6/4/2012

ROBOTIC FINGERSPELLING HAND
FOR DEAF-BLIND COMMUNICATION

Cal Poly: San Luis Obispo | Mechanical Engineering Dept.

Page |1

Robotic Fingerspelling Hand

for Deaf-Blind Communication

June 6, 2012

Mechanical Engineering Department
California Polytechnic State University
San Luis Obispo

Robotic Fingerspelling Hand | 2012

(AL POLY

California Polytechnic State University

5an Luis Obispo, CA 93407

Mechanical Engineering
805.756.1334 FAX: B05.756-1137

me.calpoly.edu

Capstone Project

Partial fulfillment of the requirements for a
Bachelor of Science degree in Mechanical Engineering

Sponsor:

The Smith-Kettlewell Eye Research Institute
Rehabilitation Engineering Research Center for Blindness and Low Vision

Faculty Advisor:

Dr. John R. Ridgely

Team Members:

Brian Fang brfang@calpoly.edu
Colby Dixon cadixon@calpoly.edu
Trevor Wong tlwong@calpoly.edu

Page |2

Robotic Fingerspelling Hand | 2012

Page |3

Acknowledgements

4 Dr. Deborah Gilden, Associate Director of The Smith-Kettlewell Eye
Research Institute for her sponsorship of this project as well as her words
of encouragement throughout the year.

<+ Dr. John Ridgely for his patience as well as all the engineering advice he
offered throughout the year as our senior project advisor.

+ Jerry Vin for all his insight having worked on his iteration of the project for
the past two years as a Master’s thesis.

+ Larry Coolidge for taking the time to assist in our rapid prototyping needs.

<+ Cal Poly Machine Shops for use of their equipment.

+ Hobby Headquarters of Atascadero, CA for providing discounts on various
parts, including servo motors.

4+ ME 405/410 students for allowing us a portion of the Mechatronics lab to
work in.

Robotic Fingerspelling Hand | 2012

Table of Contents

Chapter 1: Introduction............................

1.1. Introduction

1.2. Capstone Project
1.3. Project Scope
1.4. Unit System

1.5. Terminology

Chapter 2: Background

2.1. Dexter

2.2. Ralph

2.3. Cal Poly Senior Project 2008
2.4. Cal Poly Senior Project 2009
2.5. Cal Poly Master’s Thesis 2012

Chapter 3: Objectiveccocevviiiiienann ..

3.1. Sponsor's Requirements
3.2. Engineering Requirements

Chapter 4: Project Management

4.1. Group/Individual Tasks

Chapter 5: Milestonesccooevveeneenn.
Chapter 6: Design Approach

Chapter 7: Design Development

7.1. Unused Concepts
7.2. Used Concepts
7.3. Actuation Methods
7.4. Microcontroller
7.5. Programming

7.6. Hand Size

Chapter 8: Final Designcccovvennen ..

8.1. Motor Housing
8.2. Wrist Movement
8.3. Actuation

8.4. Finger Mechanism
8.5. Thumb Mechanism
8.6. Springs

Page |4

..................................... 10

...................................... 14

..................................... 15

...................................... 17

..................................... 20

..................................... 21

..................................... 40

Robotic Fingerspelling Hand | 2012

Chapter 9: Manufacturing

9.1. Rapid Prototyping the Hand
9.2. Construction of the Case
9.3. Other Manufacturing Options

Chapter 10: Testing

10.1. Strength Tests

10.2. Fatigue Test

10.3. Heat Test

10.4. Future Tests Required

Chapter 11: Cost

11.1. Rapid Prototyping
11.2. Complete Design

Chapter 12: Results & Conclusion

12.1. Results
12.2. Conclusion
12.3. Future Design

Appendix
i.

i.
il
V.
V.
Vi.
Vii.
Viii.

XI.
Xii.
Xiil.
XiV.
XV.
XVI.
XVil.
XViil.

Sources

American Manual Alphabet

Bill of Materials

Quality Function Deployment Table
Decision Matrices

Gantt Chart

Design Sequence Flowchart

Other Concepts

Solid Models

Rapid Prototyping properties
Average electrical costs in California
Servo data sheets

Servo shield information

Program state transition diagrams and code
Torque calculation code
Anthropometric Data excerpt

Hand Shapes

Installation tips

Page |5

............................. 43

.............................. 46

............................. 50

.............................. 51

............................. 53

Robotic Fingerspelling Hand | 2012

Page | 6

Introduction

Fluent communication is something that many people take for granted, but there is a
population that faces extreme difficulties with communication due to disabilities such as deaf-
blindness. Most adults with this condition have been diagnosed with Usher’s Syndrome. The typical
progression of Usher’s Syndrome starts with deafness at birth, and blindness occurring later in life.
This puts the affected individual into a position where they already know sign language but not
braille when they lose their sight. The term deaf-blind encompasses those who have completely lost
their hearing and sight as well as those who have only partially lost these senses. For people with
this condition, tactile sensation eventually becomes their main form of communication.

Various methods of tactile communication have been developed, such as the Braille
alphabet and the Tadoma method, but this project will focus on tactile finger-spelling. By feeling the
hand of a finger-speller, a deaf-blind person can read a message letter-by-letter using a learned
alphabet such as the American Sign Language alphabet. In this age of technology, a mechanical
hand that could take the place of a fingerspeller and connect to a computer would be of huge value
to someone who is deaf-blind. Currently there are no commercial mechanical fingerspelling hands.
The deaf-blind community still relies on a translator to communicate with people who do not know
sign language or fingerspelling. If there is a device that could fingerspell simply by typing message,
fluent communication between a deaf-blind individual and an individual with no fingerspelling
experience would achievable.

The Smith-Kettlewell Eye Research Institute in San Francisco, henceforth referred to as
SKERI, had great interest in this project and has gotten universities to try to make it a reality.
Several variations of a robotic fingerspelling hand have been initiated by SKERI, specifically by the
Rehabilitation Engineering Research Center and Dr. Deborah Gilden, who has asked our team to
approach this task from a new angle. The major stakeholders consist of SKERI, the deaf-blind
community, and our team, as the success of this project is important to our education as engineers.
Ultimately, the goal is to open the avenue of electronic communication to the fingerspelling deaf-
blind community. Our main goal is to create a robust, working robotic fingerspelling hand that can
fingerspell every letter in the American Sign Language alphabet. Other specifications that SKERI

require are that the hand is the size of an average person and that is it portable. Specifications that

Robotic Fingerspelling Hand | 2012

Page |7

SKERI would like to see are: battery powered hand, hand size comparable to a small female, and
text to speech.

Capstone Project:

This project has been completed in partial fulfillment of the requirements for a Bachelor’s
Degree in Mechanical Engineering at California Polytechnic State University, San Luis Obispo. All
three of the team members are students in the Mechanical Engineering Department. Trevor Wong
and Colby Dixon will be leaving Cal Poly with their degrees upon completion of this project, and
Brian Fang will be staying to earn his Masters in Mechanical Engineering. The Capstone Project in
the Mechanical Engineering department is meant to be an exercise in teamwork and design,
starting from the brainstorming process and moving all the way through the manufacturing and
testing of a device. All Mechanical Engineering students go through this process with a team that
has been assembled by the department to complement one another.

The process is three quarters; the students are enrolled in ME 428 in the fall, ME 429 in the
winter, and ME 430 in the spring. The first two quarters involve assigned lab time with a project
advisor assigned by the department. In the case of this team, Dr. John Ridgely was assigned our
team due to his expertise in the area of mechatronics, or “Mechanical Electronics”. Throughout the
process, the students are constantly reminded that this is an exercise in the process of mechanical
design. Upon completion of the capstone project, it is the departments hope that the students will
be able to effectively work with a team to design and create a viable solution to some problem, as
well as to communicate effectively with the sponsor who has an interest in the project and supplies
the funding.

Project Scope:

Because so many attempts have been made to create a usable finger-spelling hand, we
made an attempt to build on past successes and failures rather than make the same mistakes. The
goal of this project has increasingly been to just make something work, even if it does not perfectly
mimic the movements of a human hand. We have made an attempt to describe our design to a
point where someone can easily apply what we have learned to a newer design that will address
some of the issues that we have had. A section of design recommendations is included at the end of

the report.

Robotic Fingerspelling Hand | 2012

Page | 8

Unit System:

The U.S. Customary Unit system was chosen for this project because it is the most
commonly used unit for engineers in the Cal Poly Mechanical Engineering Department. Conversions
were very minimal, as most of the specifications for components of the project were described in
U.S. Customary, sometimes in addition to Metric units. The anthropometric tables used to
determine hand size provide an example of the need for U.S. Customary units, as there are no
listings of Metric units in the anthropometric data.

Terminology:

Team HandSpeak: Handspeak is a registered trademark as detailed at handspeak.com. The
contents of the website are also copyrighted. The name “Team HandSpeak” is used solely for the
purpose of the Mechanical Engineering Capstone project at California Polytechnic State University,
San Luis Obispo in the time period of September 2011 through June 2012. The logo for Team
HandSpeak is significantly different than the logo for handspeak.com. In the event of any content
from handspeak.com being used in Team HandSpeak’s final report, the proper citation will be
added as per handspeak.com’s specifications. HandSpeak is not to be used as a brand name or
product name in any future revisions of the final design created by Team HandSpeak.

Deaf-blindess: There are various ways to write the term “deaf-blind”. For this report, both “deaf”

and “blind” will be fully lowercase unless beginning a sentence or title. Someone who is deaf-blind
is considered to have impaired vision and hearing, it does not necessarily mean that they are both
legally blind and deaf.

Cal Poly: This capstone project is completed for a bachelor’s degree at California Polytechnic State
University, San Luis Obispo. The name of the college is commonly referred to as simply “Cal Poly”,
and will be referred to as such for the rest of the report.

Proximal-Medial-Distal Phalanges: The segments of the fingers that are connected by joints are
known as “phalanges”. The term “proximal” describes the phalange closest to the hand, “medial”
describes the middle phalange, and “distal” describes the tips of the fingers.

Cables: Many different actuating lines were used in the development of the hand. All of them had
the characteristic of being small, flexible, able to carry tension, and easily tied at the ends. For this
report, items with these characteristics are referred to as the “cables” that transfer power from the
motors to the mechanisms. A more descriptive term for our final choice would be “coated wire
rope”, but we feel that “cable” is sufficient.

Servos: This term requires the most explanation because it is the least defined. Technically, a
“servomechanism” is any mechanical device that has some sort of automatic feedback that tunes
the performance of the device. “Servomechanism” is often shortened to “servo”, but can still apply

Robotic Fingerspelling Hand | 2012

Page |9

to any device such as a valve or piston. The term “servo” in our report refers to small Hobby Servo
Motors that contain a potentiometer and feedback circuit within the body of the device. This makes
the motors much easier to control than attaching our own encoders for example, which would
require many more connections and electronics.

Torsion Springs: Truly, a torsion spring is one that stores energy via torsion in the material. The
springs used in the hand are referred to as “torsion springs” because they create and resist torque
about the pivots. The metal itself is actually storing energy via bending as the coils get tighter.

Robotic Fingerspelling Hand | 2012

Page |10

Background

The first attempt at creating a fingerspelling hand was patented in 1978 by the Southwest
Research Institute, henceforth referred to as SWRI. It served to be a proof of concept but failed to
make all the necessary hand-shapes and operate in a fluid manner. Since then there have been five
notable attempts, along with five projects at Cal Poly, three of which are completed and two of
which are currently in progress. Due to the history of engineering on this topic, our team has
chosen to focus our background research on these previous hands and will forgo extensive research
into other far more complicated robotic and prosthetic hands. The following paragraphs will

provide a brief background of the four hands that we benchmarked against and why.

Figure 1. Dexter

DEXTER:

The first hand we will focus on has been dubbed “Dexter” by SKERI. It was built by a team of
Stanford Mechanical Engineering Students in 1985. Dexter was much improved over the hand built
by SWRI and formed all the letters of the alphabet but was extremely bulky and required
compressed air to drive the pneumatic actuators. Although the drive system was impractical and
bulky, the hand itself was quite successful for the level of simplicity in its design. The whole hand
had seven pneumatic actuators. Each finger was actuated by a single pneumatic with a linear spring
to provide some resistance and return. The pneumatic pulled four metal cables. Three of the cables
were used to bend each section of the finger and the last cable was used to straighten the finger.
For the index finger, there was a second pneumatic that twisted the finger so that it could form the

letter R. The thumb was controlled by two pneumatics actuators. The first one controlled the

Robotic Fingerspelling Hand | 2012

Page |11

bending of the thumb across the hand. The second one controlled the thumbs movement to and
away from the hand. Since the hand was made of metal, it is very sturdy and robust. As other
attempts have been bogged down by too many complications, we felt that Dexter was studying for
inspiration. The cable system proved to be very effective in bending the fingers and its overall

design is very robust. Two subsequent Dexter designs later came about and met with mild success.

Figure 2. Ralph

Ralph:
The most successful of the designs seems to be RALPH, for Robotic ALPHabet. This hand was

built in 1994 by the Rehabilitation Research and Development department of the Veterans Affairs.
RALPH fixed many of the problems of the Dexter hands, but still wasn’t quite robust or attractive
enough to be picked up by any commercial companies. RALPH was also only half a hand as it only
had the fingers, no forearm and no wrist. The hand is also very short, which made it hard to read as
it is in an unnatural position for the reader. It was actuated with DC servo motors. The fingers were
made with mechanical linkages rather than wire. RALPH connected to computers using a serial
connection, RS232. The interface with the user was done through a computer. While all the control

was done on the microcontroller in the hand.

Robotic Fingerspelling Hand | 2012

Page |12

Figure 3. Cal Poly Senior Project #1

Cal Poly Senior Project #1:

In January 2008, a senior project team at Cal Poly took on this challenge, accomplishing a
remarkable amount of research and development in their short time frame of six months. They built
a working hand that met many of the requirements for the project. Unfortunately, they ran into a
serious problem when they found that their choice of actuators overheated and limited the use
time of the hand. They chose to build the hand out of aluminum. This resulted in a hand that was
bulky and not lifelike enough to be successful. There is much to learn from their design process and

trial and error.

Figure 4. Cal Poly Senior Project #2

Cal Poly Senior Project #2:

We are also benchmarking against the hand of a Cal Poly interdisciplinary team. Of the
many things that we can learn from this hand is the performance of hobby servos and
manufacturing. The hand had issues with durability, and it broke in several places, but at one time it
was a working device. Each joint was connected with a mechanical linkage, so only one servo was
needed to completely bend a finger. This design does not allow for independent motion of the

distal, intermediate phalanges to the proximal phalange.

Robotic Fingerspelling Hand | 2012

Page |13

Figure 5. Jerry Vin's Graduate Thesis Hand

Jerry Vin:

Another hand is the work of Jerry Vin, a graduate student at Cal Poly. Jerry’s project is
currently in progress and he has expressed interest in offering his experiences to our team. His
design uses eleven DC brushless motors and two DC hobby servos. The index finger is controlled by
three motors. The motors rotate to pull on a cable that bends or straightens the joints. This distal
phalange is linked to the intermediate phalange with a mechanical linkage. As the intermediate-
proximal joint bends, the distal-intermediate joint bends with it. The last motor pulls on a cable that
moves the finger to the side so that it can make the letter V. The ring and pinky finger are controlled
by one motor. The middle finger is actuated exactly like the index finger, except it does not have a
third motor to move it side to side. They are the same as the middle finger, except they do not need
independent control for the intermediate-proximal and proximal-metacarpal joints, so those cables
are threaded through one motor. The thumb is controlled by four motors. One motor was used to
control the distal-proximal joint and another to control the proximal-metacarpal joint. The third
motor is used to move the thumb across the hand. The last motor is to control the thumbs
movement to and away from the hand. As we are somewhat designing in parallel, it seems useful to

benchmark against his work and collaborate with thoughts and positive criticisms.

Robotic Fingerspelling Hand | 2012

Page |14

Objective

Our project was to build a device that would be able to communicate with a deaf-blind
person through fingerspelling. The main goal of the project is to have the device form all 26 letters
in the English alphabet and sequence them into words. The next major goal is to make the system
as robust as possible. This means that it will work reliably and smoothly throughout its lifetime. The
device should be portable, as well as allow the user the option of different orientations, such as
horizontal and vertical. The operation of the device will be driven by a computer. This will require a
substantial amount of coding. Few other smaller goals are that the device should not be too loud,
look realistic and easy to fix. The product should be safe. Safety issues include: features ensuring

the hand will not crush a user’s hand, prevention of exposed wires shocking the user, etc.

Sponsor’s Requirements:

e The hand should be able to form all 26 letters of the American Manual Alphabet.

e The hand should be lifelike.

e The hand should be portable and be able to be read in different orientations.

e The hand should be the size of an average adult or smaller.

e The hand should not have any heating issues where the reader would get burned from
touching the hand.

e The hand should be able to form letters at minimum a speed of one letter per second.

e The hand should be able to form letters based off of user input.

e The hand should cost under $1000. Ideally in the $500 range.

Based on the sponsors’ requirements, we came up with the following categories of engineering
targets:

¢ Internal Temperature — Sustainable heat dispersion

e External Temperature — Temperature on the exterior of the hand

e Input / Output — Ability to spell letters after being typed

e USB or serial port — The type interface with the computer

e Number of interfaces — What programs will be used to connect the computer and hand

e Delay between letters — The time delay between forming letters

Robotic Fingerspelling Hand | 2012

Page |15

e Delay between words — The time delay after finishing spelling a word

e Number of external controls — Number of buttons or switches on the exterior of the hand
e Ability to form letters — The accuracy and ability to form letters

e Ease of Use — How intuitive is the device and the length of the learning curve
e Double letter indication

¢ Noise Level

e Weight

e Time to attach/detach — The amount of time it will take to detach from a base
e Battery Life

¢ Usage Voltage — Amount of voltage used to operate the device

e Length of Hand

e Glove — Will a glove be used

e Horizontal - Can the device be used while it is parallel to the floor

e Vertical - Can the device be used while standing upright

e Lap held — Can the device be used while lying on someone’s lap

e To scale — how to scale the fingers relative to each other and palm

e Interior accessibility — The ease of getting to the interior of the device

e Production cost

e Price

o Life-time

e Force to induce

e Force to withstand

Through the process of making a Quality Function Deployment (QFD), we could see what

engineering requirements we should focus on. We weighted customer’s requirements based off

what we felt was most important. From there we put a number from 1-9. A “1” meant that the

engineering requirement was not really relevant to requirement and a “9” for very relevant to

requirement. With the requirements all weighted, we could see that the two most important

engineering requirements we should focus on was the ease of use and weight. The two lowest rated

categories were visual appeal and noise level.

Robotic Fingerspelling Hand | 2012

Page | 16

At the bottom of the QFD, we have a set of targets we aimed to meet for each of the
categories listed above. Along with our targets, we benchmarked previous projects on their
performance in each category. Some of the categories were measured with a Yes/No. Yes was used
if the previous projects were able to meet the category requirement and No if it was not able too.
There is also a +, V, - system used to rate categories. A "+" means that the project greatly exceeds
our desired target. A “Vv” means that the project can meet our target. A "—" means that the project
does not meet our target or cannot meet our target. A "?" meant that weren’t able to obtain

enough information to rate the project properly.

Robotic Fingerspelling Hand | 2012

Page |17

Project Management

In the early stages of development, each member of the team was equally involved in all
aspects of the project. This included background research, preliminary analysis, and production of
conceptual models. Upon choosing the best model to follow through to a final design, each
member’s focus shifted to different tasks in order to accomplish more in the same amount of time.

This is described below.

Brian:

Originally, each member was to design a portion of the hand, Brian’s being the palm.
However, once it was realized that a shield was necessary to power all of the servos, his attention
shifted to designing and building a custom shield. Brian was also in charge of developing the master
program that would be programmed onto the Arduino.

Colby:

Colby was initially in charge of designing the fingers and the base connection to the hand.
He would later continue where Brian left off on designing the palm. This task took a considerable
amount of time as Colby made a conscious effort to make the hand appear more realistic.

Trevor:

Trevor was tasked with designing the thumb. The thumb is the only digit that was simplified
by fixing a joint position and yet was to still be used to form all the letters of the alphabet. Trevor
was also in charge of making the user_task code which is used by the master program, as well as
the code used to tune the servo s/finger positions.

Though the tasks were divided, all the members of our group were able to assist one
another. For example, the programming reached a point where nothing could be verified until the
hand was made, so the team collaborated on the design. All of the members also took part in part
procurement, machining, and assembling of the project.

A summary of the major tasks can be seen in the table below, as well as a list of milestones

which follow. For a visual aide, see the Gantt chart in the appendix.

