
P a g e | 0

Robotic Fingerspelling Hand | 2012

6/4/2012

Cal Poly: San Luis Obispo | Mechanical Engineering Dept.

ROBOTIC FINGERSPELLING HAND
FOR DEAF-BLIND COMMUNICATION

T
E
A
M

P a g e | 1

Robotic Fingerspelling Hand | 2012

Robotic Fingerspelling Hand

for Deaf-Blind Communication

June 6, 2012

Mechanical Engineering Department
California Polytechnic State University

San Luis Obispo

P a g e | 2

Robotic Fingerspelling Hand | 2012

Capstone Project
Partial fulfillment of the requirements for a

Bachelor of Science degree in Mechanical Engineering

Sponsor:

The Smith-Kettlewell Eye Research Institute
Rehabilitation Engineering Research Center for Blindness and Low Vision

Faculty Advisor:

Dr. John R. Ridgely

Team Members:

Brian Fang brfang@calpoly.edu
Colby Dixon cadixon@calpoly.edu
Trevor Wong tlwong@calpoly.edu

P a g e | 3

Robotic Fingerspelling Hand | 2012

Acknowledgements

 Dr. Deborah Gilden, Associate Director of The Smith-Kettlewell Eye

Research Institute for her sponsorship of this project as well as her words
of encouragement throughout the year.

 Dr. John Ridgely for his patience as well as all the engineering advice he
offered throughout the year as our senior project advisor.

 Jerry Vin for all his insight having worked on his iteration of the project for
the past two years as a Master’s thesis.

 Larry Coolidge for taking the time to assist in our rapid prototyping needs.

 Cal Poly Machine Shops for use of their equipment.

 Hobby Headquarters of Atascadero, CA for providing discounts on various
parts, including servo motors.

 ME 405/410 students for allowing us a portion of the Mechatronics lab to
work in.

P a g e | 4

Robotic Fingerspelling Hand | 2012

Table of Contents

Chapter 1: Introduction………………………………………………………..
1.1. Introduction
1.2. Capstone Project
1.3. Project Scope
1.4. Unit System
1.5. Terminology

Chapter 2: Background ……………………………………………………….

2.1. Dexter
2.2. Ralph
2.3. Cal Poly Senior Project 2008
2.4. Cal Poly Senior Project 2009
2.5. Cal Poly Master’s Thesis 2012

Chapter 3: Objective ...………………………………………………………..

3.1. Sponsor’s Requirements
3.2. Engineering Requirements

Chapter 4: Project Management …………………………………………….

4.1. Group/Individual Tasks

Chapter 5: Milestones ………………………………………………………...

Chapter 6: Design Approach …………………………………………………

Chapter 7: Design Development …………………………………………….

7.1. Unused Concepts
7.2. Used Concepts
7.3. Actuation Methods
7.4. Microcontroller
7.5. Programming
7.6. Hand Size

Chapter 8: Final Design ………………………………………………………

8.1. Motor Housing
8.2. Wrist Movement
8.3. Actuation
8.4. Finger Mechanism
8.5. Thumb Mechanism
8.6. Springs

6

10

14

15

17

20

21

40

P a g e | 5

Robotic Fingerspelling Hand | 2012

Chapter 9: Manufacturing …………………………………………………….

9.1. Rapid Prototyping the Hand
9.2. Construction of the Case
9.3. Other Manufacturing Options

Chapter 10: Testing …………………………………………………………...
10.1. Strength Tests
10.2. Fatigue Test
10.3. Heat Test
10.4. Future Tests Required

Chapter 11: Cost ………………………………………………………………
11.1. Rapid Prototyping
11.2. Complete Design

Chapter 12: Results & Conclusion………………………………………………
12.1. Results
12.2. Conclusion
12.3. Future Design

Appendix ……………………………………………………………………….

i. Sources
ii. American Manual Alphabet
iii. Bill of Materials
iv. Quality Function Deployment Table
v. Decision Matrices
vi. Gantt Chart
vii. Design Sequence Flowchart
viii. Other Concepts
ix. Solid Models
x. Rapid Prototyping properties
xi. Average electrical costs in California
xii. Servo data sheets
xiii. Servo shield information
xiv. Program state transition diagrams and code
xv. Torque calculation code
xvi. Anthropometric Data excerpt
xvii. Hand Shapes
xviii. Installation tips

43

46

50

51

53

P a g e | 6

Robotic Fingerspelling Hand | 2012

Introduction

 Fluent communication is something that many people take for granted, but there is a

population that faces extreme difficulties with communication due to disabilities such as deaf-

blindness. Most adults with this condition have been diagnosed with Usher’s Syndrome. The typical

progression of Usher’s Syndrome starts with deafness at birth, and blindness occurring later in life.

This puts the affected individual into a position where they already know sign language but not

braille when they lose their sight. The term deaf-blind encompasses those who have completely lost

their hearing and sight as well as those who have only partially lost these senses. For people with

this condition, tactile sensation eventually becomes their main form of communication.

Various methods of tactile communication have been developed, such as the Braille

alphabet and the Tadoma method, but this project will focus on tactile finger-spelling. By feeling the

hand of a finger-speller, a deaf-blind person can read a message letter-by-letter using a learned

alphabet such as the American Sign Language alphabet. In this age of technology, a mechanical

hand that could take the place of a fingerspeller and connect to a computer would be of huge value

to someone who is deaf-blind. Currently there are no commercial mechanical fingerspelling hands.

The deaf-blind community still relies on a translator to communicate with people who do not know

sign language or fingerspelling. If there is a device that could fingerspell simply by typing message,

fluent communication between a deaf-blind individual and an individual with no fingerspelling

experience would achievable.

The Smith-Kettlewell Eye Research Institute in San Francisco, henceforth referred to as

SKERI, had great interest in this project and has gotten universities to try to make it a reality.

Several variations of a robotic fingerspelling hand have been initiated by SKERI, specifically by the

Rehabilitation Engineering Research Center and Dr. Deborah Gilden, who has asked our team to

approach this task from a new angle. The major stakeholders consist of SKERI, the deaf-blind

community, and our team, as the success of this project is important to our education as engineers.

Ultimately, the goal is to open the avenue of electronic communication to the fingerspelling deaf-

blind community. Our main goal is to create a robust, working robotic fingerspelling hand that can

fingerspell every letter in the American Sign Language alphabet. Other specifications that SKERI

require are that the hand is the size of an average person and that is it portable. Specifications that

P a g e | 7

Robotic Fingerspelling Hand | 2012

SKERI would like to see are: battery powered hand, hand size comparable to a small female, and

text to speech.

Capstone Project:

This project has been completed in partial fulfillment of the requirements for a Bachelor’s

Degree in Mechanical Engineering at California Polytechnic State University, San Luis Obispo. All

three of the team members are students in the Mechanical Engineering Department. Trevor Wong

and Colby Dixon will be leaving Cal Poly with their degrees upon completion of this project, and

Brian Fang will be staying to earn his Masters in Mechanical Engineering. The Capstone Project in

the Mechanical Engineering department is meant to be an exercise in teamwork and design,

starting from the brainstorming process and moving all the way through the manufacturing and

testing of a device. All Mechanical Engineering students go through this process with a team that

has been assembled by the department to complement one another.

The process is three quarters; the students are enrolled in ME 428 in the fall, ME 429 in the

winter, and ME 430 in the spring. The first two quarters involve assigned lab time with a project

advisor assigned by the department. In the case of this team, Dr. John Ridgely was assigned our

team due to his expertise in the area of mechatronics, or “Mechanical Electronics”. Throughout the

process, the students are constantly reminded that this is an exercise in the process of mechanical

design. Upon completion of the capstone project, it is the departments hope that the students will

be able to effectively work with a team to design and create a viable solution to some problem, as

well as to communicate effectively with the sponsor who has an interest in the project and supplies

the funding.

Project Scope:

 Because so many attempts have been made to create a usable finger-spelling hand, we

made an attempt to build on past successes and failures rather than make the same mistakes. The

goal of this project has increasingly been to just make something work, even if it does not perfectly

mimic the movements of a human hand. We have made an attempt to describe our design to a

point where someone can easily apply what we have learned to a newer design that will address

some of the issues that we have had. A section of design recommendations is included at the end of

the report.

P a g e | 8

Robotic Fingerspelling Hand | 2012

Unit System:

 The U.S. Customary Unit system was chosen for this project because it is the most
commonly used unit for engineers in the Cal Poly Mechanical Engineering Department. Conversions
were very minimal, as most of the specifications for components of the project were described in
U.S. Customary, sometimes in addition to Metric units. The anthropometric tables used to
determine hand size provide an example of the need for U.S. Customary units, as there are no
listings of Metric units in the anthropometric data.

Terminology:

Team HandSpeak: Handspeak is a registered trademark as detailed at handspeak.com. The
contents of the website are also copyrighted. The name “Team HandSpeak” is used solely for the
purpose of the Mechanical Engineering Capstone project at California Polytechnic State University,
San Luis Obispo in the time period of September 2011 through June 2012. The logo for Team
HandSpeak is significantly different than the logo for handspeak.com. In the event of any content
from handspeak.com being used in Team HandSpeak’s final report, the proper citation will be
added as per handspeak.com’s specifications. HandSpeak is not to be used as a brand name or
product name in any future revisions of the final design created by Team HandSpeak.

Deaf-blindess: There are various ways to write the term “deaf-blind”. For this report, both “deaf”
and “blind” will be fully lowercase unless beginning a sentence or title. Someone who is deaf-blind
is considered to have impaired vision and hearing, it does not necessarily mean that they are both
legally blind and deaf.

Cal Poly: This capstone project is completed for a bachelor’s degree at California Polytechnic State
University, San Luis Obispo. The name of the college is commonly referred to as simply “Cal Poly”,
and will be referred to as such for the rest of the report.

Proximal-Medial-Distal Phalanges: The segments of the fingers that are connected by joints are
known as “phalanges”. The term “proximal” describes the phalange closest to the hand, “medial”
describes the middle phalange, and “distal” describes the tips of the fingers.

Cables: Many different actuating lines were used in the development of the hand. All of them had
the characteristic of being small, flexible, able to carry tension, and easily tied at the ends. For this
report, items with these characteristics are referred to as the “cables” that transfer power from the
motors to the mechanisms. A more descriptive term for our final choice would be “coated wire
rope”, but we feel that “cable” is sufficient.

Servos: This term requires the most explanation because it is the least defined. Technically, a
“servomechanism” is any mechanical device that has some sort of automatic feedback that tunes
the performance of the device. “Servomechanism” is often shortened to “servo”, but can still apply

P a g e | 9

Robotic Fingerspelling Hand | 2012

to any device such as a valve or piston. The term “servo” in our report refers to small Hobby Servo
Motors that contain a potentiometer and feedback circuit within the body of the device. This makes
the motors much easier to control than attaching our own encoders for example, which would
require many more connections and electronics.

Torsion Springs: Truly, a torsion spring is one that stores energy via torsion in the material. The
springs used in the hand are referred to as “torsion springs” because they create and resist torque
about the pivots. The metal itself is actually storing energy via bending as the coils get tighter.

P a g e | 10

Robotic Fingerspelling Hand | 2012

Background
 The first attempt at creating a fingerspelling hand was patented in 1978 by the Southwest

Research Institute, henceforth referred to as SWRI. It served to be a proof of concept but failed to

make all the necessary hand-shapes and operate in a fluid manner. Since then there have been five

notable attempts, along with five projects at Cal Poly, three of which are completed and two of

which are currently in progress. Due to the history of engineering on this topic, our team has

chosen to focus our background research on these previous hands and will forgo extensive research

into other far more complicated robotic and prosthetic hands. The following paragraphs will

provide a brief background of the four hands that we benchmarked against and why.

Figure 1. Dexter

DEXTER:

The first hand we will focus on has been dubbed “Dexter” by SKERI. It was built by a team of

Stanford Mechanical Engineering Students in 1985. Dexter was much improved over the hand built

by SWRI and formed all the letters of the alphabet but was extremely bulky and required

compressed air to drive the pneumatic actuators. Although the drive system was impractical and

bulky, the hand itself was quite successful for the level of simplicity in its design. The whole hand

had seven pneumatic actuators. Each finger was actuated by a single pneumatic with a linear spring

to provide some resistance and return. The pneumatic pulled four metal cables. Three of the cables

were used to bend each section of the finger and the last cable was used to straighten the finger.

For the index finger, there was a second pneumatic that twisted the finger so that it could form the

letter R. The thumb was controlled by two pneumatics actuators. The first one controlled the

P a g e | 11

Robotic Fingerspelling Hand | 2012

bending of the thumb across the hand. The second one controlled the thumbs movement to and

away from the hand. Since the hand was made of metal, it is very sturdy and robust. As other

attempts have been bogged down by too many complications, we felt that Dexter was studying for

inspiration. The cable system proved to be very effective in bending the fingers and its overall

design is very robust. Two subsequent Dexter designs later came about and met with mild success.

Figure 2. Ralph

Ralph:

The most successful of the designs seems to be RALPH, for Robotic ALPHabet. This hand was

built in 1994 by the Rehabilitation Research and Development department of the Veterans Affairs.

RALPH fixed many of the problems of the Dexter hands, but still wasn’t quite robust or attractive

enough to be picked up by any commercial companies. RALPH was also only half a hand as it only

had the fingers, no forearm and no wrist. The hand is also very short, which made it hard to read as

it is in an unnatural position for the reader. It was actuated with DC servo motors. The fingers were

made with mechanical linkages rather than wire. RALPH connected to computers using a serial

connection, RS232. The interface with the user was done through a computer. While all the control

was done on the microcontroller in the hand.

P a g e | 12

Robotic Fingerspelling Hand | 2012

Figure 3. Cal Poly Senior Project #1

Cal Poly Senior Project #1:

In January 2008, a senior project team at Cal Poly took on this challenge, accomplishing a

remarkable amount of research and development in their short time frame of six months. They built

a working hand that met many of the requirements for the project. Unfortunately, they ran into a

serious problem when they found that their choice of actuators overheated and limited the use

time of the hand. They chose to build the hand out of aluminum. This resulted in a hand that was

bulky and not lifelike enough to be successful. There is much to learn from their design process and

trial and error.

Figure 4. Cal Poly Senior Project #2

Cal Poly Senior Project #2:

We are also benchmarking against the hand of a Cal Poly interdisciplinary team. Of the

many things that we can learn from this hand is the performance of hobby servos and

manufacturing. The hand had issues with durability, and it broke in several places, but at one time it

was a working device. Each joint was connected with a mechanical linkage, so only one servo was

needed to completely bend a finger. This design does not allow for independent motion of the

distal, intermediate phalanges to the proximal phalange.

