
802.15.4 Low Intermediate Frequency Radio Receiver

By: Sanjay Avasarala

Senior Project

Electrical Engineering Department

Cal Poly, San Luis Obispo

2012

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. i

LIST OF TABLES AND FIGURES ... ii

ABSTRACT ... iv

DESIGN ... 1

SECTION 1 - INTRODUCTION .. 1

SECTION 2 - BACKGROUND TECHNOLOGY REVIEW .. 2

SECTION 3 - DESIGN REQUIREMENTS AND SPECIFICATIONS ... 5

SECTION 4 - DESIGN ALTERNATIVES ... 8

SECTION 5 - SYSTEM DESIGN ... 9

Subsection 5.1 – Image Reject Filter Analysis and Design ...11

Subsection 5.2 – BPSK Theory, Design, and Simulation ...20

Subsection 5.3 – Modulator/Demodulator Design ..25

Subsection 5.4 – Programmable Gain Amplifier Design ...25

Subsection 5.5 – Software/VHDL Design ..26

Software Component 5.5.1 – ADC ..26

Software Component 5.5.2 – Digital Oscillator Multiplication and Demodulation26

Software Component 5.5.3 – Integration ..27

Software Component 5.5.4 – Sign Determiner ..27

Software Component 5.5.5 – PRBS Signal Generator ..27

Software Component 5.5.6 – Sync Clock ..27

Software Component 5.5.7 – PGA Feedback ..28

SECTION 6 - CONSTRUCTION AND INTEGRATION ...30

SECTION 7 - SUB SYSTEM TESTING ..31

Subsystem 7.1 – Filter/Demodulator Testing ..31

Subsystem 7.2 – ADC Testing ..37

Subsystem 7.3 –Instrumentation Amplifier though ADC Testing ..38

Subsystem 7.4 – Modulator Testing ...39

Subsystem 7.5 – Programmable Gain Amplifier Testing ...40

SECTION 8 - FULL SYSTEM TEST ...42

SECTION 9 - RESULTS ANALYSIS/CONCLUSION..47

SECTION 10 - BIBLIOGRAPHY ...49

APPENDICES ...50

APPENDIX A - ABET SENIOR PROJECT ANALYSIS ...50

APPENDIX B - SCHEMATICS ..58

APPENDIX C - PCB LAYOUT ARTWORK ..66

APPENDIX D - VHDL PROGRAM LISTING ..68

i

ACKNOWLEDGEMENTS

I would like to thank my father for all the help he gave me during this project and my mother who

motivated me to study and work hard and remain dedicated. I also want to thank my senior project

advisor Professor Wayne Pilkington for the support and guidance he gave me these last two quarters.

ii

List of Tables and Figures

TABLES

TABLE 3.1 – System specifications and requirements .. 7

TABLE 5.1 – Functional description of each sub system block .. 10

TABLE 7.1.1 – Recorded values for initial filter test set up ... 31

TABLE 7.1.2 – Recorded values for proper individual filter test ... 32

TABLE 7.1.3 – Table of 5 random samples chosen from data collected for the complex filter 35

TABLE 7.5.1 – Selected waveforms and their respective gains and states ... 41

TABLE 8.1 – Sensitivity test results ... 46

TABLE 9.1 – Basic top level specifications of the receiver .. 47

TABLE A.1 – Estimated costs ... 51

TABLE A.2 – Actual costs .. 52

TABLE A.3 – Bill of materials .. 52

FIGURES

FIGURE 1.1 – Leakage in a mixer .. 2

FIGURE 5.1 – Block diagram of the entire system ... 9

FIGURE 5.1.1 – Simplified block diagram of an image reject system .. 11

FIGURE 5.1.2 – Magnitude response of a simple rudimentary low pass filter ... 13

FIGURE 5.1.3 – Block diagram of an image reject transfer function ... 14

FIGURE 5.1.4 – Practical realization of a simple image reject filter ... 14

FIGURE 5.1.5 – A more detailed look at a simple image reject filter .. 15

FIGURE 5.1.6 – Magnitude response of a simple image reject filter ... 16

FIGURE 5.1.7 – Ideal image reject filter using a fifth order Butterworth low pass filter 16

FIGURE 5.1.8 – Magnitude response of a 5
th
 order Band pass filter (ideal) ... 17

FIGURE 5.1.9 – Magnitude response of a 5
th
 order Band pass filter with group delay (ideal) 18

FIGURE 5.1.10 – Magnitude response of a 5
th

 order Band pass filter (non-ideal) 18

FIGURE 5.1.11 – Completed filter schematic. This is the schematic view in LTSpice 19

FIGURE 5.2.1 – A BPSK system representation using a DSB-SC architecture .. 20

FIGURE 5.2.2 – Simulation showing the modulated signal. ... 20

FIGURE 5.2.3 – Down converted low IF signal without filtering .. 21

FIGURE 5.2.4 – Demodulated output signal .. 22

FIGURE 5.2.5 – Unfiltered demodulated signal with AWGN ... 23

FIGURE 5.2.6 – Entire simulated BPSK system in Simulink ... 24

FIGURE 5.5.7.1 – Software flow diagram for the PGA .. 28

FIGURE 5.5.7.2 – State Variable Diagram ... 29

iii

FIGURE 7.1.1 – Plotted response for the filters ... 32

FIGURE 7.1.2 – Test setup diagram ... 33

FIGURE 7.1.3 – I channel demodulator output .. 33

FIGURE 7.1.4 – I channel differential demodulator output ... 34

FIGURE 7.1.5 – I and Q channel demodulator output ... 34

FIGURE 7.1.6 – Q channel differential demodulator output .. 35

FIGURE 7.1.7 – Complex filter response with positive and negative sequences shown 36

FIGURE 7.2.1 – ADC Logic Analyzer output .. 37

FIGURE 7.2.2 – ADC decoded output .. 37

FIGURE 7.2.3 – ADC values after being fed through the Nexys board .. 38

FIGURE 7.3.1 – Logic Analyzer output with the input at the IA ... 39

FIGURE 7.4.1 – Spectrum of the modulated 150 KHz square wave ... 39

FIGURE 7.5.1 – Output waveform for a .82 Vpp 2.5 CMV sin wave input ... 40

FIGURE 7.5.2 – Output waveform for a .23 Vpp 2.5 CMV sin wave input ... 40

FIGURE 7.5.3 – Output waveform for a 2.48 Vpp 2.5 CMV sin wave input ... 41

FIGURE 8.1 – Demodulated square wave using direct conversion .. 42

FIGURE 8.2 – I channel output of the demodulator ... 43

FIGURE 8.3 – The input and output waveforms for the filter ... 43

FIGURE 8.4 – Input data and demodulated data for a square wave ... 44

FIGURE 8.5 – Input PRBS data and the demodulated data ... 44

FIGURE 8.6 – Input data and demodulated data viewed through the Logic Analyzer 45

FIGURE 8.7 – Input data and output data with the modulator LO turned off .. 45

FIGURE 8.8 – Final test setup diagram ... 46

FIGURE A.1 – Gantt Chart Timeline .. 54

FIGURE B.1 – Modulator Schematic ... 58

FIGURE B.2 – Demodulator Schematic ... 59

FIGURE B.3 – CMV DC Offset Shift Schematic ... 60

FIGURE B.4 – Instrumentation Amplifier Schematic ... 61

FIGURE B.5 – Stage 1 and 2 of the I Channel for the Complex Filter ... 62

FIGURE B.6 – Stage 2 of the Q Channel for the Complex Filter ... 63

FIGURE B.7 – PGA Schematic ... 64

FIGURE B.8 – ADC Interface Schematic ... 65

FIGURE C.1 – Top silkscreen .. 66

FIGURE C.2 – Top copper layer .. 67

iv

ABSTRACT

This project involves the design, building, and testing of a low intermediate frequency 802.15.4 receiver

that uses an FPGA to perform final demodulation to baseband.

1

Section 1. INTRODUCTION

This project will demonstrate the successful demodulation of data using a low intermediate

frequency (IF) digital radio receiver. A separate modulation circuit will provide the system with BPSK

modulated data at 956 MHz and an RF down converter circuit will supply the receiver with the low IF

signal which contains both in phase and quadrature components.

The analog section of the receiver includes a complex band pass filter with capability of tuning

both the center frequency as well as the filter bandwidth, a programmable gain amplifier (PGA), and an

analog to digital converter (ADC). A digital signal processor (DSP) or field programmable gate array

(FPGA) provides the final demodulation of the IF data down to base band.

 The product in question is an 802.15.4 compatible receiver module that utilizes a DSP/FPGA to

perform final demodulation to baseband of a low-IF signal. This type of device is not intended for

consumer end markets, but rather for companies who design consumer electronics. The 802.15.4 standard

is intended for low power and low data rate applications such as interfacing house hold appliances to a

central node and other daily, short-range wireless applications. The module is only a receiver, and thus

can either be used in conjunction with a transmitter to form a transceiver, or as a stand-alone module in

applications that call for only receiving data. Because the module uses a DSP and has several features

described in the specifications document, the receiver is highly customizable and immune to certain levels

of interference from noise and adjacent channels. The module also does not contain any clock extraction

devices for synchronization since that is beyond the scope of this project.

2

Section 2. BACKGROUND TECHNOLOGY REVIEW

Note that this section offers the technology background at the highest possible system level. The theory of

each sub-system operations is presented in their respective sections.

 This project entails the design and creation of a low IF digital radio receiver. Currently, most

receivers use three common system architectures: Direct Conversion or Zero IF (ZIF), low IF or high IF.