Robotic Fingerspelling Hand | 2012

Table 1. Group/Individual Tasks

Page | 18

Tasks Brian | Colby | Trevor

Base design X

Hand design X X
Machining/Rapid prototyping X X
Mechatronics X
Progress documentation X X
Shield design

Testing/Evaluating X X

Robotic Fingerspelling Hand | 2012

Page |19

Milestones
1. Conceptual design review December 5" 2011
2. Critical Design Review February 3™ 2012
3. Working finger model, open/close motion February 20" 2012
4. Working thumb model, open/close/rotate March 26™ 2012
5. Project Update March 26™ 2012
6. Computer-to-hand recognition of alphabet April 19" 2012
7. Palm and back of hand casing , hand assembled April 30" 2012
8. Wrist movement and arm completed May 15" 2012
9. Adjustable orientation/detachable base assembled May 15" 2012
10. Final SKERI meeting May 21% 2012
11. Design Expo May 31% 2012
12. Industry Expo for SKERI June 28" 2012

Robotic Fingerspelling Hand | 2012

Page |20

Design Approach

Our project is somewhat unusual in that each component of the hand can be developed
largely independent of the others. For example, the method by which we curl the individual fingers
has little to do with the type of actuator we use, because almost all of our concepts for the curl can
be driven by any type of spinning shaft. The one exception to this is the idea of linear actuators in
the fingers that act directly on the joint. With this in mind, we assumed a mostly bottom-up design
process in which we made decision matrices for each component. We split the hand into three
major systems: the wrist, the fingers, and the thumb. To further divide the components, each of
these groups has various subsystems that need to be decided on.

After brainstorming many different ideas, we weighed the pros and cons of each idea,
allowing us to eliminate all but a few core concepts. All of these concepts then went into a group of
decision matrices. As an example, four matrices were made for the fingers: the actuators, the drive
mechanism, the curl mechanism, and the range of movement. Some of the matrices may seem
repetitive, such as the drive mechanism for the fingers and for the thumb, but the weights of the
criteria differ, which changes the output. After building our matrices, we can then look at what
combinations will work the best. Each individual component will be tested and prototyped, and

then the whole thing will be brought together.

Robotic Fingerspelling Hand | 2012

Page |21

Design Development

Unused Concepts:

Linear Actuators
This design that we considered would use linear actuators to bend the finger at each joint.

This idea would feasible with a PiezoWaveR motor. This linear actuator is only 24mm long, 9.7mm
wide and 4.4mm high. This makes it an ideal size to place into the inside the fingers, while keeping
the fingers a small size. One thing we would need to look into would be the max weight of the
finger segment. In figure 2, it is a picture of a LegoR pneumatic hand. This picture was to show how
the fingers would be moved using linear actuation. In this design, we would be using the PiezoWave
Motor instead of the pneumatics in the picture. The problem with this concept was that the
PiezoWaveR only has a dynamic force of 0.1 Newtons, which is not a lot. Also getting linear

actuators that are small enough to fit inside the fingers are very expensive.

Figure 6. PiezoWave® motor (PiezoMotor.com)

Figure 7. Pneumatic hand using the concept of linear actuation (YouTube.com)

Robotic Fingerspelling Hand | 2012

Page |22

Flexible Tubing
Our fourth concept is the simplest design. It would use a rubber or flexible material along

with one pull string. There are grooves cut at where joints would be to allow the finger to bend
properly. Linear springs could be inserted at the grooves to provide for a faster return to neutral
position. The major problem with this design is that it would be hard to control the movement of

the fingers because the slots would require precise material removal.

Figure 8. Hand with triangular cuts shown

Figure 9. Curled Hand

Robotic Fingerspelling Hand | 2012

Page |23

Used Concepts:
Digit Design

Our first model was inspired by DEXTER. We tried to recreate the mechanism of wrapping
cables around joints and pulling on them like puppet strings. This model proved the concept, but

after more testing we found that just a pulley method to be insufficient for our needs.

Figure 10. Dexter pulley system Top left: bent finger Top right: straight finger Bottom: Finger with pulley
system and platform

Our next design used pulleys to curl the finger. The pulleys would have a 1:1 ratio so that
the second knuckle will rotate with the same angle as the first. This was been incorporated into our
final design to bend the distal knuckle with the medial knuckle. This eliminates many components

as there is no need for a drive or return cable at the knuckle.

Robotic Fingerspelling Hand | 2012

Page |24

Figure 11. Pulley curl system Top: curled finger Bottom: straight finger

This mock-up displays many concepts, while also serving as a test platform. It will allow us
to test many different components such as the cables, motors, controller board, springs and finger

segments.

Robotic Fingerspelling Hand | 2012

Page |25

Figure 12. Test platform with bent finger

Inspired by the cable / housing system used on bicycles, we chose to use Bowden Cables for
power transmission from the motors to the fingers, thumb and wrist. Using this type of system
allows us to mount the motors in the forearm of the device, which will avoid considerable size
constraints in the palm. With the housing passing through the wrist, the hand will be able to twist
relative to the forearm without interrupting the control of the digits. Another advantage is the ease
of adjustment for the cable length. As on bicycles, we can incorporate a threaded barrel adjuster
that will lengthen or shorten the housing length, effectively collecting or releasing cable. Small
Bowden Cable systems are sold for use in robotics such as remote controlled helicopters. We also
have the option of buying the cable (or wire rope) individually and matching it with appropriately

sized tubing. This would require some trial and error.

Robotic Fingerspelling Hand | 2012

Page | 26

Figure 13. Bowden cable system

By incorporating torsion springs directly into the knuckles, we avoid the need for return cables. This

cuts our number of cables in half and greatly simplifies the design.

Figure 14. Knuckle return springs

Robotic Fingerspelling Hand | 2012

Page |27

Initially, we thought that we would use pulleys to rotate the knuckles, but after prototyping,
a better method was found. In this design the cable will be connected to a rod near the bottom of
the finger that will provide a moment arm around the joint. It allows a much larger moment arm
than a pulley would, and doesn’t require any tedious installation. Another advantage is that the

shaft for the knuckle does not need to be fixed to the desired phalange, again simplifying design.

Figure 15. Finger drive method

Robotic Fingerspelling Hand | 2012

Page |28

Actuation:

There were many factors to consider when choosing an actuator: price, stall torque, extra
circuitry, and available resources. The two best types of actuation devices for our design were
hobby micro servos or stepper motors. In the end, we went with hobby micro servos. Other

actuation devices like solenoids, DC brushless motors, and pneumatics were considered.

Figure 16. Rotary solenoid
(http://image.made-in-china.com/2f0j00TvgEwlkdnebz/Komatsu-Spare-Parts-Rotary-Solenoid-20Y-60-11713-.jpg)

Rotary solenoids can produce high torque while still being small. They are very fast and
move in specified angles. They are also cheaper than dc brushless motors and do not require a
controller. The disadvantage to rotary solenoids is that they produce too much heat. Solenoids
produce motion through induction and convert current into heat making solenoids very inefficient
as power is wasted. The heat generated could easily go over our desired limit. An exhaust fan could
be used to get rid of the heat from inside the hand, but this would focus large amounts of heat and
be prone to failure. Solenoids were not chosen because they produce large amounts of heat and

are not very efficient.

Robotic Fingerspelling Hand | 2012

Page |29

Figure 17. Maxon Dc brushless motor with encoder
(http://maxonmotorusa.files.wordpress.com/2011/10/ec16_new-sterilizable-and-non-ster.jpg)

DC brushless motors are very durable and have a long life time. They are very efficient,
which allows the hand to operate longer with a battery pack. The biggest DC brushless motors are
expensive and much more expensive when they are very small. They also require motor controllers,
which is extra cost, and a software controller to get exact positioning for the motor. DC brushless
motors were not chosen because the high initial cost and the need of more complicated software

and hardware to control them.

Figure 18. Tolomatic pneumatic cylinders
(http://www.motioncontrolproducts.com/pageimages/erdactuator_large.png)

Pneumatics was considered for a more comprehensive development, even though the
sponsor made it clear that this method was not desirable. The benefit of pneumatics and hydraulics
is that they could be small enough to fit inside the finger and actuate each section. But small

pneumatics and hydraulics are expensive. Pneumatics and hydraulics also require controllers and a

Robotic Fingerspelling Hand | 2012

Page |30

fluid supply, which adds to the cost and weight of the device. Pneumatics was not chosen at the

request of the sponsor.

Figure 19. Stepper motor
(http://www.designworldonline.com/uploads/ImageGallery/step-motor.jpg)

Stepper motors were a good candidate for actuating the hand. They are very accurate due
to the fact that a full rotation is divided into many steps, like an encoder. There would be no need
to write a software controller as stepper motors operate in open control loop. This allows for us to
just send a voltage and the stepper would rotate to desired position. The downsides to stepper
motors are that they tend to be heavy and can lose efficiency if any of the steps are skipped during
a rotation. It is sometimes necessary for stepper motors to have additional hardware in the form of
motor controller. Alone, these controllers would add approximately $120 to the cost of the project,

bringing the total cost of the motors to half of our desired budget.

HS-625MG

Figure 20. Hitec HS-625MG Hobby Servo used in project

Robotic Fingerspelling Hand | 2012

Page |31

Hobby micro servos were our final selection. Hobby servos are small, cheap, and can
provide large amounts of torque. Since hobby servos have a built in gear train, a micro servo can
easily provide over 30 ounce-in of torque. Hobby micro servos cost about 13-15 dollars each, so our
cost would only be around $150. This makes servos one of the cheapest actuation devices. The
biggest advantage to going with hobby servos is that they do not require an auxiliary position
controller, which greatly saves cost. Servos have a built in position controller. This makes coding to
control the servos very simple. Servos are also very light weight. Ten servos would weigh no more
than 100 grams. The disadvantages of servos are that they do not have long life and may need to be
replaced frequently. The main reason we chose servos were that they are cheap, light, and very

compact.

Robotic Fingerspelling Hand | 2012

Page |32

Microcontroller:

With 10 servos, we need 10 digital pins. This means we need at least ten I/O pins. We have
two options for our circuit board. One option is to design a custom board; we would have a circuit
board that does only what we need and doesn’t have extra unnecessary features. The other option
would be to buy a premade board. Designing a custom board may actually be a cheaper alternative.
With a custom board we can choose a microprocessor that has enough pins for our application and
a few extra for expandability and unplanned additions. Going this route would require a large
amount of time. Designing the board would take 2-3 days. After designing the board, the design
would need to be sent to a board making company. The board would take 1-2 weeks to be made.
After finishing the board, we would need to spend some time to make sure the board is working
properly before we can even start programming.

We decided to buy a premade board. We chose to work with the Arduino platform. The
Arduino Uno is the most common model, with 14 digital pins and 6 analog pins. The other models
like the Arduino Mega have more pins than we require for our application and are more expensive.
Though, they could be easily swapped in place of the Uno for expandability in the future. The price
of the Arduino Uno is around $20-$30. Arduino also has a large amount of C++ libraries for
servomotors. By choosing to go with the Arduino, it allowed us to spend more time on building and

testing our hand.

Figure 21. Arduino Uno board

Since we could not control and power up all 11 servos with the Arduino, we needed a servo
shield that could power the board while the Arduino could control them. All available servo shields

could at most control 2-4 servos. We needed to control 11 servos. We decided to design a servo

Robotic Fingerspelling Hand | 2012

Page |33

shield. We used Eagle PCB to draw the schematic and the board layout. With the board layout
done, we submitted it to a PCB manufacturer, Dorkbot. Their website is

http://dorkbotpdx.org/wiki/pcb order.

Figure 22. Left PCB without components. Right PCB with all components

For our application, each servo needed to be provided with 6V and 500mA of current to
run at full speed. This means we need a power supply or AC adapter that can supply our system
with 6V and 5.5A. We decided that 4A was enough for the system since servos require 500mA
only when it is moving and does not require the full 500mA when holding a position. When
looking for AC adapters, 6V 4A AC adapters were not common, and were hard to find. So we
found a 12V 4A AC adapter. This AC adapter is much more common. So for our board we had to
look for a 2.5mmID X 5mmOD power plug. From there, we had to regulate the 12V down to 6V
so that the servos could use them. When looking for way to regulate high current, we had a
choice between going with a high current voltage regulator or a two transistor circuit. The high
current voltage regulators that we found had a thermal resistance of 3°C/W. If we go the two
transistor route, the PNP transistor taking all the current would only have a thermal resistance

of 2°C/W. This would make keeping the transistor from overheating and blowing up easier.

Robotic Fingerspelling Hand | 2012

http://dorkbotpdx.org/wiki/pcb_order

Page | 34

Gl
e <
e/
LM3T
R3 £
-+ O il I Ol
ZZ .
(3] Ax -P";m
NP L e s T
“:?G’ Ra le , [ro-*
ll.‘?nf

Figure 23. PnP transistor and voltage regulator setup to allow for high current voltage regulation

We chose a BDX54C for our PNP transistor and a LM317T for the voltage regulator. The
PNP transistor acts as a pass transistor allowing all the current to pass through it while the
voltage regulator regulates the voltage. The R3 resistor is there to allow some current to go to
the voltage regulator so that it will regulate properly. Using the circuit above, we use a ratio of R1
and R2 to regulator 12V down to around 6V. The resistors we used were 230 and 820, which were
available in our mechatronics room. This gave us an output voltage of 5.74V. With the main part of
our circuit done, it was just connecting pins to allow us to put pin headers to make attaching servos
to the board easier. The servos connected to pins 2-12 of the Arduino board. Pin 13 has a 5k pull
down resistor attached to it to allow us to use a button to trigger a demo mode in the program.
Another button is attached to the reset and ground pin to allow the user to reset the Arduino from

outside the box.

When the board was completely assembled and tested, we noticed that the PNP would heat
up too much and that the heat sink for it was not enough. We tried to fix that by doing two things.
First we added a fan that would blow directly at the heat sink. Second we changed from a 12V 4A
AC adapters to a 9V 4A one. This decreases the power the PNP transistor needs to dissipate by
12W, which is about 25°C decrease in the temperature increase. But we still have a heat issue.
The transistor’s junction temperature is 150°C. With the fan blowing and using a 9V 4A AC
adapter, the transistor can get up to 95°C theoretically. With our infrared heat gun, we were
able to see around how high the temperature got. The results of this testing can be seen in the
testing section of the report. We are still working on a way to use our larger heat sink. We could
not attach it directly to the transistor because of space restrictions. Before when we were

testing with the board outside of the case, we had the larger heat sink attached. With the large

Robotic Fingerspelling Hand | 2012

Page |35

heat sink attached, we could run for a much longer time without worrying too much about

overheating.

Robotic Fingerspelling Hand | 2012

Page | 36

Programming:

The coding for the project is done in C++, one of the most common programming languages
available. It is written in a very modular fashion, which allows for the program to be modified by
others. If there is a need to change the actuation code or user interface, it can be easily done
without affecting the overall code. With a computer, it uses a terminal program to talk with the
Arduino. The user is able to type in sentences or words into the textbox, or have the hand perform
real time movements using the real time box. The Arduino manufacturers include many libraries in
C++ which is very convenient for us. One of the library files is for servomotors which we used to
actuate the servos.

The main file consists of a constructor and an infinite loop, which runs the program using
cooperative multi-tasking, which makes the runtime more efficient. There are two classes that are
run inside the main file, master_task and user_task. The main file will be supported by other files
which it will use to run, including a user class which takes user input from the computer, and master
class that overlooks everything.

The user_task is in charge of getting user input. User will only accept letters and instruction
keys, if any other key is pressed, nothing will happen. The instructions are: “1” to attach servos, “0”

i o on

or to increase delay between letters or

to detach servos, “[space]” to delay between words,
decrease spelling speed, and “+” or “=" to decrease delay between letters or increase spelling
speed.

User_task has 3 states. The first state waits for a character to be entered. After user gets a
character, it goes to state 2. In state 2, it checks to see if the character is a valid input. If it is a valid
input it will set valid to true, which tells master that a valid character has been gotten. After state 2,
user stays in state 3 until master is done and is ready to get a new character.

The master_task class is the overseer of this entire program. It determines what to do when
something is pressed. After the input of each letter from the user_task, master_task will get the
servo positions that correspond with input letter by referencing a large look-up table. The lookup
table will consist of an integer array of servo positions from 0-180°. These positions are determined
through trial and error during the testing stages of the project. There are #defines for different

angles for each finger. This makes it easier to see if the look up table is correct and makes tuning

the hand a much simpler job. Instead of having to go to each letter and changing the servo angle, it

Robotic Fingerspelling Hand | 2012

Page |37

can be done by changing the servo angle in the #define. Another part of the master is to make sure
that the fingers are not interfering with each other when moving.

There are 8 states to master. The first state is the idle state where it waits until user has
gotten a letter. The gotten letter will be from 0-30 and put into a variable called “letter”. 0-25 for a-
z, 26 for increasing spelling speed, 27 for decreasing spelling speed, 28 for spacebar, 29 for
detaching servos, and 30 for attaching servos. When attaching the servos, the hand will go back to
neutral position. It will then move to state 2.

In state 2, master determines if the inputted character is a letter or instruction. If it is a
letter, it will move to state 3, 4, 5, or 6.The next state is determined by the location of the thumb
and it next destination. If it is an instruction, it will do the instruction than go back to state 1.

State 3 is for when the thumb is under the fingers and the next letter also has the thumb
under the fingers. In this state, the fingers will move to neutral position, then the thumb will move
to its next position, then the fingers will move to their next positions.

State 4 is for when the thumb is over the fingers and the next letter has the thumb under
the fingers. In this state, the thumb will move to neutral position, then the fingers will move to
neutral position, then the thumb will move to its next position, then the fingers will move to their
next positions.

State 5 is for when the thumb is under the fingers and the next letter has the thumb over
the fingers. In this state, the fingers will move to neutral position, then the thumb will move to
neutral position, then the fingers will move to their next positions, then the thumb will move to its
next position.

State 6 is for when the thumb is over the fingers and the next letter also has the thumb over
the fingers. In this state, the thumb will move to neutral position, then the fingers will move to their
next positions, then the thumb will move to its next position. When state 3, 4, 5, or 6 are done
moving the fingers, they automatically go to state 7.

In state 7, it delays. This delay can be increased or decrease. After the delay, it determines if
master is in demo mode or regular typing mode. If it is in demo mode, it goes to state 8 or else it
will return to state 1 to wait for the next input. In state 8, it first determines if this is the first time
running through demo. If it is, master sets “letter” to zero to spell the letter A and increments
“letter” every time state 8 is entered to spell the next letter in the alphabet. Once “letter” has

reached 26, it means that the hand has spelled all 26 letters, which also means the demo is over.

Robotic Fingerspelling Hand | 2012

Page | 38

Master will then detach the servos and delay so the PNP transistor can cool down. After 20 seconds,
the hand will reattach the servo and go to state 1 so it is available to be used again.

We have also included a tuning program for the fingers. This tuning program allows the user
to adjust the finger locations in case of slack in the cable or to change the accent of the hand. The
servos start at a default angle of 140°. In the tuning program, you press “1” to decrease the angle
and “2” is to increase the angle of the servo that controls the knuckle movement. You press “3” to
decrease the angle and “4” to increase the angle of the servo that controls the medial joint. The
program only allows the tuning to go from 20-170°. This is to prevent the user from going to 180° or
0°, where the servo PWM messes up and tries to go beyond its limit. That will cause the servo to fry.

When you want to change fingers to tune, you press “+” or “=" to go to the next finger, and “-“or

oaon

to go back to the previous finger. The order that the tuning goes by is thumb, index finger,
middle finger, ring finger, pinky, and wrist. If you press the next finger button when it is at wrist, it
will loop back to the thumb, and if you press the previous finger button when it is at thumb, it will
loop to wrist. You can also detach the servos with the “s” key, and attach the servos with the “g”

key.

Robotic Fingerspelling Hand | 2012

Page |39

Hand Size:

The size of the hand needed to be comparable to that of an adult. To do this, data was obtained from
the 1988 Hand Anthropometry of U.S. Army Personnel, and has been summarized in inches in the tables
below. The data corresponds to the average measurements listed of women, along with their standard
deviations. The dimensioning of the fingerspelling hand will closely adhere to the average values, and
will be adjusted accordingly, within one standard deviation, to account for all the interior components.
This didn’t present too much of a problem as the majority of the larger components are located

elsewhere in the design.

