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ABSTRACT 

This project involves the design, building, and testing of a low intermediate frequency 802.15.4 receiver 

that uses an FPGA to perform final demodulation to baseband.  
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Section 1. INTRODUCTION 

This project will demonstrate the successful demodulation of data using a low intermediate 

frequency (IF) digital radio receiver. A separate modulation circuit will provide the system with BPSK 

modulated data at 956 MHz and an RF down converter circuit will supply the receiver with the low IF 

signal which contains both in phase and quadrature components. 

 

The analog section of the receiver includes a complex band pass filter with capability of tuning 

both the center frequency as well as the filter bandwidth, a programmable gain amplifier (PGA), and an 

analog to digital converter (ADC). A digital signal processor (DSP) or field programmable gate array 

(FPGA) provides the final demodulation of the IF data down to base band.  

 

 The product in question is an 802.15.4 compatible receiver module that utilizes a DSP/FPGA to 

perform final demodulation to baseband of a low-IF signal. This type of device is not intended for 

consumer end markets, but rather for companies who design consumer electronics. The 802.15.4 standard 

is intended for low power and low data rate applications such as interfacing house hold appliances to a 

central node and other daily, short-range wireless applications. The module is only a receiver, and thus 

can either be used in conjunction with a transmitter to form a transceiver, or as a stand-alone module in 

applications that call for only receiving data. Because the module uses a DSP and has several features 

described in the specifications document, the receiver is highly customizable and immune to certain levels 

of interference from noise and adjacent channels. The module also does not contain any clock extraction 

devices for synchronization since that is beyond the scope of this project. 
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Section 2. BACKGROUND TECHNOLOGY REVIEW 

Note that this section offers the technology background at the highest possible system level. The theory of 

each sub-system operations is presented in their respective sections. 

 This project entails the design and creation of a low IF digital radio receiver. Currently, most 

receivers use three common system architectures: Direct Conversion or Zero IF (ZIF), low IF or high IF. 

Direct quantization and signal processing at RF frequencies is not practical and thus not used. The 

following describes the relative advantages and disadvantages of each architecture.  

 (Direct Conversion, or Zero IF (ZIF)) 

Advantages 

A. Circuit simplicity 

Since direct conversion avoids the use of an IF, external IF filtering circuitry is not 

required. Thus, a baseband circuit has a relatively smaller area and a lower cost. 

Disadvantages 

A. LO Leakage  

It is possible for the LO signal to leak into the input to the RF down converter (which is 

as simple as just a mixer. See Fig 1.1 below). 

 

Figure 1.1 – Leakage in a mixer. 

  

Because the LO leaks into the input of the mixer, a DC value is present at the output (two 

sinusoidal waves multiplied together produce a DC term). If a high gain amplifier is present after 

the RF down conversion stage, it will rail with the DC offset term present. This can happen for 

both static self mixing and dynamic self mixing. AC coupling cannot solve this problem due to 
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significant levels of low frequency and DC content associated with the message signal. It is 

possible to design filters that account for this problem, although to do so is rather difficult.  

B. Noise 

A type of noise that is inversely proportional to frequency (known as 1/f noise) will be 

present in circuits that use active devices. A receiver that processes a signal at baseband is more 

susceptible to this type of noise. 

High IF  

Advantages 

A. DC offset nulling 

A high IF system can get rid of the DC offset problem which the baseband scheme faces 

by using AC coupling. 

 

B. Image Reject 

Unless proper filtering is performed at high frequencies, an image signal will be present 

along with the wanted signal. The image signal is any spectral power located at a frequency 

deviation which is the same as the wanted signal away from the local oscillator. However, the 

image is located on the opposite side of the carrier relative to the wanted signal. Image rejection 

techniques employed at high IF (using surface acoustic wave or SAW filters) is highly effective 

and thus high IF is used where high image rejection is needed. 

 

Disadvantages 

A. Additional circuitry 

  Circuits that use a high IF require two phase locked loop (PLL) circuits to convert the 

signal to a low enough frequency for analog to digital conversion. There are digital signal 

processors (DSP) available that can handle the high frequencies of high IF (typically in the 

hundreds of MHz), however the amount of power and processing strength needed for this will 

increase the cost and current consumption. The additional circuitry needed for the high IF circuit 

will also make the receiver more expensive. 

 

B. Bulky expensive components 

As mentioned before, a SAW filter is required for filtering. A SAW filter is a bulky 

component that is impossible to integrate into a chip. This is the single biggest drawback to this 

otherwise excellent architecture. 

 

Low IF 

Advantages 

A. DC offset problem doesn’t exist 
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A low IF system can ignore DC offsets in the devices by simply AC coupling the stages. 

 

B. Circuit simplicity 

As opposed to the high IF schemes, a low IF system only requires one PLL to down 

convert the RF signal to a low IF. The circuit requires no additional frequency conversion since a 

DSP/FPGA can easily handle the frequencies associated with low IF (hundreds of KHz to ones or 

tens of MHz).  

Disadvantages 

A. Image reject 

Image rejection at a low IF is substantially harder to realize than at a high IF. It is 

possible, however, to use complex bandpass filters for image rejection. Amplitude and phase 

matching of components ultimately places a practical limit on image rejection.  

 

B. Data rate constraints 

Another disadvantage is that the system is most suited for low data rate (low bandwidth) 

systems. High bandwidth systems such as Wi-Fi are not feasible with a low IF architecture, 

however, low data rate systems such as Zigbee and Bluetooth are. 

  

 

 

 

Digital System Advantages 

A digital signal processor (DSP) will perform the final demodulation of the signal to baseband data. 

Using a DSP and mixed signal processing carries several advantages over a pure analog system. 

A. Filtering  

Although the radio filters the signal before A/D conversion is employed (see Figure 3), 

higher order filters can be realized more easily in the digital realm as opposed to analog. The only 

limitations to this are processing speed and memory space. One must ensure that the signal 

strength is optimized for quantization since signal to noise ratio degrades for lower amplitudes 

due to quantization error. 

 

B. Customizable 

As opposed to an analog system in which individual hardware component values are 

changed should any parameter change happen, a digital system allows for easy customization 

through the use of coding.  

 

C. Improved image rejection 

If the in phase and quadrature components are maintained through the receive chain, one 

can use a DSP to improve the image rejection quality. Image rejection relies on matched 

amplitude and phases in circuitry and a DSP can account for variations in the aforementioned.  
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Section 3. DESIGN REQUIREMENTS AND SPECIFICATIONS 

Note that the following table is derived from the EE 463 Senior Project preliminary report. The table 

contains both marketing requirements and engineering specifications. The following list provides a brief 

description of what the module must accomplish: 

 Properly demodulate BPSK modulated data at 250 kbps 

 Provide image rejection 

 Provide a PGA 

 Output data to a computer for easy visibility 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

2,3,4 Frequency of operation: 950 – 956 MHz, 

capable of 250Kbps data rate. Receiver 

must use BPSK modulation with a 

channel spacing of 2MHz.  

Must conform to the Zigbee standard 

defined frequency allocation and bit rate 

parameters. These specifications are taken 

directly from the 802.15.4 standard. Note 

that spread spectrum techniques will NOT 

be used in this receiver. [5] 

 

 

 

1 Use a low IF of half the channel spacing 

of 2MHz or 1 MHz.  

For low data rate systems such as the 

Zigbee standard, a low IF is desirable. A 

low IF architecture typically costs less than 

other types. 1 MHz is used such that the 

adjacent channel is the only image present 

at IF. Any other IF used over 1 MHz will 

contain alternate channel images which 

will be substantially harder to reject.  
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Adjacent and alternate channel rejections 

of 20 and 50 dB respectively. 

The adjacent and alternate channels are 

sometimes larger than the wanted signal. 

Therefore these have to be rejected to 

avoid interference (known as image 

rejection particularly for low IF 

architectures).  These particular values are 

more than the specified values in the 

802.15.4 standard 

 

. 
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4 ADC resolution and sampling rate: 

4 bits and a sampling frequency  of 

greater than the Nyquist frequency of 

twice the bandwidth (4 MHz). Therefore 

the sampling rate is greater than 4 MHz. 

The ADC resolution is determined by the 

SNR required by the DSP to demodulate 

the signal to a BER of 1E-4. We assume 20 

dB for this so that 4 bits is adequate 

(4x6+1.78). The preceding equation is a 

rule of thumb equation that relates signal to 

noise ratio with a given bit resolution. 

Excess bits will serve as headroom or 

margin for the AGC. The sampling rate is 

determined by the IF frequency and the 

signal BW.  

4 Use an appropriate filter to achieve the 

channel selectivity without having the 

group delay distortion affect the BER of 

the receiver. 

For a distortion less system, a circuit 

should have a constant or small group 

delay variation in the passband.   

 

 

 

4 Use an automatic gain control system: 

Gain control range of 50 dB 

 

Near/far problems and multipath will cause 

the signal strength to vary.  

The sensitivity of BPSK of 250Kbps            

=-110dBm at RF. Assuming 30dB gain in 

RF, the sensitivity at IF will be -80dBm. A 

maximum IF signal corresponds to -20dBm 

at RF or +10 dBm at IF. For this variation 

of the signal the level of the signal at the 

ADC input should be roughly constant to 

maximize the ADC capabilities. 

 

2,3 User interface The user must physically view the 

demodulated data stream to verify proper 

transmission. MATLAB or LabVIEW can 

interface with the receiver and display the 

received data. A Logic Analyzer can also  

export data to an excel spreadsheet for 

analysis. 

2,3 Tunable IF bandwidth. NOTE: After 

some research, it was determined that a 

tunable image reject filter was beyond 

the scope of this project and is 

therefore not going to be implemented. 

To accommodate for different bandwidths 

associated with different data rates, a 

tunable filter is required. The circuit 

contains this feature for a proof of concept. 

 

4 A bit error rate (BER) of 1E-4 at 

sensitivity. This in turn corresponds to a 

packet error rate of 1% for 250 Kbps for 

BPSK. 

This is specified in IEEE 802.15.4 [5] 
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1 Research and development costs. The total cost for R&D should not exceed 

$450.00 

 

5 PCB on which circuit is built should not 

exceed 60 square inches or use more than 

2 layers. 

The PCB on which this circuit is built will 

meet these specs to conform to 

4PCB.com‟s academic board 

manufacturing option. Evaluation kits for 

the DSP, RF and TX circuitry will be 

sourced from manufacturers. 

 

Marketing Requirements 

1. Affordable 

2. Easy to use 

3. Customizable 

4. Seamless data transfer 

5. Compact  

Table 3.1 – System specifications and requirements 

 

 It must be noted at this point that, although the module is meant to be a low IF receiver, a 

transmitter and a down converter will need to be constructed as well to provide the BPSK low IF 

modulated data. 
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Section 4. DESIGN ALTERNATIVES 

IF Architecture 

The only other alternatives for a receiver architecture include the aforementioned high IF and 

zero IF architectures. The disadvantages and advantages of each were discussed previously and it was 

determined that a low IF architecture would be the most feasible for this project given the allotted time 

and resources. 

Analog vs. Digital 

 The alternative to using DSP/FPGA for final demodulation would obviously be using analog 

demodulation. However, this requires the extensive use of analog filters and other sub-system 

components including hard limiters and additional down converters that complicate the project and add to 

the overall cost. A DSP/FPGA can perform final demodulation using simple coding techniques and is 

highly customizable and easy to change. 

DSP vs. µProcessor vs. FPGA 

 The alternative to using a DSP would be using a microprocessor to perform demodulation to 

baseband. This technique will only work if the microprocessor has sufficient memory and processing 

capabilities to sample and demodulate a signal (1 MHz for the project). The microprocessor needs to be 

able to buffer many data samples (to be determined) and possibly generate its own pseudo random binary 

sequence to avoid the use of two microprocessors which would require a digital PLL. The last alternative 

is to use an FPGA and VHDL to carry out final demodulation. The advantage of using this method is that 

one has direct control over any of the clocks involved in the system and can therefore alter timing 

constraints accordingly and with precision.  

PCB vs. Bread boarding 

 Although bread boarding the system may offer more customizability and be less prone to error 

since any mistakes can easily be made, the system has enough components to the point where bread 

boarding the system may not be feasible. Creating a layout and designing the circuit on a PCB is much 

more compact and clean (especially for RF circuitry).  
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 Section 5. PROJECT DESIGN  

 A high level block diagram of the system is shown below in Figure 5.1. Table 5.1 describes the 

function of each block. 

 

 

Figure 5.1. – Block diagram of the entire system. 

BLOCK INPUT OUTPUT FUNCTION 

 

Modulation 

Circuitry 

250 Kbps digital 

data stream. 

 
 

Modulated 956 MHz 

BPSK RF signal. 

The modulation circuitry is what 

will provide the BPSK modulated 

data signal to the radio receiver at 

956 MHz. 

 

RF Down 

conversion 

circuitry  

RF 900 MHz signal Low IF Signal (1 MHz) The RF down converter will convert 

the modulated frequency to the low 

intermediate frequency for signal 

processing. 

 

BPF (Band pass 

image reject 

filter) 

IF Signal Filtered IF Signal The band pass filter will only allow 

the wanted signal in the pass band 

and attenuate all other signals. Note 

that this filter is complex I/Q 

 

 

RF

Downconverter 

Modulation

Circuitry
Complex BPF

RF Signal (950 MHz)

20 Kbps Data Stream

Low IF Signal (1 MHz)

Low IF Signal (1 MHz)

(Filtered)

PGA

Amplified

Signal

ADC

CLK1

DSP (IF

Demodulation)

CLK2

Digitized Signal

AGC

POWER

GND

AGC output

that controls

PGA

Feedback path used to control AGC

USB Out
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PGA 

(Programmable 

Gain  Amplifier) 

Filtered IF Signal Filtered IF Signal with 

gain 

The PGA is needed for the AGC. 

 

 

 

 

ADC (Analog to 

Digital 

converter) 

Filtered IF Signal 

with gain 

Quantized output The ADC will convert the analog 

signal to a digital value which will 

be processed by the DSP/FPGA. 

The ADC resolution will depend on 

the SNR requirements of the 

802.15.4 system. 

CLK1  No Input 5 MHz The sampling rate of the ADC is 

determined by this clock.  