P a g e | 13

Robotic Fingerspelling Hand | 2012

Figure 5. Jerry Vin's Graduate Thesis Hand

Jerry Vin:

Another hand is the work of Jerry Vin, a graduate student at Cal Poly. Jerry’s project is

currently in progress and he has expressed interest in offering his experiences to our team. His

design uses eleven DC brushless motors and two DC hobby servos. The index finger is controlled by

three motors. The motors rotate to pull on a cable that bends or straightens the joints. This distal

phalange is linked to the intermediate phalange with a mechanical linkage. As the intermediate-

proximal joint bends, the distal-intermediate joint bends with it. The last motor pulls on a cable that

moves the finger to the side so that it can make the letter V. The ring and pinky finger are controlled

by one motor. The middle finger is actuated exactly like the index finger, except it does not have a

third motor to move it side to side. They are the same as the middle finger, except they do not need

independent control for the intermediate-proximal and proximal-metacarpal joints, so those cables

are threaded through one motor. The thumb is controlled by four motors. One motor was used to

control the distal-proximal joint and another to control the proximal-metacarpal joint. The third

motor is used to move the thumb across the hand. The last motor is to control the thumbs

movement to and away from the hand. As we are somewhat designing in parallel, it seems useful to

benchmark against his work and collaborate with thoughts and positive criticisms.

P a g e | 14

Robotic Fingerspelling Hand | 2012

Objective
Our project was to build a device that would be able to communicate with a deaf-blind

person through fingerspelling. The main goal of the project is to have the device form all 26 letters

in the English alphabet and sequence them into words. The next major goal is to make the system

as robust as possible. This means that it will work reliably and smoothly throughout its lifetime. The

device should be portable, as well as allow the user the option of different orientations, such as

horizontal and vertical. The operation of the device will be driven by a computer. This will require a

substantial amount of coding. Few other smaller goals are that the device should not be too loud,

look realistic and easy to fix. The product should be safe. Safety issues include: features ensuring

the hand will not crush a user’s hand, prevention of exposed wires shocking the user, etc.

Sponsor’s Requirements:

• The hand should be able to form all 26 letters of the American Manual Alphabet.

• The hand should be lifelike.

• The hand should be portable and be able to be read in different orientations.

• The hand should be the size of an average adult or smaller.

• The hand should not have any heating issues where the reader would get burned from

touching the hand.

• The hand should be able to form letters at minimum a speed of one letter per second.

• The hand should be able to form letters based off of user input.

• The hand should cost under $1000. Ideally in the $500 range.

Based on the sponsors’ requirements, we came up with the following categories of engineering

targets:

• Internal Temperature – Sustainable heat dispersion

• External Temperature – Temperature on the exterior of the hand

• Input / Output – Ability to spell letters after being typed

• USB or serial port – The type interface with the computer

• Number of interfaces – What programs will be used to connect the computer and hand

• Delay between letters – The time delay between forming letters

P a g e | 15

Robotic Fingerspelling Hand | 2012

• Delay between words – The time delay after finishing spelling a word

• Number of external controls – Number of buttons or switches on the exterior of the hand

• Ability to form letters – The accuracy and ability to form letters

• Ease of Use – How intuitive is the device and the length of the learning curve

• Double letter indication

• Noise Level

• Weight

• Time to attach/detach – The amount of time it will take to detach from a base

• Battery Life

• Usage Voltage – Amount of voltage used to operate the device

• Length of Hand

• Glove – Will a glove be used

• Horizontal - Can the device be used while it is parallel to the floor

• Vertical - Can the device be used while standing upright

• Lap held – Can the device be used while lying on someone’s lap

• To scale – how to scale the fingers relative to each other and palm

• Interior accessibility – The ease of getting to the interior of the device

• Production cost

• Price

• Life-time

• Force to induce

• Force to withstand

Through the process of making a Quality Function Deployment (QFD), we could see what

engineering requirements we should focus on. We weighted customer’s requirements based off

what we felt was most important. From there we put a number from 1-9. A “1” meant that the

engineering requirement was not really relevant to requirement and a “9” for very relevant to

requirement. With the requirements all weighted, we could see that the two most important

engineering requirements we should focus on was the ease of use and weight. The two lowest rated

categories were visual appeal and noise level.

P a g e | 16

Robotic Fingerspelling Hand | 2012

At the bottom of the QFD, we have a set of targets we aimed to meet for each of the

categories listed above. Along with our targets, we benchmarked previous projects on their

performance in each category. Some of the categories were measured with a Yes/No. Yes was used

if the previous projects were able to meet the category requirement and No if it was not able too.

There is also a +, √, - system used to rate categories. A "+" means that the project greatly exceeds

our desired target. A “√” means that the project can meet our target. A "–" means that the project

does not meet our target or cannot meet our target. A "?" meant that weren’t able to obtain

enough information to rate the project properly.

P a g e | 17

Robotic Fingerspelling Hand | 2012

Project Management

In the early stages of development, each member of the team was equally involved in all

aspects of the project. This included background research, preliminary analysis, and production of

conceptual models. Upon choosing the best model to follow through to a final design, each

member’s focus shifted to different tasks in order to accomplish more in the same amount of time.

This is described below.

Brian:

 Originally, each member was to design a portion of the hand, Brian’s being the palm.

However, once it was realized that a shield was necessary to power all of the servos, his attention

shifted to designing and building a custom shield. Brian was also in charge of developing the master

program that would be programmed onto the Arduino.

Colby:

 Colby was initially in charge of designing the fingers and the base connection to the hand.

He would later continue where Brian left off on designing the palm. This task took a considerable

amount of time as Colby made a conscious effort to make the hand appear more realistic.

Trevor:

 Trevor was tasked with designing the thumb. The thumb is the only digit that was simplified

by fixing a joint position and yet was to still be used to form all the letters of the alphabet. Trevor

was also in charge of making the user_task code which is used by the master program, as well as

the code used to tune the servo s/finger positions.

Though the tasks were divided, all the members of our group were able to assist one

another. For example, the programming reached a point where nothing could be verified until the

hand was made, so the team collaborated on the design. All of the members also took part in part

procurement, machining, and assembling of the project.

 A summary of the major tasks can be seen in the table below, as well as a list of milestones

which follow. For a visual aide, see the Gantt chart in the appendix.

P a g e | 18

Robotic Fingerspelling Hand | 2012

Table 1. Group/Individual Tasks

Tasks Brian Colby Trevor
Base design x
Hand design x x x
Machining/Rapid prototyping x x x
Mechatronics x x
Progress documentation x x
Shield design x
Testing/Evaluating x x x

P a g e | 19

Robotic Fingerspelling Hand | 2012

Milestones

1. Conceptual design review

2. Critical Design Review

3. Working finger model, open/close motion

4. Working thumb model, open/close/rotate

5. Project Update

6. Computer-to-hand recognition of alphabet

7. Palm and back of hand casing , hand assembled

8. Wrist movement and arm completed

9. Adjustable orientation/detachable base assembled

10. Final SKERI meeting

11. Design Expo

12. Industry Expo for SKERI

December 5th 2011

February 3rd 2012

February 20th 2012

March 26th 2012

March 26th 2012

April 19th 2012

April 30th 2012

May 15th 2012

May 15th 2012

May 21st 2012

May 31st 2012

June 28th 2012

P a g e | 20

Robotic Fingerspelling Hand | 2012

Design Approach
Our project is somewhat unusual in that each component of the hand can be developed

largely independent of the others. For example, the method by which we curl the individual fingers

has little to do with the type of actuator we use, because almost all of our concepts for the curl can

be driven by any type of spinning shaft. The one exception to this is the idea of linear actuators in

the fingers that act directly on the joint. With this in mind, we assumed a mostly bottom-up design

process in which we made decision matrices for each component. We split the hand into three

major systems: the wrist, the fingers, and the thumb. To further divide the components, each of

these groups has various subsystems that need to be decided on.

After brainstorming many different ideas, we weighed the pros and cons of each idea,

allowing us to eliminate all but a few core concepts. All of these concepts then went into a group of

decision matrices. As an example, four matrices were made for the fingers: the actuators, the drive

mechanism, the curl mechanism, and the range of movement. Some of the matrices may seem

repetitive, such as the drive mechanism for the fingers and for the thumb, but the weights of the

criteria differ, which changes the output. After building our matrices, we can then look at what

combinations will work the best. Each individual component will be tested and prototyped, and

then the whole thing will be brought together.

P a g e | 21

Robotic Fingerspelling Hand | 2012

Design Development
Unused Concepts:

Linear Actuators

This design that we considered would use linear actuators to bend the finger at each joint.

This idea would feasible with a PiezoWaveR motor. This linear actuator is only 24mm long, 9.7mm

wide and 4.4mm high. This makes it an ideal size to place into the inside the fingers, while keeping

the fingers a small size. One thing we would need to look into would be the max weight of the

finger segment. In figure 2, it is a picture of a LegoR pneumatic hand. This picture was to show how

the fingers would be moved using linear actuation. In this design, we would be using the PiezoWave

Motor instead of the pneumatics in the picture. The problem with this concept was that the

PiezoWaveR only has a dynamic force of 0.1 Newtons, which is not a lot. Also getting linear

actuators that are small enough to fit inside the fingers are very expensive.

Figure 6. PiezoWave® motor (PiezoMotor.com)

Figure 7. Pneumatic hand using the concept of linear actuation (YouTube.com)

P a g e | 22

Robotic Fingerspelling Hand | 2012

Flexible Tubing
Our fourth concept is the simplest design. It would use a rubber or flexible material along

with one pull string. There are grooves cut at where joints would be to allow the finger to bend

properly. Linear springs could be inserted at the grooves to provide for a faster return to neutral

position. The major problem with this design is that it would be hard to control the movement of

the fingers because the slots would require precise material removal.

Figure 8. Hand with triangular cuts shown

Figure 9. Curled Hand

P a g e | 23

Robotic Fingerspelling Hand | 2012

Used Concepts:

Digit Design

Our first model was inspired by DEXTER. We tried to recreate the mechanism of wrapping

cables around joints and pulling on them like puppet strings. This model proved the concept, but

after more testing we found that just a pulley method to be insufficient for our needs.

Figure 10. Dexter pulley system Top left: bent finger Top right: straight finger Bottom: Finger with pulley

system and platform

 Our next design used pulleys to curl the finger. The pulleys would have a 1:1 ratio so that

the second knuckle will rotate with the same angle as the first. This was been incorporated into our

final design to bend the distal knuckle with the medial knuckle. This eliminates many components

as there is no need for a drive or return cable at the knuckle.

P a g e | 24

Robotic Fingerspelling Hand | 2012

Figure 11. Pulley curl system Top: curled finger Bottom: straight finger

This mock-up displays many concepts, while also serving as a test platform. It will allow us

to test many different components such as the cables, motors, controller board, springs and finger

segments.

P a g e | 25

Robotic Fingerspelling Hand | 2012

Figure 12. Test platform with bent finger

Inspired by the cable / housing system used on bicycles, we chose to use Bowden Cables for

power transmission from the motors to the fingers, thumb and wrist. Using this type of system

allows us to mount the motors in the forearm of the device, which will avoid considerable size

constraints in the palm. With the housing passing through the wrist, the hand will be able to twist

relative to the forearm without interrupting the control of the digits. Another advantage is the ease

of adjustment for the cable length. As on bicycles, we can incorporate a threaded barrel adjuster

that will lengthen or shorten the housing length, effectively collecting or releasing cable. Small

Bowden Cable systems are sold for use in robotics such as remote controlled helicopters. We also

have the option of buying the cable (or wire rope) individually and matching it with appropriately

sized tubing. This would require some trial and error.

P a g e | 26

Robotic Fingerspelling Hand | 2012

Figure 13. Bowden cable system

By incorporating torsion springs directly into the knuckles, we avoid the need for return cables. This

cuts our number of cables in half and greatly simplifies the design.

Figure 14. Knuckle return springs

P a g e | 27

Robotic Fingerspelling Hand | 2012

Initially, we thought that we would use pulleys to rotate the knuckles, but after prototyping,

a better method was found. In this design the cable will be connected to a rod near the bottom of

the finger that will provide a moment arm around the joint. It allows a much larger moment arm

than a pulley would, and doesn’t require any tedious installation. Another advantage is that the

shaft for the knuckle does not need to be fixed to the desired phalange, again simplifying design.

Figure 15. Finger drive method

P a g e | 28

Robotic Fingerspelling Hand | 2012

Actuation:

There were many factors to consider when choosing an actuator: price, stall torque, extra

circuitry, and available resources. The two best types of actuation devices for our design were

hobby micro servos or stepper motors. In the end, we went with hobby micro servos. Other

actuation devices like solenoids, DC brushless motors, and pneumatics were considered.

Figure 16. Rotary solenoid

(http://image.made-in-china.com/2f0j00TvgEwlkdnebz/Komatsu-Spare-Parts-Rotary-Solenoid-20Y-60-11713-.jpg)

Rotary solenoids can produce high torque while still being small. They are very fast and

move in specified angles. They are also cheaper than dc brushless motors and do not require a

controller. The disadvantage to rotary solenoids is that they produce too much heat. Solenoids

produce motion through induction and convert current into heat making solenoids very inefficient

as power is wasted. The heat generated could easily go over our desired limit. An exhaust fan could

be used to get rid of the heat from inside the hand, but this would focus large amounts of heat and

be prone to failure. Solenoids were not chosen because they produce large amounts of heat and

are not very efficient.

P a g e | 29

Robotic Fingerspelling Hand | 2012

Figure 17. Maxon Dc brushless motor with encoder

(http://maxonmotorusa.files.wordpress.com/2011/10/ec16_new-sterilizable-and-non-ster.jpg)

DC brushless motors are very durable and have a long life time. They are very efficient,

which allows the hand to operate longer with a battery pack. The biggest DC brushless motors are

expensive and much more expensive when they are very small. They also require motor controllers,

which is extra cost, and a software controller to get exact positioning for the motor. DC brushless

motors were not chosen because the high initial cost and the need of more complicated software

and hardware to control them.

Figure 18. Tolomatic pneumatic cylinders

(http://www.motioncontrolproducts.com/pageimages/erdactuator_large.png)

Pneumatics was considered for a more comprehensive development, even though the

sponsor made it clear that this method was not desirable. The benefit of pneumatics and hydraulics

is that they could be small enough to fit inside the finger and actuate each section. But small

pneumatics and hydraulics are expensive. Pneumatics and hydraulics also require controllers and a

P a g e | 30

Robotic Fingerspelling Hand | 2012

fluid supply, which adds to the cost and weight of the device. Pneumatics was not chosen at the

request of the sponsor.