Table 2. Relevant digit measurements from 1988 Anthropometric study

Digit 1 +/- Digit 2 +/- Digit 3 +/- Digit 4 +/- Digit 5 +/-

Thumb | (inches) | |ndex | (inches) | Middle | (inches) | Ring | (inches) | pinky | (inches)
Length 25 0.19 2.74 0.18 3.04 0.2 2.84 0.2 2.3 0.18
to wrist 4.95 0.34 6.69 0.37 7.02 0.39 6.65 0.38 5.73 0.37
Breadth 0.81 0.05 0.78 0.05 0.76 0.05 0.72 0.05 0.65 0.04
circumference | 2.48 0.1 241 0.08 241 0.07 2.26 0.08 1.99 0.07
Distal 121 0.1 1 0.08 1 0.03 1.03 0.09 0.93 0.08
Medial - - 0.83 0.09 0.99 0.11 0.9 0.1 0.64 0.09
proximal 0.76 0.11 2.22 0.21 1.96 0.17 191 0.13 1.49 0.12

Table 3. Relevant hand/forearm measurements from 1988 Anthropometric study

Inches +/-
hand length 7.11 0.39
hand circumference 7.34 0.34
palm length 3.97 0.22
hand breadth 3.13 0.15
wrist breadth 2.24 0.14
wrist circumference 5.96 0.27
wrist center-of-grip 2.61 0.19
elbow to hand 17.46 0.93
elbow to wrist 10.35 0.61
forearm circumference 10 0.59

Robotic Fingerspelling Hand | 2012

Page |40

Final Design

Motor Housing:

To hold components such as the motors and the microcontroller, a rectangular case was
made from 0.220 inch clear acrylic sheets. Acrylic was chosen to display the inner workings of the
motors, as well as for its workability with the laser cutting machine on campus. See the
manufacturing section for a further description of this process.

The case is sized so that an average-sized person will be able to rest their elbow on the table
while feeling the hand, but the case also allows for other orientations. If preferred, the case can be
turned around and the user’s wrist can rest on the case. Also, the case can be turned onto its side to
read the hand in a horizontal position.

Wrist Movement:

The wrist mechanism allowed for major simplifications over previous hands. Many of the
letters of the alphabet are formed by lowering a vertical wrist into a more horizontal position. Also,
“)” and “Z” are considered dynamic letters and are formed with scoop and wiggle of the wrist,
respectively. Because the wrist has to support the entire hand, it has been a weak spot in many past
designs, with the tilt causing the most problems. Tilting the hand to the side applies a large moment
to the wrist area, while also throwing off the balance of the entire device. For these reasons, we
chose to design our wrist to spin only about a vertical axis by 180°.

This twist about the vertical axis provides us with a degree of freedom that is underutilized
in the common ASL alphabet. With the presumption that the deaf-blind are adaptable enough to
learn variations on the alphabet, the single twist of the wrist allows for 26 distinct movements and
has the ability to replace the tilt of the wrist in letters such as “G” and “H”. This can be thought of as
the hands “accent”. Initially, an explanation of the wrist movement and the affected letters should
be created using the most recognizable letters for the deaf-blind user.

The hand is supported by an aluminum shaft that was machined into the desired shape and
size. The most significant aspect of the wrist shaft is the “D” shaped ends, which sink in to hand on
one end, and the wrist servo attachment on the other. This shape acts as a key in the shaft to
transfer rotational power. The hand is also screwed onto the shaft, but this is simply to stop it from
falling off. Most of the torque should be transmitted through the “D” shape and not through shear
in the screw. The lower end of the shaft is not screwed to the servo because its position is fixed by
casing for the mechanism. The shaft was designed with a larger diameter section in the middle that
sits between 2 flanged, sealed ball bearings. Not only does this hold the bearings into their position
in the case, but also holds the wrist shaft in after the top to the case has been screwed in. The 2
bearing, stepped shaft design removes all axial force from the servo, which is not designed to such
axial loads.

Robotic Fingerspelling Hand | 2012

Page |41

Problems: To fully utilize the movement of the wrist, it needs to turn by a complete 180°.
Unfortunately, the servo that is turning the wrist cannot be driven a full 180° without the likelihood
of damage, so the wrist is restricted to move approximately 150°. For future designs, it is
recommended to choose a servo that is designed to move more that the common 180°, such as a
“sail winch” servo.

Actuation:

In actuating the movements of the hand, our design mimics the human body in that the
“muscles”, or servos in our case, are housed remotely and “tendons” transfer mechanical power to
the moving parts. A great example of this is readily seen in the way that bicycle brakes and
derailleurs are actuated. The system consists of a length of housing that is maintained as some fixed
length while flexible cable is allowed to slide through. The cable is fixed to the actuator on one end,
and the mechanism on the other. When building the concept models, bicycle cable housing was
used but the diameter was far too large for the application inside the hand, considering that the
hand needs 11 independent lengths of these housings.

After experimenting with different cables and housings, the products chosen for the final
design were found at the local hobby store. The housings are antennae coverings for remote
controlled cars, and the cable is nylon-coated stainless steel cable used for actuating the flaps of
remote controlled airplanes. The cables are crimped using common bead wire crimps that can be
found at most arts and crafts stores. The crimps should be large enough that the cable can loop and
pass twice through the crimp.

Problems: The 1/8" inch housing is not flexible enough to allow for totally fluid movement of the
wrist. The servo used to twist the wrist is strong enough to overcome this binding of the cable
housings, but future designs should strive to find a type of cable housing with more flexibility.

When crimping the nylon-coated cable, the crimps have the tendency to strip the coating
from the cable. When this happens, the cable will lose its tension and the exposed metal strands
can be dangerous.

Finger Mechanism:

By using springs to return the fingers to a straight position, there is only one actuation cable
per joint, and it is simply anchored to the phalange which is desired to move. Past designs had
problems with trying to use a continuous cable loop from the motor to the finger that would bend
and straighten the finger. The use of springs greatly simplifies this system and allows the hand to be
in a natural position even when it is not hooked up to a motor. The difficulty in the design chosen
for the fingers is getting enough of a moment arm on the pivot. Because the fingers are so small,
there is not much room to pass the cables by the pivot, so they end up with a small moment arm.

Robotic Fingerspelling Hand | 2012

Page |42

The distal and medial phalanges are kinematically tied, and the distal will move any time
that the medial moves. This not only mimics the way that a human finger moves, but also
eliminates the need for a third actuator on each finger. The movement is achieved by using a short
cable anchored to the proximal phalange on one side and the distal phalange on the other and uses
a cross pulley mechanism.

Thumb Mechanism:

The thumb has two degrees of freedom, with the outermost joint fixed. With the tip of the
thumb bent at a fixed angle, the hand still makes sufficient and intelligible movements and avoids
the need for tip actuation. The base of the thumb has the ability to rotate on an axis in plane with
the palm and perpendicular to the wrist. This allows for the necessary movements to form letters
such as “O”. Due to the positioning of this system, it made more sense to run a true “pull-pull”
system as opposed to a single pull with a spring return such as with the fingers. To make the thumb
sweep across the palm, the same method was used as with the fingers, but to achieve the letters
such as “L”, the thumb needs to sweep 90° from vertical in both directions. Where the fingers use
180° springs that are bent to 90°, the thumb uses a 270° spring that rotates to 90°. This allows the
thumb to be held out away from the hand in its neutral position, yet still bend all the way into the
palm when actuated.

Springs:

Several different size springs were used in the hand. Initial calculations found that a spring
constant of approximately 1 in-lb would be sufficient to hold the fingers in a straight position even if
the hand was horizontal and provide the user with enough feedback to let the hand move. With the
extremely light weight of the final design, and the small size of the fingers, it was determined that
each joint would have a different spring constant, descending from 1 |b-in at the base knuckle, to %
Ib-in at the tip joint. This is because of the larger moment on the base knuckle. Unfortunately, there
is a slight problem with the spring at the base knuckle getting squeezed at a full bend, which causes
the finger to stick a little bit. This problem has not caused much trouble because the base knuckle
almost never needs to bend all the way to create our shapes.

To reduce slop in the joints, the springs were plastically deformed to rest neutrally at an
angle of a little more than 180°. Although they are considered to be 180° springs by the
manufacturer, they all rest at some angle slightly less than that. This was an easy solution and made
more a more solid hand design.

Robotic Fingerspelling Hand | 2012

Page |43

Manufacturing

The manufacturing of the hand was done largely by the 3D printer (ObJet 250) at Cal Poly.
This machine has the ability to take a solid model file from a program such as SolidWorks and create
that model from a gel called EDEN FullCure 720. The process is fast and is referred to as “rapid
prototyping” for obvious reasons. For example, each finger took close to two and a half hours to
print, which is much quicker than many other manufacturing methods would have been. The
fingers, thumb, palm, and hand were all made using this process. A few of the material properties

are listed in Table 2, while the rest can be found in the appendix.

Table 4. Partial property list of FullCure 720

Objet FullCure 720 Eden
Tensile Strength 8744psi
Density 0.0426|Ib/in"3
Modulus of Elasticity] 416150psi
Hardness 81{M

To be printed, the SolidWorks part was saved as a .STL file which could be read by the rapid
prototyping software. The parts were then positioned on a virtual tray. This part of the process took
some time because the orientation of the part determined how much filler material would need to
be used. Every layer put down by the printer has to lay on top of another layer, so to create voids in
the part the printer would use the filler, or “support” material as a base for the next layer. Our final
print ended up using about 300g of FullCure and 250g of support material. Small modifications were
made to the rapid prototyped parts with a drill and a Dremel tool to provide more clearance for
moving parts.

The case built from the sheets of acrylic was cut from 18” X 24” sheets of acrylic that were
cut into pieces using the laser cutter in the Mustang 60 machine shop at Cal Poly. For the most part,
these pieces were good to go as soon as they left the machine, but some pieces had to have their
edges sanded down to provide for a more flush perpendicular fit. This is because the laser tends to
create a slight slope to the edge of the sheet when it cuts through. Any modifications to the acrylic
proved to be difficult, and the second version of the case that was created was done so with less
need for modification. Drilling through the acrylic is doable but tricky. The material will melt and has
a tendency to build up on the drill bit and cause problems for the next hole to be drilled. This can be
somewhat remedied by passing the clogged drill bit through a block of wood. This will re-melt the

Robotic Fingerspelling Hand | 2012

Page |44

material and push it to the un-bladed portion of the drill bit, where it can remain or be pulled off of
the end. Another tactic is to use pliers to break off the hardened acrylic, but this method is less
consistent in its success. A 2-56 tap was used to make threaded holes for the servos to mount into.

Most of the case was assembles using Weld-On #3 Acrylic solvent cement. Unable to find
this adhesive at any hardware store, we eventually found it at a glass store. This adhesive works in
much the same way as welding materials together, because it liquefies the material and forms a
strong bond as long as the surfaces are flush. Care must be taken when working with the adhesive
because any of the liquid that drops will mar the acrylic surface. Overall the adhesive worked well
and produced clean and strong junctions.

Some components of the case need to be removable such as the top bank of servos. For this
we used metal L-brackets to hold things together temporarily. JB Weld was used to fix nuts to the
back of the brackets so that the screws could be driven directly into the case without needing
access to the inside. On the first version of the case, all 4 sides were permanently fixed with
adhesive. This made it very difficult to get down inside to the case, so the front wall of the second
case was made to be removable, greatly easing the installation of all the components.

Although this project required relatively little time in the machine shop, some parts were
still manufactured using traditional machines such as the lathe and mill. The wrist shaft required the
most machining. First the shaft was cut to length using the chop-saw with a special blade for cutting
aluminum, and then a lathe was used to face the ends and turn the entire length enough to give it a
nice finish. While leaving the center section untouched, both ends were turned down to a diameter
small enough to pass through the bearings. Then the mill was used to create the “D” flats. Finally
the wrist mount hole was drilled and trapped. Somewhat more tricky to machine was the pins for
the finger joints. Each of these had to be grooved to allow for the e-clips to clip to the side. A
custom grooving tool was made from an old broken parting tool to make the grooves the right size
and depth.

In the future, this hand could be made through injection molding. This way, the hand can be
cheap and affordable as parts will only cost cents to make. But to use injection molding, the
demand for the hand would have to be in the hundreds of thousands. Another solution is to the
hand made with CNC. This solution is more reasonable for production numbers in the hundreds.
The last solution is to have the design and 3d drawings open to the public, so this hand could be
personally made through a rapid prototyping company if this hand is not available commercially.

Using a computer numerical control (CNC) machine is another possible way to create our

parts. CNC can make the parts with high tolerances. We would have blocks of plastic and place it in

Robotic Fingerspelling Hand | 2012

Page |45

the machine. Then based off our computer aided design (CAD) files, it would drill and mill a part for
us. We choose not to go with this process because the machine shop on campus was closed due to
budget cuts. This makes it inconvenient to make parts when we need them. But this is a viable

option for small production amounts of the hand.

Robotic Fingerspelling Hand | 2012

Page | 46

Testing

The testing that has been done so far consists of our conceptual models. We have learned a
great deal through tinkering with items easily obtained from the local hobby store. Because of this,
we felt much more confident in our final design than if everything had just been done on paper. We
built a test stand that initially was able to hold a finger or thumb. It later expanded to hold the
entire hand and came into much use in the time leading to our final design. Various servos were set

up and tested on this platform.

Figure 24. Strength test. Cables tied to weights at one end and tied to components on the other end

Strength tests were performed on the cables and fingers. For the cables, we had two, a
weaker cable and our current cable. To test the cables, we tied weights at one end and lifted the
weights with the cable. For the weaker cable, it snapped at 10 Ibs. Our current cables snapped at
30lbs. A similar thing was done for the joints in the finger. We tied weights at one end of the cable
and tied the other end to a particular joint we wanted to test. All rapid prototype parts were able to
withstand more force than the cable. Through all this strength testing, we could conclude that the

first thing to fail in our system would be the cables in normal use.

Robotic Fingerspelling Hand | 2012

Page |47

Figure 25. Finger in fatigue test setup hitting the bump switch

Fatigue tests were performed on the fingers, servos, and cables. The comprehensive test
had the assembled prototype monitored while form the letters of the alphabet continuously in a
loop for several hours or until a component breaks. The fingers went through a similar test in which
they looped between fully open and fully closed while hitting a bump switch counter for every
repetition. This test was only done once and it was done using the weaker cables. The weaker cable
was able to last 2700 runs. If the weaker cables were able to perform that well, we expect the
current cables to last at least 3 times longer.

One of our test plans involved the testing of the forces created by the digit. While the digit
was in the test stand, a linear spring scale was placed at a measured distance from the joint in
guestion. Measuring the forces for the purpose of satisfying our requirements, as well as check the
torque of the motors and springs against the manufacturers’ specifications. In particular, we
intended to find out how much external force is necessary to move the hand out of position, and
the grip strength of the hand in order to make sure the hand grip would not crush the user’s hands.
At the same time, we could make sure that the hand would still be strong enough to overcome the
weight of the user’s hands in order to form letters. A multimeter was simultaneously monitoring
the current drawn by the motor. This test was never fully done. When we attempted, the cables
snapped before we could get a reading, and we ran this test again with the stronger cables. We did
hook up a multimeter to see how much current the servos drew when actuating. The servos drew

about 500-800mA when moving and used 300-400mA when holding the finger in full curl position.

Robotic Fingerspelling Hand | 2012

Page |48

After examining previous models that Cal Poly students have produced, we noticed that
many servo horns had sheared, rendering many components useless. Those projects were done
using the standard nylon horns that came with the servos. An alternative to nylon horns is to use
aluminum servo hubs. A fatigue test that will be performed simultaneously with the finger tests, as
the servo hub will be pulling the cable back and forth. This test was never done due to time
restraints. We used the stock nylon horns instead of getting aluminum horns. The stock nylon horns

proved to be strong enough for the application as not one has failed in all our testing.

Figure 26. Infrared heat gun used to check temperature of different components

In addition to fatigue tests, we also planned to perform heat tests. Heat will be generated
by the electronic components. Each servo will require at least 400mA of current to produce its rated
torque, and any leftover current will dissipate into heat. Therefore we used an infrared
thermometer to monitor the hand. Ideally, the highest temperature wouldn’t be much greater than
70°F, which is considered comfortable to human touch. Since the board is enclosed in the case,
there isn’t a likely chance of someone getting burned by it.

The biggest problem that we encountered with our design was overheating of one of our
transistors. This problem is described in detail in the Electrical Design section of the report. The
results of our heat testing showed a remarkable drop in the temperature of the transistor when
using the 9V power supply (circles) instead of the 12V power supply (triangles). It was encouraging
to see a physical effect of our theoretical predictions about heat generation. In the test, there are 3

different states that the servos can be in. When attached (green), the controller is holding the

Robotic Fingerspelling Hand | 2012

Page |49

servos in a particular position but they are unmoving. When detached (yellow), the controller is not
sending a signal to the servos but it is plugged in to the power supply. The active state (red) is when

letters are being formed every 2 seconds and therefore the servos are moving often.

105 A A
A
100
v A { Y Adetached
e 95 (X X)) (]
. o
5 A runnin
= 90 A 00 &
o Y A attached
2 g
@ 85 O9V detached
80 AAA/ ® 9V running
g&o ® 9V detached
75

0 100 200 300 400 500 600 700

Time (sec)

Figure 27. Compiled transistor temperature readings of heat tests

measure decibels, so we intend to compare the noise relative to other common devices or
appliances. Ideally, the hand will produce less than 80dB, which is the same amount of noise
produced by a telephone dial tone. The hand does not get very loud. The hand makes the loudest
noise when moving to position and makes a small humming noise when holding positions. Overall
the hand is not that noisy and the sponsors had no comments on the noise.

When the time comes where we have a complete working prototype, it'd be used to
interact with people in the deaf-blind community to test the readability of the hand-shapes. We had
hoped to perform this testing well before the final report was due in order to make the hand
positions as accurate as possible. This test was never done. We could never get in touch with
someone in the deaf-blind community or someone who uses fingerspelling on a daily basis.

Hopefully at the RESNA conference, feedback on the letters and the hand will be relayed back to us.

Robotic Fingerspelling Hand | 2012

Page |50

Cost

Rapid Prototyping:

For rapid prototyping, service providers will charge anywhere between five to ten dollars
per cubic inch of the FullCure 720 material. However, the printing software used metric
measurements and so for convenience, we determined the material cost using the FullCure density
of 1.189 g/cm” and its common rate of $0.50/cm’. In addition to that, providers will also charge
operating fees which would include the amount of electricity used and labor for cleaning the parts.
As of 2011, the average cost of electricity for a medium sized company was about $0.16/kWh. Also,
the Objet 250 printer that was used consumes 1.5kW, so we determined that the rate of electricity
to be $0.24/hr. In Table 3, we provide cost estimation for the material.

Table 5. FullCure 720 cost estimation

Rate Usage Cost
Material | $0.50/cm® |300 g | $ 126.16
Electricity | $0.24/hr 155 hr | S 3.72
Cleaning | $20/hr 0.333hr | S 6.67
Total S 136.55

Complete Design:

Below is summary of major components and the total cost of producing one unit. A full bill
of materials separated by each component can be viewed in the appendix. Note that the cost of the

hand differs from the table above due to the addition of parts; springs, washers, pins, etc.

Table 6. Total cost of one unit

Component Cost
Hand S 159.90
Electronics S 7492
Case S 81.14
Servos & Cables S 398.75
Total $ 714.71

Robotic Fingerspelling Hand | 2012

Page |51

Results & Conclusion

The two cases that were constructed yielded different results for the hand. The first case
was made prior to the final presentation at The Smith-Kettlewell Eye Research Institute. At the time
of the presentation, the case was not yet implemented, but it was desired by the sponsors to
include more holes for ventilation as there were problems with the heat sink and transistor
overheating. Until a replacement power adapter was delivered, work continued on the case in short
intervals to keep the electronics moderately cool. When the hand was tuned and fully assembled in
the first case, all but the dynamic letters of the alphabet were able to be displayed. There was not

enough room for the housing to move freely if the wrist were to turn.

Although, the hand was able to account for double letters without having to return to a
neutral position and would wiggle one or several digits depending on what letter was being
repeated. This was accomplished due to the logical statements placed in the code. Though, the
code didn’t account for double letters of “L” and “Y” as the logic was based on the position of the
thumb; in our code, both letters have the thumb in a zero position, which bypasses the conditional
statements looking to see whether the thumb or fingers need to move from the previous letter. The
major accomplishment of this design, however, was that it was able to demo the entire alphabet in
less than four seconds by pressing a button on the side of the case. From the terminal, the hand
was able to take letter input in real time, as well as spell out typed words at speeds specified by the

user.

Having come that far, we felt that we would be able to construct a second case that would
account for the ventilation and cable housing problem. By that time, we had also received an
adapter using less voltage which we hoped would address some of the overheating problems. The
end result was that the transistor is still overheating, though not as fast, and also that the speed of
forming letters has dropped to being slightly faster than one letter a second. The hand now
occasionally twitches when forming consecutive letters. We’re not entirely sure what the root

cause of this problem is, but it is being looked into.

Looking back at the requirements listed by our sponsor, we feel that we were or would be
able to accomplish most of them. With a little more time, the wrist could be programmed to do the

dynamic letters, making the hand able to form all the letters of alphabet. We believe the hand is the

Robotic Fingerspelling Hand | 2012

Page |52

smallest and the most lifelike of all the attempts made previously by Cal Poly students. The hand
itself exerts no heat, it can be placed in different positions, and is controllable based off user input.
While we weren’t able to reach the target cost for the project, we feel that the cost is reasonable

for something that can’t be made cheaper through mass production.