CLK2 No Input 50 MHz Internally generated DSP/FPGA 

clock. 

AGC (Automatic 

gain control) 

DSP output signal 

(logic bus) 

Logic bus signal The AGC will control the PGA. The 

AGC is controlled by the 

DSP/FPGA. 

 

DSP (Digital 

signal processor. 

Can be replaced 

by an FPGA) 

Quantized IF signal DSP output logic bus. 

USB (tentative). 

Logic analyzer (tentative). 

The DSP will perform the final 

demodulation to baseband. The DSP 

will have a user interface (a 

computer) such that the user can 

view the demodulated bit stream for 

test purposes. An FPGA can take 

the place of a DSP. 

Table 5.1.  Functional description of each sub system block 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

Sub-Section 1. Image Reject Filter Analysis and Design 

One of the biggest problems associated with a low IF architecture is the presence of an image at 

the IF. An image is present due to the mathematical properties of frequency shifting when down 

converting. Although the image signal will be present in the negative frequencies, in all practical 

applications these frequencies are „folded over‟ such that the image signal will indeed be present at the IF. 

Therefore, proper filtering must be performed to remove the image at the „negative‟ frequencies. This can 

be done by positively shifting the magnitude response of a low pass filter such that no negative 

frequencies will be present in the pass band (the magnitude response of a LPF is symmetric about the y 

axis and therefore negative frequencies will be in the pass band). A shift in the frequency domain 

corresponds to multiplication by a complex number in the time domain. Hence, the type of filter used can 

be called a complex bandpass filter. Analysis of an IQ complex bandpass filter is shown below. 

 

 

Figure 5.1.1. – Simplified block diagram of an image reject system. 

First, we shall observe how an image signal is rejected using mathematical analysis. The RF Input 

contains two signals of interest for this analysis: the wanted signal located at ωc and the image signal 

located at ωIM. Note that for a ωLO that is greater than the wanted signal: 

                                      

and 

            

 

The frequencies mentioned are all at RF frequencies except for ωIF. Without loss of generality, we can 

assume that the image and wanted signals are simple sinusoids with different amplitudes. Thus, 

                   (   ) 

                 (    ) 

RF In

-90

Sum
IF Out

sin(Wlo)

cos(Wlo)
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 Using an IQ down-converter, the I channel yields (after being mixed by cos(ωLO)): 

   (    )  [    (   )      (    )]    

 (   ((      ) )     ((      ) ))    (   ((       ) )     ((       ) )) 

and neglecting the higher RF frequencies due to low pass filtering, we arrive at: 

    ((      ) )       ((       ) )   

    (    )       (     ) 

The Q channel yields (after being mixed by sin(ωLO)): 

   (    )[    (   )      (    )]    

 (   ((      ) )     ((      ) ))    (   ((       ) )     ((       ) )) 

and neglecting the high RF frequencies, the input to the phase shifter is: 

    ((      ) )       ((       ) ) 

Note that the divide by 2 that occurs due to trigonometric identities is left out for simplicity. Now, since 

ωLO – ωIM is a negative frequency, or – ωIF, we can rewrite the above expression as: 

    ((      ) )       ((       ) )   

    (    )       (    ) 

Due to the 90 phase shift in the Q channel, the input to the summer is: 

    (      
 

 
)       (      

 

 
) = 

    (    )       (    ) 

The output of the summer is: 

    (    )       (    )      (    )       (    )   

    (    )  

Observe that the image signal, which had an amplitude of B is now completely gone. This analysis also 

applies to modulated signals and images at these frequencies. 

This type of image reject system can be realized using two cross coupled low pass filters. Note 

that the 90 degrees phase shift of the I channel is simply the Q channel. In other words, the Q channel 

shifts the I channel by the required 90 degrees, and feeding the Q channel into a filter along with the I 

channel will result in the desired output. Analysis of this filter is shown below. 
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We first start with the simple low pass transfer function: 

 ( )   
 

  
  
  

 

The magnitude response of this TF resembles: 

       Mag( ( )) 

        

 

 

                  

Figure 5.1.2. – Magnitude response of a simple rudimentary low pass filter 

We saw how, in the previous analysis, the image signal was located in the negative frequency range. 

Thus, to eliminate any „negative‟ frequencies, we can shift the magnitude response to the right. This will 

result in a new transfer function: 

 ( )   
 

  
 (    )

  

 

where    is the shifted frequency. Applying this transfer function to only the I channel (for now) and 

after cross multiplying, we arrive at: 

           
  

  
     

   
  
     

 

where      is the output of the LPF. Note that the coefficient of the last      term is a 90 degree shifted 

scalar multiple of     . From before, we know that the Q channel is the I channel positively shifted by 90 

degrees, or j*I. Therefore, any signal processing performed on the Q channel that is identical to the I 

channel will result in an output on the Q channel that is still j*I. Therefore it is safe to represent      as 

      . Replacing this in the above equation results in: 

           
  

  
     

  
  
     

 

Rearranging terms results in: 
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This transfer function can be realized using the following block diagram (the Q channel gain is left out for 

simplicity): 

 

Figure 5.1.3. – Block diagram of an image reject transfer function. 

This diagram is essentially an integrator with a simple negative feedback loop. One can implement this 

block diagram using the following circuit. 

 

Figure 5.1.4. – Practical realization of a simple image reject filter. 

Since the entire system must be symmetric to maintain properly matched I and Q outputs, the system is 

cross coupled as seen in Figure 5.1.5. We can now derive what the exact transfer function of the system is 

and show how it resembles the shifted frequency transfer function.  
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Figure 5.1.5. – A more detailed look at a simple image reject filter. 

We can use nodal analysis for the I channel op-amp and arrive at the equation: 

   
  
 
    
  

      (
 

  
    ) 

The negative term for      is present due to the inverter (E1) at the output of the filter on the Q channel. 

This inverter is here due to mathematical reasons. If it were not present, the passband would be shifted 

negatively as opposed to positively. Replacing s with    and solving for     yields: 

     
( 
     
  

 
      
  

)

  
  
  

 

where 

    
 

    
 

This transfer function is almost identical to the shifted frequency transfer function we were trying to 

achieve with the exception of a scalar coefficient for both     and     . The polarity does not matter since 

it will result in a 180 degrees phase shift for both channels due to symmetry and thus not affect the 

frequency response.  The      coefficient must be set to equal 
  

  
 derived earlier. The values present in 

the schematic above are for a shift frequency of 1 MHz with the  low pass filter configured for 150KHz. 

Simulating these values in LTSpice yields the following magnitude response shown in Figure 5.1.6. 
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Figure 5.1.6. – Magnitude response of a simple image reject filter.  

The center frequency shown in Figure 5.1.6 is indeed 1 MHz. The yellow trace on the response is the 

response of the frequencies at which the image would appear. Since LTSpice is incapable of plotting 

negative frequencies, the Q channel phase is reversed by 180 degrees such that the response is shifted left 

and not right. This enables us to observe the image suppression since the magnitude response has even 

symmetry about the magnitude axis. 

This technique of applying the output of the Q channel to the input of any integrator in the I 

channel will always result in a shifted frequency if all resistors are chosen accordingly. Thus, one can 

cascade any amount of integrators in the receive chain and achieve image rejection if the integrators are 

all cross coupled. We can implement a higher order filter using a cross coupled Tow Thomas bi-quad 

filter consisting of two complex conjugate pole pairs and a real pole. Figure 5.1.7 shows this 

implementation. 

 

Figure 5.1.7. – Ideal image reject filter using a fifth order Butterworth low pass filter configuration. 
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This particular filter is configured to operate as a 5
th
 order Butterworth low pass filter if no coupling is 

present. The values for the components were generated using a program called Filter Wiz Pro. The 

magnitude response for this filter is shown in Figure 5.1.8. 

 

Figure 5.1.8. – Magnitude response of a 5
th

 order BPF (ideal). 

The turquoise response occurs when the filter is configured with a perfect 90 degree difference 

between the I and Q channels. The red trace indicates what happens if there is a 1 degree offset present 

between the I and Q channels. The yellow trace once again shows us the suppression of the image. The 

image rejection is well above the 20 and 50 dB attenuation given by the specifications. Both the I and Q 

channel outputs yield similar transfer characteristics. To observe the group delay in the passband, we take 

the derivate of the phase with respect to frequency and divide by 2*pi.  
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Figure 5.1.9. – Magnitude response of a 5
th

 order BPF with group delay (ideal). 

The dotted line in Figure 5.1.9 indicates the group delay in the passband. The maximum group delay is 

4.26 µs. If we use standard resistor values and non-ideal op-amps with an open loop gain of 5.2K and a 

GBWP of 100MHz, the magnitude response is as follows:  

 

Figure 5.1.10. – Magnitude response of a 5
th

 order BPF (non-ideal). 

The image (maroon) in Figure 5.1.10 is not as suppressed using this configuration.  
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For the receiver, the LT6230 op amp from Linear Technologies was chosen due to its high gain 

bandwidth product and fast slew rate. As this design was intended for a single supply design at 5V, the 

circuit was redrawn with the LT6230 and proper referencing to a common mode voltage (CMV) of 2.5V. 

Figure 5.1.11 shows the complete schematic with proper value components. The inverters have been 

replaced with inverting op amps. In a fully differential design, the inverters would not be needed due to 

the inverting output terminals present in a differential op amp.  

 

 

Figure 5.1.11. – Completed Filter Schematic. This is the schematic view in LTSpice.  

 

The schematic created in OrCAD Capture can be viewed in Appendix B, Figure B.5 and Figure B.6 more 

clearly than the schematic in Figure 5.1.11.  
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Sub-Section 2. BPSK Theory, Design, and Simulation 

A BPSK system only has two possible states with a phase deviation of pi radians. A BPSK 

system can be modeled using a DSB-SC architecture with a binary message signal as shown below: 

 

Figure 5.2.1. – A BPSK system representation using a DSB-SC architecture. 

The output of the mixer is then  ( )    ( )    (   ) or  ( )      (     ( )) where k is either pi 

or 0 depending on the polarity of the message signal. Shown below is the waveform of the carrier signal 

with a modulated message signal. The simulation was performed in Simulink. The input data is not bi-

polar and the carrier is not smooth due to sampling limitations. 

 

Figure 5.2.2. – Simulation showing the modulated signal. The phase changes when the message 

signal changes state. 
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To demodulate a BPSK signal down to a low IF, we can multiply the modulated signal by I and Q 

phased local oscillators. To down convert the signal to 1 MHz, we multiply by an LO which is 1MHz 

higher than the carrier frequency (high side LO injection): 

   (    )      (     ( ))     (        ( ))     (      ( ))  

After image rejection and channel selection processing is performed at the IF, the signal is then down 

converted by mixing a sinusoid with the same frequency as the IF: 

   (    )     (      ( ))     ( ( )) 

The signal is now demodulated. Higher frequencies are filtered out and are therefore neglected. A suitable 

filter for this system can be an integrate and dump filter which acts as a low pass filter. The down 

converted low IF signal is shown in Figure 5.2.3 below. High frequencies exist in the signal due to no 

filtering. Both the I and Q demodulation channels are shown. 

 

Figure 5.2.3. – Down converted low IF signal without filtering (both I and Q channels).  

Figure 5.2.4 shows the final demodulated signal without filtering on the next page. 
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Figure 5.2.4. – Demodulated output signal (both I and Q channels).  

The aforementioned signal capture is for a perfect channel. Figure 5.2.5 shows the demodulated wave 

with additive Gaussian noise. 
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Figure 5.2.5. – Unfiltered demodulated signal with AWGN. 

 The previous figures were obtained using Simulink. The entire BPSK communication system was 

simulated in Simulink with the digital communications toolbox. The RF frequency, however, had to be 

reduced to 10 MHz due to computer processing limitations. The system sampling frequency had to be at 

least twice the Nyquist frequency, but to obtain more accurate results, a sampling frequency of 100 MHz 

was used. The first stage mixers, which represent the RF down converters, were set to 11 MHz. The 

second stage mixer, which will ultimately be performed using a DSP, was set to 1 MHz to down convert 

the final signal to baseband.   

The system is shown in the next page with the error rate calculators present on the right side of 

the page. For the given test in the figure, Display2 represents the Q channel and Display1 represents the I 

channel. A total of 15890 bits were sent and the average bit errors was 77 which yields an average BER 

of .004971 or .49% for a given Eb/No value of 8.2 dB (Note that this value does not meet specifications. 

This is merely for an example case). An additive Gaussian noise channel was used to perform the 

simulation as can be seen in the following page. To extract data from the output of the integrate and dump 

filters, a sign block was used. A look up table had to be used only due to the fact that the sign block 

output values based upon three conditions and not two. All of the aforementioned functions can be readily 

implemented in a DPS/FPGA. 
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Figure 5.2.6. – Entire simulated BPSK system in Simulink. 
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Sub-Section 3. Modulator/Demodulator 

 The modulation circuitry for the receiver consisted of a basic attenuation network and the LT5568 

IQ modulator. Since the system is a BPSK system, the quadrature component is not used on the 

modulation side and thus had its pins tied together. The inputs to the modulator are differential inputs, and 

therefore any data that is sent to the modulator must be in differential form. Failure to provide differential 

signaling can cause severe harmonic distortion. The CMV of the differential inputs to the modulator has 

to be .54V with a total voltage of less than 2.5V. Thus, an attenuation network was added to the input of 

the modulator to accommodate this specification. The modulator schematic can be seen in Appendix B, 

Figure B.1. 

The output and LO are both connected to SMA cables for ease of testing and connectivity. The 

demodulation circuitry utilized the LT5575 IQ direct down conversion demodulator. This demodulator 

had two differential outputs for the I and Q channel. Since the filter is single ended, an instrumentation 

amplifier (IA) had to be utilized to convert from differential to single ended signaling. Also, all the 

LT6230 op amps in this design could not accept a voltage below 1.5V or above 4V. Therefore, the signals 

from the demodulator had to be AC coupled and centered around a reference voltage of 3V before being 

fed into the instrumentation amplifier. The IA was then referenced to the CMV of 2.5V which is the same 

CMV as the filter. Refer to Appendix B, Figure B.2 for the demodulator, Figure B.3 for the DC offset 

circuit, and Figure B.4 for the instrumentation amplifier. 