Figure 19. Stepper motor

 (http://www.designworldonline.com/uploads/ImageGallery/step-motor.jpg)

Stepper motors were a good candidate for actuating the hand. They are very accurate due

to the fact that a full rotation is divided into many steps, like an encoder. There would be no need

to write a software controller as stepper motors operate in open control loop. This allows for us to

just send a voltage and the stepper would rotate to desired position. The downsides to stepper

motors are that they tend to be heavy and can lose efficiency if any of the steps are skipped during

a rotation. It is sometimes necessary for stepper motors to have additional hardware in the form of

motor controller. Alone, these controllers would add approximately $120 to the cost of the project,

bringing the total cost of the motors to half of our desired budget.

Figure 20. Hitec HS-625MG Hobby Servo used in project

P a g e | 31

Robotic Fingerspelling Hand | 2012

Hobby micro servos were our final selection. Hobby servos are small, cheap, and can

provide large amounts of torque. Since hobby servos have a built in gear train, a micro servo can

easily provide over 30 ounce-in of torque. Hobby micro servos cost about 13-15 dollars each, so our

cost would only be around $150. This makes servos one of the cheapest actuation devices. The

biggest advantage to going with hobby servos is that they do not require an auxiliary position

controller, which greatly saves cost. Servos have a built in position controller. This makes coding to

control the servos very simple. Servos are also very light weight. Ten servos would weigh no more

than 100 grams. The disadvantages of servos are that they do not have long life and may need to be

replaced frequently. The main reason we chose servos were that they are cheap, light, and very

compact.

P a g e | 32

Robotic Fingerspelling Hand | 2012

Microcontroller:
With 10 servos, we need 10 digital pins. This means we need at least ten I/O pins. We have

two options for our circuit board. One option is to design a custom board; we would have a circuit

board that does only what we need and doesn’t have extra unnecessary features. The other option

would be to buy a premade board. Designing a custom board may actually be a cheaper alternative.

With a custom board we can choose a microprocessor that has enough pins for our application and

a few extra for expandability and unplanned additions. Going this route would require a large

amount of time. Designing the board would take 2-3 days. After designing the board, the design

would need to be sent to a board making company. The board would take 1-2 weeks to be made.

After finishing the board, we would need to spend some time to make sure the board is working

properly before we can even start programming.

 We decided to buy a premade board. We chose to work with the Arduino platform. The

Arduino Uno is the most common model, with 14 digital pins and 6 analog pins. The other models

like the Arduino Mega have more pins than we require for our application and are more expensive.

Though, they could be easily swapped in place of the Uno for expandability in the future. The price

of the Arduino Uno is around $20-$30. Arduino also has a large amount of C++ libraries for

servomotors. By choosing to go with the Arduino, it allowed us to spend more time on building and

testing our hand.

Figure 21. Arduino Uno board

Since we could not control and power up all 11 servos with the Arduino, we needed a servo

shield that could power the board while the Arduino could control them. All available servo shields

could at most control 2-4 servos. We needed to control 11 servos. We decided to design a servo

P a g e | 33

Robotic Fingerspelling Hand | 2012

shield. We used Eagle PCB to draw the schematic and the board layout. With the board layout

done, we submitted it to a PCB manufacturer, Dorkbot. Their website is

http://dorkbotpdx.org/wiki/pcb_order.

Figure 22. Left PCB without components. Right PCB with all components

 For our application, each servo needed to be provided with 6V and 500mA of current to

run at full speed. This means we need a power supply or AC adapter that can supply our system

with 6V and 5.5A. We decided that 4A was enough for the system since servos require 500mA

only when it is moving and does not require the full 500mA when holding a position. When

looking for AC adapters, 6V 4A AC adapters were not common, and were hard to find. So we

found a 12V 4A AC adapter. This AC adapter is much more common. So for our board we had to

look for a 2.5mmID X 5mmOD power plug. From there, we had to regulate the 12V down to 6V

so that the servos could use them. When looking for way to regulate high current, we had a

choice between going with a high current voltage regulator or a two transistor circuit. The high

current voltage regulators that we found had a thermal resistance of 3°C/W. If we go the two

transistor route, the PNP transistor taking all the current would only have a thermal resistance

of 2°C/W. This would make keeping the transistor from overheating and blowing up easier.

http://dorkbotpdx.org/wiki/pcb_order

P a g e | 34

Robotic Fingerspelling Hand | 2012

Figure 23. PnP transistor and voltage regulator setup to allow for high current voltage regulation

 We chose a BDX54C for our PNP transistor and a LM317T for the voltage regulator. The

PNP transistor acts as a pass transistor allowing all the current to pass through it while the

voltage regulator regulates the voltage. The R3 resistor is there to allow some current to go to

the voltage regulator so that it will regulate properly. Using the circuit above, we use a ratio of R1

and R2 to regulator 12V down to around 6V. The resistors we used were 230 and 820, which were

available in our mechatronics room. This gave us an output voltage of 5.74V. With the main part of

our circuit done, it was just connecting pins to allow us to put pin headers to make attaching servos

to the board easier. The servos connected to pins 2-12 of the Arduino board. Pin 13 has a 5k pull

down resistor attached to it to allow us to use a button to trigger a demo mode in the program.

Another button is attached to the reset and ground pin to allow the user to reset the Arduino from

outside the box.

 When the board was completely assembled and tested, we noticed that the PNP would heat

up too much and that the heat sink for it was not enough. We tried to fix that by doing two things.

First we added a fan that would blow directly at the heat sink. Second we changed from a 12V 4A

AC adapters to a 9V 4A one. This decreases the power the PNP transistor needs to dissipate by

12W, which is about 25°C decrease in the temperature increase. But we still have a heat issue.

The transistor’s junction temperature is 150°C. With the fan blowing and using a 9V 4A AC

adapter, the transistor can get up to 95°C theoretically. With our infrared heat gun, we were

able to see around how high the temperature got. The results of this testing can be seen in the

testing section of the report. We are still working on a way to use our larger heat sink. We could

not attach it directly to the transistor because of space restrictions. Before when we were

testing with the board outside of the case, we had the larger heat sink attached. With the large

P a g e | 35

Robotic Fingerspelling Hand | 2012

heat sink attached, we could run for a much longer time without worrying too much about

overheating.

P a g e | 36

Robotic Fingerspelling Hand | 2012

Programming:
The coding for the project is done in C++, one of the most common programming languages

available. It is written in a very modular fashion, which allows for the program to be modified by

others. If there is a need to change the actuation code or user interface, it can be easily done

without affecting the overall code. With a computer, it uses a terminal program to talk with the

Arduino. The user is able to type in sentences or words into the textbox, or have the hand perform

real time movements using the real time box. The Arduino manufacturers include many libraries in

C++ which is very convenient for us. One of the library files is for servomotors which we used to

actuate the servos.

 The main file consists of a constructor and an infinite loop, which runs the program using

cooperative multi-tasking, which makes the runtime more efficient. There are two classes that are

run inside the main file, master_task and user_task. The main file will be supported by other files

which it will use to run, including a user class which takes user input from the computer, and master

class that overlooks everything.

The user_task is in charge of getting user input. User will only accept letters and instruction

keys, if any other key is pressed, nothing will happen. The instructions are: “1” to attach servos, “0”

to detach servos, “[space]“ to delay between words, “-“ or “_” to increase delay between letters or

decrease spelling speed, and “+” or “=” to decrease delay between letters or increase spelling

speed.

User_task has 3 states. The first state waits for a character to be entered. After user gets a

character, it goes to state 2. In state 2, it checks to see if the character is a valid input. If it is a valid

input it will set valid to true, which tells master that a valid character has been gotten. After state 2,

user stays in state 3 until master is done and is ready to get a new character.

The master_task class is the overseer of this entire program. It determines what to do when

something is pressed. After the input of each letter from the user_task, master_task will get the

servo positions that correspond with input letter by referencing a large look-up table. The lookup

table will consist of an integer array of servo positions from 0-180°. These positions are determined

through trial and error during the testing stages of the project. There are #defines for different

angles for each finger. This makes it easier to see if the look up table is correct and makes tuning

the hand a much simpler job. Instead of having to go to each letter and changing the servo angle, it

P a g e | 37

Robotic Fingerspelling Hand | 2012

can be done by changing the servo angle in the #define. Another part of the master is to make sure

that the fingers are not interfering with each other when moving.

There are 8 states to master. The first state is the idle state where it waits until user has

gotten a letter. The gotten letter will be from 0-30 and put into a variable called “letter”. 0-25 for a-

z, 26 for increasing spelling speed, 27 for decreasing spelling speed, 28 for spacebar, 29 for

detaching servos, and 30 for attaching servos. When attaching the servos, the hand will go back to

neutral position. It will then move to state 2.

In state 2, master determines if the inputted character is a letter or instruction. If it is a

letter, it will move to state 3, 4, 5, or 6.The next state is determined by the location of the thumb

and it next destination. If it is an instruction, it will do the instruction than go back to state 1.

State 3 is for when the thumb is under the fingers and the next letter also has the thumb

under the fingers. In this state, the fingers will move to neutral position, then the thumb will move

to its next position, then the fingers will move to their next positions.

State 4 is for when the thumb is over the fingers and the next letter has the thumb under

the fingers. In this state, the thumb will move to neutral position, then the fingers will move to

neutral position, then the thumb will move to its next position, then the fingers will move to their

next positions.

State 5 is for when the thumb is under the fingers and the next letter has the thumb over

the fingers. In this state, the fingers will move to neutral position, then the thumb will move to

neutral position, then the fingers will move to their next positions, then the thumb will move to its

next position.

State 6 is for when the thumb is over the fingers and the next letter also has the thumb over

the fingers. In this state, the thumb will move to neutral position, then the fingers will move to their

next positions, then the thumb will move to its next position. When state 3, 4, 5, or 6 are done

moving the fingers, they automatically go to state 7.

In state 7, it delays. This delay can be increased or decrease. After the delay, it determines if

master is in demo mode or regular typing mode. If it is in demo mode, it goes to state 8 or else it

will return to state 1 to wait for the next input. In state 8, it first determines if this is the first time

running through demo. If it is, master sets “letter” to zero to spell the letter A and increments

“letter” every time state 8 is entered to spell the next letter in the alphabet. Once “letter” has

reached 26, it means that the hand has spelled all 26 letters, which also means the demo is over.

P a g e | 38

Robotic Fingerspelling Hand | 2012

Master will then detach the servos and delay so the PNP transistor can cool down. After 20 seconds,

the hand will reattach the servo and go to state 1 so it is available to be used again.

We have also included a tuning program for the fingers. This tuning program allows the user

to adjust the finger locations in case of slack in the cable or to change the accent of the hand. The

servos start at a default angle of 140°. In the tuning program, you press “1” to decrease the angle

and “2” is to increase the angle of the servo that controls the knuckle movement. You press “3” to

decrease the angle and “4” to increase the angle of the servo that controls the medial joint. The

program only allows the tuning to go from 20-170°. This is to prevent the user from going to 180° or

0°, where the servo PWM messes up and tries to go beyond its limit. That will cause the servo to fry.

When you want to change fingers to tune, you press “+” or “=” to go to the next finger, and “-“or

“_” to go back to the previous finger. The order that the tuning goes by is thumb, index finger,

middle finger, ring finger, pinky, and wrist. If you press the next finger button when it is at wrist, it

will loop back to the thumb, and if you press the previous finger button when it is at thumb, it will

loop to wrist. You can also detach the servos with the “s” key, and attach the servos with the “g”

key.

P a g e | 39

Robotic Fingerspelling Hand | 2012

Hand Size:

The size of the hand needed to be comparable to that of an adult. To do this, data was obtained from

the 1988 Hand Anthropometry of U.S. Army Personnel, and has been summarized in inches in the tables

below. The data corresponds to the average measurements listed of women, along with their standard

deviations. The dimensioning of the fingerspelling hand will closely adhere to the average values, and

will be adjusted accordingly, within one standard deviation, to account for all the interior components.

This didn’t present too much of a problem as the majority of the larger components are located

elsewhere in the design.

Table 2. Relevant digit measurements from 1988 Anthropometric study

Digit 1 +/-

(inches)
Digit 2 +/-

(inches)
Digit 3 +/-

(inches)
Digit 4 +/-

(inches)
Digit 5 +/-

(inches) Thumb Index Middle Ring Pinky
Length 2.5 0.19 2.74 0.18 3.04 0.2 2.84 0.2 2.3 0.18
to wrist 4.95 0.34 6.69 0.37 7.02 0.39 6.65 0.38 5.73 0.37
Breadth 0.81 0.05 0.78 0.05 0.76 0.05 0.72 0.05 0.65 0.04
circumference 2.48 0.1 2.41 0.08 2.41 0.07 2.26 0.08 1.99 0.07
Distal 1.21 0.1 1 0.08 1 0.03 1.03 0.09 0.93 0.08
Medial -- -- 0.83 0.09 0.99 0.11 0.9 0.1 0.64 0.09
proximal 0.76 0.11 2.22 0.21 1.96 0.17 1.91 0.13 1.49 0.12

Table 3. Relevant hand/forearm measurements from 1988 Anthropometric study

 Inches +/-

hand length 7.11 0.39
hand circumference 7.34 0.34
palm length 3.97 0.22
hand breadth 3.13 0.15
wrist breadth 2.24 0.14
wrist circumference 5.96 0.27
wrist center-of-grip 2.61 0.19
elbow to hand 17.46 0.93
elbow to wrist 10.35 0.61
forearm circumference 10 0.59

P a g e | 40

Robotic Fingerspelling Hand | 2012

Final Design

Motor Housing:

 To hold components such as the motors and the microcontroller, a rectangular case was
made from 0.220 inch clear acrylic sheets. Acrylic was chosen to display the inner workings of the
motors, as well as for its workability with the laser cutting machine on campus. See the
manufacturing section for a further description of this process.

 The case is sized so that an average-sized person will be able to rest their elbow on the table
while feeling the hand, but the case also allows for other orientations. If preferred, the case can be
turned around and the user’s wrist can rest on the case. Also, the case can be turned onto its side to
read the hand in a horizontal position.

Wrist Movement:

 The wrist mechanism allowed for major simplifications over previous hands. Many of the
letters of the alphabet are formed by lowering a vertical wrist into a more horizontal position. Also,
“J” and “Z” are considered dynamic letters and are formed with scoop and wiggle of the wrist,
respectively. Because the wrist has to support the entire hand, it has been a weak spot in many past
designs, with the tilt causing the most problems. Tilting the hand to the side applies a large moment
to the wrist area, while also throwing off the balance of the entire device. For these reasons, we
chose to design our wrist to spin only about a vertical axis by 180°.