Direct quantization and signal processing at RF frequencies is not practical and thus not used. The

following describes the relative advantages and disadvantages of each architecture.

 (Direct Conversion, or Zero IF (ZIF))

Advantages

A. Circuit simplicity

Since direct conversion avoids the use of an IF, external IF filtering circuitry is not

required. Thus, a baseband circuit has a relatively smaller area and a lower cost.

Disadvantages

A. LO Leakage

It is possible for the LO signal to leak into the input to the RF down converter (which is

as simple as just a mixer. See Fig 1.1 below).

Figure 1.1 – Leakage in a mixer.

Because the LO leaks into the input of the mixer, a DC value is present at the output (two

sinusoidal waves multiplied together produce a DC term). If a high gain amplifier is present after

the RF down conversion stage, it will rail with the DC offset term present. This can happen for

both static self mixing and dynamic self mixing. AC coupling cannot solve this problem due to

3

significant levels of low frequency and DC content associated with the message signal. It is

possible to design filters that account for this problem, although to do so is rather difficult.

B. Noise

A type of noise that is inversely proportional to frequency (known as 1/f noise) will be

present in circuits that use active devices. A receiver that processes a signal at baseband is more

susceptible to this type of noise.

High IF

Advantages

A. DC offset nulling

A high IF system can get rid of the DC offset problem which the baseband scheme faces

by using AC coupling.

B. Image Reject

Unless proper filtering is performed at high frequencies, an image signal will be present

along with the wanted signal. The image signal is any spectral power located at a frequency

deviation which is the same as the wanted signal away from the local oscillator. However, the

image is located on the opposite side of the carrier relative to the wanted signal. Image rejection

techniques employed at high IF (using surface acoustic wave or SAW filters) is highly effective

and thus high IF is used where high image rejection is needed.

Disadvantages

A. Additional circuitry

 Circuits that use a high IF require two phase locked loop (PLL) circuits to convert the

signal to a low enough frequency for analog to digital conversion. There are digital signal

processors (DSP) available that can handle the high frequencies of high IF (typically in the

hundreds of MHz), however the amount of power and processing strength needed for this will

increase the cost and current consumption. The additional circuitry needed for the high IF circuit

will also make the receiver more expensive.

B. Bulky expensive components

As mentioned before, a SAW filter is required for filtering. A SAW filter is a bulky

component that is impossible to integrate into a chip. This is the single biggest drawback to this

otherwise excellent architecture.

Low IF

Advantages

A. DC offset problem doesn’t exist

4

A low IF system can ignore DC offsets in the devices by simply AC coupling the stages.

B. Circuit simplicity

As opposed to the high IF schemes, a low IF system only requires one PLL to down

convert the RF signal to a low IF. The circuit requires no additional frequency conversion since a

DSP/FPGA can easily handle the frequencies associated with low IF (hundreds of KHz to ones or

tens of MHz).

Disadvantages

A. Image reject

Image rejection at a low IF is substantially harder to realize than at a high IF. It is

possible, however, to use complex bandpass filters for image rejection. Amplitude and phase

matching of components ultimately places a practical limit on image rejection.

B. Data rate constraints

Another disadvantage is that the system is most suited for low data rate (low bandwidth)

systems. High bandwidth systems such as Wi-Fi are not feasible with a low IF architecture,

however, low data rate systems such as Zigbee and Bluetooth are.

Digital System Advantages

A digital signal processor (DSP) will perform the final demodulation of the signal to baseband data.

Using a DSP and mixed signal processing carries several advantages over a pure analog system.

A. Filtering

Although the radio filters the signal before A/D conversion is employed (see Figure 3),

higher order filters can be realized more easily in the digital realm as opposed to analog. The only

limitations to this are processing speed and memory space. One must ensure that the signal

strength is optimized for quantization since signal to noise ratio degrades for lower amplitudes

due to quantization error.

B. Customizable

As opposed to an analog system in which individual hardware component values are

changed should any parameter change happen, a digital system allows for easy customization

through the use of coding.

C. Improved image rejection

If the in phase and quadrature components are maintained through the receive chain, one

can use a DSP to improve the image rejection quality. Image rejection relies on matched

amplitude and phases in circuitry and a DSP can account for variations in the aforementioned.

5

Section 3. DESIGN REQUIREMENTS AND SPECIFICATIONS

Note that the following table is derived from the EE 463 Senior Project preliminary report. The table

contains both marketing requirements and engineering specifications. The following list provides a brief

description of what the module must accomplish:

 Properly demodulate BPSK modulated data at 250 kbps

 Provide image rejection

 Provide a PGA

 Output data to a computer for easy visibility

Marketing

Requirements

Engineering

Specifications
Justification

2,3,4 Frequency of operation: 950 – 956 MHz,

capable of 250Kbps data rate. Receiver

must use BPSK modulation with a

channel spacing of 2MHz.

Must conform to the Zigbee standard

defined frequency allocation and bit rate

parameters. These specifications are taken

directly from the 802.15.4 standard. Note

that spread spectrum techniques will NOT

be used in this receiver. [5]

1 Use a low IF of half the channel spacing

of 2MHz or 1 MHz.

For low data rate systems such as the

Zigbee standard, a low IF is desirable. A

low IF architecture typically costs less than

other types. 1 MHz is used such that the

adjacent channel is the only image present

at IF. Any other IF used over 1 MHz will

contain alternate channel images which

will be substantially harder to reject.

4

Adjacent and alternate channel rejections

of 20 and 50 dB respectively.

The adjacent and alternate channels are

sometimes larger than the wanted signal.

Therefore these have to be rejected to

avoid interference (known as image

rejection particularly for low IF

architectures). These particular values are

more than the specified values in the

802.15.4 standard

.

6

4 ADC resolution and sampling rate:

4 bits and a sampling frequency of

greater than the Nyquist frequency of

twice the bandwidth (4 MHz). Therefore

the sampling rate is greater than 4 MHz.

The ADC resolution is determined by the

SNR required by the DSP to demodulate

the signal to a BER of 1E-4. We assume 20

dB for this so that 4 bits is adequate

(4x6+1.78). The preceding equation is a

rule of thumb equation that relates signal to

noise ratio with a given bit resolution.

Excess bits will serve as headroom or

margin for the AGC. The sampling rate is

determined by the IF frequency and the

signal BW.

4 Use an appropriate filter to achieve the

channel selectivity without having the

group delay distortion affect the BER of

the receiver.

For a distortion less system, a circuit

should have a constant or small group

delay variation in the passband.

4 Use an automatic gain control system:

Gain control range of 50 dB

Near/far problems and multipath will cause

the signal strength to vary.

The sensitivity of BPSK of 250Kbps

=-110dBm at RF. Assuming 30dB gain in

RF, the sensitivity at IF will be -80dBm. A

maximum IF signal corresponds to -20dBm

at RF or +10 dBm at IF. For this variation

of the signal the level of the signal at the

ADC input should be roughly constant to

maximize the ADC capabilities.

2,3 User interface The user must physically view the

demodulated data stream to verify proper

transmission. MATLAB or LabVIEW can

interface with the receiver and display the

received data. A Logic Analyzer can also

export data to an excel spreadsheet for

analysis.

2,3 Tunable IF bandwidth. NOTE: After

some research, it was determined that a

tunable image reject filter was beyond

the scope of this project and is

therefore not going to be implemented.

To accommodate for different bandwidths

associated with different data rates, a

tunable filter is required. The circuit

contains this feature for a proof of concept.

4 A bit error rate (BER) of 1E-4 at

sensitivity. This in turn corresponds to a

packet error rate of 1% for 250 Kbps for

BPSK.

This is specified in IEEE 802.15.4 [5]

7

1 Research and development costs. The total cost for R&D should not exceed

$450.00

5 PCB on which circuit is built should not

exceed 60 square inches or use more than

2 layers.

The PCB on which this circuit is built will

meet these specs to conform to

4PCB.com‟s academic board

manufacturing option. Evaluation kits for

the DSP, RF and TX circuitry will be

sourced from manufacturers.

Marketing Requirements

1. Affordable

2. Easy to use

3. Customizable

4. Seamless data transfer

5. Compact

Table 3.1 – System specifications and requirements

 It must be noted at this point that, although the module is meant to be a low IF receiver, a

transmitter and a down converter will need to be constructed as well to provide the BPSK low IF

modulated data.

8

Section 4. DESIGN ALTERNATIVES

IF Architecture

The only other alternatives for a receiver architecture include the aforementioned high IF and

zero IF architectures. The disadvantages and advantages of each were discussed previously and it was

determined that a low IF architecture would be the most feasible for this project given the allotted time

and resources.

Analog vs. Digital

 The alternative to using DSP/FPGA for final demodulation would obviously be using analog

demodulation. However, this requires the extensive use of analog filters and other sub-system

components including hard limiters and additional down converters that complicate the project and add to

the overall cost. A DSP/FPGA can perform final demodulation using simple coding techniques and is

highly customizable and easy to change.

DSP vs. µProcessor vs. FPGA

 The alternative to using a DSP would be using a microprocessor to perform demodulation to

baseband. This technique will only work if the microprocessor has sufficient memory and processing

capabilities to sample and demodulate a signal (1 MHz for the project). The microprocessor needs to be

able to buffer many data samples (to be determined) and possibly generate its own pseudo random binary

sequence to avoid the use of two microprocessors which would require a digital PLL. The last alternative

is to use an FPGA and VHDL to carry out final demodulation. The advantage of using this method is that

one has direct control over any of the clocks involved in the system and can therefore alter timing

constraints accordingly and with precision.