 

Sub-Section 4. Programmable Gain Amplifier 

 The specifications require that a PGA be used in the receive chain to correct for signal level 

changes caused by near-far problems. This is done by using two resistor banks controlled by multiplexer 

switches and an op-amp in the inverting configuration as can be seen in Appendix B, Figure B.7. The 

FPGA will control a switch array that adjusts the gain of the amplifier based upon which resistor is 

grounded. The FPGA will have an algorithm that checks the amplitude of the signal and will adjust the 

switches accordingly. An explanation of the PGA software can be found in Sub-Section 5, Software 

Component 7. 
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Sub-Section 5. Software/VHDL 

At this point, it must be noted that the Nexys-2 FPGA was selected as the software demodulation device. 

All VHDL code is listed in Appendix D. 

The main blocks that need to be implemented in software include the following: 

1) Interface to ADC – the FPGA will have to interface with an ADC to input data.  

2) A digital local oscillator/mixer – this will perform the final demodulation to baseband. The local 

oscillator should have enough samples to offer reliable data. 

3) Integrate and dump – this block essentially acts as a low pass filter. Its main purpose is to 

accumulate enough data to provide the sign block information about the polarity of the signal.  

4) Sign determiner (hard limiter) – this block will output a logic „1‟ if the input is positive and „0‟ if 

negative. The output of this block will be a completely demodulated signal 

5) Pseudo-Random Binary Sequence Generator – random data will need to be generated by the DSP 

itself to avoid clock conflicts. If a different device were to be used, a digital PLL will have to be 

built which is beyond the scope of this project. 

6) Sync Clock – This is used to sync with the LO‟s. 

7) PGA Feedback – the FPGA will have to have a control system to determine the switch values for 

the PGA. 

 

Software Component 1. – ADC 

The schematic for the ADC is shown in Appendix B, Figure B.8. The output of the PGA was AC 

coupled to the ADC for the easiest configuration. Although an ADC is a hardware component, it is the 

interface between the hardware and software realm of the project and therefore was included in the 

software section. The 10-bit output of the ADC was fed into the Nexys-2 board for processing. An output 

of the Nexys-2 board was used for the clock that was fed into the ADC. The ADC outputs parallel data 

for each falling edge of the clock (up to 20 MHz). The sample rate used for this project was 5 MHz. Data 

is delayed by 5 clock cycles and therefore has to be taken into consideration in software. 

VHDL code lines 399 to 478 in Appendix D contain the ADC sampling process. 

Software Component 2. – Digital Oscillator Multiplication and Demodulation 

After the data has been input into Nexys board, it needs to be multiplied by a local oscillator to 

shift the spectrum down to baseband. The sample rate of the ADC was set to 5 MHz. Because of this 

unique sampling frequency, no multiplication was necessary. This is due to the fact that separating a 

signal into 5 separate parts and multiplying those parts by their corresponding cosine terms results in only 

one of three states. Either the sample is passed through unaffected, inverted, or not passed through at all. 

After all the samples are complete, the data is pushed out of the process onto another set of signals for 

further processing. 

VHDL code lines 399 to 478 in Appendix D contain the multiplication process. 
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Software Component 3. – Integration 

Since integration is essentially a Riemann sum of areas which can be composed of rectangle 

approximations, the integration step can be simplified to a basic addition operation with a constant scale 

factor. This can be further simplified by removing the scale factor because only the polarity is needed in 

the next step and not an actual quantitative value. Thus, no multiplication is present anywhere in the 

system which is highly efficient.  

VHDL code lines 500 to 549 in Appendix D contain the integration process. 

Software Component 4. – Sign Determiner 

This process is fairly straightforward. Since the data from the ADC and all subsequent data is in 

signed two‟s complement, only the most significant bit of the output of the integrator needs to be read to 

determine the polarity. 

VHDL code lines 559 to 570 in Appendix D contain the sign determine process. 

Software Component 5. PSBR Signal Generator 

A simple array and clock generator was used to create a PRBS sequence. Each time the allocated 

clock line pulled low, a signal was indexed and output differentially from the board.  

VHDL code lines 321 to 382 in Appendix D contain the signal generation process. 

Software Component 6: Sync Clock 

A 10 MHz clock had to be generated by the Nexys-2 board to synchronize it with the LO‟s since 

no clock extraction circuitry was used in this circuit. The LO‟s external sync inputs were 50 Ohm inputs 

and required an AC coupled signal. Therefore the output of the Nexys-2 board was fed to a 10 uF 

capacitor before the LO‟s. It must also be noted that it is impossible to generate a 10 MHz clock using 

falling edge triggered clock generation as done for the 5 MHz signal and the 250 KHz signal  due to the 

fact that a total of 2.5 clock cycles is needed for every 1 half period of the sync clock. Therefore, Xilinx‟s 

IP Core generator had to be used to instantiate a clock divider „black box‟ design. The VHDL code for 

this is proprietary and unknown. Only a component with a port map was provided. The clock signal was 

fed to the component and the 10 MHz clock was taken from the output. 

VHDL code lines 296 to 302 in Appendix D contain the sync clock process 
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Software Component 7: PGA Feedback 

 A software flow diagram of the PGA feedback algorithm can be found below in Figure 5.5.7.1.  

 

Figure 5.5.7.1 - Software flow diagram for the PGA  

A master if statement will reset the PGA and initialize a sample store and compare sequence if a 

counter hits a certain value. This process exists to avoid positive feedback in the system. The following 

scenario describes how positive feedback can occur. Suppose the signal is very weak, and the maximum 

gain of the PGA needs to be applied. Assuming the PGA has a gain of 1 initially, the ADC will read the 

signal, detect the peak, and apply the appropriate gain. Because the PGA is fed into the ADC, the ADC 

will now read the signal with the gain applied and assume that the signal is „normal‟ in which case it will 

set the gain back down to 1. This will cause the signal to become small again, and the process will 

continue to oscillate. By resetting the PGA in the master if statement, this oscillation is avoided.  

 A state variable diagram is shown in Figure 5.5.7.2 for the different states a signal can exist in 

depending on its amplitude. Note that the bi directional paths exist because the PGA is reset upon each 

master if statement reset. 
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Figure 5.5.7.2. – State Variable Diagram 

The gain steps of the PGA are clearly non-linear and not very ideal. However, the PGA in this project is 

more proof of concept than practical. Moreover, the gains can be adjusted by setting the resistor values 

accordingly and calibrating the code for the different states. 

 

 

 

 

 

 

 

 

STATE 1

GAIN = 1

INPUT > 1.6 Vpp
STATE 2

GAIN = 1.5

1.25 Vpp < INPUT < 1.6 Vpp

STATE 3

GAIN = 2

1.2 Vpp < INPUT < 1.25 Vpp

STATE 4

GAIN = 2.06

.83 Vpp < INPUT < 1.2 Vpp

STATE 5

GAIN = 3

.8 Vpp < INPUT < .833 Vpp

STATE 6

GAIN = 3.1

.4 Vpp < INPUT < .8 Vpp

STATE 7

GAIN = 6

INPUT < .4 Vpp
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Section 6. CONSTRUCTION AND INTEGRATION 

 Construction consisted of soldering all components onto the PCB‟s. No further soldering beyond 

this was necessary. Because all of the system was localized onto a board, there was no need for 

interconnects beyond the interface with the Nexys-2. Due to unforeseen circumstances, the modulator and 

demodulator QFN footprints used for the first revision were footprints taken from another part that had an 

identical footprint name. This footprint was of the incorrect size and therefore the components could not 

be soldered on due to the fact that RF components are near impossible to wire mod. A second revision 

had to be created with the correct footprint. However, since all of the complex filter components were still 

on the initial revision board, the two boards were jumped together to avoid the removal and replacement 

of all the components which would have been time consuming. 

 Wires were soldered onto the pads on the PCB to interface to the PMOD
TM 

connectors on the 

Nexys-2 board directly. The sync clock output was sent to a separate prototype PCB with the 10uF 

capacitor to the LO‟s. The data output was a simple wire connection. 
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Section 7. SUB SYSTEM TESTING 

 

Sub-System 1. Filter/Demodulator Testing 

 To properly characterize the filter, each individual chain had to be analyzed individually, and then 

analyzed when fully completed. At first, each filter was decoupled (I/Q cross coupling removed) and the 

input test signal was inserted directly at the inputs of the filters with the instrumentation amplifier and 

CMV shifting circuitry in place. This proved to be an erroneous test set up since the output data was 

clearly wrong (see Table 7.1.1 below). Thus, the input test signals had to be inserted at the inputs of the 

IA which yielded fairly accurate low pass transfer characteristics for a Butterworth response as can be 

seen in Table 7.1.2. 

F (Hz) Vpp input (V) Vpp2 output (V) Gain 
Gain 
(dB) 

1.00E+03 1E-45 0 0 #NUM! 

1.00E+04 0.5 0.5 1 0 

5.00E+04 0.5 0.5 1 0 

1.00E+05 0.62 0.58 0.935484 -0.57927 

1.10E+05 0.68 0.6 0.882353 -1.08715 

1.20E+05 0.72 0.62 0.861111 -1.29882 

1.30E+05 0.76 0.64 0.842105 -1.49267 

1.50E+05 0.84 0.6 0.714286 -2.92256 

1.60E+05 0.88 0.52 0.590909 -4.56959 

1.70E+05 0.9 0.5 0.555556 -5.10545 

1.80E+05 0.92 0.46 0.5 -6.0206 

1.90E+05 0.96 0.42 0.4375 -7.18044 

2.00E+05 0.96 0.38 0.395833 -8.04975 

2.20E+05 1 0.3 0.3 -10.4576 

2.40E+05 1.06 0.24 0.226415 -12.9019 

2.80E+05 1.12 0.112 0.1 -20 

3.00E+05 1.16 0.1 0.086207 -21.2892 

5.00E+05 1.26 0.08 0.063492 -23.9456 
Table 7.1.1 – Recorded values for the initial set up. The input voltage incorrectly varied with 

frequency. The voltage output to input ratio however, did yield a correct Butterworth response. 
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F (Hz) 

Vpp 
input 
(V) 

Vpp2 
output 
(V) 

Gain(I-
Channel) Gain (dB) 

Vpp 
input 
(V) 

Vpp2 
output 
(V) 

Gain(Q-
Chanel) Gain (dB) 

1.00E+03 1.48 4.48 3.027027027 9.620325972 1.48 4.8 3.243243243 10.21959044 

5.00E+03 1.48 4.32 2.918918919 9.304440628 1.48 4.72 3.189189189 10.07360566 

1.00E+04 1.48 4.32 2.918918919 9.304440628 1.48 4.72 3.189189189 10.07360566 

2.00E+04 1.48 4.32 2.918918919 9.304440628 1.48 4.72 3.189189189 10.07360566 

5.00E+04 1.48 4.32 2.918918919 9.304440628 1.48 4.64 3.135135135 9.925125303 

1.00E+05 1.48 3.92 2.648648649 8.460487033 1.48 4.48 3.027027027 9.620325972 

1.10E+05 1.48 3.84 2.594594595 8.281390179 1.48 4.32 2.918918919 9.304440628 

1.20E+05 1.48 3.68 2.486486486 7.911722066 1.48 4.16 2.810810811 8.976632305 

1.30E+05 1.48 3.36 2.27027027 7.12155124 1.48 3.92 2.648648649 8.460487033 

1.40E+05 1.48 3.2 2.162162162 6.697765258 1.48 3.6 2.432432432 7.720815707 

1.50E+05 1.48 2.88 1.945945946 5.782615447 1.48 3.28 2.216216216 6.912242566 

1.60E+05 1.48 2.56 1.72972973 4.759564998 1.48 3.04 2.054054054 6.252237364 

1.80E+05 1.48 2 1.351351351 2.615365605 1.48 2.48 1.675675676 4.483799309 

2.00E+05 1.48 1.36 0.918918919 -0.73445614 1.48 1.62 1.094594595 0.785065983 

2.50E+05 1.48 0.6 0.405405405 -7.8422093 1.48 0.76 0.513513514 -5.78896246 

3.00E+05 1.48 0.27 0.182432432 -14.7779590 1.48 0.36 0.243243243 -12.2791842 

5.00E+05 1.48 0.06 0.040540541 -27.8422093 1.48 0.06 0.040540541 -27.8422093 

Table 7.1.2 – Recorded values for the individual filter test. The I channel filter results are on the left 

and the Q channel results are on the right. 

 

Figure 7.1.1 – Plotted responses for the filters. 
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 The filters, tested individually, yielded excellent test results and each channel had a 3 dB cut off 

frequency of 150Khz, which is precisely what the filters were designed for. However, there existed a 

slight gain difference between the I and Q channel suggesting the presence of I and Q channel mismatch. 

This mismatch may lead to degradation in image rejection (as can be seen later). To test the entire 

complex filter, the demodulator was needed. The demodulator was soldered on, and the RF and LO inputs 

were connected to two synchronized signal generators as can be seen in Figure 7.1.2 below. 

 

Figure 7.1.2 – Test setup diagram. 

 There exist two communications boards due to a manufacturing footprint error. The I and Q 

channels were simply jumped from one board to the other. Due to the low IF of 1 MHz, neither the line 

lengths nor the type of wire used was important. With the RF input set to 900 MHz and the LO set to 901 

MHz, the output of the demodulator yielded a clean 1 MHz sinusoid on the I positive channel as can be 

seen in Figure 7.1.3 below. 

 

Figure 7.1.3 – I channel demodulator output. 
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Figure 7.1.4 shows the I channel with both differential lines probed. 

 

Figure 7.1.4 – I channel differential demodulator output. 

Figure 7.1.5 shows the I positive and Q positive channel. The delay between the two signals is 750 ns (or 

250 ns) which is indeed a quarter of a wavelength (1us) indicating that the I and Q channels are 90 

degrees apart. 

 

Figure 7.1.5 – I and Q channel positive demodulator outputs. Notice how the signals are 90 degrees 

apart. 
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Finally, Figure 7.1.6 shows the Q channel output. 

 

Figure 7.1.6 – Q channel differential demodulator output. 

Because the inputs to the filter were completely complex, the full bandpass filter can be tested. 

The LO was varied from the positive sequence to the negative sequence to observe both the pass band 

response and the image response. Over 100 data points were taken, so Figure 7.1.3 only shows several 

samples. 