 This twist about the vertical axis provides us with a degree of freedom that is underutilized
in the common ASL alphabet. With the presumption that the deaf-blind are adaptable enough to
learn variations on the alphabet, the single twist of the wrist allows for 26 distinct movements and
has the ability to replace the tilt of the wrist in letters such as “G” and “H”. This can be thought of as
the hands “accent”. Initially, an explanation of the wrist movement and the affected letters should
be created using the most recognizable letters for the deaf-blind user.

 The hand is supported by an aluminum shaft that was machined into the desired shape and
size. The most significant aspect of the wrist shaft is the “D” shaped ends, which sink in to hand on
one end, and the wrist servo attachment on the other. This shape acts as a key in the shaft to
transfer rotational power. The hand is also screwed onto the shaft, but this is simply to stop it from
falling off. Most of the torque should be transmitted through the “D” shape and not through shear
in the screw. The lower end of the shaft is not screwed to the servo because its position is fixed by
casing for the mechanism. The shaft was designed with a larger diameter section in the middle that
sits between 2 flanged, sealed ball bearings. Not only does this hold the bearings into their position
in the case, but also holds the wrist shaft in after the top to the case has been screwed in. The 2
bearing, stepped shaft design removes all axial force from the servo, which is not designed to such
axial loads.

P a g e | 41

Robotic Fingerspelling Hand | 2012

Problems: To fully utilize the movement of the wrist, it needs to turn by a complete 180°.
Unfortunately, the servo that is turning the wrist cannot be driven a full 180° without the likelihood
of damage, so the wrist is restricted to move approximately 150°. For future designs, it is
recommended to choose a servo that is designed to move more that the common 180°, such as a
“sail winch” servo.

Actuation:

 In actuating the movements of the hand, our design mimics the human body in that the
“muscles”, or servos in our case, are housed remotely and “tendons” transfer mechanical power to
the moving parts. A great example of this is readily seen in the way that bicycle brakes and
derailleurs are actuated. The system consists of a length of housing that is maintained as some fixed
length while flexible cable is allowed to slide through. The cable is fixed to the actuator on one end,
and the mechanism on the other. When building the concept models, bicycle cable housing was
used but the diameter was far too large for the application inside the hand, considering that the
hand needs 11 independent lengths of these housings.

 After experimenting with different cables and housings, the products chosen for the final
design were found at the local hobby store. The housings are antennae coverings for remote
controlled cars, and the cable is nylon-coated stainless steel cable used for actuating the flaps of
remote controlled airplanes. The cables are crimped using common bead wire crimps that can be
found at most arts and crafts stores. The crimps should be large enough that the cable can loop and
pass twice through the crimp.

Problems: The 1/8th inch housing is not flexible enough to allow for totally fluid movement of the
wrist. The servo used to twist the wrist is strong enough to overcome this binding of the cable
housings, but future designs should strive to find a type of cable housing with more flexibility.

 When crimping the nylon-coated cable, the crimps have the tendency to strip the coating
from the cable. When this happens, the cable will lose its tension and the exposed metal strands
can be dangerous.

Finger Mechanism:

 By using springs to return the fingers to a straight position, there is only one actuation cable
per joint, and it is simply anchored to the phalange which is desired to move. Past designs had
problems with trying to use a continuous cable loop from the motor to the finger that would bend
and straighten the finger. The use of springs greatly simplifies this system and allows the hand to be
in a natural position even when it is not hooked up to a motor. The difficulty in the design chosen
for the fingers is getting enough of a moment arm on the pivot. Because the fingers are so small,
there is not much room to pass the cables by the pivot, so they end up with a small moment arm.

P a g e | 42

Robotic Fingerspelling Hand | 2012

 The distal and medial phalanges are kinematically tied, and the distal will move any time
that the medial moves. This not only mimics the way that a human finger moves, but also
eliminates the need for a third actuator on each finger. The movement is achieved by using a short
cable anchored to the proximal phalange on one side and the distal phalange on the other and uses
a cross pulley mechanism.

Thumb Mechanism:

 The thumb has two degrees of freedom, with the outermost joint fixed. With the tip of the
thumb bent at a fixed angle, the hand still makes sufficient and intelligible movements and avoids
the need for tip actuation. The base of the thumb has the ability to rotate on an axis in plane with
the palm and perpendicular to the wrist. This allows for the necessary movements to form letters
such as “O”. Due to the positioning of this system, it made more sense to run a true “pull-pull”
system as opposed to a single pull with a spring return such as with the fingers. To make the thumb
sweep across the palm, the same method was used as with the fingers, but to achieve the letters
such as “L”, the thumb needs to sweep 90° from vertical in both directions. Where the fingers use
180° springs that are bent to 90°, the thumb uses a 270° spring that rotates to 90°. This allows the
thumb to be held out away from the hand in its neutral position, yet still bend all the way into the
palm when actuated.

Springs:

 Several different size springs were used in the hand. Initial calculations found that a spring
constant of approximately 1 in-lb would be sufficient to hold the fingers in a straight position even if
the hand was horizontal and provide the user with enough feedback to let the hand move. With the
extremely light weight of the final design, and the small size of the fingers, it was determined that
each joint would have a different spring constant, descending from 1 lb-in at the base knuckle, to ¼
lb-in at the tip joint. This is because of the larger moment on the base knuckle. Unfortunately, there
is a slight problem with the spring at the base knuckle getting squeezed at a full bend, which causes
the finger to stick a little bit. This problem has not caused much trouble because the base knuckle
almost never needs to bend all the way to create our shapes.

 To reduce slop in the joints, the springs were plastically deformed to rest neutrally at an
angle of a little more than 180°. Although they are considered to be 180° springs by the
manufacturer, they all rest at some angle slightly less than that. This was an easy solution and made
more a more solid hand design.

P a g e | 43

Robotic Fingerspelling Hand | 2012

Manufacturing

The manufacturing of the hand was done largely by the 3D printer (ObJet 250) at Cal Poly.

This machine has the ability to take a solid model file from a program such as SolidWorks and create

that model from a gel called EDEN FullCure 720. The process is fast and is referred to as “rapid

prototyping” for obvious reasons. For example, each finger took close to two and a half hours to

print, which is much quicker than many other manufacturing methods would have been. The

fingers, thumb, palm, and hand were all made using this process. A few of the material properties

are listed in Table 2, while the rest can be found in the appendix.

Table 4. Partial property list of FullCure 720

Objet FullCure 720 Eden

 Tensile Strength 8744 psi

 Density 0.0426 lb/in^3

 Modulus of Elasticity 416150 psi

 Hardness 81 M

To be printed, the SolidWorks part was saved as a .STL file which could be read by the rapid

prototyping software. The parts were then positioned on a virtual tray. This part of the process took

some time because the orientation of the part determined how much filler material would need to

be used. Every layer put down by the printer has to lay on top of another layer, so to create voids in

the part the printer would use the filler, or “support” material as a base for the next layer. Our final

print ended up using about 300g of FullCure and 250g of support material. Small modifications were

made to the rapid prototyped parts with a drill and a Dremel tool to provide more clearance for

moving parts.

 The case built from the sheets of acrylic was cut from 18” X 24” sheets of acrylic that were
cut into pieces using the laser cutter in the Mustang 60 machine shop at Cal Poly. For the most part,
these pieces were good to go as soon as they left the machine, but some pieces had to have their
edges sanded down to provide for a more flush perpendicular fit. This is because the laser tends to
create a slight slope to the edge of the sheet when it cuts through. Any modifications to the acrylic
proved to be difficult, and the second version of the case that was created was done so with less
need for modification. Drilling through the acrylic is doable but tricky. The material will melt and has
a tendency to build up on the drill bit and cause problems for the next hole to be drilled. This can be
somewhat remedied by passing the clogged drill bit through a block of wood. This will re-melt the

P a g e | 44

Robotic Fingerspelling Hand | 2012

material and push it to the un-bladed portion of the drill bit, where it can remain or be pulled off of
the end. Another tactic is to use pliers to break off the hardened acrylic, but this method is less
consistent in its success. A 2-56 tap was used to make threaded holes for the servos to mount into.

 Most of the case was assembles using Weld-On #3 Acrylic solvent cement. Unable to find
this adhesive at any hardware store, we eventually found it at a glass store. This adhesive works in
much the same way as welding materials together, because it liquefies the material and forms a
strong bond as long as the surfaces are flush. Care must be taken when working with the adhesive
because any of the liquid that drops will mar the acrylic surface. Overall the adhesive worked well
and produced clean and strong junctions.

 Some components of the case need to be removable such as the top bank of servos. For this
we used metal L-brackets to hold things together temporarily. JB Weld was used to fix nuts to the
back of the brackets so that the screws could be driven directly into the case without needing
access to the inside. On the first version of the case, all 4 sides were permanently fixed with
adhesive. This made it very difficult to get down inside to the case, so the front wall of the second
case was made to be removable, greatly easing the installation of all the components.

Although this project required relatively little time in the machine shop, some parts were

still manufactured using traditional machines such as the lathe and mill. The wrist shaft required the

most machining. First the shaft was cut to length using the chop-saw with a special blade for cutting

aluminum, and then a lathe was used to face the ends and turn the entire length enough to give it a

nice finish. While leaving the center section untouched, both ends were turned down to a diameter

small enough to pass through the bearings. Then the mill was used to create the “D” flats. Finally

the wrist mount hole was drilled and trapped. Somewhat more tricky to machine was the pins for

the finger joints. Each of these had to be grooved to allow for the e-clips to clip to the side. A

custom grooving tool was made from an old broken parting tool to make the grooves the right size

and depth.

 In the future, this hand could be made through injection molding. This way, the hand can be

cheap and affordable as parts will only cost cents to make. But to use injection molding, the

demand for the hand would have to be in the hundreds of thousands. Another solution is to the

hand made with CNC. This solution is more reasonable for production numbers in the hundreds.

The last solution is to have the design and 3d drawings open to the public, so this hand could be

personally made through a rapid prototyping company if this hand is not available commercially.

Using a computer numerical control (CNC) machine is another possible way to create our

parts. CNC can make the parts with high tolerances. We would have blocks of plastic and place it in

P a g e | 45

Robotic Fingerspelling Hand | 2012

the machine. Then based off our computer aided design (CAD) files, it would drill and mill a part for

us. We choose not to go with this process because the machine shop on campus was closed due to

budget cuts. This makes it inconvenient to make parts when we need them. But this is a viable

option for small production amounts of the hand.

P a g e | 46

Robotic Fingerspelling Hand | 2012

Testing

The testing that has been done so far consists of our conceptual models. We have learned a

great deal through tinkering with items easily obtained from the local hobby store. Because of this,

we felt much more confident in our final design than if everything had just been done on paper. We

built a test stand that initially was able to hold a finger or thumb. It later expanded to hold the

entire hand and came into much use in the time leading to our final design. Various servos were set

up and tested on this platform.

Figure 24. Strength test. Cables tied to weights at one end and tied to components on the other end

Strength tests were performed on the cables and fingers. For the cables, we had two, a

weaker cable and our current cable. To test the cables, we tied weights at one end and lifted the

weights with the cable. For the weaker cable, it snapped at 10 lbs. Our current cables snapped at

30lbs. A similar thing was done for the joints in the finger. We tied weights at one end of the cable

and tied the other end to a particular joint we wanted to test. All rapid prototype parts were able to

withstand more force than the cable. Through all this strength testing, we could conclude that the

first thing to fail in our system would be the cables in normal use.

P a g e | 47

Robotic Fingerspelling Hand | 2012

Figure 25. Finger in fatigue test setup hitting the bump switch

Fatigue tests were performed on the fingers, servos, and cables. The comprehensive test

had the assembled prototype monitored while form the letters of the alphabet continuously in a

loop for several hours or until a component breaks. The fingers went through a similar test in which

they looped between fully open and fully closed while hitting a bump switch counter for every

repetition. This test was only done once and it was done using the weaker cables. The weaker cable

was able to last 2700 runs. If the weaker cables were able to perform that well, we expect the

current cables to last at least 3 times longer.

One of our test plans involved the testing of the forces created by the digit. While the digit

was in the test stand, a linear spring scale was placed at a measured distance from the joint in

question. Measuring the forces for the purpose of satisfying our requirements, as well as check the

torque of the motors and springs against the manufacturers’ specifications. In particular, we

intended to find out how much external force is necessary to move the hand out of position, and

the grip strength of the hand in order to make sure the hand grip would not crush the user’s hands.

At the same time, we could make sure that the hand would still be strong enough to overcome the

weight of the user’s hands in order to form letters. A multimeter was simultaneously monitoring

the current drawn by the motor. This test was never fully done. When we attempted, the cables

snapped before we could get a reading, and we ran this test again with the stronger cables. We did

hook up a multimeter to see how much current the servos drew when actuating. The servos drew

about 5oo-800mA when moving and used 300-400mA when holding the finger in full curl position.

P a g e | 48

Robotic Fingerspelling Hand | 2012

After examining previous models that Cal Poly students have produced, we noticed that

many servo horns had sheared, rendering many components useless. Those projects were done

using the standard nylon horns that came with the servos. An alternative to nylon horns is to use

aluminum servo hubs. A fatigue test that will be performed simultaneously with the finger tests, as

the servo hub will be pulling the cable back and forth. This test was never done due to time

restraints. We used the stock nylon horns instead of getting aluminum horns. The stock nylon horns

proved to be strong enough for the application as not one has failed in all our testing.

Figure 26. Infrared heat gun used to check temperature of different components

In addition to fatigue tests, we also planned to perform heat tests. Heat will be generated

by the electronic components. Each servo will require at least 400mA of current to produce its rated

torque, and any leftover current will dissipate into heat. Therefore we used an infrared

thermometer to monitor the hand. Ideally, the highest temperature wouldn’t be much greater than

70°F, which is considered comfortable to human touch. Since the board is enclosed in the case,

there isn’t a likely chance of someone getting burned by it.

The biggest problem that we encountered with our design was overheating of one of our

transistors. This problem is described in detail in the Electrical Design section of the report. The

results of our heat testing showed a remarkable drop in the temperature of the transistor when

using the 9V power supply (circles) instead of the 12V power supply (triangles). It was encouraging

to see a physical effect of our theoretical predictions about heat generation. In the test, there are 3

different states that the servos can be in. When attached (green), the controller is holding the

P a g e | 49

Robotic Fingerspelling Hand | 2012

75

80

85

90

95

100

105

0 100 200 300 400 500 600 700

Te
m

pe
ra

tu
re

 (°
F)

Time (sec)

detached

running

attached

9V detached

9V running

9V detached

servos in a particular position but they are unmoving. When detached (yellow), the controller is not

sending a signal to the servos but it is plugged in to the power supply. The active state (red) is when

letters are being formed every 2 seconds and therefore the servos are moving often.