PCB vs. Bread boarding

 Although bread boarding the system may offer more customizability and be less prone to error

since any mistakes can easily be made, the system has enough components to the point where bread

boarding the system may not be feasible. Creating a layout and designing the circuit on a PCB is much

more compact and clean (especially for RF circuitry).

9

 Section 5. PROJECT DESIGN

 A high level block diagram of the system is shown below in Figure 5.1. Table 5.1 describes the

function of each block.

Figure 5.1. – Block diagram of the entire system.

BLOCK INPUT OUTPUT FUNCTION

Modulation

Circuitry

250 Kbps digital

data stream.

Modulated 956 MHz

BPSK RF signal.

The modulation circuitry is what

will provide the BPSK modulated

data signal to the radio receiver at

956 MHz.

RF Down

conversion

circuitry

RF 900 MHz signal Low IF Signal (1 MHz) The RF down converter will convert

the modulated frequency to the low

intermediate frequency for signal

processing.

BPF (Band pass

image reject

filter)

IF Signal Filtered IF Signal The band pass filter will only allow

the wanted signal in the pass band

and attenuate all other signals. Note

that this filter is complex I/Q

RF

Downconverter

Modulation

Circuitry
Complex BPF

RF Signal (950 MHz)

20 Kbps Data Stream

Low IF Signal (1 MHz)

Low IF Signal (1 MHz)

(Filtered)

PGA

Amplified

Signal

ADC

CLK1

DSP (IF

Demodulation)

CLK2

Digitized Signal

AGC

POWER

GND

AGC output

that controls

PGA

Feedback path used to control AGC

USB Out

10

PGA

(Programmable

Gain Amplifier)

Filtered IF Signal Filtered IF Signal with

gain

The PGA is needed for the AGC.

ADC (Analog to

Digital

converter)

Filtered IF Signal

with gain

Quantized output The ADC will convert the analog

signal to a digital value which will

be processed by the DSP/FPGA.

The ADC resolution will depend on

the SNR requirements of the

802.15.4 system.

CLK1 No Input 5 MHz The sampling rate of the ADC is

determined by this clock.

CLK2 No Input 50 MHz Internally generated DSP/FPGA

clock.

AGC (Automatic

gain control)

DSP output signal

(logic bus)

Logic bus signal The AGC will control the PGA. The

AGC is controlled by the

DSP/FPGA.

DSP (Digital

signal processor.

Can be replaced

by an FPGA)

Quantized IF signal DSP output logic bus.

USB (tentative).

Logic analyzer (tentative).

The DSP will perform the final

demodulation to baseband. The DSP

will have a user interface (a

computer) such that the user can

view the demodulated bit stream for

test purposes. An FPGA can take

the place of a DSP.

Table 5.1. Functional description of each sub system block

11

Sub-Section 1. Image Reject Filter Analysis and Design

One of the biggest problems associated with a low IF architecture is the presence of an image at

the IF. An image is present due to the mathematical properties of frequency shifting when down

converting. Although the image signal will be present in the negative frequencies, in all practical

applications these frequencies are „folded over‟ such that the image signal will indeed be present at the IF.

Therefore, proper filtering must be performed to remove the image at the „negative‟ frequencies. This can

be done by positively shifting the magnitude response of a low pass filter such that no negative

frequencies will be present in the pass band (the magnitude response of a LPF is symmetric about the y

axis and therefore negative frequencies will be in the pass band). A shift in the frequency domain

corresponds to multiplication by a complex number in the time domain. Hence, the type of filter used can

be called a complex bandpass filter. Analysis of an IQ complex bandpass filter is shown below.

Figure 5.1.1. – Simplified block diagram of an image reject system.

First, we shall observe how an image signal is rejected using mathematical analysis. The RF Input

contains two signals of interest for this analysis: the wanted signal located at ωc and the image signal

located at ωIM. Note that for a ωLO that is greater than the wanted signal:

and

The frequencies mentioned are all at RF frequencies except for ωIF. Without loss of generality, we can

assume that the image and wanted signals are simple sinusoids with different amplitudes. Thus,

 ()

 ()

RF In

-90

Sum
IF Out

sin(Wlo)

cos(Wlo)

12

 Using an IQ down-converter, the I channel yields (after being mixed by cos(ωLO)):

 () [() ()]

 ((()) (())) ((()) (()))

and neglecting the higher RF frequencies due to low pass filtering, we arrive at:

 (()) (())

 () ()

The Q channel yields (after being mixed by sin(ωLO)):

 ()[() ()]

 ((()) (())) ((()) (()))

and neglecting the high RF frequencies, the input to the phase shifter is:

 (()) (())

Note that the divide by 2 that occurs due to trigonometric identities is left out for simplicity. Now, since

ωLO – ωIM is a negative frequency, or – ωIF, we can rewrite the above expression as:

 (()) (())

 () ()

Due to the 90 phase shift in the Q channel, the input to the summer is:

 (

) (

) =

 () ()

The output of the summer is:

 () () () ()

 ()

Observe that the image signal, which had an amplitude of B is now completely gone. This analysis also

applies to modulated signals and images at these frequencies.

This type of image reject system can be realized using two cross coupled low pass filters. Note

that the 90 degrees phase shift of the I channel is simply the Q channel. In other words, the Q channel

shifts the I channel by the required 90 degrees, and feeding the Q channel into a filter along with the I

channel will result in the desired output. Analysis of this filter is shown below.

13

We first start with the simple low pass transfer function:

 ()

The magnitude response of this TF resembles:

 Mag(())

Figure 5.1.2. – Magnitude response of a simple rudimentary low pass filter

We saw how, in the previous analysis, the image signal was located in the negative frequency range.

Thus, to eliminate any „negative‟ frequencies, we can shift the magnitude response to the right. This will

result in a new transfer function:

 ()

 ()

where is the shifted frequency. Applying this transfer function to only the I channel (for now) and

after cross multiplying, we arrive at:

where is the output of the LPF. Note that the coefficient of the last term is a 90 degree shifted

scalar multiple of . From before, we know that the Q channel is the I channel positively shifted by 90

degrees, or j*I. Therefore, any signal processing performed on the Q channel that is identical to the I

channel will result in an output on the Q channel that is still j*I. Therefore it is safe to represent as

 . Replacing this in the above equation results in:

Rearranging terms results in:

14

This transfer function can be realized using the following block diagram (the Q channel gain is left out for

simplicity):

Figure 5.1.3. – Block diagram of an image reject transfer function.

This diagram is essentially an integrator with a simple negative feedback loop. One can implement this

block diagram using the following circuit.

Figure 5.1.4. – Practical realization of a simple image reject filter.

Since the entire system must be symmetric to maintain properly matched I and Q outputs, the system is

cross coupled as seen in Figure 5.1.5. We can now derive what the exact transfer function of the system is

and show how it resembles the shifted frequency transfer function.

1/(jw/wo)

Qout

Iin

Sum

Iout

-1

+

-

3

2
1

8

4

1 2

uF
Iin

1
2

Qout

Iout

1 2

+Vcc

15

Figure 5.1.5. – A more detailed look at a simple image reject filter.

We can use nodal analysis for the I channel op-amp and arrive at the equation:

 (

)

The negative term for is present due to the inverter (E1) at the output of the filter on the Q channel.

This inverter is here due to mathematical reasons. If it were not present, the passband would be shifted

negatively as opposed to positively. Replacing s with and solving for yields:

(

)

where

This transfer function is almost identical to the shifted frequency transfer function we were trying to

achieve with the exception of a scalar coefficient for both and . The polarity does not matter since

it will result in a 180 degrees phase shift for both channels due to symmetry and thus not affect the

frequency response. The coefficient must be set to equal

 derived earlier. The values present in

the schematic above are for a shift frequency of 1 MHz with the low pass filter configured for 150KHz.

Simulating these values in LTSpice yields the following magnitude response shown in Figure 5.1.6.

16

Figure 5.1.6. – Magnitude response of a simple image reject filter.

The center frequency shown in Figure 5.1.6 is indeed 1 MHz. The yellow trace on the response is the

response of the frequencies at which the image would appear. Since LTSpice is incapable of plotting

negative frequencies, the Q channel phase is reversed by 180 degrees such that the response is shifted left

and not right. This enables us to observe the image suppression since the magnitude response has even

symmetry about the magnitude axis.

This technique of applying the output of the Q channel to the input of any integrator in the I

channel will always result in a shifted frequency if all resistors are chosen accordingly. Thus, one can

cascade any amount of integrators in the receive chain and achieve image rejection if the integrators are

all cross coupled. We can implement a higher order filter using a cross coupled Tow Thomas bi-quad

filter consisting of two complex conjugate pole pairs and a real pole. Figure 5.1.7 shows this

implementation.

Figure 5.1.7. – Ideal image reject filter using a fifth order Butterworth low pass filter configuration.

17

This particular filter is configured to operate as a 5
th
 order Butterworth low pass filter if no coupling is

present. The values for the components were generated using a program called Filter Wiz Pro. The

magnitude response for this filter is shown in Figure 5.1.8.

Figure 5.1.8. – Magnitude response of a 5
th

 order BPF (ideal).

The turquoise response occurs when the filter is configured with a perfect 90 degree difference

between the I and Q channels. The red trace indicates what happens if there is a 1 degree offset present

between the I and Q channels. The yellow trace once again shows us the suppression of the image. The

image rejection is well above the 20 and 50 dB attenuation given by the specifications. Both the I and Q

channel outputs yield similar transfer characteristics. To observe the group delay in the passband, we take

the derivate of the phase with respect to frequency and divide by 2*pi.