LO (MHz) IF (MHz) RF (MHz) 
IF FILTER OUT 
(Vpp) 

IF FILTER OUT 
(dB) 

901 1 900 1.841 5.30107577 

901.08 1.08 900 1.881 5.487775911 

901.42 1.42 900 0.084 -21.51441428 

900.77 0.77 900 0.24 -12.39577517 

899.5 -0.5 900 0.001 -60 

898.8 -1.2 900 0.108 -19.33152489 

Table 7.1.3 – Table of 5 random samples chosen from the data collected from the complex filter.  
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Figure 7.1.7 shows the filter response over the positive and negative sequence in addition to the simulated values. 

 

Figure 7.1.7 – Complex filter response with positive and negative sequences shown. 

The negative sequence response is rejected with a minimum attenuation of -22 dB. The negative sequence, when viewed with an 

oscilloscope, was indeed a 1 MHz signal. Therefore, it can be concluded that the image reject filter is working and successfully rejects an image 

located to the right of the local oscillator for high side LO injection. It must be noted that the image attenuation was not as simulated; this is due to 

I and Q channel phase offset and amplitude characteristics mismatch. However, this filter is still within specifications. 
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Sub-System 2. - ADC Testing 

The ADC was first tested by simply feeding a 1 MHz signal into the ADC. A 5 MHz clock was 

fed to the ADC and the outputs were polled by a logic analyzer. The waveforms are shown in Figure 

7.2.1. 

 

Figure 7.2.1 – Logic Analyzer output with Channel 0 as the MSB. The analyzer only had 8 bits so 

the 2 least significant bits were left out of the test. 

The MSB clearly indicates a 1 MHz polarity switch indicating correct operation. After decoding the 

output of the ADC, the following normalized graph was obtained for the first 16 samples: 

 

Figure 7.2.2. – Observe that sampling at 5 MHz is more than enough to reconstruct the original 

waveform. 
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Following these tests, the ADC outputs were then fed through the Nexys board which sampled the ADC 

and, upon every clock falling edge in a process statement, were then fed back to the outputs of the Nexys 

board and sampled as can be seen in the following figure. 

 

Figure 7.2.3 – ADC values after being fed through the Nexys board. 

Some of the points in the figure above appear to deviate from their proper position. This is due to 

noise generated by the clock line which causes occasional bit errors. However, these errors happened 

relatively rarely and were ignored for the time being. The errors were most likely caused by improper 

routing because the clock line was routed underneath the ADC; it should have been isolated from the 

ADC and separate from the data and any other analog lines. 

Sub-System 3. Instrumentation Amplifier through ADC Test 

 To test the IA through the ADC, only either the I or Q channel was used. Since the input is 

differential, one input was just tied to a CMV voltage of 1.5V and the other had a 2Vpp 100 KHz sine 

wave inserted into it. The output of the ADC is shown in Figure 7.3.1 on the next page. 

-200

-150

-100

-50

0

50

100

150

200

0 0.000002 0.000004 0.000006 0.000008 0.00001

D
e

-N
o

rm
al

iz
e

d
 V

al
u

e
s 

Time (s) 

ADC through Nexys output 



39 

 

 

Figure 7.3.1 – Logic Analyzer output with the input at the IA.  

The measured sign bit change is 100 KHz indicating that the ADC is reading data properly. Both channels 

behaved identically so the Q channel result picture has been left out. 

Sub-System 4. – Modulator Testing 

 To test the modulator, a simple 150 KHz differential square wave was fed to the input and the RF 

was fed to a spectrum analyzer. The LO was set to 900 MHz at 0 dBm. Figure 7.4.1 shows the resulting 

spectrum. 

 

Figure 7.4.1 – Spectrum of the modulated 150 KHz square wave. 
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Without pulse shaping applied to the system, the signal will occupy a large bandwidth as can be 

seen in Figure 7.4.1. However, Figure 7.4.1 does indeed demonstrate that the signal is being modulated to 

900 MHz and that the LO is suppressed at 900 MHz. The sidebands follow a sinc function which is 

indeed the Fourier Transform of a 150 KHz square wave. 

Sub-System 5. – Programmable Gain Amplifier Testing 

To test the PGA, a sine wave signal with a 2.5 CMV was inputto the PGA and its amplitude was 

varied. The output of the PGA was observed in an oscilloscope. Refer to Figures 7.5.1, 7.5.2, and 7.5.3 

for selected input and output waveforms. Because of the reset process described in Section 5, Sub-System 

4, Software Component 7, the signal did indeed get passed through with a gain of 1 for a brief instant in 

time. This time depends on the time it takes for the comparator process to run. 

 

Figure 7.5.1. – Output waveform (green) for a .82 Vpp 2.5V CMV sin wave input (yellow). 

 

Figure 7.5.2. – Output waveform (green) for a .23 Vpp 2.5V CMV sin wave input (yellow). 
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Figure 7.5.3. - Output waveform (green) for a 2.48 Vpp 2.5V CMV sin wave input (yellow). 

 Table 7.5.1 shows the gains of each of the previous waveforms and compares them to the nominal 

gains that correspond to the respective states given in Figure 5.5.7.2.  

Vin 
(Vpp) 

Vout 
(Vpp) Gain State 

Nominal 
Gain % Error 

0.82 2.32 2.829268293 5 3 -5.69106 

0.232 1.24 5.344827586 7 6 -10.9195 

2.48 2.881 1.161693548 1 1 16.16935 

Table 7.5.1. – Selected waveforms and their respective gains and states compared with nominal 

values. 

The percent errors shown for these states are relatively high. However, they are within reason and we can 

assume that the PGA works. It must be noted that the oscilloscope somewhat struggled to obtain a proper 

waveform picture because of the resetting nature of the algorithm, therefore, some measurements may be 

innacurate. 
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Section 8. FULL SYSTEM TEST 

 With all the sub-systems tested and working, the system was ready to be integrated and tested 

together. For preliminary tests, the PGA was excluded. The first test was to establish a direct 

demodulation communication system by simply connecting the RF_IN and RF_OUT ports of the 

modulator and demodulator and setting both LO‟s to 900 MHz. The 900 MHz RF carrier was used as 

opposed to 950 MHz for arbitrary reasons. Absolutely no discernable difference was noticed between 

these two frequencies. With a 150 KHz square wave differential input, the I positive output of the 

demodulator is shown in Figure 8.1 below. 

 

Figure 8.1. – Demodulated square wave using direct conversion. 

The noise present in the wave is the unfiltered high frequency content associated with down conversion. 

This test confirmed that the demodulator does indeed down convert a signal properly. 

By simply changing the LO frequency to 1 MHz higher than the RF frequency on the 

demodulation side, the system becomes a low IF architecture. The resulting demodulator output is shown 

on the next page in Figure 8.2. 
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Figure 8.2. – The I channel output of the demodulator. The blue signal is the output and the 

pink signal is the square wave generated by the Nexys board. 

 It can be seen from Figure 8.2. that the low IF signal clearly is a BPSK signal; the phase changes 

for every bit change. This signal can be directly compared with the simulated waveform in Simulink 

previously shown in Figure 5.2.4. This abrupt change in phase contains a lot of spectral content, however, 

bandwidth is not of concern in this project. The signal after the filter can be seen in Figure 8.3 below. 

 

Figure 8.3 – The input (blue) to the filter and the output (pink) 
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The abrupt changes in phase are clearly filtered out. Without the PGA, the output of the filter was fed 

directly to the ADC and FPGA for final demodulation to baseband. For a square wave as the input data, 

the FPGA succesfully demodulated the data as can be seen in Figure 8.4 below. 

 

Figure 8.4. – Input data (pink) and demodulated data (blue) 

 

 It can be seen from Figure 8.4 that the data has indeed been demodulated, although at certain 

points the duty cycle appears to change. This can be attributed to the noise the ADC was experiencing as 

explained earlier. With a PRBS signal at 250 Kbps generated by the Nexys board, the resulting 

demodulated output is shown in Figure 8.5. 

 
Figure 8.5. – Input PRBS data (blue) and the demodulated output data (pink) 
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 More demodulated bits can be seen more clearly through a logic analyzer. Figure 8.6. shows the 

output waveforms from the logic analyzer. 

 

 
 

Figure 8.6. – Input data (Channel 0) and demodulated output data (Channel 1). 

The delay between the two waveforms is roughly 5 us which corresponds to the 4.8 us of group delay 

associated with the image reject filter.  

 

 It is more evident in the PRBS data sequence in Figure 8.6 that the system indeed demodulates 

the signal properly. Further evidence is provided in Figure 8.7 when the LO from the input is turned off 

which results in no RF data being transmitted. This test shows that the Nexys-2 board is not just somehow 

picking up the signal generated in another part of the board and outputting that sequence. 

 

Figure 8.7. – Input data (pink) and output data (blue) with the modulator LO turned off.  

The data the Nexys-2 outputs is a result of random noise associated with what the ADC is giving the 

borad. 

 With data being demodulated correctly and all other systems funcitonal, the PGA was ready to be 

integrated into the system in order to conduct BER sensitivity tests. Figure 8.8 shows the final test set up 

and Table 8.1 shows the results of the tests. A variable attenuator was used to conduct the tests. 
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Figure 8.8. – Final test setup diagram. 

  NO PGA PGA 

Attenuation 

(dB) 

BER 

(%) 

Error 

Bits 

BER 

(%) 

Error 

Bits 

0 0 0 0 0 

2 0 0 0 0 

4 0 0 0 0 

6 0 0 0 0 

8 0 0 0 0 

10 0 0 0 0 

12 0.01 1 0.01 1 

14 0.02 2 0.07 7 

16 0.07 7 0.15 15 

18 0.11 11 0.23 23 

20 0.23 23 0.32 32 

Table 8.1. – Sensitivity test results. 
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Section 9. – RESULTS ANALYSIS/CONCLUSION 

 From Table 8.1 we can clearly see that the BER increases as the attenuation increases. However, 

the BER increase even more with the addition of the PGA. It must be noted that when tests were 

performed the previous day, this was not the case. The PGA only started seeing bit errors at 14 dB the 

previous day as opposed to 12 dB when the usable data was collected. The data collected the previous day 

was stored in excel files, however, due to the delay between the input and output signals, the logic 

analyzer exported data that had a mismatch of 0‟s and 1‟s for a given bit period between the channels. 

Thus, all the data collected was rendered uesless. It must also be noted that only 100 bits were analyzed 

and therefore the required BER of 1E-4 could not possibly be measured using this method. Thus, the data 

shown is for demonstrative purposes only. 

 Despite the fact that BER could not be measured properly and that the PGA failed to work for the 

last test, the receiver did indeed successfully demodulate a BPSK 956 MHz modulated 250 Kbps data 

stream and reject the alternate channel by more than 20 dB. The final top level specifications of the 

project are found in Figure 9.1 below. 

Supply Voltage 5V 

Supply Current 
400 
mA 

Sensitivity for 1% 
BER 

-20 
dBm 

Figure 9.1. – Basic top level specifications of the receiver. 

 Significant additions and improvements can be made to this project in the future. These 

improvements are as follows: 

1) The addition of a PLL and a clock extraction system. 

Because there was no PLL to lock the phase of the LO to the incoming RF signal and because 

there was no clock extraction algorithm implemented in the FPGA, the receiver was severely 

limited in its uses. It relied on external local oscillators and syncing signals to properly 

demodulate data. By implementing the aforementioned additions, the receiver can act as a 

stand alone device and not rely on external machines. 

2) Improved image reject filter. 

Although the image reject filter performed to spec, improvements can be made to the cost of 

the filter, the realestate it uses, the image reject quality, and the power it consumes. The filter 

itself costed 130 dollars mainly due to the expensive op amps used. Also because the filter 

used completely off the shelf components, it drew a lot of current (130 mA) and took up a lot 

of space. All of these problems can be solved by integrating the filter into a circuit using 

advanced CMOS technology. In addition, by implementing the design in an IC, the phase 

offset and I/Q channel mismatch can be more properly controlled.  
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3) Improved PGA. 

The PGA used in the present design did not significantly improve the BER. It also did not 

have a wide dynamic range nor did it have a very linear gain sweep. Therefore, for future 

designs a PGA with a larger multiplexer array should be used with more appropriately chosen 

resistors.The calibration of states in the PGA algorithm should be more linear and evenly 

spread out as well. In addition to this, further calibration of what the ADC outputs for a given 

input signal strength should be performed to make the system more robust. 

4) Improved signal routing. 

The PCB traces for the ADC were not optimally routed. The data sheet specifically 

mentioned that the clock route be routed away from all other signals. However, the clock 

route was run directly under the IC itself and was near all the data signals. In addition to the 

ADC, the filter I and Q channel routing can be more exact to avoid I and Q mismatch (if the 

filter will be built on a PCB again). 
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APPENDIX A. 
 

ABET SENIOR PROJECT ANALYSIS 

 

Project Title: Low IF Digital Radio Receiver 

Student Name:  Sanjay Avasarala   Student Signature: 

Advisor Name:  Professor Wayne Pilkington  Advisor Signature: 

1) Summary of Functional Requirements: 

 

The radio shall accept a 956 MHz signal with modulated BPSK 250 Kbps data as an 

input and successfully demodulate and output the data. 

 

2) Primary Constraints: 

 

Because of various constraints such as the lack of a direct down conversion (zero IF) 

circuit that requires a specific crystal oscillator or because of 1/f noise inherent in MOSFETS, the 

use of low IF is highly desirable for low noise receivers. Therefore the demodulation should be 

performed at low IF which warrants a more complicated circuit that is capable of demodulating 

data at a higher frequency. 

 

Another constraint for the project is the cost associated with research and development. 

Radios that use DSP‟s as opposed to traditional analog radios are relatively expensive (some of 

the cheapest can be as expensive as $40) and thus the component choices used in the circuit 

require careful attention. 

 

For this particular project, the image reject filter used op-amps that cost 3 dollars each, 

which ideally is not practical. However, if the entire circuit was fabricated in an IC which it is 

meant to be, then the cost will decrease significantly. 