 We planned to perform a noise test, but we do not currently have any instruments to

measure decibels, so we intend to compare the noise relative to other common devices or

appliances. Ideally, the hand will produce less than 80dB, which is the same amount of noise

produced by a telephone dial tone. The hand does not get very loud. The hand makes the loudest

noise when moving to position and makes a small humming noise when holding positions. Overall

the hand is not that noisy and the sponsors had no comments on the noise.

When the time comes where we have a complete working prototype, it’d be used to

interact with people in the deaf-blind community to test the readability of the hand-shapes. We had

hoped to perform this testing well before the final report was due in order to make the hand

positions as accurate as possible. This test was never done. We could never get in touch with

someone in the deaf-blind community or someone who uses fingerspelling on a daily basis.

Hopefully at the RESNA conference, feedback on the letters and the hand will be relayed back to us.

Figure 27. Compiled transistor temperature readings of heat tests

P a g e | 50

Robotic Fingerspelling Hand | 2012

Cost

Rapid Prototyping:
For rapid prototyping, service providers will charge anywhere between five to ten dollars

per cubic inch of the FullCure 720 material. However, the printing software used metric

measurements and so for convenience, we determined the material cost using the FullCure density

of 1.189 g/cm3 and its common rate of $0.50/cm3. In addition to that, providers will also charge

operating fees which would include the amount of electricity used and labor for cleaning the parts.

As of 2011, the average cost of electricity for a medium sized company was about $0.16/kWh. Also,

the Objet 250 printer that was used consumes 1.5kW, so we determined that the rate of electricity

to be $0.24/hr. In Table 3, we provide cost estimation for the material.

Table 5. FullCure 720 cost estimation

Rate Usage Cost

Material $0.50/cm3 300 g $ 126.16
Electricity $0.24/hr 15.5 hr $ 3.72
Cleaning $20/hr 0.333 hr $ 6.67
Total $ 136.55

Complete Design:

 Below is summary of major components and the total cost of producing one unit. A full bill

of materials separated by each component can be viewed in the appendix. Note that the cost of the

hand differs from the table above due to the addition of parts; springs, washers, pins, etc.

Table 6. Total cost of one unit

Component Cost
Hand $ 159.90
Electronics $ 74.92
Case $ 81.14
Servos & Cables $ 398.75
Total $ 714.71

P a g e | 51

Robotic Fingerspelling Hand | 2012

Results & Conclusion

 The two cases that were constructed yielded different results for the hand. The first case

was made prior to the final presentation at The Smith-Kettlewell Eye Research Institute. At the time

of the presentation, the case was not yet implemented, but it was desired by the sponsors to

include more holes for ventilation as there were problems with the heat sink and transistor

overheating. Until a replacement power adapter was delivered, work continued on the case in short

intervals to keep the electronics moderately cool. When the hand was tuned and fully assembled in

the first case, all but the dynamic letters of the alphabet were able to be displayed. There was not

enough room for the housing to move freely if the wrist were to turn.

Although, the hand was able to account for double letters without having to return to a

neutral position and would wiggle one or several digits depending on what letter was being

repeated. This was accomplished due to the logical statements placed in the code. Though, the

code didn’t account for double letters of “L” and “Y” as the logic was based on the position of the

thumb; in our code, both letters have the thumb in a zero position, which bypasses the conditional

statements looking to see whether the thumb or fingers need to move from the previous letter. The

major accomplishment of this design, however, was that it was able to demo the entire alphabet in

less than four seconds by pressing a button on the side of the case. From the terminal, the hand

was able to take letter input in real time, as well as spell out typed words at speeds specified by the

user.

Having come that far, we felt that we would be able to construct a second case that would

account for the ventilation and cable housing problem. By that time, we had also received an

adapter using less voltage which we hoped would address some of the overheating problems. The

end result was that the transistor is still overheating, though not as fast, and also that the speed of

forming letters has dropped to being slightly faster than one letter a second. The hand now

occasionally twitches when forming consecutive letters. We’re not entirely sure what the root

cause of this problem is, but it is being looked into.

Looking back at the requirements listed by our sponsor, we feel that we were or would be

able to accomplish most of them. With a little more time, the wrist could be programmed to do the

dynamic letters, making the hand able to form all the letters of alphabet. We believe the hand is the

P a g e | 52

Robotic Fingerspelling Hand | 2012

smallest and the most lifelike of all the attempts made previously by Cal Poly students. The hand

itself exerts no heat, it can be placed in different positions, and is controllable based off user input.

While we weren’t able to reach the target cost for the project, we feel that the cost is reasonable

for something that can’t be made cheaper through mass production.

Future Designs:
 If work is to be continued based off this design, here are some of the areas in which it could
be improved:

• The first case design didn’t allow enough room for the housing to move during the actuation
of the wrist. Construction of the 2nd case took longer than expected and prevented the
actual implementation of the wrist actuation for dynamic letters.

• Double letter indication for the letters “L” and “Y” isn’t included. Though, no word in the
English language uses consecutive “Y”s.

• The letter “V” was simplified by not splitting the index and middle fingers. However, this
may not be considered entirely acceptable.

• A housing that is more flexible and that will not increase friction is needed. The current
housing is too still and makes assembling difficult

• Bending of the wrist is necessary to better distinguish between letters.

• A better way to disperse heat from the heat sink is needed. The power adapter was
switched from 12V to 9V to reduce heat at the cost of letter formation speed.

• A rechargeable battery would make the design more portable.

• The clear case design was intended to show off the electronic actuation of the hand.
Transitioning the case to a forearm design would also make the hand more portable.

P a g e | 53

Robotic Fingerspelling Hand | 2012

Appendix

1. Sources
2. American Manual Alphabet
3. Bill of Materials
4. Quality Function Deployment
5. Decision Matrices
6. Gantt Chart
7. Design Sequence flowchart
8. Other concepts
9. Solid models
10. Rapid Prototyping properties
11. Average electrical costs in California
12. Servo data sheets
13. Servo shield schematics & layout
14. Servo shield components and data sheets
15. Program state transition diagrams and code
16. Torque calculation code
17. Anthropometric Data Excerpt
18. Hand Shapes
19. Installation tips

P a g e | 54

Robotic Fingerspelling Hand | 2012

Bibliography

Greiner, Thomas M. (1991) Hand Anthropometry of U.S. Army Personnel.

Berliner, Fung, Hansen, & Harris. (2009). Robotic Finger-Spelling Hand Final Report.

Garcia, M. L. (2009). Design, Control, and Programming of A Robotic Finger-Spelling Hand.

Jaffe, D. L. (1994). Evolution of Mechanical Finger-Spelling Hands for People Who Are Deaf-
Blind.

Steever, A., Torjesen, L., & Cheung, C. K. (2008). Robotic Finger-Spelling Hand for Tactile
Communication with the Deaf-Blind.

Tepe, A. (2008). Robotic Finger-Spelling Hand for the Aid of the Deaf and Blind.

P a g e | 55

Robotic Fingerspelling Hand | 2012

American Manual Alphabet

http://upload.wikimedia.org/wikipedia/en/thumb/6/6f/Aslfingerspellalpha.png/220px-
Aslfingerspellalpha.png

P a g e | 56

Robotic Fingerspelling Hand | 2012

Bill of Materials

QTY Part No. ITEM COST
 20 #10-24 Fasteners $ 2.00

Case

20 #10-24 x 1/2" Phillips pan head machine screw $ 1.80
4 #2-56 x 1/4" Phillips pan head machine screw $ 0.36

10 1" x 1/2" Zinc Corner Brace $ 9.90
1 1/2" Vinyl Bumpers (9 pk) $ 2.99
1 MC-21 Acrylic Sheet (Clear) 18"x24"x.22" $ 18.49
1 8974K113 Aluminum 6061 round 3/4 OD, 12" $ 4.27

10 Black RC Antenna Housing 1/8" OD, 14" $ 4.99
2 6384K363 Steel Ball Bearing, Flanged for 1/2" Shaft $ 21.34
1 Weld-On: Acrylic $ 15.00
1 JFCT2S1.5G #2 Silver plated crimps (100 pk) $ 3.24 Servos &

 cables

48 2-56 x 1/2 Flat Phillips Machine Screws $ 1.92
1 8930T16 5ft Nylon Coated SS Wire $ 1.60
3 #517 Du-Bro 2-56 Pull-Pull $ 19.50

10 Hi-Tec 625MG servo $ 341.00
1 Hi-Tec 645MG servo $ 31.49
3 445-2868-ND 10uF capacitor $ 1.86

Electronics

1 CP-202B-ND 2.5mm 5A power jack $ 0.92
1 CF14JT22R0 22 ohm resistor $ 0.20
1 CFR-25JR-52-220R 220 ohm resistor $ 0.20
1 450uF 35v capacitor $ 0.60
1 12R831 830 ohm resistor $ 0.20
1 CENB1040A0903F01 9V 4A adapter $ 22.36
1 Arduino Uno $ 21.45
1 275-644 Black SPST pushbutton $ 3.69
1 CPU Cooler Fan 12V 0.08A $ 4.99
2 HS278-ND Heatsink $ 1.34

24 Pin headers (Male) 2.54mm $ 2.64
1 BDX54C-ND PNP transistor $ 0.62
1 275-644 Red SPST pushbutton $ 3.69
1 Servo Shield $ 9.45
1 LM317TFS-ND Voltage regulator $ 0.71

Continued on next page

P a g e | 57

Robotic Fingerspelling Hand | 2012

QTY Part No. ITEM COST
3 1/4"-28 x3/8" Phillips pan head machine screw $ 0.27

Hand
1 9271K98 180 Degree Torsion Spring (6 pk) $ 7.16
1 9271K142 180 Degree Torsion Spring (6 pk) $ 7.44
1 9271K601 180 Degree Torsion Spring (6 pk) $ 4.63
1 9271K628 270 Degree Torsion Spring $ 0.77
1 Hand (FullCure 720) $ 136.55
8 MRW8 Plastic washer $ 1.20
1 MRW716 Plastic washer $ 0.28
1 49060 Round rod plain steel 1/4 OD, 12" $ 0.88

18 97431A240 Side-Mount External Retaining Ring (E-Style) $ 0.72

Total $ 714.71

` P a g e | 58

Robotic Fingerspelling Hand | 2012

P a g e | 59

Robotic Fingerspelling Hand | 2012

Robotic Hand Decision Matrices

Table 1. Weighted decision matrix to determine actuation of fingers

 weight Cable cable/pulley belt/chain Gears linear actuator
Friction 5 1 5 2 10 3 15 3 15 3 15
Cost 3 4 12 3 9 2 6 2 6 2 6
Size 4 4 16 4 16 3 12 3 12 4 16
wear/life 2 2 4 2 4 4 8 4 8 2 4
Noise 1 4 4 3 3 2 2 3 3 3 3
Weight 2 5 10 4 8 3 6 3 6 3 6
Implementation 3 5 15 4 12 2 6 3 9 3 9
Fluidity 3 1 3 3 9 3 9 3 9 3 9
Location 3 3 9 3 9 3 9 3 9 3 9

Total 29 78 28 80 25 73 27 77 26 77

Table 2. Weighted decision matrix to determine actuation of thumb

 Weight Cable cable/pulley belt/chain Gears linear actuator
Friction 3 1 3 2 6 3 9 3 9 3 9
Cost 2 4 8 3 6 2 4 2 4 2 4
Size 4 4 16 4 16 3 12 3 12 4 16
wear/life 3 2 6 2 6 4 12 4 12 2 6
Noise 1 4 4 3 3 2 2 3 3 3 3
Weight 3 5 15 4 12 3 9 3 9 3 9
Implementation 3 5 15 4 12 2 6 3 9 3 9
Fluidity 5 1 5 3 15 3 15 3 15 3 15
Location 2 3 6 3 6 3 6 3 6 3 6

Total 29 78 28 82 25 75 27 79 26 77

Table 3. Decision matrix to determine the DOF for the thumb

1 degree 2 degree

Implementation 3 2
Cost 3 2
Fluidity 1 4

Total 7 8

P a g e | 60

Robotic Fingerspelling Hand | 2012

Table 4. Decision matrix to determine the motor type

 servo stepper DC Brushless piezo DC brush
size 4 3 3 4 3
cost 4 2 1 1 4
weight 4 2 3 5 3
noise 3 4 5 3 3
life 2 3 4 1 2
Voltage 4 3 4 5 3
Total 21 17 20 19 18

Table 5. Decision matrix to determine the actuation of the wrist

 motor gears belt/chain
implementation 4 3 4
Cost 3 3 3
Size 2 4 2
Weight 2 3 2
Total 11 13 11

P a g e | 61

Robotic Fingerspelling Hand | 2012

Robotic Hand Gantt Chart

P a g e | 62

Robotic Fingerspelling Hand | 2012

P a g e | 63

Robotic Fingerspelling Hand | 2012

Assembly Concept
 This concept shows the layout of where all the components would be located. Inside the

hand itself will mostly be springs and cables. The cables will run into the forearm and attach to the

servomotor arms. The motors located at the wrist will allow for a twisting motion to form the

letters J and Z. A slot will be made near the base of the forearm for the USB connection to the

microcontroller.