18

Figure 5.1.9. – Magnitude response of a 5
th

 order BPF with group delay (ideal).

The dotted line in Figure 5.1.9 indicates the group delay in the passband. The maximum group delay is

4.26 µs. If we use standard resistor values and non-ideal op-amps with an open loop gain of 5.2K and a

GBWP of 100MHz, the magnitude response is as follows:

Figure 5.1.10. – Magnitude response of a 5
th

 order BPF (non-ideal).

The image (maroon) in Figure 5.1.10 is not as suppressed using this configuration.

19

For the receiver, the LT6230 op amp from Linear Technologies was chosen due to its high gain

bandwidth product and fast slew rate. As this design was intended for a single supply design at 5V, the

circuit was redrawn with the LT6230 and proper referencing to a common mode voltage (CMV) of 2.5V.

Figure 5.1.11 shows the complete schematic with proper value components. The inverters have been

replaced with inverting op amps. In a fully differential design, the inverters would not be needed due to

the inverting output terminals present in a differential op amp.

Figure 5.1.11. – Completed Filter Schematic. This is the schematic view in LTSpice.

The schematic created in OrCAD Capture can be viewed in Appendix B, Figure B.5 and Figure B.6 more

clearly than the schematic in Figure 5.1.11.

20

Sub-Section 2. BPSK Theory, Design, and Simulation

A BPSK system only has two possible states with a phase deviation of pi radians. A BPSK

system can be modeled using a DSB-SC architecture with a binary message signal as shown below:

Figure 5.2.1. – A BPSK system representation using a DSB-SC architecture.

The output of the mixer is then () () () or () (()) where k is either pi

or 0 depending on the polarity of the message signal. Shown below is the waveform of the carrier signal

with a modulated message signal. The simulation was performed in Simulink. The input data is not bi-

polar and the carrier is not smooth due to sampling limitations.

Figure 5.2.2. – Simulation showing the modulated signal. The phase changes when the message

signal changes state.

21

To demodulate a BPSK signal down to a low IF, we can multiply the modulated signal by I and Q

phased local oscillators. To down convert the signal to 1 MHz, we multiply by an LO which is 1MHz

higher than the carrier frequency (high side LO injection):

 () (()) (()) (())

After image rejection and channel selection processing is performed at the IF, the signal is then down

converted by mixing a sinusoid with the same frequency as the IF:

 () (()) (())

The signal is now demodulated. Higher frequencies are filtered out and are therefore neglected. A suitable

filter for this system can be an integrate and dump filter which acts as a low pass filter. The down

converted low IF signal is shown in Figure 5.2.3 below. High frequencies exist in the signal due to no

filtering. Both the I and Q demodulation channels are shown.

Figure 5.2.3. – Down converted low IF signal without filtering (both I and Q channels).

Figure 5.2.4 shows the final demodulated signal without filtering on the next page.

22

Figure 5.2.4. – Demodulated output signal (both I and Q channels).

The aforementioned signal capture is for a perfect channel. Figure 5.2.5 shows the demodulated wave

with additive Gaussian noise.

23

Figure 5.2.5. – Unfiltered demodulated signal with AWGN.

 The previous figures were obtained using Simulink. The entire BPSK communication system was

simulated in Simulink with the digital communications toolbox. The RF frequency, however, had to be

reduced to 10 MHz due to computer processing limitations. The system sampling frequency had to be at

least twice the Nyquist frequency, but to obtain more accurate results, a sampling frequency of 100 MHz

was used. The first stage mixers, which represent the RF down converters, were set to 11 MHz. The

second stage mixer, which will ultimately be performed using a DSP, was set to 1 MHz to down convert

the final signal to baseband.

The system is shown in the next page with the error rate calculators present on the right side of

the page. For the given test in the figure, Display2 represents the Q channel and Display1 represents the I

channel. A total of 15890 bits were sent and the average bit errors was 77 which yields an average BER

of .004971 or .49% for a given Eb/No value of 8.2 dB (Note that this value does not meet specifications.

This is merely for an example case). An additive Gaussian noise channel was used to perform the

simulation as can be seen in the following page. To extract data from the output of the integrate and dump

filters, a sign block was used. A look up table had to be used only due to the fact that the sign block

output values based upon three conditions and not two. All of the aforementioned functions can be readily

implemented in a DPS/FPGA.

24

Figure 5.2.6. – Entire simulated BPSK system in Simulink.

25

Sub-Section 3. Modulator/Demodulator

 The modulation circuitry for the receiver consisted of a basic attenuation network and the LT5568

IQ modulator. Since the system is a BPSK system, the quadrature component is not used on the

modulation side and thus had its pins tied together. The inputs to the modulator are differential inputs, and

therefore any data that is sent to the modulator must be in differential form. Failure to provide differential

signaling can cause severe harmonic distortion. The CMV of the differential inputs to the modulator has

to be .54V with a total voltage of less than 2.5V. Thus, an attenuation network was added to the input of

the modulator to accommodate this specification. The modulator schematic can be seen in Appendix B,

Figure B.1.

The output and LO are both connected to SMA cables for ease of testing and connectivity. The

demodulation circuitry utilized the LT5575 IQ direct down conversion demodulator. This demodulator

had two differential outputs for the I and Q channel. Since the filter is single ended, an instrumentation

amplifier (IA) had to be utilized to convert from differential to single ended signaling. Also, all the

LT6230 op amps in this design could not accept a voltage below 1.5V or above 4V. Therefore, the signals

from the demodulator had to be AC coupled and centered around a reference voltage of 3V before being

fed into the instrumentation amplifier. The IA was then referenced to the CMV of 2.5V which is the same

CMV as the filter. Refer to Appendix B, Figure B.2 for the demodulator, Figure B.3 for the DC offset

circuit, and Figure B.4 for the instrumentation amplifier.

Sub-Section 4. Programmable Gain Amplifier

 The specifications require that a PGA be used in the receive chain to correct for signal level

changes caused by near-far problems. This is done by using two resistor banks controlled by multiplexer

switches and an op-amp in the inverting configuration as can be seen in Appendix B, Figure B.7. The

FPGA will control a switch array that adjusts the gain of the amplifier based upon which resistor is

grounded. The FPGA will have an algorithm that checks the amplitude of the signal and will adjust the

switches accordingly. An explanation of the PGA software can be found in Sub-Section 5, Software

Component 7.

26

Sub-Section 5. Software/VHDL

At this point, it must be noted that the Nexys-2 FPGA was selected as the software demodulation device.

All VHDL code is listed in Appendix D.

The main blocks that need to be implemented in software include the following:

1) Interface to ADC – the FPGA will have to interface with an ADC to input data.

2) A digital local oscillator/mixer – this will perform the final demodulation to baseband. The local

oscillator should have enough samples to offer reliable data.

3) Integrate and dump – this block essentially acts as a low pass filter. Its main purpose is to

accumulate enough data to provide the sign block information about the polarity of the signal.

4) Sign determiner (hard limiter) – this block will output a logic „1‟ if the input is positive and „0‟ if

negative. The output of this block will be a completely demodulated signal

5) Pseudo-Random Binary Sequence Generator – random data will need to be generated by the DSP

itself to avoid clock conflicts. If a different device were to be used, a digital PLL will have to be

built which is beyond the scope of this project.

6) Sync Clock – This is used to sync with the LO‟s.

7) PGA Feedback – the FPGA will have to have a control system to determine the switch values for

the PGA.

Software Component 1. – ADC

The schematic for the ADC is shown in Appendix B, Figure B.8. The output of the PGA was AC

coupled to the ADC for the easiest configuration. Although an ADC is a hardware component, it is the

interface between the hardware and software realm of the project and therefore was included in the

software section. The 10-bit output of the ADC was fed into the Nexys-2 board for processing. An output

of the Nexys-2 board was used for the clock that was fed into the ADC. The ADC outputs parallel data

for each falling edge of the clock (up to 20 MHz). The sample rate used for this project was 5 MHz. Data

is delayed by 5 clock cycles and therefore has to be taken into consideration in software.

VHDL code lines 399 to 478 in Appendix D contain the ADC sampling process.

Software Component 2. – Digital Oscillator Multiplication and Demodulation

After the data has been input into Nexys board, it needs to be multiplied by a local oscillator to

shift the spectrum down to baseband. The sample rate of the ADC was set to 5 MHz. Because of this

unique sampling frequency, no multiplication was necessary. This is due to the fact that separating a

signal into 5 separate parts and multiplying those parts by their corresponding cosine terms results in only

one of three states. Either the sample is passed through unaffected, inverted, or not passed through at all.

After all the samples are complete, the data is pushed out of the process onto another set of signals for

further processing.

VHDL code lines 399 to 478 in Appendix D contain the multiplication process.

27

Software Component 3. – Integration

Since integration is essentially a Riemann sum of areas which can be composed of rectangle

approximations, the integration step can be simplified to a basic addition operation with a constant scale

factor. This can be further simplified by removing the scale factor because only the polarity is needed in

the next step and not an actual quantitative value. Thus, no multiplication is present anywhere in the

system which is highly efficient.

VHDL code lines 500 to 549 in Appendix D contain the integration process.

Software Component 4. – Sign Determiner

This process is fairly straightforward. Since the data from the ADC and all subsequent data is in

signed two‟s complement, only the most significant bit of the output of the integrator needs to be read to

determine the polarity.