 

3) Economic: 

 

Due to the many electronic silicon components involved in this circuit, several economic 

factors have to be taken into consideration. Ordering the parts from electronics distributors such 

as DigiKey will have a direct impact on the company‟s net profit. Also, the workers at the 

company will be directly involved since the selection of parts and the quantity of each part is 

handled manually. The actual shipping of parts also has an impact on the shipping industry‟s 

financial situation. This in turn also affects oil prices and brings into question environmental 

impacts that will be discussed later. The parts ordered for this project also have an indirect affect 

on the actual manufacturers of the part itself. A significant rise in demand will warrant an 

increase in supply. However, all the aforementioned economic factors are rather miniscule with 

regards to the scope of this project. They are worth mentioning though, should large scale 

manufacturing occur. 
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The majority of the costs of this project will lie in the purchasing of components. Since 

test equipment is provided by the school, this is of negligible cost.  

 

The project should not cost more than $450.00 to design build and test. This does not 

include the research material needed to design the project. The funding for this project will come 

from personal funds. 

 

Each receiver unit should have a net profit of $10.00. The project costs are not what the 

actual end product will cost to build since the project costs include development boards and kits 

which cost a significant amount. 

 

The product shall be designed built and tested by the end of Spring Quarter 2012. A 

second revision may be implemented should sufficient demand warrant it.  

 

Please refer to Table A.1 (below) for an estimate of costs. Note that optimistic costs 

should not cost more than $450.00 for physical costs as specified in Table 3.1. 

Cost Estimates 

 
Optimistic Pessimistic Realistic 

Labor  (15hr/week)($10/hour)25weeks $7,500  $7,500  $7,500  

DSP (includes dev kit) $100.00  $350.00  $200  

Analog Parts (including shipping from Digikey) $50.00  $200.00  $100  

Board Layout $33.00  $50.00  $50  

SUM $7,683  $8,100  $7,850  

Variable Costs       

Board Revision $0.00  $100.00  $200  

Parts Revision $0.00  $50  $100  

DSP switch out $0  $350  $400  

Computer Interface Peripheral $50  $200  $400  

SUM $50  $700.00  $1,100  

    TOTAL $7,733  $8,800.00  $8,950  
 

Table A.1. – Estimated costs. 

 

Using Equation (6) in Ford and Coulston Chapter 10, the total projected cost is therefore $8647.00. 

 

The actual costs of the project are shown in Table A.2.  
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ITEM COST 

Components (1) $55.56 

Components (2) $120.78 

Components (3) $15.02 

FPGA $90 

Boards  $166 

TOTAL $448.52 

Table A.2. – Actual costs. 

 

As can be seen from Table A.2, the actual costs of the project just barely met the costs constraint 

established in the requirements and specifications. Please refer to Table A.3 for the specific bill of 

materials. Note that the bill of materials does not contain the board or FPGA costs which are specifically 

listed in Table A.2. 

 

Index Quantity Description 
Unit 
Price 

Total 
Price 

10 8 
CONN SOCKET SMA R/A DIE 

CAST PCB 
3.33 $26.64  

11 10 
RES 100 OHM 1/8W 5% 0805 

SMD 
0.04 $0.40  

12 50 
RES 10K OHM 1/8W 5% 0805 

SMD 
0.0162 $0.81  

13 50 
RES 100K OHM 1/8W 5% 0805 

SMD 
0.0162 $0.81  

14 10 
RES 1.2K OHM 1/8W 5% 0805 

SMD 
0.04 $0.40  

15 50 
RES 910 OHM 1/8W 1% 0805 

SMD 
0.0276 $1.38  

16 10 
RES 820 OHM 1/8W 5% 0805 

SMD 
0.04 $0.40  

17 50 
RES 1.0K OHM 1/8W 5% 0805 

SMD 
0.0162 $0.81  

18 50 
RES 160 OHM 1/8W 5% 0805 

SMD 
0.0162 $0.81  

19 1 
IC DIRECT QUADRATURE 

MOD 16-QFN 
10.7 $10.70  

20 10 
CAP CER 0.1UF 25V 10% X7R 

0603 
0.026 $0.26  

21 10 CAP CER 5.6PF 50V NP0 0603 0.029 $0.29  

22 10 CAP CER 4.7PF 50V NP0 0603 0.029 $0.29  
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23 50 
CAP CER 1000PF 50V 10% X7R 

0603 
0.0204 $1.02  

24 3 CAP CER 2.2UF 16V Y5V 0603 0.28 $0.84  

25 10 CAP CER 10PF 50V NP0 0603 0.036 $0.36  

26 10 
CAP CER 10000PF 50V 10% X7R 

0603 
0.023 $0.23  

27 10 
CAP CER 1UF 10V 10% X5R 

0603 
0.052 $0.52  

28 4 IC MULTIPLEXER 4X1 10MSOP 2.84 $11.36  

1 40 
IC OP AMP 3.4MA 215MHZ 

SOT23-6 
2.7388 $109.55  

2 10 
CAP CER 1UF 10V 10% X5R 

0603 
0.052 $0.52  

3 4 
CAP CER 10UF 6.3V 20% X5R 

0603 
0.43 $1.72  

Table A.3. – Bill of Materials from Digi-Key 

 

Please refer to Figure A.1. for a Gantt chart timing diagram of the project life cycle. Since the 

project timeline followed the Gantt chart quite closely, only one chart is needed to describe the life cycle. 

If manufactured, a receiver should be able to last indefinitely until the entire system it is installed in is 

recycled. At the end of the project life for this senior project specifically, more improvements will be 

added for a summer project. 
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Figure A.1. – Gantt Chart Timeline 
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4) Commercial Manufacturing: 

 If manufactured, as many as 500 products may be sold per year. There exists an 

increasing demand for software defined radios since they are much more customizable than 

traditional analog radios. Should this radio enter mass production, manufacturing costs should not 

exceed $7.00 per unit. Purchasing components in bulk can ensure that this requirement is met. 

Each device should cost no less than $17.00 per unit. Estimated profits would therefore be $5000 

per year. The cheapest software defined radios that are readily available for consumer use are as 

cheap as $40.00. Building a radio that costs $17.00 is a significant step towards low cost software 

defined radios. Estimated cost to operate device per unit time depends strictly on how the device 

is being powered e.g. mains power or battery operated. There are, of course, environmental issues 

associated with using batteries. 

 

5) Environmental: 

 

 Environmental impacts include the manufacturing of the components and their 

packaging, the shipping of the components, and the storage of the components. The use of silicon, 

germanium, and other semiconductor materials are directly involved in this project along with 

other materials such as FR-4, copper, and solder (Lead and Tin). The mining and harvesting of 

these materials will have a definite environmental impact.  

 

 Since this receiver is more power efficient than earlier receiver designs, long run 

environmental impacts made by this radio receiver over an older radio are less. 

 

 Should the receiver utilize batteries, consideration should be given to the type of battery 

used and the environmental impacts that battery creation and disposal has. The disposal factors 

heavily outweigh the creation factors and remain as one of the biggest issues with batteries today. 

However, there are companies that are solely devoted to battery disposal treatment in a safe, eco-

friendly way. Mains power is, of course, not used if batteries are used. Therefore there are some 

positive factors to batteries in the environmental sense. 

 

 

6) Manufacturability: 

 

 Some issues involved with manufacturing, in the event that this product enters mass 

production, include pick and place machining, packaging, electricity, gas, and water costs, worker 

labor costs, and facility and storage costs. Like all manufacturing, a process has to check the 

product for defects and other issues before shipping. This incurs additional costs and machining. 

In addition, management and other bureaucratic affairs are all necessary to manage a successful 

product development process. 
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7) Sustainability: 

 

 The completed device will have to run solely on battery power or whatever power source 

the entire system provides. Therefore, a renewable energy source would be the most viable source 

for long term operation. The project has no long term effect on the sustainable use of resources 

with the exception that, should the project be mass produced, consideration will have to be placed 

on manufacturing materials. The circuit could be improved by using state of the art technology to 

alleviate power dissipation problems and other limiting factors associated with older technology. 

Ideally, fabrication of this project in the form of an integrated circuit is the most viable solution to 

an environmentally friendly yet optimized product. However, the fabrication of an IC for small 

scale manufacturing processes is not a cost effective solution.   

 

8) Ethical Implications: 

 

 As long as the device conforms to the IEEE Zigbee standard and 802.15.4 standards set 

by IEEE, there are no physical (in the sense of physical harm) ethical implications. Since the 

device is purely a receiver, transmitting power is completely ignored. Transmit power is strictly 

regulated by the FCC. Should the project contain a transmitter as well, the transmit power will 

need special consideration.   

 

 However, issues arise should one use the device for illegal activities such as hacking or 

stealing. One may choose to use the device to intercept private transmissions. There is absolutely 

no way to regulate this misuse of the device since directional radio finding will not find a device 

that is used only for intercepting a signal. However, the chance that one might use the device for 

data interception is extremely slim since devices that conform to the Zigbee standard are short 

range (mostly domestic) devices. 

 

9) Health and Safety: 

 

 This topic will avoid indirect health and safety issues. The use of lead in solder and the 

dangers inherent in soldering are all considered a safety issue. Skin burns and lead inhalation are 

just some of the issues associated with soldering. Lead that enters the bloodstream has the 

potential for physical damage. Once again, since the project is only a receiver, the health effects 

of transmit power are ignored. A receiver broadcasts absolutely nothing. 

 

10) Social and Political: 

 

 The device must conform to international laws that deal with ISM-Band transmissions 

and the Zigbee standard. Strict export laws to other countries may prevent this issue. However, 

for satellite communications, for example, one has to pay special consideration to ISM-Band 

regulations maintained by other countries. 

 

 Stakeholders in this project are non-existent at this moment. This project is being funded 

personally and no one stands to benefit monetarily from it.  
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11) Development: 

 

 This project extensively requires the use of SIMULINK during the project to simulate the 

demodulation of data and also the operation of various receive chain systems. MATLAB is also 

used to observe frequency and phase responses of receive chain systems and ensure that proper 

stability is reached. This project also requires the review of DSP.  
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APPENDIX B: SCHEMATICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. – Modulator Schematic 
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Figure B.2. - Demodulator 
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Figure B.3. – CMV DC offset shift circuits 
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Figure B.4. – Instrumentation Amplifier for converting a differential signal to a single ended signal. 
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Figure B.5. – Stage 1 and 2 of the I channel for the complex bandpass filter. Only the inputs of the 

Q channel can be seen with regards to cross coupling. Stage 3 is identical to stage 2. 
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Figure B.6. – Stage 2 of the Q channel of the complex bandpass filter. The inverters for cross 

coupling the Q output to the I input integrators are shown. The I channel inputs are the sourceless 

connections at the top of the schematic. 
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Figure B.7. – PGA schematic. 
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Figure B.8. – ADC interface schematic. 
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APPENDIX C: LAYOUT ARTWORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1. – Top Silkscreen. The components can easily be seen above. 
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Figure C.2. – Top copper layer. 

All subsequent layers are not shown since they consist of mainly ground planes and a small amount of 

traces. 
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APPENDIX D: PROGRAM LISTING (VHDL) 

----------------------------------------------------------------------------- 

-- Engineer: Sanjay Avasarala 1 
--  2 
-- Create Date:    18:05:32 04/16/2012  3 
-- Design Name:      Final Pseudo-DSP Demodulator 4 
-- Module Name:    Demodulation - Behavioral  5 
-- Project Name:   Senior Project 802.15.4 Baseband Demodulator 6 
-- Target Devices: Nexys 2 Board 7 
-- Tool versions:  8 
-- Description:  9 
-- 10 
-- Dependencies:  11 
-- 12 
-- Revision:  13 
-- Revision 0.01 - File Created 14 
-- Additional Comments:  15 
-- 16 
-----------------------------------------------------------------------------17 
----- 18 
library IEEE; 19 
use IEEE.STD_LOGIC_1164.ALL; 20 
use IEEE.STD_LOGIC_SIGNED.ALL; 21 
use IEEE.NUMERIC_STD.ALL; 22 
 23 
 24 
entity Demodulation is 25 
    Port ( ADC_DATA     : in  STD_LOGIC_VECTOR (9 downto 0); -- Inputs data 26 
from the ADC 27 
           ADC_CLK  : out STD_LOGIC; -- Outputs a 5 MHz clock signal to the 28 
ADC for sampling 29 
              SIG_CLK_P : out STD_LOGIC; -- Outputs a 175 KHz data test 30 
signalto the board. 31 
              SIG_CLK_N : out STD_LOGIC; -- Outputs a 175 KHz data test 32 
signalto the board. 33 
              CLK          : in  STD_LOGIC; -- System CLK 34 
              SYNC_CLK  : out  STD_LOGIC; -- External SYNC CLK 35 
              TEST      : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 36 
removal of components 37 
              TEST1         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 38 
removal of components 39 
              TEST2         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 40 
removal of components 41 
              TEST3         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 42 
removal of components 43 
              TEST4         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 44 
removal of components 45 
              TEST6         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 46 
removal of components 47 
              TEST7         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 48 
removal of components 49 
              TEST8         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 50 
removal of components 51 
              TEST9         : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 52 
removal of components 53 
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              TEST5         : out STD_LOGIC; -- Prevents removal of 54 
components 55 
              TEST0     : out STD_LOGIC; -- Prevents removal of components 56 
              DATA      : out STD_LOGIC; -- Data output of signal 57 
           PGA_CNTRL : out  STD_LOGIC_VECTOR (3 downto 0); -- PGA Controller 58 
output 59 
              PGA_RSSI  : out STD_LOGIC_VECTOR (3 downto 0); 60 
              LOG_OUT_P : out STD_LOGIC; 61 
              LOG_OUT_N : out STD_LOGIC); 62 
        --   CLK_OUT    : out  STD_LOGIC); 63 
end Demodulation; 64 
 65 
architecture Behavioral of Demodulation is 66 
 67 
------------------SIGNAL DECLARATION--------------------------------------- 68 
    signal temp_clk             : STD_LOGIC := '0'; -- Used for clock 69 
division 70 
    signal temp_clk_2           : STD_LOGIC := '0'; 71 
    signal temp_clk_3           : STD_LOGIC := '0'; -- used for pga flag 72 
     73 
    signal sampled_signal0  : STD_LOGIC_VECTOR (9 downto 0); -- These signal 74 
lines are the sampled ADC values. 75 
    signal sampled_signal1  : STD_LOGIC_VECTOR (9 downto 0); 76 
    signal sampled_signal2  : STD_LOGIC_VECTOR (9 downto 0); 77 
    signal sampled_signal3  : STD_LOGIC_VECTOR (9 downto 0); 78 
    signal sampled_signal4  : STD_LOGIC_VECTOR (9 downto 0); 79 
     80 
    signal push_signal0     : STD_LOGIC_VECTOR (9 downto 0); -- These signals 81 
are the receive the pushed signals 82 
    signal push_signal1     : STD_LOGIC_VECTOR (9 downto 0); -- from the 83 
sampled values each time the counter trips. 84 
    signal push_signal2     : STD_LOGIC_VECTOR (9 downto 0); 85 
    signal push_signal3     : STD_LOGIC_VECTOR (9 downto 0); 86 
    signal push_signal4     : STD_LOGIC_VECTOR (9 downto 0); 87 
     88 
    signal add_signal0      : STD_LOGIC_VECTOR (14 downto 0); -- These 89 
signals concatenate the pushed signals such  90 
    signal add_signal1      : STD_LOGIC_VECTOR (14 downto 0); -- all of them 91 
can be added without overflow. 92 
    signal add_signal2      : STD_LOGIC_VECTOR (14 downto 0); 93 
    signal add_signal3      : STD_LOGIC_VECTOR (14 downto 0); 94 
    signal add_signal4      : STD_LOGIC_VECTOR (14 downto 0); 95 
     96 
    signal int_signal0      : STD_LOGIC_VECTOR (14 downto 0); -- These 97 
signals receive the add_signals such that no 98 
    signal int_signal1      : STD_LOGIC_VECTOR (14 downto 0); -- driver 99 
contention issues arise. These signals are the 100 
    signal int_signal2      : STD_LOGIC_VECTOR (14 downto 0); -- the signals 101 
that are actually added. 102 
    signal int_signal3      : STD_LOGIC_VECTOR (14 downto 0); 103 
    signal int_signal4      : STD_LOGIC_VECTOR (14 downto 0); 104 
     105 
    signal pga_signal0      : STD_LOGIC_VECTOR (9 downto 0); -- These signals 106 
are used for peak detection in the 107 
    signal pga_signal1      : STD_LOGIC_VECTOR (9 downto 0); -- PGA. 108 
    signal pga_signal2      : STD_LOGIC_VECTOR (9 downto 0); 109 
    signal pga_signal3      : STD_LOGIC_VECTOR (9 downto 0); 110 