Future Designs:

If work is to be continued based off this design, here are some of the areas in which it could
be improved:

e The first case design didn’t allow enough room for the housing to move during the actuation
of the wrist. Construction of the 2™ case took longer than expected and prevented the
actual implementation of the wrist actuation for dynamic letters.

e Double letter indication for the letters “L” and “Y” isn’t included. Though, no word in the
English language uses consecutive “Y”s.

e The letter “V” was simplified by not splitting the index and middle fingers. However, this
may not be considered entirely acceptable.

e Ahousing that is more flexible and that will not increase friction is needed. The current
housing is too still and makes assembling difficult

e Bending of the wrist is necessary to better distinguish between letters.

e A better way to disperse heat from the heat sink is needed. The power adapter was
switched from 12V to 9V to reduce heat at the cost of letter formation speed.

e Arechargeable battery would make the design more portable.

o The clear case design was intended to show off the electronic actuation of the hand.
Transitioning the case to a forearm design would also make the hand more portable.

Robotic Fingerspelling Hand | 2012

Appendix

LN EWNRE

PR R R R R R R R R
LN D WNRO

Sources

American Manual Alphabet
Bill of Materials

Quality Function Deployment
Decision Matrices

Gantt Chart

Design Sequence flowchart
Other concepts

Solid models

. Rapid Prototyping properties

. Average electrical costs in California

. Servo data sheets

. Servo shield schematics & layout

. Servo shield components and data sheets

. Program state transition diagrams and code
. Torque calculation code

. Anthropometric Data Excerpt

. Hand Shapes

. Installation tips

Page |53

Robotic Fingerspelling Hand | 2012

Page |54

Bibliography

Greiner, Thomas M. (1991) Hand Anthropometry of U.S. Army Personnel.
Berliner, Fung, Hansen, & Harris. (2009). Robotic Finger-Spelling Hand Final Report.
Garcia, M. L. (2009). Design, Control, and Programming of A Robotic Finger-Spelling Hand.

Jaffe, D. L. (1994). Evolution of Mechanical Finger-Spelling Hands for People Who Are Deaf-
Blind.

Steever, A., Torjesen, L., & Cheung, C. K. (2008). Robotic Finger-Spelling Hand for Tactile
Communication with the Deaf-Blind.

Tepe, A. (2008). Robotic Finger-Spelling Hand for the Aid of the Deaf and Blind.

Robotic Fingerspelling Hand | 2012

Page |55

American Manual Alphabet

@ 0/

%@

Hh i

Nn Oo Pp Qq Rr Ss

sd 4l gwd

Tt UuVWWw Xx Yy Zz

http://upload.wikimedia.org/wikipedia/en/thumb/6/6f/Aslfingerspellalpha.png/220px-
Aslfingerspellalpha.png

Robotic Fingerspelling Hand | 2012

Bill of Materials

Page | 56

Qry Part No. ITEM COST
20 #10-24 Fasteners S 200
20 #10-24 x 1/2" Phillips pan head machine screw S 1.80
4 #2-56 x 1/4" Phillips pan head machine screw S 0.36
10 1" x 1/2" Zinc Corner Brace S 9.90
1/2" Vinyl Bumpers (9 pk) S 299 o
MC-21 Acrylic Sheet (Clear) 18"x24"x.22" S 18.49 @
8974K113 Aluminum 6061 round 3/4 OD, 12" S 4.27
10 Black RC Antenna Housing 1/8" OD, 14" S 499
6384K363 Steel Ball Bearing, Flanged for 1/2" Shaft S 21.34
Weld-On: Acrylic S 15.00
JFCT2S1.5G #2 Silver plated crimps (100 pk) S 324 "
48 2-56 x 1/2 Flat Phillips Machine Screws S 192 3
1 8930T16 5ft Nylon Coated SS Wire S 1.60 i
3 #517 Du-Bro 2-56 Pull-Pull S 19.50 S
10 Hi-Tec 625MG servo $ 341.00 %
1 Hi-Tec 645MG servo $ 3149 |
3 445-2868-ND 10uF capacitor S 1.86
1 CP-202B-ND 2.5mm 5A power jack S 092
1 CF14JT22R0 22 ohm resistor S 0.20
1 CFR-25JR-52-220R 220 ohm resistor S 0.20
1 450uF 35v capacitor S 0.60
1 12R831 830 ohm resistor S 0.20
1 CENB1040A0903F01 | 9V 4A adapter S 22.36 m
1 Arduino Uno S 21.45 g
1 275-644 Black SPST pushbutton $ 369 | S
1 CPU Cooler Fan 12V 0.08A S 499 a
2 HS278-ND Heatsink S 134
24 Pin headers (Male) 2.54mm S 264
1 BDX54C-ND PNP transistor S 0.62
1 275-644 Red SPST pushbutton S 3.69
1 Servo Shield S 945
1 LM317TFS-ND Voltage regulator S 071

Continued on next page

Robotic Fingerspelling Hand | 2012

Page |57

Qry Part No. ITEM COST
3 1/4"-28 x3/8" Phillips pan head machine screw S 0.27
1 9271K98 180 Degree Torsion Spring (6 pk) S 7.6
1 9271K142 180 Degree Torsion Spring (6 pk) S 7.44
1 9271K601 180 Degree Torsion Spring (6 pk) S 4.63
1 9271K628 270 Degree Torsion Spring S 0.77 T
1 Hand (FullCure 720) $ 13655 | &
8 MRW8 Plastic washer S 1.20
1 MRW716 Plastic washer S 0.28
1 49060 Round rod plain steel 1/4 OD, 12" S 0.88
18 97431A240 Side-Mount External Retaining Ring (E-Style) S 0.72
Total | $ 714.71

Robotic Fingerspelling Hand | 2012

(LLOZ) pueH sAuar

(800g) 1224,

(2002) HdTwd

Benchmarks

(5861L) 431x3a

"Page |58

PUBISLIM O} 8310}

Quality Function Deployment

Customer

O [oexter

et

sjuswalinbay 4

(/)]
=

=[= PUBISUIM 0} 30104
soNpUl 0] 8010) =1 s0NpUl 0] 8010
aw-a4) W = au-ay|
aoud o~ 2| m . aoud
1500 uoisnposd 128|= == 1500 uoponposd
-+ (D =] ER=]
|2 =
Aupqrssaooe JouEu = Ajqissaooe 1ouEu
ol 2+ -
o
|eadde |Ensia = |jeadde |Ensia
ajeas o) = aless 01
>
play-de|) = praU-de|
(7 -
-— [C=INERY - = [C=TRTE=TN
| e 5
aQ |EjuozUoY P W (L= 8 lerd REalt]
m an0|B = ano|B
QO >
N puey jo Lpbusy o = + puey jo pbua)
WI abejon ajgesn fl o = = .l . abeyon @1gesn
= =
A (ay) a4 Ausneq | ~ @ E| E|lE () s fasyeq
] (093! ue=mep/yoene o awg r~ 4 = (oes) yoelep/ysene o} ewnl
= =
— (a1 wBram = =] (Q1) uBi=m
@D @l =
QO ap) |ans| asiou Sl = (gp) |1aaa] asiou
.n UCHEDIPU| Jana| S|qnop W > UoREDIpUL 18118 Sjgnop
()] | =
— BulpuElsiapuUn JaWosna == BulpuElsISpUn JSWoISNDS
E @0
pauLgy s1a18)| Fo pauwo) siapa|
=
S|0AUCD |BUISINE JO # w | S|ONLOD |BLSIXS JO #
(oes)splom uaamlag Aejap W (oes)spiom uaamlaq Aejap
(oas)siana) uaamlag Ae|ap £ = (oas)siane) uaamaq Aejap
SSOBUSIUN JO # o S SBOBUSIUI JO §#
pod |euas to gsnff — o W = > pod [euss Jo qsn
HIANT Jeue spucdsal W = > HILNT Jaye spucdsal
Jane| Ag lens) wNn > 1=n8| Ag Jens|
—f =
aumelsdws) euisxe f o =1 - sineladws) |BLISIxS
aumelad wey jewayu ff = m m aumesadwa) [Eusai)|
(0oL 1e301) BunBieps)| o L w2 ~ ~ ~ = u
.m —
5 2 =
T g 3 2 E 5
= I=1 = .2
=8 = | 2|8 B 2 = - - S|E|8
= [12] @ S | x| o = T 5 @ =] =g Bl =]
w — |2 £ 2 e 55 = 5 = o E|Z2| S
[=% — | E| =| gl 3| = Lo 2lw = = Ele|lBls
0 A EEEMHMEREIRE 28| 8l Ele @ g IR
—| = sl2 5 52| B = = 5 1=
S = EEHEEHE R ERE R PEIEEEE R Flx|e =|E|2|5
k= B EEE EEEEE E R R E ERE = = HEETE
et = B EE R EEEREE R B ERE RS S HIEEE
= =
=]
=} o
= @ O
o o=

Robotic Fingerspelling Hand | 2012

Page | 59

Robotic Hand Decision Matrices

Table 1. Weighted decision matrix to determine actuation of fingers

weight Cable cable/pulley | belt/chain | Gears | linear actuator

Friction 5 1 5 2 10 3 15 3 |15 3 15
Cost 3 4 12 3 9 2 6 2 6 2 6
Size 4 4 16 4 16 3 12 3 |12 4 16
wear/life 2 2 2 4 4 8 4 8 2 4
Noise 1 4 3 3 2 2 3 3 3 3
Weight 2 5 10 4 8 3 6 3 6 3 6
Implementation 3 5 15 4 12 2 6 3 9 3 9
Fluidity 3 1 3 9 3 9 3 9 3 9
Location 3 3 9 3 9 3 9 3 9 3 9

Total 29 | 78 28 80 25 | 73 | 27 | 77 26 77

Table 2. Weighted decision matrix to determine actuation of thumb
Weight Cable cable/pulley | belt/chain Gears linear actuator

Friction 3 1 2 6 3 9 3 9 3 9
Cost 2 4 3 6 2 4 2 4 2 4
Size 4 4 16 4 16 3 12 3 12 4 16
wear/life 3 2 2 6 4 12 | 4 | 12 2 6
Noise 1 4 3 2 3 3
Weight 3 5 15 4 12 3 3 3
Implementation 3 5 15 4 12 2 3 3
Fluidity 5 1 3 15 3 15 3 |15 3 15
Location 2 3 3 6 3 6 3 6 3 6

Total 29 | 78 28 82 25 | 75 | 27 | 79 26 77

Table 3. Decision matrix to determine the DOF for the thumb

1 degree | 2 degree
Implementation 3 2
Cost 3 2
Fluidity 1 4
Total 7 8

Robotic Fingerspelling Hand | 2012

Page | 60

Table 4. Decision matrix to determine the motor type

servo | stepper | DC Brushless | piezo | DC brush
size 4 3 3 4 3
cost 4 2 1 1 4
weight 4 2 3 5 3
noise 3 4 5 3 3
life 2 3 4 1 2
Voltage 4 3 4 5 3
Total 21 17 20 19 18

Table 5. Decision matrix to determine the actuation of the wrist

motor | gears belt/chain
implementation 4 3 4
Cost 3 3 3
Size 2 4 2
Weight 2 3 2
Total 11 13 11

Robotic Fingerspelling Hand | 2012

Page |61

v/9 &
155 0
/s @

9z <&

8fe ¢

Robotic Hand Gantt Chart

cfeT &
/2T &

[§

nw__.nw; mﬂ

e —

TT/trfo uow
CT/TE/S nyL
TL/TT/5 14
TI/og/c uoWw

ZT/8/E nyL
T/ feanL
ZI/cfz uns
ZT/5/r nyL
ZT/eT/S=nL
ZL/0E 7 UOWN
TT/9g/c uoW
2T /0g T oW
ZT/51f5 8nL
TT/EfT 14
CT/TE/T =nL
/6T nyL

TT/6/TT UoW
1T/T/eT nuL

IT/igfTT uns

TT/sT/TT nyL

1T/T/TranL
Tt/oz/ot nyL
TT/LT/0T Vol

TT/trfo uow
ZT/1E/s nyL

TL/TT/5 14
TT/oz/E uow

ZT/8/E nyL
TTfefe any
ZI/TE/T anL
TL/T/T pam
ZT/T/sanL
ZIfrgfe any
ZT/Te /T anl
/LT T anL
Zrfitjrany
ZT/EfT 14
ZTfve /T anL
ZT/T/T uow

1T/S/2T UoW
1T/1/eT nyL

TT/L/TT UoW

TT/e/TTnyL
TT/LzfoT nuL
TT/oz/oT nuL
IT/1T/0T 3nL

poday eurd
odx3 10aloud Jo1uag
o3P IIEMpPIEH
owaw a1epdn 1aloid
MIINSY
1581 pue Suunioeinuey
NP oWaLW s31Y13
OIS 21413 U0 HI0A
Bunsal
aseq/uue Fulping
puey uip|ing
quinyz Buipping
138uy Buip|ing
sped Suipjing
Josuods yum 4ago
HaD s21aeld
Suipad
MIINaY
udisaq |enidaduco
woday udisaa
sishjeue
/ uonas|es 1010W
s|apow
1dasuoo uanbasgng
|2pow 1daouoo 15014
|esodoud 123(o14
Aujenp jo ssnoy - 40

L3 W] 1]s

mls]1L]a]w]L]s

mls] L] 3wl

|zT, "tz Ao]| ZT,'ST dy

Zr,'vaew| T, 'ZT uer| 1T, 'I13Ra

1T, '0E3P0| 1T, 281 das]

IT,

T

TI/ST/TT=nL TIfiT/eanl Yaleasay punoldyoeg
T1/S/0T Pap TL/S/OT Pam usip Josuods
Zrfsefsud TifegfiT i BOUBIBJU0IB[IL
I1/6g/6 Nyl TT/6E/6 NYL uip, Asar1esn
IT/igfe=nL TIfiEfe=nlL d211a7 UoiaNpoau|
wea]
TT/9g/e o TT/9z/6 uolW 1aloid 101Ua5 133N
- ysiuig * ueg Jwep ysel

Robotic Fingerspelling Hand | 2012

Page | 62

woday
wafoig _ |_
Jeur wR1s LS WasAs ueld Josuodg WaIsAS
6007 Amnuef ‘uanQ) yuelq Aq fonpoad fnpoad 159, — ondy (—{ ponpoxd
asaiduy SEY) JuISAL] sme)s ping
33UNDAS USISH §TF AN odxg
uBisa(] _
aaoadwpsa, prngd
W ‘nbpig | abpug
uoday Pyoe SwaysAs pue yoeqpasj sadLew
Josuodg udisa(] jeur g .,ow_._«”w%ooa S meap suauodwos Josuods :c_.m_oun
PIAM MY 0} i E.,._m.m ‘sAeue Jo wawdopasag “poday | _ (s)eapr 15
" . 1saq : Pt 59q
udisa(q - Josuods wouy " sanunuos JSAILS Ul udisa(] a1 g [[e Jo
(e 1%eqpaod i BIa suidaq udisaq] uoneurwI| g
7 udisac] uonos9jag vapj
nb pug _ nbis|
1Ry Nuen
— - Bunmuepd | —
f 1waloayg
i paaooid » Anend)
9|qissod se 01 Aeyo - 0) [esodoid Jo ssnoH
suondo pue poa ._wm,_moogw paford ur § - saadg udsqy wajqoad sfad yord o)
seapt Auew Bug - wea) qad ayp yunp Bug pue pugjsiaspun SWEd) ULo | Ajod [£D 0
se dojoaap s saaide noAeym Jo sjuawaambay 0} PIRs uﬁ%u
- Sunuiolsureag "1osuodg AW WSY Jwosn) jo puncudyoeg RN
i wdopas
uoneIUAN) B 20
! 30 ©ap| sosuods gm__%smﬂ
| 122w || ’ '
wyqoud pasdiad jo judwavIDY swea]

uoneziuedi()

Robotic Fingerspelling Hand | 2012

Page | 63

Assembly Concept

This concept shows the layout of where all the components would be located. Inside the
hand itself will mostly be springs and cables. The cables will run into the forearm and attach to the
servomotor arms. The motors located at the wrist will allow for a twisting motion to form the

letters J and Z. A slot will be made near the base of the forearm for the USB connection to the

microcontroller.

© L/-"' . - oug-—w ----(.r_ 1

B (
B aniiaiazaninisy (_LJ% 9

l| ']]] R i H
41 (T} '
||/“.I| | | | { 1 I-. ~ 1
Rk, | | ,»\
| i [|] 'i'...ﬂ'l l
® || OO 1\
- 3] |0 |
alle
[{—f’“
e]

Robotic Fingerspelling Hand | 2012

Page | 64

Engineering Drawings

Robotic Fingerspelling Hand | 2012

Page | 65

bl

=

5

+
Zlfefe 3lvd T oiow B ngets
- : i Bucpy 108
[POIELN Giuoy uoLg

MdNod D
Aquisssy esoo 13701 EREIL o PASSY L¥IN

i SIAD Y ITWIEILY W $3UDU| IELN SIONVHITOL
:z__ 148 ogo_ :z__ uoxig A0 AT N WA

UoxIg AgIoD)
ypads pubH wpa)

Robotic Fingerspelling Hand | 2012

Page | 66

4

¥

A oD TLOTISIE ALY ZOWEH # SN
Buops dona]|
=Sy 3L Ll T os LO-%5H tASEY LEIH Bo g uoig
T AL SELIM N DN WEII0L oK qAGOD
LI TAT Q3D _ Ez__ o] AT DA M v_Um_..um PUDH WbS|
L oy B
L g R &
L LU2 O o L
AL 437Nk 1y'wd O A1

Robotic Fingerspelling Hand | 2012

Page | 67

Z

£

¥

dNoEs TlOZie s Al EO-GSH I S
Buops, loasl |
pous aBEUY T LLaTeos L0 EH ©ASSY LEIH BuUb 4 uoi g
P E IR 811 NI 30Ny 810l uoxqAgIo D
LM AR AT _ Ez__ T ARIDD A M V_Um_aw PUDH WDS |
L iy £
L HoyE] S|ppi [
L [HoyE] wopog L
ALE d3TNNH 1d'vd O N3

Robotic Fingerspelling Hand | 2012

Page | 68

o

&

¥

£

ANOYD Z 10T/ 4T 319a l0-dSH # SiA 0 goal=sgire
Wﬂtuuﬂ.&nm Gy o]
il quuinyl 3711 LLiITe 25| LO-WSH ASSY LEIN [ROTIRTI - BUDy UDLg
. 0ZL 2102104 43040 TWEILT W saysu SINM | 100F CIDNYHITOL ucx|q AgIoD
LN AT e_u__ :z; BUopf donsd] AR MAVY H Jpadg puny woa)
— TET fm—

el ww_....A b

v Hmuc_l

| —— sz

05T |

00 @ =—

s

Robotic Fingerspelling Hand | 2012

Page | 69

20-d3H # Omad L b L]
Tﬁﬁﬂﬂﬂ&ﬂﬁi @CO.__.__.__.__. Joasd]

Bumg uoug

SRRz dNOED FARF =R |
S B SEUIDIIDU 2L 3L L2131 2s CO-WSH CASEY L3N
DL 2N TN T HT LA S22 SLIMN Lo gy FINWEITOL

uox|g AJIOD
ynads punH wpa]

“:z__ A 00 _ p_z__ WoRIQ AIOD AR MALYE O
Tig
./\ (62 Y | ||_ £ll
e |“H-.|.m.|ﬁ L9048 ¥r
T
080 ce
15| i \\\\\\f
!
G ---.___ f 00 EY BT
0oL ZES M '
. .— r -4y
[meaus |
005
G0
05L'@
: 9-9 NOILD3s
Al - NOILD3S o VT g i xm/ o
} |..__..8,_H = 080" = — 90 - o I_ |
Z5T —
THE ™ "e)) (& ° Yr..
_ i A L [il
||_8m.
V- g 004

Robotic Fingerspelling Hand | 2012

Page |70

< < i g
dANOYo Z10z/5/5 3lwa ?0-dsH # 90 Bripandae
: : Buop Joasl]
sBup|pyd [PIpR Y TILL L1 :3Tw 35 Z0-wSH hssw Lyan | [EOTIELSRTY BUDY UDLG
072 ®n2l0d 1890 Teld LI s3youl LN 10T (3ONWHII0L uox Qg AqIeD

[Tsous | UM 7

A9 dHD _

EZ;

uerHg AgeD A8 MAMYHEA

Nads pubH wpa)

020 i

L,
T

ot

0og

[]

0og

b
/WN_.W_

CEL

007 o

007 |

002"

DO0'EY B
s RTI
DEY)
{

T S

o

Robotic Fingerspelling Hand | 2012

Page |71

1 it £ + g
ANoED ZL0T/9/5 ALY SordSH # D L
" BRI Gl j J0asl]
il = Buy 3701 12 AW 05 ZO-WEH CASSY LxaAN [El BuD4 uoug
07 2ANTIN4 JEE0 W 3L ST 51N Lo F ADNYHII0L uoxJg AgIoD

“LIMI

AR JAD 7

EZ__

Mo Al D A MY E

Apads pupH wpal

e

SElg

050y

00g |

008

08

Robotic Fingerspelling Hand | 2012

| 72

&

£

¥

FSCZOUDH dNOND bl e = Wl | P0-d5H S# SN g

PUEH L [= B L 1 LO-%5H SAS5% LEIH

0&5 =N 7R3 sBUaY calHn 32 HY3ToL

M A _n_u_U_ i} z__ uced AQeD TAd MY d

Buops lonsl]
Bumg umig
uox g AQIO D

yoads pupH wpa)

O — ——

e]

—

Page |73

L i £ i)
ANOUD Zl0z/7 /5 Alva £0-d5H (2 O alEagira
Wn_.._mmq.&um s Buop, Jorsd |
poug SBUBIRY [P1RS 31LL L L 3105 £0-¥SH ASSY Lan | [COTUBUNN Bubq upug
Dz SANDINg JBIG0 TYIEAL YA sSUZUL SLMI loo's 3ONWAETIOL uox|g AgioDd
ALINI A8 4D _ Ez__ o A0 TAG MR Y jpads pupH wpaj
ool _hll
: [_
(Hoys) AAppIW Jo 7S @Ta | | | [T [osr !
w (00 S N
t ! wom L
i o 008" 00 I\ .A 008"
ong | %|*| 1 |
o /I/I AR
~ 7 H={ s
2l L7
—~ser
L.Aoom. o

aloy mom_.