VHDL code lines 559 to 570 in Appendix D contain the sign determine process.

Software Component 5. PSBR Signal Generator

A simple array and clock generator was used to create a PRBS sequence. Each time the allocated

clock line pulled low, a signal was indexed and output differentially from the board.

VHDL code lines 321 to 382 in Appendix D contain the signal generation process.

Software Component 6: Sync Clock

A 10 MHz clock had to be generated by the Nexys-2 board to synchronize it with the LO‟s since

no clock extraction circuitry was used in this circuit. The LO‟s external sync inputs were 50 Ohm inputs

and required an AC coupled signal. Therefore the output of the Nexys-2 board was fed to a 10 uF

capacitor before the LO‟s. It must also be noted that it is impossible to generate a 10 MHz clock using

falling edge triggered clock generation as done for the 5 MHz signal and the 250 KHz signal due to the

fact that a total of 2.5 clock cycles is needed for every 1 half period of the sync clock. Therefore, Xilinx‟s

IP Core generator had to be used to instantiate a clock divider „black box‟ design. The VHDL code for

this is proprietary and unknown. Only a component with a port map was provided. The clock signal was

fed to the component and the 10 MHz clock was taken from the output.

VHDL code lines 296 to 302 in Appendix D contain the sync clock process

28

Software Component 7: PGA Feedback

 A software flow diagram of the PGA feedback algorithm can be found below in Figure 5.5.7.1.

Figure 5.5.7.1 - Software flow diagram for the PGA

A master if statement will reset the PGA and initialize a sample store and compare sequence if a

counter hits a certain value. This process exists to avoid positive feedback in the system. The following

scenario describes how positive feedback can occur. Suppose the signal is very weak, and the maximum

gain of the PGA needs to be applied. Assuming the PGA has a gain of 1 initially, the ADC will read the

signal, detect the peak, and apply the appropriate gain. Because the PGA is fed into the ADC, the ADC

will now read the signal with the gain applied and assume that the signal is „normal‟ in which case it will

set the gain back down to 1. This will cause the signal to become small again, and the process will

continue to oscillate. By resetting the PGA in the master if statement, this oscillation is avoided.

 A state variable diagram is shown in Figure 5.5.7.2 for the different states a signal can exist in

depending on its amplitude. Note that the bi directional paths exist because the PGA is reset upon each

master if statement reset.

IF FALLING EDGE FLAG

IF COUNTER = MAX

RESET PGA

RESET

COUNTER

IF COUNTER != MAX

INCREMENT

COUNTER

SET PGA_FLAG

HIGH

IF PGA_FLAG HIGH

STORE 5 SIGNAL

SAMPLES

IF INDEX =

MAX

(45

SAMPLES)

INCREMENT

INDEX FIND PEAK

SET COMPARE

READY HIGH

IF COMPARE_READY HIGH

FIND STATE

SET PGA_FLAG

LOW

29

Figure 5.5.7.2. – State Variable Diagram

The gain steps of the PGA are clearly non-linear and not very ideal. However, the PGA in this project is

more proof of concept than practical. Moreover, the gains can be adjusted by setting the resistor values

accordingly and calibrating the code for the different states.

STATE 1

GAIN = 1

INPUT > 1.6 Vpp
STATE 2

GAIN = 1.5

1.25 Vpp < INPUT < 1.6 Vpp

STATE 3

GAIN = 2

1.2 Vpp < INPUT < 1.25 Vpp

STATE 4

GAIN = 2.06

.83 Vpp < INPUT < 1.2 Vpp

STATE 5

GAIN = 3

.8 Vpp < INPUT < .833 Vpp

STATE 6

GAIN = 3.1

.4 Vpp < INPUT < .8 Vpp

STATE 7

GAIN = 6

INPUT < .4 Vpp

30

Section 6. CONSTRUCTION AND INTEGRATION

 Construction consisted of soldering all components onto the PCB‟s. No further soldering beyond

this was necessary. Because all of the system was localized onto a board, there was no need for

interconnects beyond the interface with the Nexys-2. Due to unforeseen circumstances, the modulator and

demodulator QFN footprints used for the first revision were footprints taken from another part that had an

identical footprint name. This footprint was of the incorrect size and therefore the components could not

be soldered on due to the fact that RF components are near impossible to wire mod. A second revision

had to be created with the correct footprint. However, since all of the complex filter components were still

on the initial revision board, the two boards were jumped together to avoid the removal and replacement

of all the components which would have been time consuming.

 Wires were soldered onto the pads on the PCB to interface to the PMOD
TM

connectors on the

Nexys-2 board directly. The sync clock output was sent to a separate prototype PCB with the 10uF

capacitor to the LO‟s. The data output was a simple wire connection.

31

Section 7. SUB SYSTEM TESTING

Sub-System 1. Filter/Demodulator Testing

 To properly characterize the filter, each individual chain had to be analyzed individually, and then

analyzed when fully completed. At first, each filter was decoupled (I/Q cross coupling removed) and the

input test signal was inserted directly at the inputs of the filters with the instrumentation amplifier and

CMV shifting circuitry in place. This proved to be an erroneous test set up since the output data was

clearly wrong (see Table 7.1.1 below). Thus, the input test signals had to be inserted at the inputs of the

IA which yielded fairly accurate low pass transfer characteristics for a Butterworth response as can be

seen in Table 7.1.2.

F (Hz) Vpp input (V) Vpp2 output (V) Gain
Gain
(dB)

1.00E+03 1E-45 0 0 #NUM!

1.00E+04 0.5 0.5 1 0

5.00E+04 0.5 0.5 1 0

1.00E+05 0.62 0.58 0.935484 -0.57927

1.10E+05 0.68 0.6 0.882353 -1.08715

1.20E+05 0.72 0.62 0.861111 -1.29882

1.30E+05 0.76 0.64 0.842105 -1.49267

1.50E+05 0.84 0.6 0.714286 -2.92256

1.60E+05 0.88 0.52 0.590909 -4.56959

1.70E+05 0.9 0.5 0.555556 -5.10545

1.80E+05 0.92 0.46 0.5 -6.0206

1.90E+05 0.96 0.42 0.4375 -7.18044

2.00E+05 0.96 0.38 0.395833 -8.04975

2.20E+05 1 0.3 0.3 -10.4576

2.40E+05 1.06 0.24 0.226415 -12.9019

2.80E+05 1.12 0.112 0.1 -20

3.00E+05 1.16 0.1 0.086207 -21.2892

5.00E+05 1.26 0.08 0.063492 -23.9456
Table 7.1.1 – Recorded values for the initial set up. The input voltage incorrectly varied with

frequency. The voltage output to input ratio however, did yield a correct Butterworth response.

32

F (Hz)

Vpp
input
(V)

Vpp2
output
(V)

Gain(I-
Channel) Gain (dB)

Vpp
input
(V)

Vpp2
output
(V)

Gain(Q-
Chanel) Gain (dB)

1.00E+03 1.48 4.48 3.027027027 9.620325972 1.48 4.8 3.243243243 10.21959044

5.00E+03 1.48 4.32 2.918918919 9.304440628 1.48 4.72 3.189189189 10.07360566

1.00E+04 1.48 4.32 2.918918919 9.304440628 1.48 4.72 3.189189189 10.07360566

2.00E+04 1.48 4.32 2.918918919 9.304440628 1.48 4.72 3.189189189 10.07360566

5.00E+04 1.48 4.32 2.918918919 9.304440628 1.48 4.64 3.135135135 9.925125303

1.00E+05 1.48 3.92 2.648648649 8.460487033 1.48 4.48 3.027027027 9.620325972

1.10E+05 1.48 3.84 2.594594595 8.281390179 1.48 4.32 2.918918919 9.304440628

1.20E+05 1.48 3.68 2.486486486 7.911722066 1.48 4.16 2.810810811 8.976632305

1.30E+05 1.48 3.36 2.27027027 7.12155124 1.48 3.92 2.648648649 8.460487033

1.40E+05 1.48 3.2 2.162162162 6.697765258 1.48 3.6 2.432432432 7.720815707

1.50E+05 1.48 2.88 1.945945946 5.782615447 1.48 3.28 2.216216216 6.912242566

1.60E+05 1.48 2.56 1.72972973 4.759564998 1.48 3.04 2.054054054 6.252237364

1.80E+05 1.48 2 1.351351351 2.615365605 1.48 2.48 1.675675676 4.483799309

2.00E+05 1.48 1.36 0.918918919 -0.73445614 1.48 1.62 1.094594595 0.785065983

2.50E+05 1.48 0.6 0.405405405 -7.8422093 1.48 0.76 0.513513514 -5.78896246

3.00E+05 1.48 0.27 0.182432432 -14.7779590 1.48 0.36 0.243243243 -12.2791842

5.00E+05 1.48 0.06 0.040540541 -27.8422093 1.48 0.06 0.040540541 -27.8422093

Table 7.1.2 – Recorded values for the individual filter test. The I channel filter results are on the left

and the Q channel results are on the right.

Figure 7.1.1 – Plotted responses for the filters.

-30

-25

-20

-15

-10

-5

0

5

10

15

0.00E+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05

G
ai

n
 (

d
B

)

Frequency (Hz)

Blue = I channel Red = Q Channel

33

 The filters, tested individually, yielded excellent test results and each channel had a 3 dB cut off

frequency of 150Khz, which is precisely what the filters were designed for. However, there existed a

slight gain difference between the I and Q channel suggesting the presence of I and Q channel mismatch.