P a g e | 64

Robotic Fingerspelling Hand | 2012

Engineering Drawings

P a g e | 65

Robotic Fingerspelling Hand | 2012

P a g e | 66

Robotic Fingerspelling Hand | 2012

P a g e | 67

Robotic Fingerspelling Hand | 2012

P a g e | 68

Robotic Fingerspelling Hand | 2012

P a g e | 69

Robotic Fingerspelling Hand | 2012

P a g e | 70

Robotic Fingerspelling Hand | 2012

P a g e | 71

Robotic Fingerspelling Hand | 2012

P a g e | 72

Robotic Fingerspelling Hand | 2012

P a g e | 73

Robotic Fingerspelling Hand | 2012

P a g e | 74

Robotic Fingerspelling Hand | 2012

P a g e | 75

Robotic Fingerspelling Hand | 2012

P a g e | 76

Robotic Fingerspelling Hand | 2012

P a g e | 77

Robotic Fingerspelling Hand | 2012

Rapid Prototyping Properties

P a g e | 78

Robotic Fingerspelling Hand | 2012

P a g e | 79

Robotic Fingerspelling Hand | 2012

P a g e | 80

Robotic Fingerspelling Hand | 2012

P a g e | 81

Robotic Fingerspelling Hand | 2012

P a g e | 82

Robotic Fingerspelling Hand | 2012

P a g e | 83

Robotic Fingerspelling Hand | 2012

P a g e | 84

Robotic Fingerspelling Hand | 2012

P a g e | 85

Robotic Fingerspelling Hand | 2012

P a g e | 86

Robotic Fingerspelling Hand | 2012

P a g e | 87

Robotic Fingerspelling Hand | 2012

Electricity Costs

Published by the Public Utilities Commission of California

P a g e | 88

Robotic Fingerspelling Hand | 2012

Servo Data Sheets

P a g e | 89

Robotic Fingerspelling Hand | 2012

P a g e | 90

Robotic Fingerspelling Hand | 2012

SERVO Shield Schematic

P a g e | 91

Robotic Fingerspelling Hand | 2012

SERVO Shield PCB Design

Top of Board

Bottom of Board

P a g e | 92

Robotic Fingerspelling Hand | 2012

SERVO Shield BOM

P a g e | 93

Robotic Fingerspelling Hand | 2012

P a g e | 94

Robotic Fingerspelling Hand | 2012

P a g e | 95

Robotic Fingerspelling Hand | 2012

P a g e | 96

Robotic Fingerspelling Hand | 2012

P a g e | 97

Robotic Fingerspelling Hand | 2012

Master Task

P a g e | 98

Robotic Fingerspelling Hand | 2012

Master_task.h
//***
/** \file master_task.h
 * This file contains a task class for the master controller of the project.
 *
 * Revisions:
 * \li 02-06-2012 Created
 * \li 03-26-2012 Header file accepted by Arduino
 * \li 04-17-2012 Constructor with pointers accepted in Arduino
 * License:
 * This file released under the Lesser GNU Public License, version 2. This program
 * is intended for educational use only, but it is not limited thereto.
 */
//***

/// This define prevents this .h file from being included more than once in a .cc file
#ifndef _MASTER_TASK_H_
#define _MASTER_TASK_H_
#include <stdlib.h>
#include <stdint.h>
#include <Servo.h>
#include <user_task.h>
#if defined(ARDUINO) && ARDUINO >= 100
 #include "Arduino.h"
#else
 #include "WProgram.h"
 #include <pins_arduino.h>
#endif
class master_task
{

 protected:
 bool write; // True if motor should be
running now
 bool demo;
 bool demo_begin;
 uint8_t state;
 uint8_t letter;
 uint8_t thumbdown;
 uint16_t wordtime; // amount of time to delay between words
 uint16_t lettertime; // amount of time to delay between
 uint8_t previousthumb;
 uint8_t currentthumb;
 Servo servo1;
 Servo servo2;
 Servo servo3;
 Servo servo4;
 Servo servo5;
 Servo servo6;
 Servo servo7;
 Servo servo8;
 Servo servo9;
 Servo servo10;
 Servo servo11;
 user_task *user;

 public:
 // The constructor creates a new task object

P a g e | 99

Robotic Fingerspelling Hand | 2012

 master_task (user_task*, Servo, Servo)/*, Servo, Servo, Servo,
 Servo, Servo, Servo, Servo, Servo, Servo); //(task_timer&, time_stamp&)*/;
 // Tells master that the button was pressed and to run the demo loop
 void run_demo(void);
 // Delay between words
 void wait(uint16_t);
 // Detaches servos
 void detach_servos(void);
 // writes the 0 position to the finger servos
 void neutral_fingers(void);
 // writes the zero position to the thumb servos
 void neutral_thumb(void);
 // reattaches servos
 void attach_servos(void);
 // The run method is where the task actually performs its function
 void run (void);
};
#endif // _MASTER_TASK_H_

P a g e | 100

Robotic Fingerspelling Hand | 2012

Master_task.cpp
//***
/** \file master_task.cpp
 * This file tells the hand what needs to be actuated and when. It also controls the
 * delay between letters, words, and each time the demo is run.
 *
 * Revisions:
 * \li 02-06-2012 Created
 * \li 03-26-2012 Header file accepted by Arduino
 * \li 04-17-2012 Constructor with pointers accepted in Arduino
 * \li 05-25-2012 fixed demo function/ letter by letter/ sentence input
 *
 * License:
 * This program is intended for fingerspelling use with The Smith-Kettlewell Eye
 * Research Institute robotic hand, but it is not limited thereto.
 */
//***
#include <stdlib.h>
#include <stdint.h>
#include <Arduino.h>
#include <user_task.h>
#include <Servo.h>
#include <master_task.h>

#define KNUCKLETHUMB0 140
#define KNUCKLETHUMB30 115
#define KNUCKLETHUMB45 100
#define KNUCKLETHUMB60 80
#define KNUCKLETHUMB90 50
#define MEDIALTHUMB180 140
#define MEDIALTHUMB90 110
#define MEDIALTHUMB80 100
#define MEDIALTHUMB60 95
#define MEDIALTHUMB45 90
#define MEDIALTHUMB30 85
#define MEDIALTHUMB0 80
#define KNUCKLEINDEX0 155
#define KNUCKLEINDEX15 130
#define KNUCKLEINDEX30 125
#define KNUCKLEINDEX45 115
#define KNUCKLEINDEX60 105
#define KNUCKLEINDEX90 95
#define MEDIALINDEX0 110
#define MEDIALINDEX45 85
#define MEDIALINDEX90 65
#define KNUCKLEMIDDLE0 130
#define KNUCKLEMIDDLE30 110
#define KNUCKLEMIDDLE45 105
#define KNUCKLEMIDDLE60 95
#define KNUCKLEMIDDLE90 85
#define MEDIALMIDDLE0 90
#define MEDIALMIDDLE45 65
#define MEDIALMIDDLE90 45
#define KNUCKLERING0 110
#define KNUCKLERING30 80
#define KNUCKLERING45 70
#define KNUCKLERING60 65
#define KNUCKLERING90 55

P a g e | 101

Robotic Fingerspelling Hand | 2012

#define MEDIALRING0 135
#define MEDIALRING45 105
#define MEDIALRING90 80
#define KNUCKLEPINKY0 105
#define KNUCKLEPINKY30 90
#define KNUCKLEPINKY45 75
#define KNUCKLEPINKY60 70
#define KNUCKLEPINKY90 60
#define MEDIALPINKY0 140
#define MEDIALPINKY45 100
#define MEDIALPINKY90 80
#define THUMBIN 1
#define THUMBOUT 0
#define WRISTSTILL 20
#define WRISTTURN 150

uint8_t values [26][13]=
 {

 {'A',KNUCKLETHUMB0 ,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'B',KNUCKLETHUMB0 ,MEDIALTHUMB0 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE0 ,MEDIALMIDDLE0 ,KNUCKLERI
NG0 ,MEDIALRING0 ,KNUCKLEPINKY0 ,MEDIALPINKY0 ,WRISTSTILL ,THUMBOUT},

{'C',KNUCKLETHUMB60,MEDIALTHUMB45 ,KNUCKLEINDEX45 ,MEDIALINDEX90 ,KNUCKLEMIDDLE30 ,MEDIALMIDDLE90 ,KNUCK
LERING45 ,MEDIALRING90 ,KNUCKLEPINKY45 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'D',KNUCKLETHUMB30,MEDIALTHUMB45 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE45 ,MEDIALMIDDLE90 ,KNUCKL
ERING45 ,MEDIALRING90 ,KNUCKLEPINKY45 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

{'E',KNUCKLETHUMB0 ,MEDIALTHUMB0 ,KNUCKLEINDEX0 ,MEDIALINDEX90 ,KNUCKLEMIDDLE0 ,MEDIALINDEX90 ,KNUCKLERI
NG0 ,MEDIALRING90 ,KNUCKLEPINKY0 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

{'F',KNUCKLETHUMB30,MEDIALTHUMB80 ,KNUCKLEINDEX30 ,MEDIALINDEX90 ,KNUCKLEMIDDLE0 ,MEDIALMIDDLE0 ,KNUCKL
ERING0 ,MEDIALRING0 ,KNUCKLEPINKY0 ,MEDIALPINKY0 ,WRISTSTILL ,THUMBIN },

{'G',KNUCKLETHUMB0 ,MEDIALTHUMB90 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE90 ,KNUCKL
ERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTTURN ,THUMBOUT},

{'H',KNUCKLETHUMB0 ,MEDIALTHUMB90 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE0 ,MEDIALMIDDLE0 ,KNUCKLE
RING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTTURN ,THUMBOUT},

{'I',KNUCKLETHUMB0 ,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE45 ,KNUCKL
ERING90 ,MEDIALRING45 ,KNUCKLEPINKY0 ,MEDIALPINKY0 ,WRISTTURN ,THUMBOUT},

 {'J',KNUCKLETHUMB0 ,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE4
5 ,KNUCKLERING90 ,MEDIALRING45 ,KNUCKLEPINKY0 ,MEDIALPINKY0 ,WRISTSTILL ,THUMBOUT},

 {'K',KNUCKLETHUMB0 ,MEDIALTHUMB80 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE45 ,MEDIALMIDDLE0 ,
KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'L',KNUCKLETHUMB0 ,MEDIALTHUMB180,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE90
 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'M',KNUCKLETHUMB0 ,MEDIALTHUMB30 ,KNUCKLEINDEX60 ,MEDIALINDEX45 ,KNUCKLEMIDDLE60 ,MEDIALMIDDLE
45 ,KNUCKLERING45 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

P a g e | 102

Robotic Fingerspelling Hand | 2012

 {'N',KNUCKLETHUMB0 ,MEDIALTHUMB30 ,KNUCKLEINDEX60 ,MEDIALINDEX45 ,KNUCKLEMIDDLE60 ,MEDIALMIDDLE4
5 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

 {'O',KNUCKLETHUMB30,MEDIALTHUMB45 ,KNUCKLEINDEX45 ,MEDIALINDEX90 ,KNUCKLEMIDDLE45 ,MEDIALMIDDLE
90 ,KNUCKLERING45 ,MEDIALRING90 ,KNUCKLEPINKY45 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

 {'P',KNUCKLETHUMB0 ,MEDIALTHUMB90 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE60 ,MEDIALMIDDLE45
,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'Q',KNUCKLETHUMB45,MEDIALTHUMB90 ,KNUCKLEINDEX90 ,MEDIALINDEX0 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'R',KNUCKLETHUMB30,MEDIALTHUMB45 ,KNUCKLEINDEX15 ,MEDIALINDEX0 ,KNUCKLEMIDDLE0 ,MEDIALMIDDLE0
,KNUCKLERING30 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'S',KNUCKLETHUMB30,MEDIALTHUMB60 ,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'T',KNUCKLETHUMB0 ,MEDIALTHUMB45 ,KNUCKLEINDEX45 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBIN },

 {'U',KNUCKLETHUMB30,MEDIALTHUMB30 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE0 ,MEDIALMIDDLE0 ,
KNUCKLERING30 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'V',KNUCKLETHUMB30,MEDIALTHUMB80 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING0 ,MEDIALRING0 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'W',KNUCKLETHUMB30,MEDIALTHUMB30 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE0 ,MEDIALMIDDLE0
,KNUCKLERING0 ,MEDIALRING0 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'X',KNUCKLETHUMB30,MEDIALTHUMB30 ,KNUCKLEINDEX0 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTSTILL ,THUMBOUT},

 {'Y',KNUCKLETHUMB0 ,MEDIALTHUMB180,KNUCKLEINDEX90 ,MEDIALINDEX90 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE9
0 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY0 ,MEDIALPINKY0 ,WRISTSTILL ,THUMBOUT},

 {'Z',KNUCKLETHUMB45,MEDIALTHUMB45 ,KNUCKLEINDEX0 ,MEDIALINDEX0 ,KNUCKLEMIDDLE90 ,MEDIALMIDDLE90
 ,KNUCKLERING90 ,MEDIALRING90 ,KNUCKLEPINKY90 ,MEDIALPINKY90 ,WRISTTURN ,THUMBOUT}
 };
master_task::master_task (user_task *usertask, Servo servoone, Servo servotwo)/*, servo servo3, servo servo4,
 servo servo5, servo servo6, servo servo7, servo servo8, servo servo9, servo servo10,servo servo11)*/
{
 servo1 = servoone;
 servo2 = servotwo;
 user = usertask;
 letter = 0;
 write = false;
 wordtime = 1000;
 lettertime = 500;
 previousthumb = 0;
 currentthumb = 0;
 state=0;
}
void master_task::run_demo(void)
{
 demo = true;
 demo_begin = true;

P a g e | 103

Robotic Fingerspelling Hand | 2012

 state = 8;
}
void master_task::wait(uint16_t delaytime)
{
 for(volatile int i = 0; i<=delaytime; i++)
 {
 }
}
void master_task::detach_servos(void)
{
 servo1.detach();
 servo2.detach();
 servo3.detach();
 servo4.detach();
 servo5.detach();
 servo6.detach();
 servo7.detach();
 servo8.detach();
 servo9.detach();
 servo10.detach();
 servo11.detach();
}
void master_task::neutral_fingers(void)
{
 servo3.write(KNUCKLEINDEX0);
 servo4.write(MEDIALINDEX0);
 servo5.write(KNUCKLEMIDDLE0);
 servo6.write(MEDIALMIDDLE0);
 servo7.write(KNUCKLERING0);
 servo8.write(MEDIALRING0);
 servo9.write(KNUCKLEPINKY0);
 servo10.write(MEDIALPINKY0);
}
void master_task::neutral_thumb(void)
{
 servo1.write(KNUCKLETHUMB0);
 servo2.write(MEDIALTHUMB180);
}
void master_task::attach_servos(void)
{
 servo1.attach(11); // KNUCKLETHUMB
 servo2.attach(2); // MEDIALTHUMB
 servo3.attach(3); // KNUCKLEINDEX
 servo4.attach(4); // MEDIALINDEX
 servo5.attach(5); // KNUCKLEMIDDLE
 servo6.attach(6); // MEDIALMIDDLE
 servo7.attach(7); // KNUCKLERING
 servo8.attach(8); // MEDIALRING
 servo9.attach(9); // KNUCKLEPINKY
 servo10.attach(10); // MEDIALPINKY
 servo11.attach(12); // Wrist
 neutral_fingers();
 neutral_thumb();
}

void master_task::run (void)
{
 switch(state)

P a g e | 104

Robotic Fingerspelling Hand | 2012

 {
 case(0):
 attach_servos();
 state = 1;
 break;
 case(1):
 write = user->got_letter();
 if(write==true)
 {
 letter = user->input_letter();
 user->reset();
 state=2;
 }
 break;
 case(2):
 currentthumb = values[letter][12];
 if(letter == 26)
 {
 if(lettertime >= 200)
 {
 lettertime -= 100;
 Serial.println(lettertime);
 }
 user->get_next_letter();
 state = 1;
 }
 else if(letter == 27)
 {
 if(lettertime <= 2000)
 {
 lettertime += 100;
 Serial.println(lettertime);
 }
 user->get_next_letter();
 state = 1;
 }
 else if (letter == 28)
 {
 neutral_finger();
 neutral_thumb();
 delay(wordtime);
 user->get_next_letter();
 state = 1;
 }
 else if (letter == 29)
 {
 detach_servos();
 user->get_next_letter();
 state = 1;
 }
 else if (letter == 30)
 {
 attach_servos();
 user->get_next_letter();
 state = 1;
 }
 else if (previousthumb == 1 && currentthumb == 1)
 {