SR - —

Robotic Fingerspelling Hand | 2012

Page |74

HoedspucH ANOYS ZLids Alva 20-45H % OMa GreEsnSn b

= Lo Buops 10as0]

Ly BB [oLIKed UL LI 3Twos ZO-WSH ASSY LraN [y > BuDy UL

0T SN0 IEAL A sEoU] 51N LO0a T IOMYEIIoL Uoxg AQIoD

LI "AR e_m; Ez__ uorl] AQeD CAT N YEd v_n.m.n_w PURH Wpaj

Ter L--L-\\ oLy
I*| — e | e | i | y
Jozos z] ! _
o . Gm_,_.. \
o0s ZEs il ’
| H__H o0 e KT
06T KT
5L0d
D0E oEL .
S 1Y @ Y- NOILD3S

-9 MOILD3S R B] : .

7 0_LHLT0. b 760 |
z5T =y I W & = z5T

e & & “ @
00 __||_ _|| e

I; |.._8m._H

Robotic Fingerspelling Hand | 2012

Page |75

L Z fE

oD ZI0Z 4G lwa &0-dSH # ©ma anmmm_wnmi

Asind guunyy 37401 LT 23] 10-%EH LSS LI
ozi 2nond (200 wiEIY STUIUL ISLNMN [LO0F SF3DMNWHEITOL
LI SAHOHD _ ._._Z__ UoXIQ AQICD A8 NMEE

Buopy, Josasd]|

Fuod uog

Lo AQIOD)
Jypads pubny wpaj]

W NI IS \H_m _lI ogl

260 — |

& Ll Cn__uuw

Q\\\ A

T

05171

o

|

it

i
|

O0E" fme—

_.T 080"

a’ rAvS

Robotic Fingerspelling Hand | 2012

| 76

c

l Z b ¥
dNOYO Zl-26 1alva # OMJ BuipsnBut
W_Hﬁu 2 i BUC p Jon2U |
wind 3711 R ASSy Lyan | [POTIRYR BUR, UBLg
0z INDINS 18[00 914ILTW sUoUl SLINN JONVHITOL uoxig AgIoD
1IN e I U0XQ ACIOD A9 NAMWAQ Jpadg pubH woa|

7

Page |77

Rapid Prototyping Properties

Eden250"

Technical Spacifications

Layer Thickness (Z-axis)
Herizantal build Iuyars down to 1 &-micron

Tray Size [Xx¥xI)
2802600200 mm

et Build Size (XxYx2)
250250200 mm

Build Resolution

Yaxis: 600 dpi

Yaxis: 300 dpi

Zaxis: 1600 dpi

Prinfing Modes

High Guality (HG}: 1&-micron
High Speed [HS): 30-micron

Typical Accuracy
20:85um for fenturas below S0mm

Up to 200um for full model size

ffor rigil:l materials {mh', dapanding on geomeiry,
build paramelers and model crieniafion)

Material Supporfed

FullCure®720 Model iransparent
* VeroWhite Opaque material

* Varoflue Cpogue material
Varofilack Opaque material

Support Type

* FullCure®705 Support

+ Nondoxic ga|-|i|:a phoropcdyrrvar suppart
eaily removed by WaterJet

Materials Carfridges
Sealed 2x2 kg :-:rl'ridgai msi|y and ini’rc:nﬂy
replaced through a frontleading door

Power Requirements
110 - 240 YAC 50/60 Hz
1.5 KW singla plma

Machine Dimensions [WxDxH)
8707 35%1200 mm

Machine Weight
Met 280 kg
Gross [in crate) 330 kg

Software

Obiar Studio™ features:

Suggested build orienfofion and speed,
Auto-phcameni

+ Automatic real fime support struchure

The 16-Micron-ayer 3D Prinfing Sysfem

generafion

Slica on the Hy

Palylog™ Materials Management
* Mabwork version

input Formet

STL and 5IC File

| Environment
Temparature 18°C - 25°C
Relafive Humidity 30 - 70%

Speial Faclily Requirements

Mane

Jetting Heads
SHR [Single Head Replacement, 4 units

Network Communication
LAN -TCR/IP

Compatibilty
Windows XF. Windaws 2000

Other Features
» Removable fray for high produdivity
» Quiet office operation

* Al specification are subject fo change witout natice

—m

T
ED=NZ5¢

Robotic Fingerspelling Hand | 2012

(QBJET "

Page |78

F

LALLERY

LLES —
JDUCTS APPLICATIONS INDUSTRIES RESOURCES MEWS & EVEWTS CUSTOMER SUPPORT COMPANY CONTACT

g
'FullCure®7T20
g FullCureT20 Transparent is the original material developed for Objet PolyJet-based
" contact Us | 3-Dimensional Printing Systems.
Please, find the semplete FullCure® General Purpese Family Data Charts Below:
Results in Metric
Property His Results in Imperial Units
Units
Tensile Strength - MPa 803 psi 8744
Modulus of Elasticity - MPa 2570 osi 418150
Elongation at Break - % 20 % 0
Fiexural Strength - MPa 758 psi 10001
Fiexural Modulus - MPa 1718 osi 240110
Compressive Strength - MPa 843 psi 1224
tzod Notched Impact - Jim 73 fbin 040
Shere Hardness - SelkD & SealeD 3
Rockwell Hardness - SealeM 81 SeaeM 81
HDT at 0.4 MPa - v 484 F 1o
HDT at 1.32MPa - o 444 F 12
Ash Cantent - % <00 % 001
Water Absarption - % 15 % 15

Robotic Fingerspelling Hand | 2012

Page |79

SAFETY DATA SHEET

Version-2

Bamsd o= Dicsctivs Z001/5%8/EC of the Commimmion of the Iurcpess CORTUNITIEN

FULLCURE 720

Identification of the substance/preparation and of the company/undertaking

1.1 Identification of the substance or preparation:

Synon H none

cAs Ng © M.A.

EC index Mo. : M.A. NFPA code : M.D.
EINECS Ho. : M.A. Molecular weight : MNLA.
RTECS Ho. T M.A. Formula r MN.AL

1.2 Use of the substance or the preparation:
Toner

1.3 CnmpanEIundertaking identification:
Objet Geometries LTd = Europe
Leuvensesteenweg 3HAE
B=1932 Sint-Stevens-Holuwe

: 65 02

Tel. : +32 2 717
Fax _: +32 2 717 &5 00
Email: infofZobjet.com, www.Zobjet.com

1.4 Eelephgne number for emergency:
Bee 1.

Composition/information on ingredients

Harardous ingredients CAS Ho. Conc. in | Hazard Rigks

EINECS/ELINCS No. ® symbol {R=phrases)

Acrylic Monomer Froprietary 21 <4l xn 23=41-43=-48722 1y

gxo-1,7,.7- 5EE8-13-5 < 40 xi 43 [y

;Eiﬂfggzlb;cyn;nll.2.1]tnpt-2-'_.'1 12T-BE1-E

urethane acrylate oligomer M.D. 1-20 xi IES38

acrylate oligomar H.D. 1=-20 xi 1B-43 qu

epoxy acrylate 15450B-99-4 1-20 xn 20/22=-26727728-42

[H8]
acrylate oligomar H.D. < 20 xi IES38
Fhotoinitiator Fropriestary <1 xi 43-53

1] For R-phosmss in foll: sse hasdizg 18
121 abjst Fropsistacy infarmaticn

3. Hazards identification

= (Clagsified dangerous in accordance with Directiwves 67/54B/EEC and
1999/45/EC o h
= In normal conditions of u=ze, the components cannot be released

4, First aid measures

4.1 Eye contact:
= Consult a doctor/medical service if irritation persists
- Ringe immediately with plenty of water for 15 minutes
= Do not apply neutralizing agents

Robotic Fingerspelling Hand | 2012

FULLCURE 720

4.2 Skin contact:
= Consult a doctor/medical service if irritation persists
- Soap may be used
= Wash immediately with lots of water

4.3 After inhalation:
- Consult a doctor/medical service if breathing problems dewvelop
= Remowe the wvictim into fresh air
= Unconscious: maintain adeguate airway and respiration

4.4 After ingestion:
= Consult a_ doctor/medical =serwvice if you feel unwell
= Immediately give lots of water to drink
= Hewver give water to an unconscious person
= Do not induce womiting

5. Fire-fighting measures

5.1 Suitable extinguishing media:
= Water spray
= AFFF foam
- BC powder
= Carbon dieoxide

5.2 Unsuitable extingunishing media:
= Ho data awvailable

5.3 Special exposure hazards:
= Combustible
= On burning: release of toxic and corrosive gases/vapours (nitrous wvapours,
carbon monoxide = carbon dioxide)

5.4 Instructions:
= If exposed to fire cool the closed containers by spraying with water
= Dilute toxic gases with water spray

5.5 Special protective eguipment for firefighters:
= Heat/fire exposure: compresged airfoxygen apparatug
- Protective clothing for exposure to chemicals

6. Accidental release measures

6.1 Perscnal protection/precactions:
S5ee heading B.2/8.3/13

6.2 Enviromnmental precauntions:
- Contain leaking substance

6.3 Methods for cleaning up:
= Take up liguid =pill into absorbent material, e.g.: sand
= Scoop absorbed substance into closing containers
= Clean contaminated surfaces with an excess of water
= Wash clething and eguipment after handling

7. Handling and storage

7.1 Handling:
Accidental release of the contents:
= QObserve wvery strict hygiene = avoid contact
= Remove contaminated clothing immediately
= (Clean contaminated clothing

7.2 Storage:

= HKeep container tightly closed
KEeep out of direct sunlight
Store in a dry area
Store in a dark area
KEeep away from: heat sources

Page | 80

Robotic Fingerspelling Hand | 2012

FULLCURE 720

Storage temperature H.D. -
gu.antit]r limits H.D. kg
torage life ! M.D. days
HMaterials for packaging :
= suitable :no data awvailable
- to aveid :no data available

7.3 Specific uses:
= See information supplied by the manufacturer

8

. Exposure controls/Personal protection

8.1 Exposure limit wvalues:

TLV-THA : not listed
TLV=-STEL : not listed
TLV=-Ceiling : not listed
OES-LTEL © not listed
OES-STEL : not listed
MEL~-LTEL : not listed
HMEL=-STEL : not listed
HAK : not listed
TRE : not listed
MAC-TGG B h : not listed
MAC=-TGEE 15 min. : not listed
MAC-Ceiling : not listed
VME-B h : not listed
VLE=-15 min. © not listed
GWEB-8 h : not listed
GWE=15 min. : not listed
HMomentary wvalue : not listed
EC not listed

EC-STEL ! not listed

Sampling methods:

= Mo data available

Exposure controls:

.1

.2

Occupational exposure controls:
Accidental release of the contents:
= Work under local exhaust/ventilation

Environmental exposure contrels: zee heading 13

Persocnal protectien:

.1

respiratory protection:
= Mot regquired for normal conditions of use

hand protection:
= Bccidental release of the contents: Gloves
Suitable materials: No data available

= Breakthrough time: N.D.

eye protection:
= Accidental release of the contents: Safety glasses

gkin protection:
= Bccidental release of the contents: Protectiwe clothing
Suitable materials: No data available

Page | 81

Robotic Fingerspelling Hand | 2012

FULLCURE 720

. Physical and chemical properties

9.1 General information:

Appearance (at 20°C) : Toner cartridge
Odour H.0.
Colour M.D.

9.2 Important health, safety and environmental information:

pH walue : H.D.
Boiling point/boiling range : M.D. *c
Flashpoint : W.D. *c
Explogion limits : M.D. vold | *C)
Vapour pressure (at 20°C) : M.D. hPFa
Vapour pressure (at 50°C) : MW.D. hPFa
Relative denszity (at 20°C) : M.D.
Water solubility : MN.D.
Soluble in : W.D.
Relative wapour density : W.D.
Vigcozity M.D. Pa.=s
Partition coefficient n-octanol/water N.D.
Evaporation rate

ratio to butyl acetate M.D.

ratio to ether N.D.

9.3 Other information:

Melting point/melting range M.D. “c
Autg=ignition point H.D. e R
Saturation concentration M.D. g/fm

10. Stability and reactivity

10.1 Conditions to avoid/reactiwvity:
Unstable on exposure to heat
Unstable on exposure to light

10.2 Materials to awoid:
= Keep away from: heat =zources

10.3 Hazardous decomposition products:

Polymerizes on exposure to light

On burning: release of toxic and corrosive gases/vapours (nitrous wapours,

carbon monoxide = carbon dioxide)

Page | 82

Robotic Fingerspelling Hand | 2012

Page | 83

FULLCURE 720

11. Toxicolegical information

11.1 Acute toxicity:
d=acryloylmorpholine

LDS50 oral rat

LD50 dermal rat
LDS0 dermal rabbhit
LES0 inhalation rat
LC50 inhalation rat

11.2 Chronic toxieity:

EC carc. cat.
EC muta. cat.
EC repr. cat.

Carcinogenicity (TLV)
Carcinogenicity (MAC)
Carcinogenicity (VHE)
Carcinogenicity (GWEB)
Carcinogenicity (MAK)
Mutagenicity (MAK)
Teratogenicity (MAK)

IARC classification

11.3 Routes of exposure:

= In normal conditions of us=e,

11.4 Acute effects/symptoms:

not
not
not

not
not
not
not

not
not
not

listed
listed
listed

listed
listed
listed
listed

listed
listed
listed

ligted

the hazardous contents cannot be released

= The following symptoms may appear when the components are released:

AFTER SKIN CONTACT

Tinglingfirritation of the skin

AFTER EYE CONTACT

11.5 Chronic effects:

Irritation of the eye tissue
Redness of the eye tissue

= May produce an allergic reaction

= The following symptoms may appear when the components are released:

- OH CONTINUOUS/REPEATED EXPOSURE/CONTACT:
= Skin rash/inflammation

Robotic Fingerspelling Hand | 2012

FULLCURE 720

12.1 Ecotoxicity:
- No data awvailable
12.2 Mobility:
- Veolatile ocrganic cempounds (VOC):

For other physicochemical properties see heading 9

12.3 Persistence and degradability:

= bicdegradation BODsg : H.D.
- water : = H.D.
- goil : T W= HN.D.

12. 4 Bigacoumulative potential:
- - oMb
- BC : H.D.
12.5 Other adverse effects:
= WGK T NV.T
- Effect on the ozeone layer

Greenhouse effect
Effect on waste water purification

% ThoD

days

Hot dangerous for the ozone layer
{1998/45/EC)

no data awvailable

no data awvailable

13. Disposal considerations

13.1 Provisions relating to waste:

- Waste material code_ (91/6B9/EEC, Council Decision 2001/11B/EC, O.J. L47 of
le/2,2001): 08 03 17 (waste printing toner containing dangerous

substances)
= Hazardous waste (91/6B%/EEC)

13.2 Bi% sal methods:

aefer to manufacturer/supplier for information on recovery/recycling
- ERemove to an authorized waste treatment plant

13.3 Packaging/Container:
= HNo available data

Page | 84

Robotic Fingerspelling Hand | 2012

Page | 85

FULLCURE 720

14. Transport information

14.1 Classification of the substance in compliance with UN Recommendations
UN number
CLASS HE
SUB RISES H
PROPER SHIPPING MAME

14.2 ADR (transport by road)
CLASS
PACKING
CLASSIFICATION CODE :
DAMGEER LABEL TANKS :
DANGER LABEL PACKAGES :

NOT SUBJECT

14.3 RID (transport by rail)
5

CLAS 1 NOT SUBJECT
PACKING :
CLASSIFICATION CODE

DANGER. LABEL TANKS

DANGEE LABEL PACKAGES
14.4 ADMR (transport by inland waterways)

CLASS 1 NOT SUBJECT
PACKING H
CLASSIFICATION CODE :

DANGEER LABEL TANKS

DANGEER LABET. PACKAGCES

14.5 IMDG (maritime transport)
CLASS ! NOT SUBJECT
SUB RISKS :
BACEING
MFAG
EMS :
MARINE POLLUTANT :

14.6 ICAD (air transport)
CLASS :
SUB RISKES :
BACHING :
PACKING INSTRUCTIONS PASSENGER ATRCRAFT
PACKING INSTRUCTIONS CRRGO AIRCEAFT

NOT SUBJECT

Robotic Fingerspelling Hand | 2012

Page | 86

FULLCURE 720

15. Regulatory information

Clasgsified dangerous in accordance with Directiwes &7/54B/EEC and 1999%/45/EC.
In normal conditions of use, the componentz cannot be released because of the

form in which the article or preparation iz placed on the market.

Contains: acrylate oligomer; epoxy acrylate; exo=1,7,T=
trimethylbicyclo[2.2.1)hept=-2=-yl acrylate ; Etenyl biz{2,4,6=
trimethylbenzoyl) -phosphine oxide; 4=acryloylmorpholine. May produce an
allergic reaction

16. Other information

The information provided on this HM5DS is correct to the best of cur knowladge; information and belief
at the date of its publication. Tha information given is designed only as a guidance for safe
handling, use, processing, storage, transportation; disposal and release and is not to be considered
as a warranty or guality specification. The information relates only to the specific material
designated and may not be valid for such material used in combination with any cother material or in
any process, unlass specified in the text.

HOT AFFLICAELE
HOT CETERMINED
INTERHAL CLASSIFICATION {HEFA)

= "
=}
T

Ewposore limits:
TLV : Thresheld Limit Value - ACGIH OSA 2004
OEsS : Occupational Exposure 5tandards - United Eingdom 2003
HEL Haximum Exposure Limits - United HKingdom 2003
AR Haximala Arbeitsplatrkonzentrationen - Germany 2002
TRE : Tachnische Richtkonzentrationen - Germany 2002
HAC : HMaximale aanvaarde concentratie - The Netherlands 2004
THE : Waleurs limites de Moyenne dfExposition - France 1%9%
ViE valeurs limites d*Exposition 4 court terme - Franoce 1999
GWEE Granswaarde beroepsmatige blootstelling - Balgiom 2002
GWE Granswaarde kortstondige blootstelling - Belgium 2002
EC : Indicative cccupational exposure limit valuss - directive 2000/39/EC

Chronic toxicity:
K : List of the carcinogenic substances and processes — The Hetherlands 2004

Full text of any R-phrases referred to under heading 2:

R20,22 : Harmful by inhalation and if swallowed

R22 : Harmful if swallowed

RIES37/38 : Irritating to eyes, respiratory system and skin

R36/348 : Irritating to eyes and skin

R : Irritating to skin

R4l : Risk of serious damage to eyes

R43 : May cause sensitisation by skin contact

RABSZ2 : Harmful: danger of sericus damage to health by prolonged exposure if swallowed
R531 : Hay cause long-term adverse effects in the aguatic environment

Robotic Fingerspelling Hand | 2012

Page | 87

Electricity Costs

afelany LIa)SAS ——
Bunybn jasns —
leanynauby ——
pujEIMawoD 67
[E12JaLLILIDD PaPLUS ——

|EjUapIsay —

sse|) Aq sa1ey pajpung adeJany 3IS

T102-000¢

il EvlL | OFL SEL | £l EvL | vEL ZZ1L | 6CL oFlL | SCL ool abejany Wa)shg —
61 6L | Z6L S6L | 691 FGL | OFL £'FlL | §GL £LL | 851 GEL Bunyin jaans —
ALl SLL | BOL FEE | ELL F S'E ¥'6 66 LEE | 90k 48 ARy Ry
B0L 8oL | 201 60L | BLL £ZL | 00L 66 'L 9zL | 901 i pujfelswwod 67
£51L £5L | 051 aFL | 951 sl | 9EL SEL Frl 86l | LEL oL | [BlRISWWDD PBNLIS —
ogl BEL | S5 OsL [8%l gFrlL | BZL STl A SEL | 0EL gLl lequap|say —
LLOZ | 0LOZ | BO0Z | 800Z | L00Z | 900Z | S00Z | #00Z | €00 | ZOOZ | LOOZ | DODZ

oz

06

oeL

sl

YA Jod Spua)

ozl

o6l

ole

Published by the Public Utilities Commission of California

Robotic Fingerspelling Hand | 2012

Servo Data Sheets

Page | 88

HS-625MG High d Metal Gear Servo
326255
Additional Views
P N

Click to view larger image

AR

The powerful high speed HS-825MG ik & perfect cholce for those applications requidng & fast and strong standand size
servo, Utlizing our M/P and metal gear train technology, the HS-825MG Is & fantastic spart servo for larger planes and

10th scale sport vehicles.
Specifications Spare Parls
Motor Type: 3 Pole EB402 - Casze Set
Bearing Type: Dual Ball Bearing
Speed (4.8V/6.0V): 0.18 /015 sec § &0
deg.
Torque oz.in,
4 BV/B.0V): 8/
Torguie kg.jom,
880V 55x6.8
Size In Inches: 156 x0.77 5 1.44
Eire in Millirmeters: 40.%9 ¥ 19,58 x 37 89
Weight ounces: 1.94
Weight grams: 55,00

Robotic Fingerspelling Hand | 2012

Page | 89

HS-645MG High Torque Metal Gear Servo

Click to view larger image

Addit onal Wiews

i i
' 8

The powerful HE-845MG ks one of Hitec's most popular servos, It's the perfect cholce for those larger sport planes or
manster trucks and bugghes requidng & durable high torque servo. Featuring our unique M/P and metal gear traln
technology, the HS-845MG offers one of the strongest gear trains avaltable in any servo.