This mismatch may lead to degradation in image rejection (as can be seen later). To test the entire

complex filter, the demodulator was needed. The demodulator was soldered on, and the RF and LO inputs

were connected to two synchronized signal generators as can be seen in Figure 7.1.2 below.

Figure 7.1.2 – Test setup diagram.

 There exist two communications boards due to a manufacturing footprint error. The I and Q

channels were simply jumped from one board to the other. Due to the low IF of 1 MHz, neither the line

lengths nor the type of wire used was important. With the RF input set to 900 MHz and the LO set to 901

MHz, the output of the demodulator yielded a clean 1 MHz sinusoid on the I positive channel as can be

seen in Figure 7.1.3 below.

Figure 7.1.3 – I channel demodulator output.

SIGNAL GENERATOR 1

LOCAL OSCILLATOR

VARIABLE FREQUENCY

SIGNAL GENERATOR 2

RF INPUT OSCILLATOR

FIXED AT 900 MHz

COMMS

BOARD 1

COMMS

BOARD 2

I+I+
I-I-

Q+Q+
Q-Q-

Scope

34

Figure 7.1.4 shows the I channel with both differential lines probed.

Figure 7.1.4 – I channel differential demodulator output.

Figure 7.1.5 shows the I positive and Q positive channel. The delay between the two signals is 750 ns (or

250 ns) which is indeed a quarter of a wavelength (1us) indicating that the I and Q channels are 90

degrees apart.

Figure 7.1.5 – I and Q channel positive demodulator outputs. Notice how the signals are 90 degrees

apart.

35

Finally, Figure 7.1.6 shows the Q channel output.

Figure 7.1.6 – Q channel differential demodulator output.

Because the inputs to the filter were completely complex, the full bandpass filter can be tested.

The LO was varied from the positive sequence to the negative sequence to observe both the pass band

response and the image response. Over 100 data points were taken, so Figure 7.1.3 only shows several

samples.

LO (MHz) IF (MHz) RF (MHz)
IF FILTER OUT
(Vpp)

IF FILTER OUT
(dB)

901 1 900 1.841 5.30107577

901.08 1.08 900 1.881 5.487775911

901.42 1.42 900 0.084 -21.51441428

900.77 0.77 900 0.24 -12.39577517

899.5 -0.5 900 0.001 -60

898.8 -1.2 900 0.108 -19.33152489

Table 7.1.3 – Table of 5 random samples chosen from the data collected from the complex filter.

36

Figure 7.1.7 shows the filter response over the positive and negative sequence in addition to the simulated values.

Figure 7.1.7 – Complex filter response with positive and negative sequences shown.

The negative sequence response is rejected with a minimum attenuation of -22 dB. The negative sequence, when viewed with an

oscilloscope, was indeed a 1 MHz signal. Therefore, it can be concluded that the image reject filter is working and successfully rejects an image

located to the right of the local oscillator for high side LO injection. It must be noted that the image attenuation was not as simulated; this is due to

I and Q channel phase offset and amplitude characteristics mismatch. However, this filter is still within specifications.

-120

-100

-80

-60

-40

-20

0

20

-2000000 -1500000 -1000000 -500000 0 500000 1000000 1500000 2000000 2500000

G
ai

n
 (

d
B

)

Frequency (Hz)

Complex Bandpass Filter Transfer Characteristics (Simulated and Measured Values)

Simulated Positive Sequence

Simulated Negative Sequence

Measured Values

37

Sub-System 2. - ADC Testing

The ADC was first tested by simply feeding a 1 MHz signal into the ADC. A 5 MHz clock was

fed to the ADC and the outputs were polled by a logic analyzer. The waveforms are shown in Figure

7.2.1.

Figure 7.2.1 – Logic Analyzer output with Channel 0 as the MSB. The analyzer only had 8 bits so

the 2 least significant bits were left out of the test.

The MSB clearly indicates a 1 MHz polarity switch indicating correct operation. After decoding the

output of the ADC, the following normalized graph was obtained for the first 16 samples:

Figure 7.2.2. – Observe that sampling at 5 MHz is more than enough to reconstruct the original

waveform.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20

N
o

rm
al

iz
e

d
 O

u
tp

u
t

Sample

ADC Decoded Output

38

Following these tests, the ADC outputs were then fed through the Nexys board which sampled the ADC

and, upon every clock falling edge in a process statement, were then fed back to the outputs of the Nexys

board and sampled as can be seen in the following figure.

Figure 7.2.3 – ADC values after being fed through the Nexys board.

Some of the points in the figure above appear to deviate from their proper position. This is due to

noise generated by the clock line which causes occasional bit errors. However, these errors happened

relatively rarely and were ignored for the time being. The errors were most likely caused by improper

routing because the clock line was routed underneath the ADC; it should have been isolated from the

ADC and separate from the data and any other analog lines.

Sub-System 3. Instrumentation Amplifier through ADC Test

 To test the IA through the ADC, only either the I or Q channel was used. Since the input is

differential, one input was just tied to a CMV voltage of 1.5V and the other had a 2Vpp 100 KHz sine

wave inserted into it. The output of the ADC is shown in Figure 7.3.1 on the next page.

-200

-150

-100

-50

0

50

100

150

200

0 0.000002 0.000004 0.000006 0.000008 0.00001

D
e

-N
o

rm
al

iz
e

d
 V

al
u

e
s

Time (s)

ADC through Nexys output

39

Figure 7.3.1 – Logic Analyzer output with the input at the IA.

The measured sign bit change is 100 KHz indicating that the ADC is reading data properly. Both channels

behaved identically so the Q channel result picture has been left out.

Sub-System 4. – Modulator Testing

 To test the modulator, a simple 150 KHz differential square wave was fed to the input and the RF

was fed to a spectrum analyzer. The LO was set to 900 MHz at 0 dBm. Figure 7.4.1 shows the resulting

spectrum.

Figure 7.4.1 – Spectrum of the modulated 150 KHz square wave.

40

Without pulse shaping applied to the system, the signal will occupy a large bandwidth as can be

seen in Figure 7.4.1. However, Figure 7.4.1 does indeed demonstrate that the signal is being modulated to

900 MHz and that the LO is suppressed at 900 MHz. The sidebands follow a sinc function which is

indeed the Fourier Transform of a 150 KHz square wave.

Sub-System 5. – Programmable Gain Amplifier Testing

To test the PGA, a sine wave signal with a 2.5 CMV was inputto the PGA and its amplitude was

varied. The output of the PGA was observed in an oscilloscope. Refer to Figures 7.5.1, 7.5.2, and 7.5.3

for selected input and output waveforms. Because of the reset process described in Section 5, Sub-System

4, Software Component 7, the signal did indeed get passed through with a gain of 1 for a brief instant in

time. This time depends on the time it takes for the comparator process to run.

Figure 7.5.1. – Output waveform (green) for a .82 Vpp 2.5V CMV sin wave input (yellow).

Figure 7.5.2. – Output waveform (green) for a .23 Vpp 2.5V CMV sin wave input (yellow).

41

Figure 7.5.3. - Output waveform (green) for a 2.48 Vpp 2.5V CMV sin wave input (yellow).

 Table 7.5.1 shows the gains of each of the previous waveforms and compares them to the nominal

gains that correspond to the respective states given in Figure 5.5.7.2.

Vin
(Vpp)

Vout
(Vpp) Gain State

Nominal
Gain % Error

0.82 2.32 2.829268293 5 3 -5.69106

0.232 1.24 5.344827586 7 6 -10.9195

2.48 2.881 1.161693548 1 1 16.16935

Table 7.5.1. – Selected waveforms and their respective gains and states compared with nominal

values.

The percent errors shown for these states are relatively high. However, they are within reason and we can

assume that the PGA works. It must be noted that the oscilloscope somewhat struggled to obtain a proper

waveform picture because of the resetting nature of the algorithm, therefore, some measurements may be

innacurate.

42

Section 8. FULL SYSTEM TEST

 With all the sub-systems tested and working, the system was ready to be integrated and tested

together. For preliminary tests, the PGA was excluded. The first test was to establish a direct

demodulation communication system by simply connecting the RF_IN and RF_OUT ports of the

modulator and demodulator and setting both LO‟s to 900 MHz. The 900 MHz RF carrier was used as

opposed to 950 MHz for arbitrary reasons. Absolutely no discernable difference was noticed between

these two frequencies. With a 150 KHz square wave differential input, the I positive output of the

demodulator is shown in Figure 8.1 below.

Figure 8.1. – Demodulated square wave using direct conversion.

The noise present in the wave is the unfiltered high frequency content associated with down conversion.

This test confirmed that the demodulator does indeed down convert a signal properly.

By simply changing the LO frequency to 1 MHz higher than the RF frequency on the

demodulation side, the system becomes a low IF architecture. The resulting demodulator output is shown

on the next page in Figure 8.2.

43

Figure 8.2. – The I channel output of the demodulator. The blue signal is the output and the

pink signal is the square wave generated by the Nexys board.

 It can be seen from Figure 8.2. that the low IF signal clearly is a BPSK signal; the phase changes

for every bit change. This signal can be directly compared with the simulated waveform in Simulink

previously shown in Figure 5.2.4. This abrupt change in phase contains a lot of spectral content, however,

bandwidth is not of concern in this project. The signal after the filter can be seen in Figure 8.3 below.