70 

 

    signal pga_signal4      : STD_LOGIC_VECTOR (9 downto 0); 111 
     112 
    signal comp_signal0     : STD_LOGIC_VECTOR (9 downto 0); 113 
    signal comp_signal1     : STD_LOGIC_VECTOR (9 downto 0); 114 
    signal comp_signal2     : STD_LOGIC_VECTOR (9 downto 0); 115 
    signal comp_signal3     : STD_LOGIC_VECTOR (9 downto 0); 116 
    signal comp_signal4     : STD_LOGIC_VECTOR (9 downto 0); 117 
 118 
    signal comp_signal5     : STD_LOGIC_VECTOR (9 downto 0); 119 
    signal comp_signal6     : STD_LOGIC_VECTOR (9 downto 0); 120 
    signal comp_signal7     : STD_LOGIC_VECTOR (9 downto 0); 121 
    signal comp_signal8     : STD_LOGIC_VECTOR (9 downto 0); 122 
    signal comp_signal9     : STD_LOGIC_VECTOR (9 downto 0); 123 
     124 
    signal comp_signal10        : STD_LOGIC_VECTOR (9 downto 0); 125 
    signal comp_signal11        : STD_LOGIC_VECTOR (9 downto 0); 126 
    signal comp_signal12        : STD_LOGIC_VECTOR (9 downto 0); 127 
    signal comp_signal13        : STD_LOGIC_VECTOR (9 downto 0); 128 
    signal comp_signal14        : STD_LOGIC_VECTOR (9 downto 0); 129 
     130 
    signal comp_signal15        : STD_LOGIC_VECTOR (9 downto 0); 131 
    signal comp_signal16        : STD_LOGIC_VECTOR (9 downto 0); 132 
    signal comp_signal17        : STD_LOGIC_VECTOR (9 downto 0); 133 
    signal comp_signal18        : STD_LOGIC_VECTOR (9 downto 0); 134 
    signal comp_signal19        : STD_LOGIC_VECTOR (9 downto 0); 135 
     136 
    signal comp_signal20        : STD_LOGIC_VECTOR (9 downto 0); 137 
    signal comp_signal21        : STD_LOGIC_VECTOR (9 downto 0); 138 
    signal comp_signal22        : STD_LOGIC_VECTOR (9 downto 0); 139 
    signal comp_signal23        : STD_LOGIC_VECTOR (9 downto 0); 140 
    signal comp_signal24        : STD_LOGIC_VECTOR (9 downto 0); 141 
     142 
    signal comp_signal25        : STD_LOGIC_VECTOR (9 downto 0); 143 
    signal comp_signal26        : STD_LOGIC_VECTOR (9 downto 0); 144 
    signal comp_signal27        : STD_LOGIC_VECTOR (9 downto 0); 145 
    signal comp_signal28        : STD_LOGIC_VECTOR (9 downto 0); 146 
    signal comp_signal29        : STD_LOGIC_VECTOR (9 downto 0); 147 
     148 
    signal comp_signal30        : STD_LOGIC_VECTOR (9 downto 0); 149 
    signal comp_signal31        : STD_LOGIC_VECTOR (9 downto 0); 150 
    signal comp_signal32        : STD_LOGIC_VECTOR (9 downto 0); 151 
    signal comp_signal33        : STD_LOGIC_VECTOR (9 downto 0); 152 
    signal comp_signal34        : STD_LOGIC_VECTOR (9 downto 0); 153 
     154 
    signal comp_signal35        : STD_LOGIC_VECTOR (9 downto 0); 155 
    signal comp_signal36        : STD_LOGIC_VECTOR (9 downto 0); 156 
    signal comp_signal37        : STD_LOGIC_VECTOR (9 downto 0); 157 
    signal comp_signal38        : STD_LOGIC_VECTOR (9 downto 0); 158 
    signal comp_signal39        : STD_LOGIC_VECTOR (9 downto 0); 159 
     160 
    signal comp_signal40        : STD_LOGIC_VECTOR (9 downto 0); 161 
    signal comp_signal41        : STD_LOGIC_VECTOR (9 downto 0); 162 
    signal comp_signal42        : STD_LOGIC_VECTOR (9 downto 0); 163 
    signal comp_signal43        : STD_LOGIC_VECTOR (9 downto 0); 164 
    signal comp_signal44        : STD_LOGIC_VECTOR (9 downto 0); 165 
     166 
     167 
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    signal flag                 : STD_LOGIC := '0'; -- The flag variable 168 
changes state per bit period. This state change 169 
                                                              -- will trip 170 
the process that determines the sign 171 
    signal pga_flag             : STD_LOGIC := '0'; 172 
                                                               173 
     174 
    -- max_count ---> for generating the 5 MHz clock 175 
    -- max_count_s ----> for generating the 150 Khz signal 176 
    -- max_count_l ----> used for the sequential process 177 
     178 
    -- NOTE: 179 
    -- To set the bit rate for a square wave, the max_count_s variable has to 180 
be changed. 181 
    -- The formula is 50M/(2*Bitrate)  182 
    -- For 150 Kbaud ----> 165 183 
    -- For 250 Kbaud ----> 100 184 
    -- 185 
    -- To set the bit rate for a signal, the max_count_s variable has to be 186 
changed. 187 
    -- The formula is 50M/(Bitrate)  188 
    -- For 150 Kbaud ----> 330 189 
    -- For 250 Kbaud ----> 200 190 
    constant max_count      : integer := (4); -- sets sampling clk to 5 MHz. 191 
Note that the real number  192 
    constant max_count_l    : integer := (5); -- should be 4 for a 5MHz clock 193 
but the value of 5 is 194 
    constant max_count_s        : integer := (100); -- used for sequential 195 
process operation reasons.  196 
    constant max_count_pga  : integer := (9); --arbitrary wait value for pga 197 
update process 198 
    constant max_count_pga_process : integer := (5000); -- sets PGA update 199 
frequency 200 
    constant index_count    : integer := (15); -- used for data sequence 201 
indexing 202 
    type my_arr is array (integer range 0 to 15) of std_logic; -- declaring 203 
the data array 204 
    signal data_prbs: my_arr := 205 
('1','0','1','0','1','0','1','0','1','0','1','0','1','0','1','0'); -- 206 
intialize the array 207 
    signal PRBS_SEQ         : STD_LOGIC_VECTOR(15 downto 0); 208 
     209 
     210 
    signal out_s0           : STD_LOGIC_VECTOR (9 downto 0); 211 
    signal out_s1           : STD_LOGIC_VECTOR (9 downto 0); 212 
    signal out_s2           : STD_LOGIC_VECTOR (9 downto 0); 213 
    signal out_s3           : STD_LOGIC_VECTOR (9 downto 0); 214 
    signal out_s4           : STD_LOGIC_VECTOR (9 downto 0); 215 
    signal out_s5           : STD_LOGIC_VECTOR (9 downto 0); 216 
    signal out_s6           : STD_LOGIC_VECTOR (9 downto 0); 217 
    signal out_s7           : STD_LOGIC_VECTOR (9 downto 0); 218 
    signal out_s8           : STD_LOGIC_VECTOR (9 downto 0); 219 
    signal out_s9           : STD_LOGIC_VECTOR (9 downto 0); 220 
    signal out_s10          : STD_LOGIC_VECTOR (9 downto 0); 221 
    signal out_s11          : STD_LOGIC_VECTOR (9 downto 0); 222 
    signal out_s12          : STD_LOGIC_VECTOR (9 downto 0); 223 
    signal out_s13          : STD_LOGIC_VECTOR (9 downto 0); 224 
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    signal out_s14          : STD_LOGIC_VECTOR (9 downto 0); 225 
    signal out_s15          : STD_LOGIC_VECTOR (9 downto 0); 226 
    signal out_s16          : STD_LOGIC_VECTOR (9 downto 0); 227 
    signal out_s17          : STD_LOGIC_VECTOR (9 downto 0); 228 
    signal out_s18          : STD_LOGIC_VECTOR (9 downto 0); 229 
    signal out_s19          : STD_LOGIC_VECTOR (9 downto 0); 230 
    signal out_s20          : STD_LOGIC_VECTOR (9 downto 0); 231 
    signal out_s21          : STD_LOGIC_VECTOR (9 downto 0); 232 
    signal out_s22          : STD_LOGIC_VECTOR (9 downto 0); 233 
    signal out_s23          : STD_LOGIC_VECTOR (9 downto 0); 234 
    signal out_s24          : STD_LOGIC_VECTOR (9 downto 0); 235 
    signal out_s25          : STD_LOGIC_VECTOR (9 downto 0); 236 
    signal out_s26          : STD_LOGIC_VECTOR (9 downto 0); 237 
    signal out_s27          : STD_LOGIC_VECTOR (9 downto 0); 238 
    signal out_s28          : STD_LOGIC_VECTOR (9 downto 0); 239 
    signal out_s29          : STD_LOGIC_VECTOR (9 downto 0); 240 
    signal out_s30          : STD_LOGIC_VECTOR (9 downto 0); 241 
    signal out_s31          : STD_LOGIC_VECTOR (9 downto 0); 242 
    signal out_s32          : STD_LOGIC_VECTOR (9 downto 0); 243 
    signal out_s33          : STD_LOGIC_VECTOR (9 downto 0); 244 
    signal out_s34          : STD_LOGIC_VECTOR (9 downto 0);     245 
    signal out_s35          : STD_LOGIC_VECTOR (9 downto 0); 246 
    signal out_s36          : STD_LOGIC_VECTOR (9 downto 0); 247 
    signal out_s37          : STD_LOGIC_VECTOR (9 downto 0); 248 
    signal out_s38          : STD_LOGIC_VECTOR (9 downto 0); 249 
    signal out_s39          : STD_LOGIC_VECTOR (9 downto 0); 250 
    signal out_s40          : STD_LOGIC_VECTOR (9 downto 0); 251 
    signal out_s41          : STD_LOGIC_VECTOR (9 downto 0); 252 
    signal out_s42          : STD_LOGIC_VECTOR (9 downto 0); 253 
    signal out_s43          : STD_LOGIC_VECTOR (9 downto 0);     254 
     255 
--------------COMPONENT DECLARATION--------------    256 
    component Full_Adder is            -- Full adder declaration 257 
    Port ( X : in  STD_LOGIC; 258 
           Y : in  STD_LOGIC; 259 
           Z : in  STD_LOGIC; 260 
           SUM : out  STD_LOGIC; 261 
           CARRY : out  STD_LOGIC); 262 
    end component; 263 
     264 
    signal sum_inv              : STD_LOGIC_VECTOR (9 downto 0); 265 
    signal carry_inv            : STD_LOGIC_VECTOR (9 downto 0); 266 
     267 
-----------------    268 
    component Adder_20_Bit is -- 15 Bit adder declaration 269 
    Port ( INPUT_A : in  STD_LOGIC_VECTOR (14 downto 0); 270 
           INPUT_B : in  STD_LOGIC_VECTOR (14 downto 0); 271 
           OUTPUT : out  STD_LOGIC_VECTOR (14 downto 0)); 272 
    end component; 273 
     274 
    signal OUT_SIG0 : STD_LOGIC_VECTOR (14 downto 0); -- These signals are 275 
involved in the addition process. 276 
    signal OUT_SIG1 : STD_LOGIC_VECTOR (14 downto 0); -- OUT_SIG3 is the 277 
signal used for sign determining 278 
    signal OUT_SIG2 : STD_LOGIC_VECTOR (14 downto 0); 279 
    signal OUT_SIG3 : STD_LOGIC_VECTOR (14 downto 0); 280 
     281 



73 

 