Spedifications Spare Parts

Mator Type: IPoke 55303 - Gear Set
E5402 - Case Set

Bearing Type: Dual Ball Bearing

Spead [4.8VE.0V): 0.24 /0.20

Torque o2.fIn. (4 8V/8.0v): |107 /133

Torque kg fom, 807 10.0

(4 BV6.0V): /

Size in Inches: 159 5077 x 1.48

4039 x 1954 x

Size In Millimeters: ¥7.89

Wedght ounces: 1.54

Wedght grams: L1

Robotic Fingerspelling Hand | 2012

Page |90

SERVO Shield Schematic

@ | [x) | =) | w [
+ =
QR OUInpSy oL o kN
nnnnn -
o = o) w
[l I g
" i
g _%%;; .
E [=
|
&
= b} L]
I P
14 |y
= [}
g2 |%
El2 |3
[R= =}
'a.%? :l'%? %[:@ %E@ 1 \1:? | ‘@? T @ :|_.%| 1 g[@ | @ | %| 1 %|
LA & & & Al Al B & &
ane Gl El Gl Gl Gl ans ans ans Gl Gl Gl Gl
i
2 18
o :
o
=
=
ge
<
_ a3
L
ke, E
[4b] 1 1% -
= 3
w E
=
=D
S
=
Q
4=
=
—_—
0
=
[
o
=
[}
5}
-
=
=
[=]}
=
=
=}
L
@ | [x) =) | w [

Robotic Fingerspelling Hand | 2012

Page |91

SERVO Shield PCB Design

s

jiSmisEmReRd R TOMA3S
(@b eee -~

Z0Nd3s
T4XL £0NY3S

eee -

4

el Weal 20Na3S 1ngy

|

CO0C0E0 CEOEERED

ﬂ':

§000068 000000

Bottom of Board

Top of Board

Dol YovayT.

Robotic Fingerspelling Hand | 2012

Page |92

SERVO Shield BOM

I (N-3LTSH I0}5ISUEL] J0} yuIseay
I (IN-3LISH 10J€[n33) 388107 Joj yuIsieay
I IN-OFSXaE Jojsisues dud
I AN-SALLISINT 10)e|nga1 33830
0L sJapeay uid
! ON-B207-d) Yoel ;3mod y§ wuwig'z
; 10]12ede) JngT
I 101280 AGE JnOGh
I 1015153) WY0 0£9
I 105158 WYoq7z
I 105158) WYo 77
T IN-LOLZTLE Ja)depe)y Yy AT
kb Jagunu way Asxiaig e

DJRIYS OAJ3S JOJ S|eLialew Jo |ig

Robotic Fingerspelling Hand | 2012

Page |93

= Power Darin

|
FAIRCHILD
e

BEMICONDUJICTOR

gton TR

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings 7,=25°C unless otherwiss noted

BDX54/A/B/C

Hammer Drivers, Audio Amplifiers Applications
Power Liner and Switching Applications

= Complement to BOXE3, BOXES3A, BDX53B and BDX53C respectively

1

1.Base 2Collector 3 Emitter

!.

TO-220

)

Symibaol Parameter Value Units
Veeo Collector-Base Voltage : BOXS4 -45 v
: BDXE4A, -0 v
: BDXB4E - 80 v
- BOXBAC - 100 W
Vegn Colector-Emitter Violtage - BDX54 -45 v
: BOXE4A -0 v
: BDXE4B -80 v
: BDXB4C - 100 v
Veza Emitter-Base Volage -8 W
= Ciollector Current (DC) -8 A
s “Collector Cusrrent (Pulse) -12 A
Iz Base Current -02 A
Pe Collector Dissipation (T_=25"C) 60 W
T, Junction Temperatures 150 T
Terz Storage Temperature - B0~ 150 <
Electrical Characteristics T.=25C unless otherwise noted
Symibol Parameter Test Condition Min. | Typ. | Max. | Units
Vepnlsus) * Collector-Emitter Sustaining Voltage
: BDX54 lg=- 100m&, Iz =0 -45 v
: BOX54A - &0 v
: BOX54B -80 v
: BOX54C - 100 v
[Collector Cut-off Current : BDX54 ~200 | pA
- BOX54A -200 | pA
: BOXS4B -200 | pA
: BOXB4C -200 | pA
lega Collector Cut-off Current : BDX54 -500 | pA
: BOXE4A -500 | pA
: BDX54B -500 | pA
: BOXB4C -500 | pA
leza Emitter Cut-off Current Veg=-8V, =0 -2 mA
hez *DC Current Gain Wpe=-3V Io=-34 | 750
Vglsat) * Collector-Emitter Saturation Violtage lo=-34, I =-12mA -2 v
Veelsat) " Base-Emitter Saturation Voltage le=-34 lg=-12mA& -25 W
Ve * Parallel Diode Forward Voltage lo=-3A -1B | -258 W
l-=-BA -25 v

* Puise Test Pj=G0l

Ous, duty Ciwcie =1 5% Pulsed

G300 Fuiechiid Sermiconcucio: inisTadon)

. &, Psamey 2000

o/a/virsXag

Robotic Fingerspelling Hand | 2012

Page |94

I
FAIRCHILD

SEMICONDUCTOR®

LM317

3-Terminal Positive Adjustable Regulator

www.fairchildsemi.com

Features Description
» Cutput Current In Fxeess of 1. 54 Thus monohthie intesrated circwt 15 an adjustable 3-terminal
* Cutput Adjustable Between 1. 2V and 37V positive voltage regulator desipned to supply more than 154
* Internal Thermal Overload Protechion of load current with an output veltage admstable overa 12
* Internal Sheit Coenit Carrent Limitimg to 3TV, It emplovs mternal cwmrent limrtmg, thernual
» Ctput Tran=istor Safe Operating Avea Compensation shut-deon and =afe avea compensation.
» TO-220 Package

To-220

)

1

1. Adj 2. Output 3. Input

Internal Block Diagram

Input [F] L

Voltags Prode-olion
R Clrouttry
l Rimit
L - {2

Rev. 1.0.0

£2001 Falrchlid Semiconducion Corporalion

Robotic Fingerspelling Hand | 2012

Page |95

LM317
Absolute Maximum Ratings
Parameter Symbol Value Unit
Input-Output \Voltage Differential Vi-Va 40 \
Lead Temperature TLEAD 230 °C
Power Dissipation Po Internally limited W
Operating Junction Temperature Range Tj 0~+125 °C
Storage Temperature Range TSTG -B5 ~+125 °C
Temperature Coefficient of Output Voltage AolAT H).02 Yed"C
Electrical Characteristics
(WVI-Vo=3Y, lo= 0.5A, 0°C = Ta = + 125°C, Imax = 1.54, PDMax = 20W, unless otherwise specified)
Parameter Symbol Conditions Min | Typ. | Max. Unit
Ta = +25°C
o) - 001 | 004 % IV
Line Requlation (Mate1) Rline | 3V<Vi-Vo<40Vv
IV =\ -Vo < 40V - 0.02 | 0O7 % IV
Ta=+25"C, 10mA < lg = Ipax
Vo= 3V - 18 25 |mV% Vo
Load Regulation (Mote1) Rioad Vo= o4 0.5
o3 ulaticn e1)
= ' 10mA < 10 = Inax
Vg =3V - 40 70 |mV% Vo
Vo= 8V 0s 15
Adjustable Pin Current lany - - 45 100 WA,
: . V2V -Vo <40V
Adjustable Pin Current Change Alany 10mA £ 1o < Inax Po < Prax | 20 5 WA,
W =V - Vo =40V
Reference \Joltage YREF 10ma < 1o < Iaax 120 1.25 | 1.3D W
PD = Paac
Temperature Stability 5TT - - D7 - % Vo
Minimum Load Current to Maintain e
Regulation Ly | VI -Vo =40V - | 35| 12 ma
Vi -Vo= 15V, Pp < PMmax 39
Maximum Cutput Curment loimaxy | Vi-Vio=40V, P = Paax 10 03 - A
Ta=25C .
RMS Moise, % of ViouT ey Ta=+25°C, 10Hz <f<10KHz [- |0003]| 001 | %/Vo
Vo =10V, f=120Hz
Ripple Rejection RR withow Cany 66 60 - dB
Capuy = 10uF (Note2) 75
Long-Term Stability, TJ = THIGH =T Ta = +25°C for end point 03 1 o
= measurements, 1000HR - -
Themal Resistance Junction to ;
- - 3 - "CIW
Case ReJc
Mote:
1. Load and line regulation are specified at constant junction temperature. Change in VD due to heating effects must be taken
into account separately. Pulse testing with bow duty is usec. (Phay, = 20060
2 CaAD), when used, is connected between the adjustment pin and ground.
2

Robotic Fingerspelling Hand | 2012

CENB1040

Universal 40 Watt Series
ITE Switch-Mode Power Supply

«100-240VAC Universal Input

«Meets EISA2007, CEC Efficiency Level V,
EU (EC) No 278/2009 Phase Il

-Desktop Style

«Limited Power Source

«Certified to UL/EN60950-1, 2nd Edition

-5V to 48V Single Output Models, up fo 40W
-Modified and Custom Designs Available
-Regulated Output with Low Ripple

*No Load Power Consumption <0.3W
Impact-Resistant Polycarbonate Enclosure

®= C € RoHS) Lrs

Specifications

Page | 96

(SL

P L B R L BT TR T

3 Year Warranty

AULT

AC Input 100-240VAC, --10%6, 47-63 Hz, 12
Input Current 100WAGC: 114
Inrush Current B0 A peak, 264 W, cold start
Input Fuse 3.154, 250V Internal Primary Current Fuse is provided
Efficiency Maets EISA2007, CEC Efficiency Level V,

EU (EC) No 27872009 Phase Il
Output Voltage See chart
Output Power See chart
Ripple and Noise 196 phi-pk max., 20MHz BW

Line & Load Voltage Regulation Line: +f- 1%, Load: +/-5%

Transient Response S00ps max., 50% load step, typical
Minimum Load Mot required
Case Material Black 34V0 Polycarbonate
Case Dimensions 102 x 60 = 32mm. See outline drawing
Weight 250g

MTEBF 100,000 hours (calculated)
Hold-up Time 18 m3 min. @ 115Vac, 60 ms @ 230 Vac
COwverload Protection Hiccup Mode
Short Circuit Protection Hiccup Mode
Topology Switching — Fixed Frequency Flyback
Safety Standards EMAEC/CSAMLE0OS0-1, 2™ Edition, LPS
EMC See chart below
Dielectric Withstand Input-Output: 4,242Vde

Input-GND: 1,500 Vac, Output-GND: S00Vdc
Operating Temperature 0° to 40*C, no derating
Storage Temperature -30 to +85°C
Relative Humidity 5% to 85%, non-condensing
Altitude 0to 10,000 ft
COutput Cabile #IBAWG (UL1185), 1,500mm, 2 conductor
Cutput Connector 2.5mm barrel type (Ault #3), center positive (+)

EMC Specifications

Conducted Emissions
Radiated Emissions

Lime Frequency Harmonics
Voltage Fluctuations/Flicker
Static Discharge Immunity
Radiated RF Immunity
EFT!Burst Immunity

Lime Surge Immunity
Conducted RF Immunity
Power Frequency Magnetic Fiald Immunity
Voltage Dip Immunity

EN55022 Class B, FCC Part 15, Class B.
EN55022 Class B, FCC Part 15, Class B.
ENB1000-3-2, Class A

ENE1000-3-3

EMNE1000-4-2, 6V Contact Discharge, 8kV air discharge
EMNE1000-4-3, 3Vim.

ENE1000-4-4, 2&V/5kHz.

ENE1000-4-5, 1kV difizrential, 2\ common-mode
ENBG1000-4-6, 3Vims

ENB1000-4-8, 3A/m

EME1000-4-11, Criteria B

Taf2

SL Power Eleciranics Corp = 5050 King Drive Ventura, CA 53003 » Phone B05. 488 4565 » Fax 858.712.2040 » Email: info@sipawer.com = waw. slpawer.com

Robotic Fingerspelling Hand | 2012

Page |97

Master Task

Demo == True

ALWAYS

MASTER TASK

T == JUa4in)
T == snolAald

Robotic Fingerspelling Hand | 2012

Page |98

Master_task.h

//***

/** \file master_task.h
* This file contains a task class for the master controller of the project.

*

* Revisions:

* \li 02-06-2012 Created

* \li 03-26-2012 Header file accepted by Arduino

* \li 04-17-2012 Constructor with pointers accepted in Arduino

* License:

* This file released under the Lesser GNU Public License, version 2. This program
* is intended for educational use only, but it is not limited thereto.

*/

//***

/// This define prevents this .h file from being included more than once in a .cc file
#ifndef MASTER_TASK_H_
#define _MASTER_TASK_H_
#include <stdlib.h>
#include <stdint.h>
#include <Servo.h>
#include <user_task.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
telse
#include "WProgram.h"
#include <pins_arduino.h>
#endif
class master_task

{

protected:
bool write; // True if motor should be
running now
bool demo;
bool demo_begin;
uint8_t state;
uint8_t letter;
uint8_t thumbdown;
uintl6_t wordtime; // amount of time to delay between words
uintl6_t lettertime; // amount of time to delay between
uint8_t previousthumb;
uint8_t currentthumb;
Servo servol;
Servo servo2;
Servo servo3;
Servo servo4;
Servo servo5;
Servo servo6;
Servo servo7;
Servo servos;
Servo servo9;
Servo servol0;
Servo servoll;
user_task *user;

public:
// The constructor creates a new task object

Robotic Fingerspelling Hand | 2012

Page |99

master_task (user_task*, Servo, Servo)/*, Servo, Servo, Servo,
Servo, Servo, Servo, Servo, Servo, Servo); //(task_timer&, time_stamp&)*/;
// Tells master that the button was pressed and to run the demo loop
void run_demo(void);
// Delay between words
void wait(uint16_t);
// Detaches servos
void detach_servos(void);
// writes the 0 position to the finger servos
void neutral_fingers(void);
// writes the zero position to the thumb servos
void neutral_thumb(void);
// reattaches servos
void attach_servos(void);
// The run method is where the task actually performs its function
void run (void);
L
#endif // _MASTER_TASK_H_

Robotic Fingerspelling Hand | 2012

Master_task.cpp

Page | 100

//***

/** \file master_task.cpp

* This file tells the hand what needs to be actuated and when. It also controls the

* delay between letters, words, and each time the demo is run.

*
* Revisions:
* \li 02-06-2012 Created

* \li 03-26-2012 Header file accepted by Arduino
\li 04-17-2012 Constructor with pointers accepted in Arduino
\li 05-25-2012 fixed demo function/ letter by letter/ sentence input

License:

* This program is intended for fingerspelling use with The Smith-Kettlewell Eye
* Research Institute robotic hand, but it is not limited thereto.

*/

//***

#include <stdlib.h>
#include <stdint.h>
#include <Arduino.h>
#include <user_task.h>
#tinclude <Servo.h>
#include <master_task.h>

#define KNUCKLETHUMBO 140
#define KNUCKLETHUMB30 115
#define KNUCKLETHUMBA45 100
#define KNUCKLETHUMBG60 80
#define KNUCKLETHUMB90 50
#define MEDIALTHUMB180 140
#define MEDIALTHUMB90 110
#define MEDIALTHUMBS0 100
#define MEDIALTHUMB60 95
#define MEDIALTHUMBA45 90
#define MEDIALTHUMB30 85
#define MEDIALTHUMBO 80
#define KNUCKLEINDEXO 155
#define KNUCKLEINDEX15 130
#define KNUCKLEINDEX30 125
#define KNUCKLEINDEX45 115
#define KNUCKLEINDEX60 105
#define KNUCKLEINDEX90 95
#define MEDIALINDEXO 110
#define MEDIALINDEX45 85
#define MEDIALINDEX90 65
#define KNUCKLEMIDDLEO 130
#define KNUCKLEMIDDLE30 110
#define KNUCKLEMIDDLE45 105
#define KNUCKLEMIDDLE60 95
#define KNUCKLEMIDDLE90 85
#define MEDIALMIDDLEO 90
#define MEDIALMIDDLEA45 65
#define MEDIALMIDDLESO 45
#define KNUCKLERINGO 110
#define KNUCKLERING30 80
#define KNUCKLERING45 70
#define KNUCKLERING60 65
#define KNUCKLERING90 55

Robotic Fingerspelling Hand | 2012

Page | 101

#define MEDIALRINGO 135
#define MEDIALRING45 105
#define MEDIALRING90 80
#define KNUCKLEPINKYO 105
#define KNUCKLEPINKY30 90
#define KNUCKLEPINKY45 75
#define KNUCKLEPINKY60 70
#tdefine KNUCKLEPINKY90 60
#define MEDIALPINKYO 140
#define MEDIALPINKY45 100
#define MEDIALPINKY90 80
#define THUMBIN 1

#define THUMBOUT 0
#define WRISTSTILL 20
#define WRISTTURN 150

uint8_t values [26][13]=
{

{'A",KNUCKLETHUMBO ,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLESO ,MEDIALMIDDLE9
0,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'B", KNUCKLETHUMBO ,MEDIALTHUMBO ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLEO ,MEDIALMIDDLEO ,KNUCKLERI
NGO ,MEDIALRINGO ,KNUCKLEPINKYO ,MEDIALPINKYO ,WRISTSTILL , THUMBOUT},

{'C',KNUCKLETHUMB60,MEDIALTHUMBA45 ,KNUCKLEINDEX45 ,MEDIALINDEX90 ,KNUCKLEMIDDLE30 ,MEDIALMIDDLE90 ,KNUCK
LERING45 ,MEDIALRING90 ,KNUCKLEPINKY45 ,MEDIALPINKY90 ,WRISTSTILL , THUMBOUT},

{'D',KNUCKLETHUMB30,MEDIALTHUMBA45 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLE45 ,MEDIALMIDDLE90 ,KNUCKL
ERING45 ,MEDIALRING90 ,KNUCKLEPINKY45 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'E',KNUCKLETHUMBO ,MEDIALTHUMBO ,KNUCKLEINDEXO ,MEDIALINDEX90 ,KNUCKLEMIDDLEO ,MEDIALINDEX90 ,KNUCKLERI
NGO ,MEDIALRING90 ,KNUCKLEPINKYO ,MEDIALPINKY90 ,WRISTSTILL , THUMBIN },

{'F',KNUCKLETHUMB30,MEDIALTHUMB80 ,KNUCKLEINDEX30 ,MEDIALINDEX90 ,KNUCKLEMIDDLEO ,MEDIALMIDDLEO ,KNUCKL
ERINGO ,MEDIALRINGO ,KNUCKLEPINKYO ,MEDIALPINKYO ,WRISTSTILL , THUMBIN },

{'G",KNUCKLETHUMBO ,MEDIALTHUMB90 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9O ,KNUCKL
ERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTTURN ,THUMBOUT},

{'H',KNUCKLETHUMBO ,MEDIALTHUMB90 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLEO ,MEDIALMIDDLEO ,KNUCKLE
RING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTTURN ,THUMBOUT},

{'I'KNUCKLETHUMBO ,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE45 ,KNUCKL
ERING90 ,MEDIALRING45 ,KNUCKLEPINKYO ,MEDIALPINKYO ,WRISTTURN ,THUMBOUT},