Figure 8.3 – The input (blue) to the filter and the output (pink)

44

The abrupt changes in phase are clearly filtered out. Without the PGA, the output of the filter was fed

directly to the ADC and FPGA for final demodulation to baseband. For a square wave as the input data,

the FPGA succesfully demodulated the data as can be seen in Figure 8.4 below.

Figure 8.4. – Input data (pink) and demodulated data (blue)

 It can be seen from Figure 8.4 that the data has indeed been demodulated, although at certain

points the duty cycle appears to change. This can be attributed to the noise the ADC was experiencing as

explained earlier. With a PRBS signal at 250 Kbps generated by the Nexys board, the resulting

demodulated output is shown in Figure 8.5.

Figure 8.5. – Input PRBS data (blue) and the demodulated output data (pink)

45

 More demodulated bits can be seen more clearly through a logic analyzer. Figure 8.6. shows the

output waveforms from the logic analyzer.

Figure 8.6. – Input data (Channel 0) and demodulated output data (Channel 1).

The delay between the two waveforms is roughly 5 us which corresponds to the 4.8 us of group delay

associated with the image reject filter.

 It is more evident in the PRBS data sequence in Figure 8.6 that the system indeed demodulates

the signal properly. Further evidence is provided in Figure 8.7 when the LO from the input is turned off

which results in no RF data being transmitted. This test shows that the Nexys-2 board is not just somehow

picking up the signal generated in another part of the board and outputting that sequence.

Figure 8.7. – Input data (pink) and output data (blue) with the modulator LO turned off.

The data the Nexys-2 outputs is a result of random noise associated with what the ADC is giving the

borad.

 With data being demodulated correctly and all other systems funcitonal, the PGA was ready to be

integrated into the system in order to conduct BER sensitivity tests. Figure 8.8 shows the final test set up

and Table 8.1 shows the results of the tests. A variable attenuator was used to conduct the tests.

46

Figure 8.8. – Final test setup diagram.

 NO PGA PGA

Attenuation

(dB)

BER

(%)

Error

Bits

BER

(%)

Error

Bits

0 0 0 0 0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

8 0 0 0 0

10 0 0 0 0

12 0.01 1 0.01 1

14 0.02 2 0.07 7

16 0.07 7 0.15 15

18 0.11 11 0.23 23

20 0.23 23 0.32 32

Table 8.1. – Sensitivity test results.

DC BLOCK

COMMS BOARD 1 LO1

(MODULATION SIDE)

956 MHz

LO2

(DEMODULATION SIDE)

957 MHz
COMMS BOARD 2

NEXYS BOARD 10 MHz 10 MHz

ATTENUATOR

10 MHz

SYNC

DATA IN

IQ LOW IF

OUT

ADC OUT

ADC_CLK PGA

CNTRL

RF OUT

RF IN

LOGIC

ANALYZER
COMPUTER

47

Section 9. – RESULTS ANALYSIS/CONCLUSION

 From Table 8.1 we can clearly see that the BER increases as the attenuation increases. However,

the BER increase even more with the addition of the PGA. It must be noted that when tests were

performed the previous day, this was not the case. The PGA only started seeing bit errors at 14 dB the

previous day as opposed to 12 dB when the usable data was collected. The data collected the previous day

was stored in excel files, however, due to the delay between the input and output signals, the logic

analyzer exported data that had a mismatch of 0‟s and 1‟s for a given bit period between the channels.

Thus, all the data collected was rendered uesless. It must also be noted that only 100 bits were analyzed

and therefore the required BER of 1E-4 could not possibly be measured using this method. Thus, the data

shown is for demonstrative purposes only.

 Despite the fact that BER could not be measured properly and that the PGA failed to work for the

last test, the receiver did indeed successfully demodulate a BPSK 956 MHz modulated 250 Kbps data

stream and reject the alternate channel by more than 20 dB. The final top level specifications of the

project are found in Figure 9.1 below.

Supply Voltage 5V

Supply Current
400
mA

Sensitivity for 1%
BER

-20
dBm

Figure 9.1. – Basic top level specifications of the receiver.

 Significant additions and improvements can be made to this project in the future. These

improvements are as follows:

1) The addition of a PLL and a clock extraction system.

Because there was no PLL to lock the phase of the LO to the incoming RF signal and because

there was no clock extraction algorithm implemented in the FPGA, the receiver was severely

limited in its uses. It relied on external local oscillators and syncing signals to properly

demodulate data. By implementing the aforementioned additions, the receiver can act as a

stand alone device and not rely on external machines.

2) Improved image reject filter.

Although the image reject filter performed to spec, improvements can be made to the cost of

the filter, the realestate it uses, the image reject quality, and the power it consumes. The filter

itself costed 130 dollars mainly due to the expensive op amps used. Also because the filter

used completely off the shelf components, it drew a lot of current (130 mA) and took up a lot

of space. All of these problems can be solved by integrating the filter into a circuit using

advanced CMOS technology. In addition, by implementing the design in an IC, the phase

offset and I/Q channel mismatch can be more properly controlled.

48

3) Improved PGA.

The PGA used in the present design did not significantly improve the BER. It also did not

have a wide dynamic range nor did it have a very linear gain sweep. Therefore, for future

designs a PGA with a larger multiplexer array should be used with more appropriately chosen

resistors.The calibration of states in the PGA algorithm should be more linear and evenly

spread out as well. In addition to this, further calibration of what the ADC outputs for a given

input signal strength should be performed to make the system more robust.

4) Improved signal routing.

The PCB traces for the ADC were not optimally routed. The data sheet specifically

mentioned that the clock route be routed away from all other signals. However, the clock

route was run directly under the IC itself and was near all the data signals. In addition to the

ADC, the filter I and Q channel routing can be more exact to avoid I and Q mismatch (if the

filter will be built on a PCB again).

49

Section 10. BIBLIOGRAPHY

[1] J.Crols and M. Steyaert, “An Analog Integrated Polyphase Filter for a High Performance Low-IF

Receiver,” Katholieke Universiteit Leuven, Heverlee, Belgium, 1995

[2] A. Ambardar, Analog and Digital Signal Processing, Second Edition. Pacific Grove, CA:

BROOKS/COLE PUBLISHING COMPANY , 1999.

[3] IEEE Std. 802.15.4 2009 http://standards.ieee.org/getieee802/download/802.15.4d-2009.pdf

[4] B. P. Lathi, Modern Digital and Analog Communication Systems, Third Edition. New York:

Oxford University Press, 1998.

50

APPENDIX A.

ABET SENIOR PROJECT ANALYSIS

Project Title: Low IF Digital Radio Receiver

Student Name: Sanjay Avasarala Student Signature:

Advisor Name: Professor Wayne Pilkington Advisor Signature:

1) Summary of Functional Requirements:

The radio shall accept a 956 MHz signal with modulated BPSK 250 Kbps data as an

input and successfully demodulate and output the data.

2) Primary Constraints:

Because of various constraints such as the lack of a direct down conversion (zero IF)

circuit that requires a specific crystal oscillator or because of 1/f noise inherent in MOSFETS, the

use of low IF is highly desirable for low noise receivers. Therefore the demodulation should be

performed at low IF which warrants a more complicated circuit that is capable of demodulating

data at a higher frequency.

Another constraint for the project is the cost associated with research and development.

Radios that use DSP‟s as opposed to traditional analog radios are relatively expensive (some of

the cheapest can be as expensive as $40) and thus the component choices used in the circuit

require careful attention.

For this particular project, the image reject filter used op-amps that cost 3 dollars each,

which ideally is not practical. However, if the entire circuit was fabricated in an IC which it is

meant to be, then the cost will decrease significantly.

3) Economic:

Due to the many electronic silicon components involved in this circuit, several economic

factors have to be taken into consideration. Ordering the parts from electronics distributors such

as DigiKey will have a direct impact on the company‟s net profit. Also, the workers at the

company will be directly involved since the selection of parts and the quantity of each part is

handled manually. The actual shipping of parts also has an impact on the shipping industry‟s

financial situation. This in turn also affects oil prices and brings into question environmental

impacts that will be discussed later. The parts ordered for this project also have an indirect affect

on the actual manufacturers of the part itself. A significant rise in demand will warrant an

increase in supply. However, all the aforementioned economic factors are rather miniscule with

regards to the scope of this project. They are worth mentioning though, should large scale

manufacturing occur.

51

The majority of the costs of this project will lie in the purchasing of components. Since

test equipment is provided by the school, this is of negligible cost.

The project should not cost more than $450.00 to design build and test. This does not

include the research material needed to design the project. The funding for this project will come

from personal funds.

Each receiver unit should have a net profit of $10.00. The project costs are not what the

actual end product will cost to build since the project costs include development boards and kits

which cost a significant amount.

The product shall be designed built and tested by the end of Spring Quarter 2012. A

second revision may be implemented should sufficient demand warrant it.

Please refer to Table A.1 (below) for an estimate of costs. Note that optimistic costs

should not cost more than $450.00 for physical costs as specified in Table 3.1.

Cost Estimates

Optimistic Pessimistic Realistic

Labor (15hr/week)($10/hour)25weeks $7,500 $7,500 $7,500

DSP (includes dev kit) $100.00 $350.00 $200

Analog Parts (including shipping from Digikey) $50.00 $200.00 $100

Board Layout $33.00 $50.00 $50

SUM $7,683 $8,100 $7,850

Variable Costs

Board Revision $0.00 $100.00 $200

Parts Revision $0.00 $50 $100

DSP switch out $0 $350 $400

Computer Interface Peripheral $50 $200 $400

SUM $50 $700.00 $1,100

 TOTAL $7,733 $8,800.00 $8,950

Table A.1. – Estimated costs.