P a g e | 105

Robotic Fingerspelling Hand | 2012

 state = 3;
 }
 else if (previousthumb == 0 && currentthumb == 1)
 {
 state = 4;
 }
 else if(previousthumb == 1 && currentthumb == 0)
 {
 state = 5;
 }
 else
 {
 state = 6;
 }
 previousthumb = currentthumb;
 break;

 case(3):
 Serial.println("thumb inside to another letter with thumb inside");
 Serial.println("Fingers move to zero");
 Serial.println("thumb Move to position");
 Serial.println("fingers move to position");
 neutral_fingers();
 delay(100);
 servo1.write(values[letter][1]);
 servo2.write(values[letter][2]);
 servo3.write(values[letter][3]);
 servo4.write(values[letter][4]);
 servo5.write(values[letter][5]);
 servo6.write(values[letter][6]);
 servo7.write(values[letter][7]);
 servo8.write(values[letter][8]);
 servo9.write(values[letter][9]);
 servo10.write(values[letter][10]);
 servo11.write(values[letter][11]);
 state = 7;
 break;

 case(4):
 Serial.println("thumb outside to letter with thumb inside");
 Serial.println("thumb move to zero");
 Serial.println("fingers move to zero");
 Serial.println(" thumb Move to position");
 Serial.println(" fingers move to position");
 neutral_thumb();
 delay(100);
 neutral_fingers();
 delay(100);
 servo1.write(values[letter][1]);
 servo2.write(values[letter][2]);
 delay(150);
 servo3.write(values[letter][3]);
 servo4.write(values[letter][4]);
 servo5.write(values[letter][5]);
 servo6.write(values[letter][6]);
 servo7.write(values[letter][7]);
 servo8.write(values[letter][8]);
 servo9.write(values[letter][9]);

P a g e | 106

Robotic Fingerspelling Hand | 2012

 servo10.write(values[letter][10]);
 servo11.write(values[letter][11]);
 state = 7;
 break;

 case(5):
 Serial.println("thumb inside to letter with thumb outside");
 Serial.println("fingers move to zero");
 Serial.println("thumb move to zero");
 Serial.println(" fingers move to position");
 Serial.println(" thumb Move to position");
 neutral_fingers();
 delay(100);
 neutral_thumb();
 delay(100);
 servo3.write(values[letter][3]);
 servo4.write(values[letter][4]);
 servo5.write(values[letter][5]);
 servo6.write(values[letter][6]);
 servo7.write(values[letter][7]);
 servo8.write(values[letter][8]);
 servo9.write(values[letter][9]);
 servo10.write(values[letter][10]);
 servo1.write(values[letter][1]);
 servo2.write(values[letter][2]);
 servo11.write(values[letter][11]);
 state = 7;
 break;

 case(6):
 Serial.println("thumb outside to letter with thumb outside");
 Serial.println("thumb move to zero");
 Serial.println(" fingers move to position");
 Serial.println(" thumb Move to position");
 neutral_thumb();
 delay(100);
 servo3.write(values[letter][3]);
 servo4.write(values[letter][4]);
 servo5.write(values[letter][5]);
 servo6.write(values[letter][6]);
 servo7.write(values[letter][7]);
 servo8.write(values[letter][8]);
 servo9.write(values[letter][9]);
 servo10.write(values[letter][10]);
 servo1.write(values[letter][1]);
 servo2.write(values[letter][2]);
 servo11.write(values[letter][11]);
 state = 7;
 break;

 case(7):
 Serial.println((char)values[letter][0]);
 delay(lettertime);
 user->get_next_letter();
 if(demo)
 {
 state = 8;
 }

P a g e | 107

Robotic Fingerspelling Hand | 2012

 else
 {

 state = 1;
 }
 break;

 case(8):
 letter ++;
 if(demo_begin)
 {
 demo_begin = false;
 letter = 0;
 state = 2;
 }
 else if(letter == 26)
 {
 demo = false;
 delay(10000);
 state = 1;
 }
 else
 {
 state = 2;
 }
 break;

 default:
 Serial.println('Error State');
 break;
 }
}

P a g e | 108

Robotic Fingerspelling Hand | 2012

Servo Code
Servo.h
 Servo.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
 Copyright (c) 2009 Michael Margolis. All right reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

/*

 A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
 The servos are pulsed in the background using the value most recently written using the write() method

 Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
 Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
 The sequence used to sieze timers is defined in timers.h

 The methods are:

 Servo - Class for manipulating servo motors connected to Arduino pins.

 attach(pin) - Attaches a servo motor to an i/o pin.
 attach(pin, min, max) - Attaches to a pin setting min and max values in microseconds
 default min is 544, max is 2400

 write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
 writeMicroseconds() - Sets the servo pulse width in microseconds
 read() - Gets the last written servo pulse width as an angle between 0 and 180.
 readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
 attached() - Returns true if there is a servo attached.
 detach() - Stops an attached servos from pulsing its i/o pin.
 */

#ifndef Servo_h
#define Servo_h

#include <inttypes.h>

/*
 * Defines for 16 bit timers used with Servo library
 *
 * If _useTimerX is defined then TimerX is a 16 bit timer on the curent board
 * timer16_Sequence_t enumerates the sequence that the timers should be allocated
 * _Nbr_16timers indicates how many 16 bit timers are available.

P a g e | 109

Robotic Fingerspelling Hand | 2012

 *
 */

// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define _useTimer5
#define _useTimer1
#define _useTimer3
#define _useTimer4
typedef enum { _timer5, _timer1, _timer3, _timer4, _Nbr_16timers } timer16_Sequence_t ;

#elif defined(__AVR_ATmega32U4__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;

#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;

#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
#define _useTimer3
#define _useTimer1
typedef enum { _timer3, _timer1, _Nbr_16timers } timer16_Sequence_t ;

#else // everything else
#define _useTimer1
typedef enum { _timer1, _Nbr_16timers } timer16_Sequence_t ;
#endif

#define Servo_VERSION 2 // software version of this library

#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds

#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)

#define INVALID_SERVO 255 // flag indicating an invalid servo index

typedef struct {
 uint8_t nbr :6 ; // a pin number from 0 to 63
 uint8_t isActive :1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t ;

typedef struct {
 ServoPin_t Pin;
 unsigned int ticks;
} servo_t;

class Servo
{
public:
 Servo();

P a g e | 110

Robotic Fingerspelling Hand | 2012

 uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if
failure
 uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
 void detach();
 void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
 void writeMicroseconds(int value); // Write pulse width in microseconds
 int read(); // returns current pulse width as an angle between 0 and 180 degrees
 int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
 bool attached(); // return true if this servo is attached, otherwise false
private:
 uint8_t servoIndex; // index into the channel data for this servo
 int8_t min; // minimum is this value times 4 added to MIN_PULSE_WIDTH
 int8_t max; // maximum is this value times 4 added to MAX_PULSE_WIDTH
};

#endif

P a g e | 111

Robotic Fingerspelling Hand | 2012

Servo.cpp
 Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
 Copyright (c) 2009 Michael Margolis. All right reserved.

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*

 A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
 The servos are pulsed in the background using the value most recently written using the write() method

 Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
 Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.

 The methods are:

 Servo - Class for manipulating servo motors connected to Arduino pins.

 attach(pin) - Attaches a servo motor to an i/o pin.
 attach(pin, min, max) - Attaches to a pin setting min and max values in microseconds
 default min is 544, max is 2400

 write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
 writeMicroseconds() - Sets the servo pulse width in microseconds
 read() - Gets the last written servo pulse width as an angle between 0 and 180.
 readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
 attached() - Returns true if there is a servo attached.
 detach() - Stops an attached servos from pulsing its i/o pin.

*/

#include <avr/interrupt.h>
#include <WProgram.h>

#include "Servo.h"

#define usToTicks(_us) ((clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8)
// 12 Aug 2009
#define ticksToUs(_ticks) (((unsigned)_ticks * 8)/ clockCyclesPerMicrosecond()) // converts from ticks back to microseconds

#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009

//#define NBR_TIMERS (MAX_SERVOS / SERVOS_PER_TIMER)

P a g e | 112

Robotic Fingerspelling Hand | 2012

static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers]; // counter for the servo being pulsed for each timer (or -1 if refresh
interval)

uint8_t ServoCount = 0; // the total number of attached servos

// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer
controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on
this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer
and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and
channel

#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo

/************ static functions common to all instances ***********************/

static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
 if(Channel[timer] < 0)
 *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
 else{
 if(SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true)
 digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
 }

 Channel[timer]++; // increment to the next channel
 if(SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
 *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
 if(SERVO(timer,Channel[timer]).Pin.isActive == true) // check if activated
 digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
 }
 else {
 // finished all channels so wait for the refresh period to expire before starting over
 if((unsigned)*TCNTn < (usToTicks(REFRESH_INTERVAL) + 4)) // allow a few ticks to ensure the next OCR1A not missed
 *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
 else
 *OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
 Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
 }
}

#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
 handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif

#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)

P a g e | 113

Robotic Fingerspelling Hand | 2012

{
 handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif

#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
 handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif

#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
 handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif

#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
 handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
 handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif

static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
 if(timer == _timer1) {
 TCCR1A = 0; // normal counting mode
 TCCR1B = _BV(CS11); // set prescaler of 8
 TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
 TIFR |= _BV(OCF1A); // clear any pending interrupts;
 TIMSK |= _BV(OCIE1A) ; // enable the output compare interrupt
#else
 // here if not ATmega8 or ATmega128
 TIFR1 |= _BV(OCF1A); // clear any pending interrupts;
 TIMSK1 |= _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
 timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
 }
#endif

#if defined (_useTimer3)

P a g e | 114

Robotic Fingerspelling Hand | 2012

 if(timer == _timer3) {
 TCCR3A = 0; // normal counting mode
 TCCR3B = _BV(CS31); // set prescaler of 8
 TCNT3 = 0; // clear the timer count
#if defined(__AVR_ATmega128__)
 TIFR |= _BV(OCF3A); // clear any pending interrupts;
 ETIMSK |= _BV(OCIE3A); // enable the output compare interrupt
#else
 TIFR3 = _BV(OCF3A); // clear any pending interrupts;
 TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
 timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
 }
#endif

#if defined (_useTimer4)
 if(timer == _timer4) {
 TCCR4A = 0; // normal counting mode
 TCCR4B = _BV(CS41); // set prescaler of 8
 TCNT4 = 0; // clear the timer count
 TIFR4 = _BV(OCF4A); // clear any pending interrupts;
 TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
 }
#endif

#if defined (_useTimer5)
 if(timer == _timer5) {
 TCCR5A = 0; // normal counting mode
 TCCR5B = _BV(CS51); // set prescaler of 8
 TCNT5 = 0; // clear the timer count
 TIFR5 = _BV(OCF5A); // clear any pending interrupts;
 TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
 }
#endif
}

static void finISR(timer16_Sequence_t timer)
{
 //disable use of the given timer
#if defined WIRING // Wiring
 if(timer == _timer1) {
 #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
 TIMSK1 &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
 #else
 TIMSK &= ~_BV(OCIE1A) ; // disable timer 1 output compare interrupt
 #endif
 timerDetach(TIMER1OUTCOMPAREA_INT);
 }
 else if(timer == _timer3) {
 #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
 TIMSK3 &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
 #else
 ETIMSK &= ~_BV(OCIE3A); // disable the timer3 output compare A interrupt
 #endif
 timerDetach(TIMER3OUTCOMPAREA_INT);
 }

P a g e | 115

Robotic Fingerspelling Hand | 2012

#else
 //For Arduino - in future: call here to a currently undefined function to reset the timer
#endif
}

static boolean isTimerActive(timer16_Sequence_t timer)
{
 // returns true if any servo is active on this timer
 for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
 if(SERVO(timer,channel).Pin.isActive == true)
 return true;
 }
 return false;
}

/****************** end of static functions ******************************/

Servo::Servo()
{
 if(ServoCount < MAX_SERVOS) {
 this->servoIndex = ServoCount++; // assign a servo index to this instance
 servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
 }
 else
 this->servoIndex = INVALID_SERVO ; // too many servos
}

uint8_t Servo::attach(int pin)
{
 return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int min, int max)
{
 if(this->servoIndex < MAX_SERVOS) {
 pinMode(pin, OUTPUT) ; // set servo pin to output
 servos[this->servoIndex].Pin.nbr = pin;
 // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
 this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
 this->max = (MAX_PULSE_WIDTH - max)/4;
 // initialize the timer if it has not already been initialized
 timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
 if(isTimerActive(timer) == false)
 initISR(timer);
 servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
 }
 return this->servoIndex ;
}

void Servo::detach()
{
 servos[this->servoIndex].Pin.isActive = false;
 timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
 if(isTimerActive(timer) == false) {
 finISR(timer);
 }
}

P a g e | 116

Robotic Fingerspelling Hand | 2012

void Servo::write(int value)
{
 if(value < MIN_PULSE_WIDTH)
 { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
 if(value < 0) value = 0;
 if(value > 180) value = 180;
 value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
 }
 this->writeMicroseconds(value);
}

void Servo::writeMicroseconds(int value)
{
 // calculate and store the values for the given channel
 byte channel = this->servoIndex;
 if((channel >= 0) && (channel < MAX_SERVOS)) // ensure channel is valid
 {
 if(value < SERVO_MIN()) // ensure pulse width is valid
 value = SERVO_MIN();
 else if(value > SERVO_MAX())
 value = SERVO_MAX();

 value = value - TRIM_DURATION;
 value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009

 uint8_t oldSREG = SREG;
 cli();
 servos[channel].ticks = value;
 SREG = oldSREG;
 }
}

int Servo::read() // return the value as degrees
{
 return map(this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}

int Servo::readMicroseconds()
{
 unsigned int pulsewidth;
 if(this->servoIndex != INVALID_SERVO)
 pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION ; // 12 aug 2009
 else
 pulsewidth = 0;

 return pulsewidth;
}

bool Servo::attached()
{
 return servos[this->servoIndex].Pin.isActive ;
}

P a g e | 117

Robotic Fingerspelling Hand | 2012

User Task

P a g e | 118

Robotic Fingerspelling Hand | 2012

User_task.h
//***
/** \file user_task.h
 * This file contains a task class for running a user interface for the motor
 * controller. It has a single-state task which just reads the serial port to see if
 * the user typed anything
 *
 * Revisions:
 * \li 02-06-2012 Created generic switch cases
 * \li 03-26-2012 Header file accepted by Arduino
 * \li 04-17-2012 Constructor with pointers accepted in Arduino
 * \li 05-02-2012 Added functions to be used with Master_task
 *
 * License:
 * This program is intended for fingerspelling use with The Smith-Kettlewell Eye
 * Research Institute robotic hand, but it is not limited thereto.
 */
//***