----------------- 282 
 283 
    component Clock_Division_1 284 
    Port( 285 
    CLKIN_IN : IN std_logic;           286 
    CLKDV_OUT : OUT std_logic; 287 
    CLK0_OUT : OUT std_logic 288 
    ); 289 
    end component; 290 
     291 
------------------------------------------------------------- 292 
     293 
begin 294 
 295 
------------- EXTERNAL SYNC CLOCK -------------- Sets the sync for the LO's 296 
    Inst_Clock_Division_1: Clock_Division_1 PORT MAP( 297 
        CLKIN_IN => CLK, 298 
        CLKDV_OUT => SYNC_CLK, 299 
        CLK0_OUT => TEST0 300 
    ); 301 
------------------------------------------------ 302 
 303 
------------- CLOCK DIVISION ------------------- Sets a 5 MHz clock 304 
    division : process(clk,temp_clk) 305 
    variable count  : integer := (0); 306 
    begin 307 
        if(falling_edge(clk)) then 308 
            if(count = max_count) then 309 
                temp_clk <= NOT temp_clk; 310 
                count := 0; 311 
            else  312 
                temp_clk <= temp_clk; 313 
                count := count + 1; 314 
            end if; 315 
        end if; 316 
        ADC_CLK <= temp_clk; 317 
    end process division; 318 
------------------------------------------------- 319 
 320 
    PRBS_SEQ <= "0110110001011100"; 321 
------------- SIGNAL GENERATION ------------------- Sets a 250 KHz signal 322 
    division2 : process(clk,temp_clk_2) 323 
    variable count2 : integer := (0); 324 
    variable index    : integer range 0 to 31 := (0); 325 
    begin 326 
        if(falling_edge(clk)) then 327 
            if(index = index_count) then 328 
                index := 0; 329 
            end if; 330 
            if(count2 = max_count_s) then 331 
                case index is 332 
                    when 0 =>  333 
                        temp_clk_2 <= PRBS_SEQ(0); 334 
                    when 1 =>  335 
                        temp_clk_2 <= PRBS_SEQ(1); 336 
                    when 2 =>  337 
                        temp_clk_2 <= PRBS_SEQ(2); 338 
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                    when 3 =>  339 
                        temp_clk_2 <= PRBS_SEQ(3); 340 
                    when 4 =>  341 
                        temp_clk_2 <= PRBS_SEQ(4); 342 
                    when 5 =>  343 
                        temp_clk_2 <= PRBS_SEQ(5); 344 
                    when 6 =>  345 
                        temp_clk_2 <= PRBS_SEQ(6); 346 
                    when 7 =>  347 
                        temp_clk_2 <= PRBS_SEQ(7); 348 
                    when 8 =>  349 
                        temp_clk_2 <= PRBS_SEQ(8); 350 
                    when 9 =>  351 
                        temp_clk_2 <= PRBS_SEQ(9); 352 
                    when 10 =>  353 
                        temp_clk_2 <= PRBS_SEQ(10); 354 
                    when 11 =>  355 
                        temp_clk_2 <= PRBS_SEQ(11); 356 
                    when 12 =>  357 
                        temp_clk_2 <= PRBS_SEQ(12); 358 
                    when 13 =>  359 
                        temp_clk_2 <= PRBS_SEQ(13); 360 
                    when 14 =>  361 
                        temp_clk_2 <= PRBS_SEQ(14); 362 
                    when 15 =>  363 
                        temp_clk_2 <= PRBS_SEQ(15); 364 
                    when others => 365 
                        null; 366 
                    end case;                367 
                --temp_clk_2 <= data_prbs(index); 368 
                count2 := 0; 369 
                index := index+1; 370 
            else  371 
                temp_clk_2 <= temp_clk_2; 372 
                count2 := count2 + 1; 373 
            end if; 374 
        --index := index+1; 375 
        end if; 376 
        SIG_CLK_P <= temp_clk_2; 377 
        LOG_OUT_P <= temp_clk_2; 378 
        SIG_CLK_N <= NOT temp_clk_2; 379 
        LOG_OUT_N <= NOT temp_clk_2; 380 
    end process division2; 381 
------------------------------------------------- 382 
 383 
--------Flag Clock Generation for PGA------------ 384 
    division_pga_flag : process(clk,temp_clk_3) 385 
    variable count_pga  : integer := (0); 386 
    begin 387 
        if(falling_edge(clk)) then 388 
            if(count_pga = max_count_pga) then 389 
                temp_clk_3 <= NOT temp_clk_3; 390 
                count_pga := 0; 391 
            else  392 
                temp_clk_3 <= temp_clk_3; 393 
                count_pga := count_pga + 1; 394 
            end if; 395 
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        end if; 396 
    end process division_pga_flag; 397 
 398 
------------- ADC SAMPLING ---------------------- 399 
    sampling :process(temp_clk) 400 
    variable adc_count : integer := 0; 401 
    begin 402 
        if(falling_edge(temp_clk)) then -- check this clock 403 
            if(adc_count = max_count_l) then -- this if statement should be 404 
carried out first before the case statement trips 405 
                adc_count := 0; 406 
                flag <= NOT flag; -- flag changes state upon bit sampling 407 
completion. this should in theory trip the process sdet 408 
                push_signal0 <= sampled_signal0;  409 
                push_signal1 <= sampled_signal1;  410 
                push_signal2 <= sampled_signal2; 411 
                push_signal3 <= sampled_signal3; 412 
                push_signal4 <= sampled_signal4; 413 
            end if; 414 
            case adc_count is  415 
                when 0 => 416 
                    sampled_signal0 <= ADC_DATA; 417 
                    pga_signal0 <= ADC_DATA; 418 
                when 1 => 419 
                    sampled_signal1 <= ADC_DATA; 420 
                    sampled_signal1 <= "0000000000"; 421 
                    pga_signal1 <= ADC_DATA; 422 
                when 2 => 423 
                    sampled_signal2 <= ADC_DATA; 424 
                    sampled_signal2 <= NOT sampled_signal2; -- Ones 425 
compliment. The extra bit is added in the pushed signal. 426 
                    pga_signal2 <= ADC_DATA; 427 
                when 3 => 428 
                    sampled_signal3 <= ADC_DATA; 429 
                    sampled_signal3 <= "0000000000"; 430 
                    pga_signal3 <= ADC_DATA; 431 
                when 4 => 432 
                    sampled_signal4 <= ADC_DATA; 433 
                    pga_signal4 <= ADC_DATA; 434 
                when others =>  435 
                    null; 436 
            end case; 437 
            adc_count := adc_count + 1; 438 
        end if; 439 
    end process sampling; 440 
------------------------------------------------- 441 
 442 
-------------- ADDING/MULT ---------------------- 443 
-- This block adds a single bit the the ones complement to convert the  444 
-- original number to its twos complement. This technique is used to invert 445 
-- both positive and negative sequences. 446 
 447 
    U1: Full_Adder 448 
         port map (X => push_signal2(0), Y => '1', Z => '0', SUM => 449 
sum_inv(0), CARRY => carry_inv(0)); 450 
    U2: Full_Adder 451 
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         port map (X => push_signal2(1), Y => '0', Z => carry_inv(0), SUM => 452 
sum_inv(1), CARRY => carry_inv(1)); 453 
    U3: Full_Adder 454 
         port map (X => push_signal2(2), Y => '0', Z => carry_inv(1), SUM => 455 
sum_inv(2), CARRY => carry_inv(2)); 456 
    U4: Full_Adder 457 
         port map (X => push_signal2(3), Y => '0', Z => carry_inv(2), SUM => 458 
sum_inv(3), CARRY => carry_inv(3)); 459 
    U5: Full_Adder 460 
         port map (X => push_signal2(4), Y => '0', Z => carry_inv(3), SUM => 461 
sum_inv(4), CARRY => carry_inv(4)); 462 
    U6: Full_Adder 463 
         port map (X => push_signal2(5), Y => '0', Z => carry_inv(4), SUM => 464 
sum_inv(5), CARRY => carry_inv(5)); 465 
    U7: Full_Adder 466 
         port map (X => push_signal2(6), Y => '0', Z => carry_inv(5), SUM => 467 
sum_inv(6), CARRY => carry_inv(6)); 468 
    U8: Full_Adder 469 
         port map (X => push_signal2(7), Y => '0', Z => carry_inv(6), SUM => 470 
sum_inv(7), CARRY => carry_inv(7)); 471 
    U9: Full_Adder 472 
         port map (X => push_signal2(8), Y => '0', Z => carry_inv(7), SUM => 473 
sum_inv(8), CARRY => carry_inv(8)); 474 
    U10: Full_Adder 475 
         port map (X => push_signal2(9), Y => '0', Z => carry_inv(8), SUM => 476 
sum_inv(9), CARRY => carry_inv(9)); 477 
-------------------------------------------------    478 
 479 
-- THE SAMPLES SIGNALS ARE NOW 480 
-- push_signal0 481 
-- push_signal1 482 
-- sum_inv 483 
-- push_signal3 484 
-- push_signal4 485 
 486 
 487 
    TEST <= add_signal0; 488 
    TEST1 <= add_signal1; 489 
    TEST2 <= add_signal2; 490 
    TEST3 <= add_signal3; 491 
    TEST4 <= add_signal4; 492 
    TEST5 <= carry_inv(9); 493 
     494 
     495 
 496 
    -- All the signals are in two's complement now. Therefore, to 497 
concactenate the signals, a check 498 
    -- must be performed to add '1's instead of '0's for negative signals. 499 
     500 
    concat_check: 501 
process(clk,push_signal0,push_signal1,sum_inv,push_signal3,push_signal4) 502 
    begin 503 
        if(push_signal0(9) = '1') then 504 
            add_signal0 <= "11111" & push_signal0; 505 
        else 506 
            add_signal0 <= "00000" & push_signal0; 507 
        end if; 508 
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        if(push_signal1(9) = '1') then 509 
            add_signal1 <= "11111" & push_signal1; 510 
        else 511 
            add_signal1 <= "00000" & push_signal1; 512 
        end if; 513 
        if(sum_inv(9) = '1') then 514 
            add_signal2 <= "11111" & sum_inv; 515 
        else 516 
            add_signal2 <= "00000" & sum_inv; 517 
        end if; 518 
        if(push_signal3(9) = '1') then 519 
            add_signal3 <= "11111" & push_signal3; 520 
        else 521 
            add_signal3 <= "00000" & push_signal3; 522 
        end if; 523 
        if(push_signal4(9) = '1') then 524 
            add_signal4 <= "11111" & push_signal4; 525 
        else 526 
            add_signal4 <= "00000" & push_signal4; 527 
        end if; 528 
    end process concat_check; 529 
     530 
    -- The following signals prevent multiple drivers 531 
    int_signal0 <= add_signal0; 532 
    int_signal1 <= add_signal1; 533 
    int_signal2 <= add_signal2; 534 
    int_signal3 <= add_signal3; 535 
    int_signal4 <= add_signal4; 536 
 537 
         538 
-------------- ADDER --------------------------------- -- this is essentially 539 
the integration step.  540 
        K1: Adder_20_Bit 541 
            port map (int_signal0, int_signal1, OUT_SIG0); 542 
        K2: Adder_20_Bit 543 
            port map (OUT_SIG0, int_signal2, OUT_SIG1); 544 
        K3: Adder_20_Bit 545 
            port map (OUT_SIG1, int_signal3, OUT_SIG2); 546 
        K4: Adder_20_Bit 547 
            port map (OUT_SIG2, int_signal4, OUT_SIG3); 548 
------------------------------------------------------ 549 
 550 
-- OUT_SIG3 Is the final output signal into the sign determiner in this case 551 
 552 
    TEST6 <= OUT_SIG0; 553 
    TEST7 <= OUT_SIG1; 554 
    TEST8 <= OUT_SIG2; 555 
    TEST9 <= OUT_SIG3; 556 
     557 
 558 
-------------- DETERMINE THE SIGN---------------------- 559 
    sdet: process(flag, OUT_SIG3)   -- trips on any flag event 560 
    begin 561 
     562 
        if(OUT_SIG3(14) = '1') then 563 
            DATA <= '0'; 564 
        else 565 
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            DATA <= '1'; 566 
        end if; 567 
 568 
    end process sdet; 569 
--------------------------------------------------------     570 
 571 
 572 
------------------- PGA CONTROL-------------------------- 573 
    pga_proc: process(flag,pga_signal0,pga_signal1,pga_signal2, 574 
    pga_signal3,pga_signal4,comp_signal0,comp_signal1,comp_signal2, 575 
    comp_signal3,comp_signal4,comp_signal5,comp_signal6,comp_signal7, 576 
    comp_signal8,comp_signal9,comp_signal10,comp_signal11,comp_signal12, 577 
    comp_signal13,comp_signal14,comp_signal15,comp_signal16,comp_signal17, 578 
    comp_signal18,comp_signal19,comp_signal20,comp_signal21,comp_signal22, 579 
    comp_signal23,comp_signal24,comp_signal25,comp_signal26,comp_signal27, 580 
    comp_signal28,comp_signal29,comp_signal30,comp_signal31,comp_signal32, 581 
    comp_signal33,comp_signal34,out_s33)    -- trips on any flag event 582 
 583 
    variable index_pga : integer := (0); 584 
    variable index_pga_process :integer := (0); 585 
    variable flag_compare_ready : integer := (0); 586 
    variable pga_flag    : integer := (0); 587 
     588 
    begin 589 
     590 
 591 
         592 
        if(falling_edge(flag)) then -- every falling edge, the index is 593 
incremented and a new set of signals gets the pga_signals generated in  594 
            if(index_pga_process = max_count_pga_process) then 595 
                PGA_CNTRL <= "0000"; -- RESET to the normal state and 'poll' 596 
signal. 597 
                PGA_RSSI <= "0000"; 598 
                pga_flag := 1; 599 
                index_pga_process := 0; 600 
            else 601 
                index_pga_process := index_pga_process + 1; 602 
            end if; 603 
         604 
     605 
    -- this polling is done because if the system is not reset then positive 606 
feedback will occur 607 
    -- and PGA will begin to oscillate. by reseting, the system will take in 608 
the new data and adjust pga to  609 
    -- that signal input. the drawback of this method is that there will be 610 
periodic instances where 611 
    -- the signal will degrade. 612 
     613 
     614 
    -- SOFTWARE FLOW: 615 
    -- an event on flag trips this process 616 
    -- master if loop on top checks for falling edge 617 
    -- if no, then moves on to second if state check 618 
    -- since the compare flag is 0, nothing will happen. 619 
     620 
    -- if falling edge of the flag then the second if loop checks if the 621 
index_pga_process counter has reached a max limit (arbitrary) 622 
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    -- if yes then the PGA is reset such that the signal is pass through un 623 
altered. this allows the ADC to recal. 624 
    -- the pga flag is set to 1 so that a new comparison can happen 625 
    -- the index_pga_process is set to 0 again for a new count. so 626 
essentially, while the compare process is happening, the aforementioned 627 
    -- if loop keeps checking for a reset trip. this overlap is negligible if 628 
the max_count_pga_process is sufficiently large 629 
     630 
    -- the next if loop keeps checking if the pga_flag is raised. once 631 
raised, signals are assigned the sampled values. this repeats till the index 632 
    -- pga counter has reached the number 7. once that happens, no more 633 