{J',KNUCKLETHUMBO ,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE9SO ,MEDIALMIDDLE4
5 ,KNUCKLERING90 ,MEDIALRING45 ,KNUCKLEPINKYO ,MEDIALPINKYO ,WRISTSTILL , THUMBOUT},

{'K',KNUCKLETHUMBO ,MEDIALTHUMB80 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLE45 ,MEDIALMIDDLEO ,
KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'L',KNUCKLETHUMBO ,MEDIALTHUMB180,KNUCKLEINDEXO ,MEDIALINDEX0 ,KNUCKLEMIDDLESO ,MEDIALMIDDLESO
,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL , THUMBOUT},

{'M',KNUCKLETHUMBO ,MEDIALTHUMB30 ,KNUCKLEINDEX60 ,MEDIALINDEX45 ,KNUCKLEMIDDLE60 ,MEDIALMIDDLE
45 ,KNUCKLERING45 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL , THUMBIN },

Robotic Fingerspelling Hand | 2012

Page | 102

{'N',KNUCKLETHUMBO ,MEDIALTHUMB30 ,KNUCKLEINDEX60 ,MEDIALINDEX45 ,KNUCKLEMIDDLE60 ,MEDIALMIDDLE4
5 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

{'0",KNUCKLETHUMB30,MEDIALTHUMB45 ,KNUCKLEINDEX45 ,MEDIALINDEX90 ,KNUCKLEMIDDLE45 ,MEDIALMIDDLE
90 ,KNUCKLERING45 ,MEDIALRING90 ,KNUCKLEPINKY45 ,MEDIALPINKY90 ,WRISTSTILL , THUMBIN },

{'P',KNUCKLETHUMBO ,MEDIALTHUMB90 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLE60 ,MEDIALMIDDLE45
,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL , THUMBOUT},

{'Q',KNUCKLETHUMB45,MEDIALTHUMBS90 ,KNUCKLEINDEX90 ,MEDIALINDEXO ,KNUCKLEMIDDLESO ,MEDIALMIDDLES
0,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'R",KNUCKLETHUMB30,MEDIALTHUMBA45 ,KNUCKLEINDEX15 ,MEDIALINDEXO ,KNUCKLEMIDDLEO ,MEDIALMIDDLEO
,KNUCKLERING30 ,MEDIALRINGS0 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'S', KNUCKLETHUMB30,MEDIALTHUMB60 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLESO ,MEDIALMIDDLE9
0,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'T',KNUCKLETHUMBO ,MEDIALTHUMB45 ,KNUCKLEINDEX45 ,MEDIALINDEX90 ,KNUCKLEMIDDLESO ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

{'U", KNUCKLETHUMB30,MEDIALTHUMB30 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLEO ,MEDIALMIDDLEO ,
KNUCKLERING30 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'V',KNUCKLETHUMB30,MEDIALTHUMB80 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLE9SO ,MEDIALMIDDLE9
0,KNUCKLERINGO ,MEDIALRINGO ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'W',KNUCKLETHUMB30,MEDIALTHUMB30 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLEO ,MEDIALMIDDLEO
,KNUCKLERINGO ,MEDIALRINGO ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL , THUMBOUT},

{'X',KNUCKLETHUMB30,MEDIALTHUMB30 ,KNUCKLEINDEXO ,MEDIALINDEX90 ,KNUCKLEMIDDLESO ,MEDIALMIDDLE9
0 ,KNUCKLERINGS0 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'Y',KNUCKLETHUMBO ,MEDIALTHUMB180,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLESO ,MEDIALMIDDLE9
0,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKYO ,MEDIALPINKYO ,WRISTSTILL , THUMBOUT},

{'Z', KNUCKLETHUMB45,MEDIALTHUMB45 ,KNUCKLEINDEXO ,MEDIALINDEXO ,KNUCKLEMIDDLESO ,MEDIALMIDDLE90
,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTTURN ,THUMBOUT}
|3
master_task::master_task (user_task *usertask, Servo servoone, Servo servotwo)/*, servo servo3, servo servo4,
Servo servos, servo servo6, servo servo7, servo servos, servo servo9, servo servol0,servo servoll)*/
{
servol = servoone;
servo2 = servotwo;
user = usertask;
letter = 0;
write = false;
wordtime = 1000;
lettertime = 500;
previousthumb = 0;
currentthumb = 0;
state=0;
}
void master_task::run_demo(void)
{
demo = true;
demo_begin = true;

Robotic Fingerspelling Hand | 2012

}

state = 8;

void master_task::wait(uint16_t delaytime)

{

}

for(volatile int i = 0; i<=delaytime; i++)

{
}

void master_task::detach_servos(void)

{

}

servol.detach();
servo2.detach();
servo3.detach();
servod.detach();
servo5.detach();
servo6.detach();
servo7.detach();
servo8.detach();
servo9.detach();
servol0.detach();
servoll.detach();

void master_task::neutral_fingers(void)

{

}

servo3.write(KNUCKLEINDEXO);
servo4.write(MEDIALINDEXO);
servo5.write(KNUCKLEMIDDLEO);
servo6.write(MEDIALMIDDLEOQ);
servo?7.write(KNUCKLERINGO);
servo8.write(MEDIALRINGO);
servo9.write(KNUCKLEPINKYO);
servol0.write(MEDIALPINKYO);

void master_task::neutral_thumb(void)

{

}

servol.write(KNUCKLETHUMBO);
servo2.write(MEDIALTHUMB180);

void master_task::attach_servos(void)

{

}

servol.attach(11); // KNUCKLETHUMB
servo2.attach(2); // MEDIALTHUMB
servo3.attach(3); // KNUCKLEINDEX
servod.attach(4); // MEDIALINDEX
servo5.attach(5); // KNUCKLEMIDDLE
servo6.attach(6); // MEDIALMIDDLE
servo7.attach(7); // KNUCKLERING
servo8.attach(8); // MEDIALRING
servo9.attach(9); // KNUCKLEPINKY
servol0.attach(10); // MEDIALPINKY

servoll.attach(12); // Wrist
neutral_fingers();
neutral_thumb();

void master_task::run (void)

{

switch(state)

Page | 103

Robotic Fingerspelling Hand | 2012

case(0):

attach_servos();

state =1;

case(1):

case(2):

break;

write = user->got_letter();
if(write==true)

{
letter = user->input_letter();
user->reset();
state=2;

}

break;

currentthumb = values|letter][12];

if(letter == 26)

{
if(lettertime >= 200)
{
lettertime -= 100;
Serial.printin(lettertime);
}
user->get_next_letter();
state = 1;
}
else if(letter == 27)
{
if(lettertime <= 2000)
{
lettertime += 100;
Serial.printin(lettertime);
}
user->get_next_letter();
state = 1;
}
else if (letter == 28)
{
neutral_finger();
neutral_thumb();
delay(wordtime);
user->get_next_letter();
state = 1;
}
else if (letter == 29)
{
detach_servos();
user->get_next_letter();
state = 1;
}
else if (letter == 30)
{
attach_servos();
user->get_next_letter();
state=1;
}

else if (previousthumb == 1 && currentthumb == 1)

{

Page | 104

Robotic Fingerspelling Hand | 2012

case(3):

case(4):

state = 3;
}

else if (previousthumb == 0 && currentthumb == 1)

{

state = 4;

}

else if(previousthumb == 1 && currentthumb == 0)

{

state = 5;
}
else
{
state = 6;
}
previousthumb = currentthumb;
break;

Serial.printIn("thumb inside to another letter with thumb inside");
Serial.printIn("Fingers move to zero");
Serial.printIn("thumb Move to position");
Serial.printIn("fingers move to position");
neutral_fingers();

delay(100);
servol.write(values[letter][1]);
servo2.write(values[letter][2]);
servo3.write(values[letter][3]);
servod.write(values[letter][4]);
servo5.write(values[letter][5]);
servob.write(values[letter][6]);
servo7.write(values[letter][7]);
servo8.write(values[letter][8]);
servo9.write(values[letter][9]);
servol0.write(values|letter][10]);
servoll.write(values|letter][11]);

state =7;

break;

Serial.printin("thumb outside to letter with thumb inside");
Serial.printin("thumb move to zero");
Serial.printIn("fingers move to zero");
Serial.printIn(" thumb Move to position");
Serial.printIn(" fingers move to position");
neutral_thumb();

delay(100);

neutral_fingers();

delay(100);
servol.write(values[letter][1]);
servo2.write(values[letter][2]);
delay(150);
servo3.write(values[letter][3]);
servod.write(values[letter][4]);
servo5.write(values[letter][5]);
servob6.write(values[letter][6]);
servo7.write(values[letter][7]);
servo8.write(values[letter][8]);
servo9.write(values[letter][9]);

Page | 105

Robotic Fingerspelling Hand | 2012

case(5):

case(6):

case(7):

servol0.write(values[letter][10]);
servoll.write(values|[letter][11]);
state =7,

break;

Serial.printin("thumb inside to letter with thumb outside");
Serial.printIn("fingers move to zero");
Serial.printin("thumb move to zero");

Serial.printIn(" fingers move to position");

Serial.printin(" thumb Move to position");
neutral_fingers();

delay(100);

neutral_thumb();

delay(100);

servo3.write(values[letter][3]);
servod.write(values[letter][4]);
servo5.write(values[letter][5])
servob6.write(values[letter][6]);
servo7.write(values[letter][7]);
servo8.write(values[letter][8]);
servo9.write(values[letter][9]);
servol0.write(values[letter][10]);
servol.write(values[letter][1]);
servo2.write(values[letter][2]);
servoll.write(values|[letter][11]);
state =7;

break;

’

Serial.printin("thumb outside to letter with thumb outside");
Serial.printIn("thumb move to zero");
Serial.printIn(" fingers move to position");
Serial.printIn(" thumb Move to position");
neutral_thumb();

delay(100);
servo3.write(values[letter][3]);
servod.write(values[letter][4]);
servo5.write(values[letter][5]);
servob.write(values[letter][6]);
servo?7.write(values[letter][7]);
servo8.write(values[letter][8]);
servo9.write(values[letter][9]);
servol0.write(values|letter][10]);
servol.write(values[letter][1]);
servo2.write(values[letter][2]);
servoll.write(values[letter][11]);
state=7;

break;

Serial.printin((char)values|letter][0]);
delay(lettertime);
user->get_next_letter();
if(demo)
{

state = §;

}

Page | 106

Robotic Fingerspelling Hand | 2012

Page | 107

else

{
state =1;

}

break;

case(8):

letter +4+;

if(demo_begin)

{
demo_begin = false;
letter = 0;
state = 2;

}

else if(letter == 26)

{
demo = false;
delay(10000);
state=1;

}

else

{
state = 2;

}

break;

default:

Serial.printIn('Error State');
break;

Robotic Fingerspelling Hand | 2012

Servo Code

Servo.h
Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

/*

A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method

Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.

Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
The sequence used to sieze timers is defined in timers.h

The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.
attach(pin) - Attaches a servo motor to ani/o pin.

attach(pin, min, max) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400

Page | 108

write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)

writeMicroseconds() - Sets the servo pulse width in microseconds

read() - Gets the last written servo pulse width as an angle between 0 and 180.

readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
attached() - Returns true if there is a servo attached.

detach() - Stops an attached servos from pulsing its i/o pin.

*/

#ifndef Servo_h
#define Servo_h

#include <inttypes.h>

/*

* Defines for 16 bit timers used with Servo library

*

*If _useTimerX is defined then TimerX is a 16 bit timer on the curent board

* timerl6_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.

Robotic Fingerspelling Hand | 2012

*

*/

// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmegal280_) || defined(__AVR_ATmega2560_)

#define _useTimer5
#define _useTimerl
#define _useTimer3
#define _useTimer4

typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timerl6_Sequence_t ;

#elif defined(__AVR_ATmega32U4_)

#define _useTimer3
#define _useTimerl

typedef enum { _timer3, _timerl, _Nbr_16timers } timerl6_Sequence_t;

#elif defined(__AVR_ATO0USB646__) || defined(_AVR_AT90USB1286_)

#define _useTimer3
#define _useTimerl

typedef enum { _timer3, _timerl, _Nbr_16timers } timerl6_Sequence_t;

#elif defined(__AVR_ATmegal28__) | |defined(__AVR_ATmegal281_)| |defined(__AVR_ATmega2561_)

#define _useTimer3
#define _useTimerl

typedef enum { _timer3, _timerl, _Nbr_16timers } timerl6_Sequence_t;

#else // everything else

#define _useTimerl

typedef enum { _timerl, _Nbr_16timers } timerl6_Sequence_t;

#endif

#define Servo_VERSION

2 // software version of this library

#define MIN_PULSE_WIDTH 544 //the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 //the longest pulse sent to a servo

#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds

#define SERVOS_PER_TIMER

#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)

#define INVALID_SERVO

typedef struct {
uint8_t nbr 6;
uint8_t isActive :1;
} ServoPin_t ;

typedef struct {
ServoPin_t Pin;
unsigned int ticks;

}servo_t;

class Servo

{

public:
Servo();

255 //flag indicating an invalid servo index

// a pin number from 0 to 63
// true if this channel is enabled, pin not pulsed if false

12 //the maximum number of servos controlled by one timer

Page | 109

Robotic Fingerspelling Hand | 2012

Page | 110

uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if
failure

uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.

void detach();

void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
void writeMicroseconds(int value); // Write pulse width in microseconds
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
private:
uint8_t servolndex; // index into the channel data for this servo
int8_t min; // minimum is this value times 4 added to MIN_PULSE_W!IDTH
int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
3
#endif

Robotic Fingerspelling Hand | 2012

Page | 111

Servo.cpp
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

*/
/*

A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
The servos are pulsed in the background using the value most recently written using the write() method

Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.

The methods are:
Servo - Class for manipulating servo motors connected to Arduino pins.

attach(pin) - Attaches a servo motor to an i/o pin.
attach(pin, min, max) - Attaches to a pin setting min and max values in microseconds
default min is 544, max is 2400

write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
writeMicroseconds() - Sets the servo pulse width in microseconds

read() - Gets the last written servo pulse width as an angle between 0 and 180.

readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)

attached() - Returns true if there is a servo attached.

detach() - Stops an attached servos from pulsing its i/o pin.

*/

#include <avr/interrupt.h>
#include <WProgram.h>

#include "Servo.h"
#define usToTicks(_us) ((clockCyclesPerMicrosecond()* _us)/8) // converts microseconds to tick (assumes prescale of 8)

// 12 Aug 2009
#define ticksToUs(_ticks) (((unsigned)_ticks * 8)/ clockCyclesPerMicrosecond()) // converts from ticks back to microseconds

#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009

//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)

Robotic Fingerspelling Hand | 2012

Page | 112

static servo_t servos[MAX_SERVOS]; // static array of servo structures

static volatile int8_t Channel[_Nbr_16timers]; // counter for the servo being pulsed for each timer (or -1 if refresh
interval)

uint8_t ServoCount = 0; // the total number of attached servos

// convenience macros

#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timerl6_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer
controlling this servo

#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on
this timer

#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer
and channel

#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and
channel

#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in u$ for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo

/************ static functions common to a” instances ***********************/

static inline void handle_interrupts(timerl6_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
if(Channel[timer] < 0)
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else{
if(SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true)
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
}

Channel[timer]++; //increment to the next channel
if(SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRNA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if((unsigned)*TCNTn < (usToTicks(REFRESH_INTERVAL) + 4)) // allow a few ticks to ensure the next OCR1A not missed
*OCRNA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRNA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}

#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
handle_interrupts(_timerl, & TCNT1, &0OCR1A);
}

#endif
#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)

Robotic Fingerspelling Hand | 2012

{
handle_interrupts(_timer3, & TCNT3, &0OCR3A);

}
#endif

#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
handle_interrupts(_timer4, & TCNT4, &0OCR4A);

}
#endif

#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
handle_interrupts(_timer5, & TCNT5, &0OCR5A);

}
#endif

#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimerl)
void Timer1Service()
{
handle_interrupts(_timerl, & TCNT1, &0OCR1A);

}
#endif

#if defined(_useTimer3)
void Timer3Service()
{
handle_interrupts(_timer3, & TCNT3, &0OCR3A);
}
#endif
#endif

static void initISR(timerl6_Sequence_t timer)

{
#if defined (_useTimerl)
if(timer == _timer1) {

TCCR1A =0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1=0; // clear the timer count

#if defined(__AVR_ATmega8__)| | defined(__AVR_ATmegal28_)
TIFR |= _BV(OCF1A); // clear any pending interrupts;
TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else
// here if not ATmega8 or ATmegal28
TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
timerAttach(TIMERIOUTCOMPAREA_INT, Timerl1Service);
#endif

}
#endif

#if defined (_useTimer3)

Page | 113

Robotic Fingerspelling Hand | 2012

if(timer == _timer3) {

TCCR3A =0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 =0; // clear the timer count

#if defined(__AVR_ATmegal28_)

TIFR |= _BV(OCF3A); // clear any pending interrupts;

ETIMSK |=_BV(OCIE3A); // enable the output compare interrupt

#else

TIFR3 = _BV(OCF3A); // clear any pending interrupts;

TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)

timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif

}

#endif

#if defined (_useTimer4)
if(timer == _timer4) {

TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count

TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt

}
#endif

#if defined (_useTimer5)
if(timer == _timer5) {

TCCR5A =0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 =0; // clear the timer count

TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIESA) ; // enable the output compare interrupt
}
#endif

}

static void finISR(timerl6_Sequence_t timer)
{
//disable use of the given timer
#if defined WIRING // Wiring
if(timer == _timer1) {
#if defined(__AVR_ATmegal281_)| |defined(__AVR_ATmega2561_)
TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
Helse
TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
#endif
timerDetach(TIMERIOUTCOMPAREA_INT);
K
else if(timer == _timer3) {
#if defined(__AVR_ATmegal281_)| |defined(__AVR_ATmega2561_)
TIMSK3 &=~_BV(OCIE3A); //disable the timer3 output compare A interrupt
Helse
ETIMSK &=~_BV(OCIE3A); //disable the timer3 output compare A interrupt
#endif
timerDetach(TIMER3OUTCOMPAREA_INT);

Page | 114

Robotic Fingerspelling Hand | 2012

telse

//For Arduino - in future: call here to a currently undefined function to reset the timer
#endif
}

static boolean isTimerActive(timer16_Sequence_t timer)

{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;

}

return false;

}

/****************** end Of static functions ******************************/

Servo::Servo()

{
if(ServoCount < MAX_SERVOS) {
this->servolndex = ServoCount++; // assign a servo index to this instance
servos[this->servolndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servolndex = INVALID_SERVO ; // too many servos
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
if(this->servolndex < MAX_SERVOS) {
pinMode(pin, OUTPUT) ; // set servo pin to output

servos|[this->servolndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timerl6_Sequence_t timer = SERVO_INDEX_TO_TIMER(servolndex);
if(isTimerActive(timer) == false)
initISR(timer);
servos[this->servolndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servolndex ;

}

void Servo::detach()
{
servos|[this->servolndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servolndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}

Page | 115

Robotic Fingerspelling Hand | 2012

void Servo::write(int value)
{
if(value < MIN_PULSE_WIDTH)
{ // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if(value < 0) value = 0;
if(value > 180) value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value);

}

void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servolndex;
if((channel >= 0) && (channel < MAX_SERVOS)) // ensure channel is valid
{
if(value < SERVO_MIN()) // ensure pulse width is valid
value = SERVO_MIN();
else if(value > SERVO_MAX())
value = SERVO_MAX();

value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009

uint8_t oldSREG = SREG;
cli();
servos[channel].ticks = value;
SREG = oldSREG;
}
}

int Servo::read() // return the value as degrees

{
return map(this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);

}

int Servo::readMicroseconds()

{
unsigned int pulsewidth;
if(this->servolndex != INVALID_SERVO)
pulsewidth = ticksToUs(servos[this->servolndex].ticks) + TRIM_DURATION ; // 12 aug 2009
else
pulsewidth =0;

return pulsewidth;

}

bool Servo::attached()

{

return servos[this->servolndex].Pin.isActive ;

}

Page | 116

Robotic Fingerspelling Hand | 2012

Page | 117

User Task

L
=2
oc
—
I
I
=
©
=

USER TASK

Robotic Fingerspelling Hand | 2012

User_task.h

//***

/** \file user_task.h

* This file contains a task class for running a user interface for the motor

* controller. It has a single-state task which just reads the serial port to see if
* the user typed anything

*

*

Revisions:

* \li 02-06-2012 Created generic switch cases

* \li 03-26-2012 Header file accepted by Arduino

* \li 04-17-2012 Constructor with pointers accepted in Arduino

* \li 05-02-2012 Added functions to be used with Master_task
*

* License:

* This program is intended for fingerspelling use with The Smith-Kettlewell Eye
* Research Institute robotic hand, but it is not limited thereto.