/// This define prevents this .h file from being included more than once in a .cc file
#ifndef _USER_TASK_H_
#define _USER_TASK_H_
#include <stdlib.h>
#include <stdint.h>
#if defined(ARDUINO) && ARDUINO >= 100
 #include "Arduino.h"
#else
 #include "WProgram.h"
 #include <pins_arduino.h>
#endif

//---
/** This class contains a task which...
 */

class user_task //: public stl_task
{
 // This protected data can only be accessed from this class or its descendents
 protected:
 bool valid;
 bool next;
 uint8_t letter;
 uint8_t state;
 char input_char;

 public:
 // The constructor creates a new task object
 user_task ();

 // The run method is where the task actually performs its function
 void run (void);
 //This function will display an introduction in the serial monitor
 void intro(void);
 // This function is a flag to see if a valid letter was received
 bool got_letter(void);
 // This function returns the current letter received
 uint8_t input_letter(void);
 // This function clears the input variables

P a g e | 119

Robotic Fingerspelling Hand | 2012

 void reset(void);
 // This function tells user when to get the next letter
 void get_next_letter(void);
};
#endif // _TASK_USER_H_

P a g e | 120

Robotic Fingerspelling Hand | 2012

User_task.cpp
//***
/** \file user_task.cpp
 * This file tells the master file what letters (A-Z) are to be formed by accepting
 * input from the user. It also allows the user to modify the delay between letters.
 *
 * Revisions:
 * \li 02-06-2012 Created generic switch cases
 * \li 03-26-2012 Header file accepted by Arduino
 * \li 04-17-2012 Constructor with pointers accepted in Arduino
 * \li 05-02-2012 Added functions to be used with Master_task
 *
 * License:
 * This program is intended for fingerspelling use with The Smith-Kettlewell Eye
 * Research Institute robotic hand, but it is not limited thereto.
 */
//***

#include <stdlib.h>
#include <stdint.h>
#include "user_task.h"
#if defined(ARDUINO) && ARDUINO >= 100
 #include "Arduino.h"
#else
 #include "WProgram.h"
 #include <pins_arduino.h>
#endif

//---
/** This constructor creates a user interface task object. It checks if the user has
 * typed a command at the serial port and if so tells the servos what to do.
 */

user_task::user_task ()//(task_timer& a_timer, time_stamp& t_stamp)
 //: stl_task (a_timer, t_stamp)
{
 letter = 0;
 state = 0;
 valid = false;
 next= false;
 input_char = 0;
}

//---
/** This is the function which runs when it is called by the master file. */

void user_task::run (void)
{
 // There's no switch statement because this task only does one thing all the time:
 // check for a character, and perform a command
 if(state ==0)
 {
 state = 1;
 intro();
 }
 else if (state == 1)
 {
 if (Serial.available() > 0)

P a g e | 121

Robotic Fingerspelling Hand | 2012

 {
 input_char = Serial.read();
 state = 2;
 }
 }
 else if (state ==2)
 {
 switch (input_char)
 {
 // Pressing the '+' key increases finger-spelling speed
 case ('+'):
 case ('='):
 Serial.print("\nIncreasing speed\n");
 valid = true;
 letter = 26;
 state = 3;
 break;
 // Pressing the '-' key decreases finger-spelling speed
 case ('_'):
 case ('-'):
 Serial.print("\nDecreasing speed\n");
 valid = true;
 letter = 27;
 state = 3;
 break;
 // Pressing the 'space' key provides a space between letters
 case (' '):
 Serial.print(" ");
 valid = true;
 letter = 28;
 state = 3;
 break;
 // Pressing the '0' key disconnects all servos
 case ('0'):
 Serial.print("\nDetach servos\n");
 valid = true;
 letter = 29;
 state = 3;
 break;
 // Pressing the '1' connects all servos for use
 case ('1'):
 Serial.print("\nAttach servos\n");
 valid = true;
 letter = 30;
 state = 3;
 break;
 // Pressing the 'A' key forms the corresponding letter of the alphabet
 case ('A'):
 case ('a'):
 Serial.print("A");
 valid = true;
 letter = 0;
 state = 3;
 break;
 // Pressing the 'B' key forms the corresponding letter of the alphabet
 case ('B'):
 case ('b'):
 Serial.print("B");

P a g e | 122

Robotic Fingerspelling Hand | 2012

 valid = true;
 letter = 1;
 state = 3;
 break;
 // Pressing the 'C' key forms the corresponding letter of the alphabet
 case ('C'):
 case ('c'):
 Serial.print("C");
 valid = true;
 letter = 2;
 state = 3;
 break;
 // Pressing the 'D' key forms the corresponding letter of the alphabet
 case ('D'):
 case ('d'):
 Serial.print("D");
 valid = true;
 letter = 3;
 state = 3;
 break;
 // Pressing the 'E' key forms the corresponding letter of the alphabet
 case ('E'):
 case ('e'):
 Serial.print("E");
 valid = true;
 letter = 4;
 state = 3;
 break;
 // Pressing the 'F' key forms the corresponding letter of the alphabet
 case ('F'):
 case ('f'):
 Serial.print("F");
 valid = true;
 letter = 5;
 state = 3;
 break;
 // Pressing the 'G' key forms the corresponding letter of the alphabet
 case ('G'):
 case ('g'):
 Serial.print("G");
 valid = true;
 letter = 6;
 state = 3;
 break;
 // Pressing the 'H' key forms the corresponding letter of the alphabet
 case ('H'):
 case ('h'):
 Serial.print("H");
 valid = true;
 letter = 7;
 state = 3;
 break;
 // Pressing the 'I' key forms the corresponding letter of the alphabet
 case ('I'):
 case ('i'):
 Serial.print("I");
 valid = true;
 letter = 8;

P a g e | 123

Robotic Fingerspelling Hand | 2012

 state = 3;
 break;
 // Pressing the 'J' key forms the corresponding letter of the alphabet
 case ('J'):
 case ('j'):
 Serial.print("J");
 valid = true;
 letter = 9;
 state = 3;
 break;
 // Pressing the 'K' key forms the corresponding letter of the alphabet
 case ('K'):
 case ('k'):
 Serial.print("K");
 valid = true;
 letter = 10;
 state = 3;
 break;
 // Pressing the 'L' key forms the corresponding letter of the alphabet
 case ('L'):
 case ('l'):
 Serial.print("L");
 valid = true;
 letter = 11;
 state = 3;
 break;
 // Pressing the 'M' key forms the corresponding letter of the alphabet
 case ('M'):
 case ('m'):
 Serial.print("M");
 valid = true;
 letter = 12;
 state = 3;
 break;
 // Pressing the 'N' key forms the corresponding letter of the alphabet
 case ('N'):
 case ('n'):
 Serial.print("N");
 valid = true;
 letter = 13;
 state = 3;
 break;
 // Pressing the 'O' key forms the corresponding letter of the alphabet
 case ('O'):
 case ('o'):
 Serial.print("O");
 valid = true;
 letter = 14;
 state = 3;
 break;
 // Pressing the 'P' key forms the corresponding letter of the alphabet
 case ('P'):
 case ('p'):
 Serial.print("P");
 valid = true;
 letter = 15;
 state = 3;
 break;

P a g e | 124

Robotic Fingerspelling Hand | 2012

 // Pressing the 'Q' key forms the corresponding letter of the alphabet
 case ('Q'):
 case ('q'):
 Serial.print("Q");
 valid = true;
 letter = 16;
 state = 3;
 break;
 // Pressing the 'R' key forms the corresponding letter of the alphabet
 case ('R'):
 case ('r'):
 Serial.print("R");
 valid = true;
 letter = 17;
 state = 3;
 break;
 // Pressing the 'S' key forms the corresponding letter of the alphabet
 case ('S'):
 case ('s'):
 Serial.print("S");
 valid = true;
 letter = 18;
 state = 3;
 break;
 // Pressing the 'T' key forms the corresponding letter of the alphabet
 case ('T'):
 case ('t'):
 Serial.print("T");
 valid = true;
 letter = 19;
 state = 3;
 break;
 // Pressing the 'U' key forms the corresponding letter of the alphabet
 case ('U'):
 case ('u'):
 Serial.print("U");
 valid = true;
 letter = 20;
 state = 3;
 break;
 // Pressing the 'V' key forms the corresponding letter of the alphabet
 case ('V'):
 case ('v'):
 Serial.print("V");
 valid = true;
 letter = 21;
 state = 3;
 break;
 // Pressing the 'W' key forms the corresponding letter of the alphabet
 case ('W'):
 case ('w'):
 Serial.print("W");
 valid = true;
 letter = 22;
 state = 3;
 break;
 // Pressing the 'X' key forms the corresponding letter of the alphabet
 case ('X'):

P a g e | 125

Robotic Fingerspelling Hand | 2012

 case ('x'):
 Serial.print("X");
 valid = true;
 letter = 23;
 state = 3;
 break;
 // Pressing the 'Y' key forms the corresponding letter of the alphabet
 case ('Y'):
 case ('y'):
 Serial.print("Y");
 valid = true;
 letter = 24;
 state = 3;
 break;
 // Pressing the 'Z' key forms the corresponding letter of the alphabet
 case ('Z'):
 case ('z'):
 Serial.print("Z");
 valid = true;
 letter = 25;
 state = 3;
 break;
 // If the user types anything else, just ignore it
 default:
 Serial.println("?");
 state = 1;
 break;
 }
 }
 else if(state == 3)
 {
 if(next)
 {
 next = false;
 state = 1;
 }
 }
 return;
}

/** This function will display an introduction in the serial monitor*/
void user_task::intro(void)
{
 Serial.println("\nThe Smith-Kettlewell Eye Research Institute");
 Serial.println("\tRobotic Fingerspelling Hand");
 Serial.println("\nBy: Colby Dixon, Brian Fang, Trevor Wong");
 Serial.println("Released: June 2012");
 Serial.println("\nUser Commands:");
 Serial.println("A-Z = Letter to finger-spell\n\"+\" = Increase Speed, \"-\" = Decrease speed");
}

/** This function is a flag to see if a valid letter was received*/
bool user_task::got_letter(void)
{
 return valid;
}

P a g e | 126

Robotic Fingerspelling Hand | 2012

/** This function returns the current letter received*/
uint8_t user_task::input_letter(void)
{
 return letter;
}

/** This function clears the input variables*/
void user_task::reset(void)
{
 letter = 0;
 valid = false;
}

void user_task::get_next_letter(void)
{
 next = true;
}

P a g e | 127

Robotic Fingerspelling Hand | 2012

Motor Torque Code (EES)
Formatted Equations:

P a g e | 128

Robotic Fingerspelling Hand | 2012

Source Code:

P a g e | 129

Robotic Fingerspelling Hand | 2012

1988 Hand Anthropometric Excerpt

P a g e | 130

Robotic Fingerspelling Hand | 2012

P a g e | 131

Robotic Fingerspelling Hand | 2012

P a g e | 132

Robotic Fingerspelling Hand | 2012

Hand Shapes

 A B

 C D

P a g e | 133

Robotic Fingerspelling Hand | 2012

 E F

 G H

P a g e | 134

Robotic Fingerspelling Hand | 2012

 I J (twist)

 K L

P a g e | 135

Robotic Fingerspelling Hand | 2012

 M N

 O P

P a g e | 136

Robotic Fingerspelling Hand | 2012

 Q R

 S T

P a g e | 137

Robotic Fingerspelling Hand | 2012

 U V

 W X

P a g e | 138

Robotic Fingerspelling Hand | 2012

 Y Z (twist)

P a g e | 139

Robotic Fingerspelling Hand | 2012

Installation:

1. Go to the Arduino website and hit the Download tab, or follow this link

http://arduino.cc/en/Main/Software

2. Download to your computer’s OS.

3. Go to the download location and unzip the file

4. Locate the .exe and double click it.

Example:

C:\ … \arduino-1.0.1-windows\arduino-1.0.1

Uploading files to the Arduino:

1. Plug the USB into the Arduino before connecting it to the computer

2. Open Arduino.exe

3. File  Open  [file name].ino

4. Click the right arrow on the GUI to upload the file

Installing Arduino files to Arduino:

Tuning:

NOTE: The tuning program tunes one finger at a time. The tuning order is: thumb  index 

middle  ring  pinky  wrist and loops back to the thumb.

1. First, loaded up the degrees.ino to the Arduino.

2. Open terminal.exe

3. Engage the servos by pressing “g”.

4. “1” will decrement the angle of the knuckle servo by 5, which will bend the knuckle joint.

5. “2” will increment the angle of the knuckle servo by 5, which will straighten the knuckle

joint.

6. “3” will decrement the angle of the medial servo by 5, which will bend the medial joint.

7. “4” will increment the angle of the medial servo by 5, which will straighten the medial joint.

8. Record servo angle values that correspond with the angles in the #defines in

master_task.cpp

http://arduino.cc/en/Main/Software

P a g e | 140

Robotic Fingerspelling Hand | 2012

9. Press “+” to tune the next finger or “-“ to tune the previous finger

Hand Program:

WARNING: The transistor that controls the power does not have the heat sink properly attached

due to space. Running the hand continuously for long periods of time will cause the transistor to

die. It is best to run it at most 2 minutes and let it cool down. To let it cool down, you can press "1",

"0" or the reset button. Even though when the hand is in the neutral position it is on, it is not

drawing any power so the transistor will still cool down.

1. First, loaded up the matrix_test.ino to the Arduino.

2. Once program is uploaded, you can control the hand using the terminal or just run the

demo.

3. To run demo, all you need to do is press the red demo button. The demo will spell through

the alphabet then turn off for a minute to allow the transistor to cool down. Then reengage

the servos and ready to use again.

4. To run real time, you will need to use the terminal.exe provided. In the textbox, you can

type sentences or words and then press enter for the hand to do the commands. The lower

box is for real time, so when you press a letter, the hand will immediately go to that letter.

Figure 28. Demo button to run the alphabet.

P a g e | 141

Robotic Fingerspelling Hand | 2012

Figure 29. The box highlighted in blue is the Textbox for typing in sentences and words. The box highlighted in red is the

Realtime box. When you enter a letter or command in here, the hand will do it immediately.