signals are assigned, the index_pga is set to 0 and the flag is reset to 0. 634 
    -- the comparator sequence is initiated and the max values is assigned to 635 
out_s33. 636 
     637 
    -- the last execution in the aforementioned if statement is the setting 638 
of the compare_complete flag to 1. once this is set, the state check 639 
    -- if loop can run and the final PGA value is output to the pga. since 640 
the compare sequence is now done, the master pga_process counter continues  641 
    -- to run until the next trip value where the PGA is reset and the whole 642 
compare process is repeated. 643 
 644 
 645 
            if(pga_flag = 1) then                    -- the ADC sampling 646 
process 647 
                case index_pga is 648 
                when 0 => 649 
                    comp_signal0 <= pga_signal0; 650 
                    comp_signal1 <= pga_signal1; 651 
                    comp_signal2 <= pga_signal2; 652 
                    comp_signal3 <= pga_signal3; 653 
                    comp_signal4 <= pga_signal4; 654 
                when 1 => 655 
                    comp_signal5 <= pga_signal0; 656 
                    comp_signal6 <= pga_signal1; 657 
                    comp_signal7 <= pga_signal2; 658 
                    comp_signal8 <= pga_signal3; 659 
                    comp_signal9 <= pga_signal4; 660 
                when 2 => 661 
                    comp_signal10 <= pga_signal0; 662 
                    comp_signal11 <= pga_signal1; 663 
                    comp_signal12 <= pga_signal2; 664 
                    comp_signal13 <= pga_signal3; 665 
                    comp_signal14 <= pga_signal4; 666 
                when 3 => 667 
                    comp_signal15 <= pga_signal0; 668 
                    comp_signal16 <= pga_signal1; 669 
                    comp_signal17 <= pga_signal2; 670 
                    comp_signal18 <= pga_signal3; 671 
                    comp_signal19 <= pga_signal4; 672 
                when 4 => 673 
                    comp_signal20 <= pga_signal0; 674 
                    comp_signal21 <= pga_signal1; 675 
                    comp_signal22 <= pga_signal2; 676 
                    comp_signal23 <= pga_signal3; 677 
                    comp_signal24 <= pga_signal4; 678 
                when 5 => 679 
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                    comp_signal25 <= pga_signal0; 680 
                    comp_signal26 <= pga_signal1; 681 
                    comp_signal27 <= pga_signal2; 682 
                    comp_signal28 <= pga_signal3; 683 
                    comp_signal29 <= pga_signal4; 684 
                when 6 => 685 
                    comp_signal30 <= pga_signal0; 686 
                    comp_signal31 <= pga_signal1; 687 
                    comp_signal32 <= pga_signal2; 688 
                    comp_signal33 <= pga_signal3; 689 
                    comp_signal34 <= pga_signal4; 690 
                when 7 => 691 
                    comp_signal35 <= pga_signal0; 692 
                    comp_signal36 <= pga_signal1; 693 
                    comp_signal37 <= pga_signal2; 694 
                    comp_signal38 <= pga_signal3; 695 
                    comp_signal39 <= pga_signal4; 696 
                when 8 => 697 
                    comp_signal40 <= pga_signal0; 698 
                    comp_signal41 <= pga_signal1; 699 
                    comp_signal42 <= pga_signal2; 700 
                    comp_signal43 <= pga_signal3; 701 
                    comp_signal44 <= pga_signal4; 702 
                when others => 703 
                    null; 704 
            end case; 705 
            if(index_pga = max_count_pga) then -- If the index counter hits 706 
the sample number then the comparator is performed 707 
                index_pga := 0; 708 
                pga_flag := 0; 709 
                 710 
                -------- COMPARATOR SEQUENCE-------------------- 711 
                if(comp_signal0 > comp_signal1) then 712 
                    out_s0 <= comp_signal0; 713 
                else 714 
                    out_s0 <= comp_signal1; 715 
                end if; 716 
                if(out_s0 > comp_signal2) then 717 
                    out_s1 <= out_s0; 718 
                else 719 
                    out_s1 <= comp_signal2; 720 
                end if; 721 
                if(out_s1 > comp_signal3) then 722 
                    out_s2 <= out_s1; 723 
                else 724 
                    out_s2 <= comp_signal3; 725 
                end if; 726 
                if(out_s2 > comp_signal4) then 727 
                    out_s3 <= out_s2; 728 
                else 729 
                    out_s3 <= comp_signal4; 730 
                end if; 731 
                if(out_s3 < comp_signal5) then 732 
                    out_s4 <= out_s3; 733 
                else 734 
                    out_s4 <= comp_signal5; 735 
                end if; 736 
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                if(out_s4 > comp_signal6) then 737 
                    out_s5 <= out_s4; 738 
                else 739 
                    out_s5 <= comp_signal6; 740 
                end if; 741 
                if(out_s5 > comp_signal7) then 742 
                    out_s6 <= out_s5; 743 
                else 744 
                    out_s6 <= comp_signal7; 745 
                end if; 746 
                if(out_s6 > comp_signal8) then 747 
                    out_s7 <= out_s6; 748 
                else 749 
                    out_s7 <= comp_signal8; 750 
                end if; 751 
                if(out_s7 > comp_signal9) then 752 
                    out_s8 <= out_s7; 753 
                else 754 
                    out_s8 <= comp_signal9; 755 
                end if; 756 
                if(out_s8 > comp_signal10) then 757 
                    out_s9 <= out_s8; 758 
                else 759 
                    out_s9 <= comp_signal10; 760 
                end if; 761 
                if(out_s9 > comp_signal11) then 762 
                    out_s10 <= out_s9; 763 
                else 764 
                    out_s10 <= comp_signal11; 765 
                end if; 766 
                if(out_s10 > comp_signal12) then 767 
                    out_s11 <= out_s10; 768 
                else 769 
                    out_s11 <= comp_signal12; 770 
                end if; 771 
                if(out_s11 > comp_signal13) then 772 
                    out_s12 <= out_s11; 773 
                else 774 
                    out_s12 <= comp_signal13; 775 
                end if; 776 
                if(out_s12 > comp_signal4) then 777 
                    out_s13 <= out_s12; 778 
                else 779 
                    out_s13 <= comp_signal14; 780 
                end if; 781 
                if(out_s13 > comp_signal5) then 782 
                    out_s14 <= out_s13; 783 
                else 784 
                    out_s14 <= comp_signal15; 785 
                end if; 786 
                if(out_s14 > comp_signal16) then 787 
                    out_s15 <= out_s14; 788 
                else 789 
                    out_s15 <= comp_signal16; 790 
                end if; 791 
                if(out_s15 > comp_signal17) then 792 
                    out_s16 <= out_s15; 793 
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                else 794 
                    out_s16 <= comp_signal17; 795 
                end if; 796 
                if(out_s16 > comp_signal8) then 797 
                    out_s17 <= out_s16; 798 
                else 799 
                    out_s17 <= comp_signal18; 800 
                end if; 801 
                if(out_s17 > comp_signal19) then 802 
                    out_s18 <= out_s17; 803 
                else 804 
                    out_s18 <= comp_signal19; 805 
                end if; 806 
                if(out_s18 > comp_signal20) then 807 
                    out_s19 <= out_s18; 808 
                else 809 
                    out_s19 <= comp_signal20; 810 
                end if; 811 
                if(out_s19 > comp_signal21) then 812 
                    out_s20 <= out_s19; 813 
                else 814 
                    out_s20 <= comp_signal21; 815 
                end if; 816 
                if(out_s20 > comp_signal22) then 817 
                    out_s21 <= out_s20; 818 
                else 819 
                    out_s21 <= comp_signal22; 820 
                end if; 821 
                if(out_s21 > comp_signal23) then 822 
                    out_s22 <= out_s21; 823 
                else 824 
                    out_s22 <= comp_signal23; 825 
                end if; 826 
                if(out_s22 > comp_signal24) then 827 
                    out_s23 <= out_s22; 828 
                else 829 
                    out_s23 <= comp_signal24; 830 
                end if; 831 
                if(out_s23 > comp_signal25) then 832 
                    out_s24 <= out_s23; 833 
                else 834 
                    out_s24 <= comp_signal25; 835 
                end if; 836 
                if(out_s24 > comp_signal26) then 837 
                    out_s25 <= out_s24; 838 
                else 839 
                    out_s25 <= comp_signal26; 840 
                end if; 841 
                if(out_s25 > comp_signal27) then 842 
                    out_s26 <= out_s25; 843 
                else 844 
                    out_s26 <= comp_signal27; 845 
                end if; 846 
                if(out_s26 > comp_signal28) then 847 
                    out_s27 <= out_s26; 848 
                else 849 
                    out_s27 <= comp_signal28; 850 
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                end if; 851 
                if(out_s27 > comp_signal29) then 852 
                    out_s28 <= out_s27; 853 
                else 854 
                    out_s28 <= comp_signal29; 855 
                end if; 856 
                if(out_s28 > comp_signal30) then 857 
                    out_s29 <= out_s28; 858 
                else 859 
                    out_s29 <= comp_signal30; 860 
                end if; 861 
                if(out_s29 > comp_signal31) then 862 
                    out_s30 <= out_s29; 863 
                else 864 
                    out_s30 <= comp_signal31; 865 
                end if; 866 
                if(out_s30 > comp_signal32) then 867 
                    out_s31 <= out_s30; 868 
                else 869 
                    out_s31 <= comp_signal32; 870 
                end if; 871 
                if(out_s31 > comp_signal33) then 872 
                    out_s32 <= out_s31; 873 
                else 874 
                    out_s32 <= comp_signal33; 875 
                end if; 876 
                if(out_s32 > comp_signal34) then 877 
                    out_s33 <= out_s32; 878 
                else 879 
                    out_s33 <= comp_signal34; 880 
                end if; 881 
                ---------------------------- 882 
                if(out_s33 > comp_signal35) then 883 
                    out_s34 <= out_s33; 884 
                else 885 
                    out_s34 <= comp_signal35; 886 
                end if; 887 
                if(out_s34 > comp_signal36) then 888 
                    out_s35 <= out_s34; 889 
                else 890 
                    out_s35 <= comp_signal36; 891 
                end if; 892 
                if(out_s35 > comp_signal37) then 893 
                    out_s36 <= out_s35; 894 
                else 895 
                    out_s36 <= comp_signal37; 896 
                end if; 897 
                if(out_s36 > comp_signal38) then 898 
                    out_s37 <= out_s36; 899 
                else 900 
                    out_s37 <= comp_signal38; 901 
                end if; 902 
                if(out_s37 > comp_signal39) then 903 
                    out_s38 <= out_s37; 904 
                else 905 
                    out_s38 <= comp_signal39; 906 
                end if; 907 
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                if(out_s38 > comp_signal40) then 908 
                    out_s39 <= out_s38; 909 
                else 910 
                    out_s39 <= comp_signal40; 911 
                end if; 912 
                if(out_s39 > comp_signal41) then 913 
                    out_s40 <= out_s39; 914 
                else 915 
                    out_s40 <= comp_signal41; 916 
                end if; 917 
                if(out_s40 > comp_signal42) then 918 
                    out_s41 <= out_s40; 919 
                else 920 
                    out_s41 <= comp_signal42; 921 
                end if; 922 
                if(out_s41 > comp_signal43) then 923 
                    out_s42 <= out_s41; 924 
                else 925 
                    out_s42 <= comp_signal43; 926 
                end if; 927 
                if(out_s42 > comp_signal44) then 928 
                    out_s43 <= out_s42; 929 
                else 930 
                    out_s43 <= comp_signal44; 931 
                end if; 932 
            flag_compare_ready := 1; 933 
                ----------------------------------------------- 934 
            else 935 
                index_pga := index_pga + 1; 936 
            end if; 937 
        end if; 938 
    end if; 939 
 940 
             941 
 942 
 943 
        ------------ STATE DETERMINER ---------------------- 944 
    if(flag_compare_ready = 1) then  945 
        if (out_s43 < "0000101000") then 946 
            PGA_CNTRL <= "0011"; 947 
            --PGA_RSSI <= "1000"; 948 
        elsif (out_s43 > "0000101000" and out_s43 < "0001010000") then 949 
            PGA_CNTRL <= "0111"; 950 
            --PGA_RSSI <= "1100"; 951 
        elsif (out_s43 > "0001010000" and out_s43 < "0001010011") then 952 
            PGA_CNTRL <= "0010"; 953 
            --PGA_RSSI <= "1110"; 954 
        elsif (out_s43 > "0001010011" and out_s43 < "0001111000") then 955 
            PGA_CNTRL <= "1011"; 956 
            --PGA_RSSI <= "1111"; 957 
        elsif (out_s43 > "0001111000" and out_s43 < "0001111101") then 958 
            PGA_CNTRL <= "0001"; 959 
            --PGA_RSSI <= "0111"; 960 
        elsif (out_s43 > "0001111101" and out_s43 < "0010100110") then 961 
            PGA_CNTRL <= "0110"; 962 
            --PGA_RSSI <= "0011"; 963 
        else 964 
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            PGA_CNTRL <= "0000"; 965 
            --PGA_RSSI <= "0001"; 966 
        end if; 967 
        flag_compare_ready := 0; 968 
        out_s43 <= "0000000000"; 969 
    end if; 970 
         971 
 972 
    end process pga_proc; 973 
--------------------------------------------------------     974 
 975 
         976 
end Behavioral; 977 
 978 
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