kernel Log Entry
	7.3.3 Memory Write Protection

	References