*/

//***

/// This define prevents this .h file from being included more than once in a .cc file
#ifndef USER_TASK_H_
#define _USER_TASK_H_
#include <stdlib.h>
#include <stdint.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
telse
#include "WProgram.h"
#include <pins_arduino.h>
#endif

/!

/** This class contains a task which...

*/

class user_task //: public stl_task
{
// This protected data can only be accessed from this class or its descendents
protected:
bool valid;
bool next;
uint8_t letter;
uint8_t state;
char input_char;

public:
// The constructor creates a new task object
user_task ();

// The run method is where the task actually performs its function
void run (void);

//This function will display an introduction in the serial monitor
void intro(void);

// This function is a flag to see if a valid letter was received

bool got_letter(void);

// This function returns the current letter received

uint8_t input_letter(void);

// This function clears the input variables

Page | 118

Robotic Fingerspelling Hand | 2012

Page | 119

void reset(void);
// This function tells user when to get the next letter
void get_next_letter(void);

3

#endif // _TASK_USER_H_

Robotic Fingerspelling Hand | 2012

User_task.cpp
//***
/** \file user_task.cpp

* This file tells the master file what letters (A-Z) are to be formed by accepting

input from the user. It also allows the user to modify the delay between letters.

%
* Revisions:
* \li 02-06-2012 Created generic switch cases
* \li 03-26-2012 Header file accepted by Arduino
\li 04-17-2012 Constructor with pointers accepted in Arduino
\li 05-02-2012 Added functions to be used with Master_task

License:

This program is intended for fingerspelling use with The Smith-Kettlewell Eye
* Research Institute robotic hand, but it is not limited thereto.
*/

//***

#include <stdlib.h>

#include <stdint.h>

#include "user_task.h"

#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"

Helse
#include "WProgram.h"
#include <pins_arduino.h>

#endif

//
/** This constructor creates a user interface task object. It checks if the user has
* typed a command at the serial port and if so tells the servos what to do.

*/

user_task::user_task ()//(task_timer& a_timer, time_stamp& t_stamp)
//: stl_task (a_timer, t_stamp)

{
letter = 0;
state = 0;
valid = false;
next= false;
input_char =0;
}
//

/** This is the function which runs when it is called by the master file. */

void user_task::run (void)

{
// There's no switch statement because this task only does one thing all the time:
// check for a character, and perform a command

if(state ==0)
{
state=1;
intro();
}
else if (state == 1)
{

if (Serial.available() > 0)

Page | 120

Robotic Fingerspelling Hand | 2012

}

else if (state ==2)

{

}

input_char = Serial.read();
state = 2;

switch (input_char)

{

// Pressing the '+' key increases finger-spelling speed
case ('+'):
case ('='):

Serial.print("\nIncreasing speed\n");

valid = true;

letter = 26;

state = 3;

break;
// Pressing the '-' key decreases finger-spelling speed
case ('_'):
case ('-'):

Serial.print("\nDecreasing speed\n");

valid = true;

letter = 27;

state = 3;

break;
// Pressing the 'space' key provides a space between letters
case (''):

Serial.print("");

valid = true;

letter = 28;

state = 3;

break;
// Pressing the '0' key disconnects all servos
case ('0'):

Serial.print("\nDetach servos\n");

valid = true;

letter = 29;

state = 3;

break;
// Pressing the '1' connects all servos for use
case ('1'):

Serial.print("\nAttach servos\n");

valid = true;

letter = 30;

state = 3;

break;

// Pressing the 'A' key forms the corresponding letter of the alphabet
case ('A'):
case ('a'):

Serial.print("A");

valid = true;

letter = 0;

state = 3;

break;
// Pressing the 'B' key forms the corresponding letter of the alphabet
case ('B'):
case ('b"):

Serial.print("B");

Page | 121

Robotic Fingerspelling Hand | 2012

valid = true;

letter = 1;

state = 3;

break;
// Pressing the 'C' key forms the corresponding letter of the alphabet
case ('C"):
case ('c'):

Serial.print("C");

valid = true;

letter = 2;

state = 3;

break;
// Pressing the 'D' key forms the corresponding letter of the alphabet
case ('D"):
case ('d"):

Serial.print("D");

valid = true;

letter = 3;

state = 3;

break;
// Pressing the 'E' key forms the corresponding letter of the alphabet
case ('E'):
case ('e'):

Serial.print("E");

valid = true;

letter = 4;

state = 3;

break;
// Pressing the 'F' key forms the corresponding letter of the alphabet
case ('F'):
case ('f'):

Serial.print("F");

valid = true;

letter = 5;

state = 3;

break;
// Pressing the 'G' key forms the corresponding letter of the alphabet
case ('G"):
case ('g'):

Serial.print("G");

valid = true;

letter = 6;

state = 3;

break;
// Pressing the 'H' key forms the corresponding letter of the alphabet
case ('H"):
case ('h'):

Serial.print("H");

valid = true;

letter =7;

state = 3;

break;
// Pressing the 'l' key forms the corresponding letter of the alphabet
case ('I'):

case ('i'):
Serial.print("1");
valid = true;
letter = §;

Page | 122

Robotic Fingerspelling Hand | 2012

state = 3;

break;
// Pressing the ')' key forms the corresponding letter of the alphabet
case (')'):

case ('j'):
Serial.print(")");
valid = true;
letter = 9;
state = 3;
break;

// Pressing the 'K' key forms the corresponding letter of the alphabet

case ('K'):

case ('k'):
Serial.print("K");
valid = true;
letter = 10;
state = 3;
break;

// Pressing the 'L' key forms the corresponding letter of the alphabet
case ('L'):
case ('l'):

Serial.print("L");

valid = true;

letter = 11;

state = 3;

break;
// Pressing the 'M' key forms the corresponding letter of the alphabet
case ('M'):
case ('m'):

Serial.print("M");

valid = true;

letter = 12;

state = 3;

break;
// Pressing the 'N' key forms the corresponding letter of the alphabet
case ('N'):

case ('n"):
Serial.print("N");
valid = true;
letter = 13;
state = 3;
break;

// Pressing the '0' key forms the corresponding letter of the alphabet

case ('0'):

case ('0'):
Serial.print("0");
valid = true;
letter = 14;
state = 3;
break;

// Pressing the 'P' key forms the corresponding letter of the alphabet

case ('P'):

case ('p'):
Serial.print("P");
valid = true;
letter = 15;
state = 3;
break;

Page | 123

Robotic Fingerspelling Hand | 2012

// Pressing the 'Q' key forms the corresponding letter of the alphabet
case ('Q'):
case ('q'):

Serial.print("Q");

valid = true;

letter = 16;

state = 3;

break;
// Pressing the 'R' key forms the corresponding letter of the alphabet
case ('R"):
case ('r'):

Serial.print("R");

valid = true;

letter = 17;

state = 3;

break;
// Pressing the 'S' key forms the corresponding letter of the alphabet
case ('S'):

case ('s'):
Serial.print("S");
valid = true;
letter = 18;
state = 3;
break;

// Pressing the 'T' key forms the corresponding letter of the alphabet

case ('T'):

case ('t'):
Serial.print("T");
valid = true;
letter = 19;
state = 3;
break;

// Pressing the 'U' key forms the corresponding letter of the alphabet
case ('U'"):
case ('u'):

Serial.print("U");

valid = true;

letter = 20;

state = 3;

break;
// Pressing the 'V' key forms the corresponding letter of the alphabet
case ('V'):
case ('V'):

Serial.print("V");

valid = true;

letter = 21;

state = 3;

break;
// Pressing the 'W' key forms the corresponding letter of the alphabet
case ('W'"):
case ('w'):

Serial.print("W");

valid = true;

letter = 22;

state = 3;

break;
// Pressing the 'X' key forms the corresponding letter of the alphabet
case ('X'):

Page | 124

Robotic Fingerspelling Hand | 2012

case ('x'):
Serial.print("X");

Page | 125

// Pressing the 'Y' key forms the corresponding letter of the alphabet

case ('Y'):
case ('y'):
Serial.print("Y");

// Pressing the 'Z' key forms the corresponding letter of the alphabet

case ('Z'):

case ('z'):

// If the user types anything else, just ignore it

default:
}
}
else if(state == 3)
{
if(next)
{
next = false;
state =1,
}
}
return;

/** This function will display an introduction in the serial monitor*/

void user_task::intro(void)

Serial.println("\nThe Smith-Kettlewell Eye Research Institute");

{
Serial.printIin("\tRobotic Fingerspelling Hand");
Serial.printin("\nBy: Colby Dixon, Brian Fang, Trevor Wong");
Serial.printin("Released: June 2012");
Serial.printIn("\nUser Commands:");
Serial.printIn("A-Z = Letter to finger-spell\n\"+\"

}

/** This function is a flag to see if a valid letter was received*/

bool user_task::got_letter(void)

{

return valid;

}

Serial.print("Z");

Serial.printin("?");

Increase Speed, \"-\" = Decrease speed");

Robotic Fingerspelling Hand | 2012

/** This function returns the current letter received*/
uint8_t user_task::input_letter(void)
{

return letter;

}

/** This function clears the input variables*/
void user_task::reset(void)

{
letter = 0;
valid = false;
}
void user_task::get_next_letter(void)
{
next = true;
}

Page | 126

Robotic Fingerspelling Hand | 2012

Page | 127

Motor Torque Code (EES)

Formatted Equations:

Motor Torque Fall 12

-This program will determine the minimum amount of torgue (oz-in) required of a motor when under a load.
-If both weight and torgue are known, the code can be modified to solve for gear ratios

Given Data:

Wy = 2 [IB] weight of load

Wy = 0035 [IB] weight of motor
Ry = 025 [in] radius ofload

Fm = 02 [in]l radius of motor

g = 386 [in/s gravitational constant

Desired Kinematics

E
= —————— desired angularveloci
@ 05 [3] d ty
© desired angul lerati
= — esired angular acceleratian
o 025 [5] 9

This segment of code will determine the total inertia for any one of the following setups: Direct Drive, Gears, Fulleys.
-Mote that two of the three must remain commented in {}

Direct Drive
Ji = Jo + Jn totalinertia
;) 2
Jy o= & load inertia
27
R~ .
Jo = W motor inertia
m m 2 - g
Torgue

T = Jy- « Torgueinlb-in

Tez = T - 16 [0zM8] Torguein oz-in

Robotic Fingerspelling Hand | 2012

Page | 128

Source Code:

"Maotor Torque Fall 12

-This program will determine the minimum amount of targue (oz-in) required of & motor when under a load.
-If bath weight and torque are known, the code can be modified to solve for gear ratios

"Given Data: "
Wy _L =2 [lk] “weight of load"
W_m o= 0.035 k] “weight of motor"
F_L=0&5[in] "radius of load"
F_m=020[in] "radius of motor”
g = 386 [in/s"2] "gravitational constant"

"Desired Kinematics"
ormega =pif(05[s]) "desired angular welocit,"
alpha =omega/(0.25[s]) "desired angular acceleration”

"This segment of code will determine the total inertia far any one of the following setups: Direct Drive, Gears. Pulleys.
-Iote that two of the three must remain commented in {

"Dirgct Orive"
Jt=d L+l m "total inertia"
JL=0_L*F L2/ (2*g) "load ineria"
J_rm =W R_m T 2% 0) "rmotar inertia"

{"Gears"
M =g "gear ratio”
Jt=d LNTE +J_m "total inertia"
J_L=0W L*R_L" 2],’[2*:3] "load inertia"
Jom =W m*F_m 2/2*y) "motorineria"l
T"Fulleys"
F_i=0125[n] "pulley 10"
F_o1 =0.5]in] "pulley 1 00"
F_oZ = 0.5in] "pulley 2 00"
F_o3 =05]in] "pulley 3 00"
W_pl =03 [1k] "waight of pulley 1"
W_pe = 0.3 [1k] "waight of pulley 2"
Wopad =0.3[k] "waight of pulley 3"
J_t F_L")/g+ J_pl+J_p2+J_p3 "total ineria"
J p1 = (W pU(E*gjj*(Fi ol"2 +R_i"2) "nulley 1 inertia"
J_p2 = (W_p2/2*g) * (R_o2"2 +R_i"2) "pulley 2 inertia
J_p3 = 0W_p32* g * (R_ol3"2 +R_i"2) "pulley 3 inertia"}
"Targque"
T=J1t*alpha "Targue in lb-in"
T_oz=T*{16 [0z/1k]) "Targque in oz-in"

Robotic Fingerspelling Hand | 2012

Page | 129

1988 Hand Anthropometric Excerpt

“‘\.“‘ Rl
T -
TECHNIC AL REPORT y
NATICK/TR-92/011 -
HAND Al - 207 v O
US. ARMY T H”Th,f:?"fl'.'w'.-ii_
From :)
Best Available Copy) oy
Thomas M. Greiner

Dhecepaber 19493

F'tt"J'L chf,l
[unE 1':5-: T “'\\.-':.‘“':I-:' S

(LS R R

92-01430

AR

APPROVED FOR PUGLIT FELEASE
DISTRIBUTION UNLIEITZD

UNITED STATES ARMYY NATICK
RESEARCH, DEVELOTWENT AN BNGINIERING

TR RS
NATICK, MASSACHUSETTS 017

SOLDIER SCiENCE D

Robotic Fingerspelling Hand | 2012

Page | 130

59—HAND LENCGTH MEASLRED

Tha length of the herd from the tip of digit 3 to the stylicn lancmark,
This dimensicon wus measured directly during the survey with a Poech
sliding caliper. S@== Corden, et al. (1969) pages 190=191.

Faired t-test corpariscons of hand length from the digitizer amd from
survey measurersnt show that there is ro significance difference ketween
mean values for mon (te,51 df=1002 pe=,&10), but that thare is a
significant difierence betwsen mean values for women (be=27.57 df=1303

This discrepancy ray be due to the digitizing difficulties

associated with long finger nails, which are more Common anchg Wooen.

o '
——" ;jj
i '!. _i
JL-IM!—I\-M - il e e i

Illustration adapted from Gorden, et al. (1989).

158

Robotic Fingerspelling Hand | 2012

Page | 131

S9-—HAND LENGIH MERSURED

FEMALES MALES
THE SIIMGRY STATTSTICS THE SUMMAKY STATISTICS
CENTINETERS DNGES CENTIMETERS TNCHES
158.07 MEARH T.11 19.41 MEM T.64
0.03 SEQMEAN) 0.01 0.03 SE(MEN) 0,01
0.598 ST [EY 0,39 0.99 5T D&V 0.35
0.02 SE(SD) 0.01 0.0 EE{5D) d.01
l4.80 MIIDMM 5.87 16.90 MINIMM D.65
21.50 MAXTMIM B.46 22.90 MAXIMM 9.02
CCEFF. OF VARIATION 5.4% COEFF. OF VARIATION 5.1%
SMETRY——PETA I 0.20 SYMMETRY——FETR I 0.32
HIRTCSIS—FEETA IT 3.1 FUETOSIS———EFETH, II A.22
NIMEER OF SUBEJECTS 1304 HUMEER OF SURTECTS 1003
FEFCENTILES FERCENTIIES
CENTTMETERS IDNCHES CENTIMETERS INCHES
15.894 15T 5.28 17.27 15T 6.80
146.18 2HD 6.37 17.50 MDD 6.89
16.33 3RD 6.43 17.85 IRD 6.95
15.53 ETH 6.51 17.85 5H 7.03
16.85 10TH 5,54 18.17 10TH 7.15
17.07 15TH 6.T2 18.39 15H T.24
17.25 20TH G.74 18,56 20TH 7.31
17.40 25TH 6.85 18.72 25TH T.37
17.54 A0TH G.91 1&6.86 30TH T.482
17.67 ISTH 6.96 18.99 35TH 7.47
17.79 40TH T.01 19.11 40TH T.52
17.91 45TH 7.05 19.23 45TH 7.57
18.03 BOTH T.10 159.35 S50TH 7.62
18.15 SSTH 7.1 19.48 S5TH 7.67
18.28 GOTH T20 19,60 &0TH T.73
18,41 ESTH 7.25 19.74 &5TH T.77
18.55 J0M 7.30 19.88 704 7.83
18,70 JETH T.36 20.03 ToTH 7.89
18.87 BOTH 7,43 20.21 BOTH 7.96
15.08 85TH 7.51 20.41 BSTH 8.04
19,35 90TH 7.62 20.€8 90TH B.14
19.76 Q5TH 7.78 21.06 S5TH B.30
20,04 97TTH 7.89 21.37 9TTH 8.41
20.2% QETH T.98 21.57 S8TH B.49
20.61 99TH B.11 21.98 S9TH 8.62

159

Robotic Fingerspelling Hand | 2012

Page | 132

Hand Shapes

Robotic Fingerspelling Hand | 2012

Page | 133

Robotic Fingerspelling Hand | 2012

Page | 134

J (twist)

Robotic Fingerspelling Hand | 2012

Page | 135

Robotic Fingerspelling Hand | 2012

Page | 136

Robotic Fingerspelling Hand | 2012

Page | 137

Robotic Fingerspelling Hand | 2012

Page | 138

Y Z (twist)

Robotic Fingerspelling Hand | 2012

Page | 139

Installation:

1.

Go to the Arduino website and hit the Download tab, or follow this link

http://arduino.cc/en/Main/Software

Download to your computer’s OS.

Go to the download location and unzip the file
Locate the .exe and double click it.

Example:

C:\ ... \arduino-1.0.1-windows\arduino-1.0.1

Uploading files to the Arduino:

1.

2
3.
4

Plug the USB into the Arduino before connecting it to the computer
Open Arduino.exe

File > Open - [file name].ino

Click the right arrow on the GUI to upload the file

Installing Arduino files to Arduino:

Tuning:

NOTE: The tuning program tunes one finger at a time. The tuning order is: thumb = index 2>

middle - ring = pinky = wrist and loops back to the thumb.

1.

2
3
4.
5

First, loaded up the degrees.ino to the Arduino.

Open terminal.exe

Engage the servos by pressing “g”.

“1” will decrement the angle of the knuckle servo by 5, which will bend the knuckle joint.
“2” will increment the angle of the knuckle servo by 5, which will straighten the knuckle
joint.

“3” will decrement the angle of the medial servo by 5, which will bend the medial joint.

“4” will increment the angle of the medial servo by 5, which will straighten the medial joint.
Record servo angle values that correspond with the angles in the #defines in

master_task.cpp

Robotic Fingerspelling Hand | 2012

http://arduino.cc/en/Main/Software

Page | 140

9. Press “+” to tune the next finger or “-“ to tune the previous finger

Hand Program:

WARNING: The transistor that controls the power does not have the heat sink properly attached
due to space. Running the hand continuously for long periods of time will cause the transistor to
die. It is best to run it at most 2 minutes and let it cool down. To let it cool down, you can press "1",
"0" or the reset button. Even though when the hand is in the neutral position it is on, it is not
drawing any power so the transistor will still cool down.

1. First, loaded up the matrix_test.ino to the Arduino.

2. Once program is uploaded, you can control the hand using the terminal or just run the
demo.

3. To run demo, all you need to do is press the red demo button. The demo will spell through
the alphabet then turn off for a minute to allow the transistor to cool down. Then reengage
the servos and ready to use again.

4. To run real time, you will need to use the terminal.exe provided. In the textbox, you can
type sentences or words and then press enter for the hand to do the commands. The lower

box is for real time, so when you press a letter, the hand will immediately go to that letter.

Figure 28. Demo button to run the alphabet.

Robotic Fingerspelling Hand | 2012

Page | 141

= e
Cemmaeh COM Port— 1 Baud rate D ata bit P arity Stop bit
BeScan " 600 (" 14400 (57600 5 &+ none || o4

= [coMs =]l ~ 1200 19200 ¢ 115200 P € odd

—ﬁfp oW 2400 C 28300 C 128000 || . ; " even || (15
£bout. s ||| ~ 4300 ¢ 38400 ¢ 256000 mark

Quit | F 9600 (" 56000 ¢ custom || ©* B i space 2
Setting |
[T AutaDis/Connect [Time [Sheamlog custom BR Fx Clear ASCIH table] Scriptin

Set font
Setfan | [T AutoStart Scipt [~ CR=LF [~ Stay on Top IE'EUD |'1 '#I Graph Fiemu:utjllll
Receive |

= _ i HEX [Dec [Bin

CLE&R | Feset Counter| 13 %] Counter= 0 & ASCH [Hex StartLog| Stoplod

T rarnzmit
CLE&R | Send File | ||:| -:} [+ CR=CR+LF BREAK | E=IDTR ERTS

Macro |
Set Macros | k1 M2 3 b4 kA5 [b 7 b k43 _

k13 14 k15 M1G M17 k418 13 k20 k21 I

|hi Hebby look it works [~ +CR _ =Send |

FS

Figure 29. The box highlighted in blue is the Textbox for typing in sentences and words. The box highlighted in red is the
Realtime box. When you enter a letter or command in here, the hand will do it immediately.

Robotic Fingerspelling Hand | 2012