Using Equation (6) in Ford and Coulston Chapter 10, the total projected cost is therefore $8647.00.

The actual costs of the project are shown in Table A.2.

52

ITEM COST

Components (1) $55.56

Components (2) $120.78

Components (3) $15.02

FPGA $90

Boards $166

TOTAL $448.52

Table A.2. – Actual costs.

As can be seen from Table A.2, the actual costs of the project just barely met the costs constraint

established in the requirements and specifications. Please refer to Table A.3 for the specific bill of

materials. Note that the bill of materials does not contain the board or FPGA costs which are specifically

listed in Table A.2.

Index Quantity Description
Unit
Price

Total
Price

10 8
CONN SOCKET SMA R/A DIE

CAST PCB
3.33 $26.64

11 10
RES 100 OHM 1/8W 5% 0805

SMD
0.04 $0.40

12 50
RES 10K OHM 1/8W 5% 0805

SMD
0.0162 $0.81

13 50
RES 100K OHM 1/8W 5% 0805

SMD
0.0162 $0.81

14 10
RES 1.2K OHM 1/8W 5% 0805

SMD
0.04 $0.40

15 50
RES 910 OHM 1/8W 1% 0805

SMD
0.0276 $1.38

16 10
RES 820 OHM 1/8W 5% 0805

SMD
0.04 $0.40

17 50
RES 1.0K OHM 1/8W 5% 0805

SMD
0.0162 $0.81

18 50
RES 160 OHM 1/8W 5% 0805

SMD
0.0162 $0.81

19 1
IC DIRECT QUADRATURE

MOD 16-QFN
10.7 $10.70

20 10
CAP CER 0.1UF 25V 10% X7R

0603
0.026 $0.26

21 10 CAP CER 5.6PF 50V NP0 0603 0.029 $0.29

22 10 CAP CER 4.7PF 50V NP0 0603 0.029 $0.29

53

23 50
CAP CER 1000PF 50V 10% X7R

0603
0.0204 $1.02

24 3 CAP CER 2.2UF 16V Y5V 0603 0.28 $0.84

25 10 CAP CER 10PF 50V NP0 0603 0.036 $0.36

26 10
CAP CER 10000PF 50V 10% X7R

0603
0.023 $0.23

27 10
CAP CER 1UF 10V 10% X5R

0603
0.052 $0.52

28 4 IC MULTIPLEXER 4X1 10MSOP 2.84 $11.36

1 40
IC OP AMP 3.4MA 215MHZ

SOT23-6
2.7388 $109.55

2 10
CAP CER 1UF 10V 10% X5R

0603
0.052 $0.52

3 4
CAP CER 10UF 6.3V 20% X5R

0603
0.43 $1.72

Table A.3. – Bill of Materials from Digi-Key

Please refer to Figure A.1. for a Gantt chart timing diagram of the project life cycle. Since the

project timeline followed the Gantt chart quite closely, only one chart is needed to describe the life cycle.

If manufactured, a receiver should be able to last indefinitely until the entire system it is installed in is

recycled. At the end of the project life for this senior project specifically, more improvements will be

added for a summer project.

54

Figure A.1. – Gantt Chart Timeline

55

4) Commercial Manufacturing:

 If manufactured, as many as 500 products may be sold per year. There exists an

increasing demand for software defined radios since they are much more customizable than

traditional analog radios. Should this radio enter mass production, manufacturing costs should not

exceed $7.00 per unit. Purchasing components in bulk can ensure that this requirement is met.

Each device should cost no less than $17.00 per unit. Estimated profits would therefore be $5000

per year. The cheapest software defined radios that are readily available for consumer use are as

cheap as $40.00. Building a radio that costs $17.00 is a significant step towards low cost software

defined radios. Estimated cost to operate device per unit time depends strictly on how the device

is being powered e.g. mains power or battery operated. There are, of course, environmental issues

associated with using batteries.

5) Environmental:

 Environmental impacts include the manufacturing of the components and their

packaging, the shipping of the components, and the storage of the components. The use of silicon,

germanium, and other semiconductor materials are directly involved in this project along with

other materials such as FR-4, copper, and solder (Lead and Tin). The mining and harvesting of

these materials will have a definite environmental impact.

 Since this receiver is more power efficient than earlier receiver designs, long run

environmental impacts made by this radio receiver over an older radio are less.

 Should the receiver utilize batteries, consideration should be given to the type of battery

used and the environmental impacts that battery creation and disposal has. The disposal factors

heavily outweigh the creation factors and remain as one of the biggest issues with batteries today.

However, there are companies that are solely devoted to battery disposal treatment in a safe, eco-

friendly way. Mains power is, of course, not used if batteries are used. Therefore there are some

positive factors to batteries in the environmental sense.

6) Manufacturability:

 Some issues involved with manufacturing, in the event that this product enters mass

production, include pick and place machining, packaging, electricity, gas, and water costs, worker

labor costs, and facility and storage costs. Like all manufacturing, a process has to check the

product for defects and other issues before shipping. This incurs additional costs and machining.

In addition, management and other bureaucratic affairs are all necessary to manage a successful

product development process.

56

7) Sustainability:

 The completed device will have to run solely on battery power or whatever power source

the entire system provides. Therefore, a renewable energy source would be the most viable source

for long term operation. The project has no long term effect on the sustainable use of resources

with the exception that, should the project be mass produced, consideration will have to be placed

on manufacturing materials. The circuit could be improved by using state of the art technology to

alleviate power dissipation problems and other limiting factors associated with older technology.

Ideally, fabrication of this project in the form of an integrated circuit is the most viable solution to

an environmentally friendly yet optimized product. However, the fabrication of an IC for small

scale manufacturing processes is not a cost effective solution.

8) Ethical Implications:

 As long as the device conforms to the IEEE Zigbee standard and 802.15.4 standards set

by IEEE, there are no physical (in the sense of physical harm) ethical implications. Since the

device is purely a receiver, transmitting power is completely ignored. Transmit power is strictly

regulated by the FCC. Should the project contain a transmitter as well, the transmit power will

need special consideration.

 However, issues arise should one use the device for illegal activities such as hacking or

stealing. One may choose to use the device to intercept private transmissions. There is absolutely

no way to regulate this misuse of the device since directional radio finding will not find a device

that is used only for intercepting a signal. However, the chance that one might use the device for

data interception is extremely slim since devices that conform to the Zigbee standard are short

range (mostly domestic) devices.

9) Health and Safety:

 This topic will avoid indirect health and safety issues. The use of lead in solder and the

dangers inherent in soldering are all considered a safety issue. Skin burns and lead inhalation are

just some of the issues associated with soldering. Lead that enters the bloodstream has the

potential for physical damage. Once again, since the project is only a receiver, the health effects

of transmit power are ignored. A receiver broadcasts absolutely nothing.

10) Social and Political:

 The device must conform to international laws that deal with ISM-Band transmissions

and the Zigbee standard. Strict export laws to other countries may prevent this issue. However,

for satellite communications, for example, one has to pay special consideration to ISM-Band

regulations maintained by other countries.

 Stakeholders in this project are non-existent at this moment. This project is being funded

personally and no one stands to benefit monetarily from it.

57

11) Development:

 This project extensively requires the use of SIMULINK during the project to simulate the

demodulation of data and also the operation of various receive chain systems. MATLAB is also

used to observe frequency and phase responses of receive chain systems and ensure that proper

stability is reached. This project also requires the review of DSP.

58

R
9

1

1
0
K

U
2

2

A
9
7

5
9

3
-N

D

R
F

_
V

_
+

1

G
N

D
2

G
N

D
1

3

G
N

D
2

4

G
N

D
3

5

C
1

1
1
0
0
n
F

R
1

3
1

1
0
K

1 2

C
1

2
1
0
0
n
F

R
1

3
2

1
0
K

1 2

U
2

0

L
T
5

5
6

-2

E
N

1

G
N

D
2

L
O

3

G
N

D
1

4

BBMQ
5

GND2
6

BBPQ
7

VCC
8

G
N

D
3

9

G
N

D
4

1
0

G
N

D
5

1
2

R
F

1
1

VCC1
13

BBPI
14

GND6
15

BBMI
16

GND_BOT
17

R
8

7
1
0
0

V
C

C
_

M
O

D

V
C

C
_

M
O

D

R
9

2

1
0
K

N
E

X
Y

S
_
IN

_
M

IN
U

S

R
9

0
6
0

1 2

R
9

3

2
5
0

1
2

G
N

D

U
2

1

A
9
7

5
9

3
-N

D

R
F

_
V

_
+

1

G
N

D
2

G
N

D
1

3

G
N

D
2

4

G
N

D
3

5

N
E

X
Y

S
_
IN

R
8

8
6
0

1 2

R
8

9

2
5
0

1
2

C
M
V

N
E
E
D
S

T
O

B
E

.
5
4

V

(
1
.
0
8
V
p
p
)

G
N

D

APPENDIX B: SCHEMATICS

Figure B.1. – Modulator Schematic

59

C34
10pF

C35
10pF

C36
10pF

LO CMV?

U24

LT5575

GND1
1

RF
2

GND2
3

GND3
4

E
N

5

V
C

C
1

6

V
C

C
2

7

V
C

C
3

8

GND4
9

LO
10

VCC4
12

GND5
11Q

O
U

T
-

1
3

Q
O

U
T

+
1
4

IO
U

T
-

1
5

IO
U

T
+

1
6

G
N

D
_
B

O
T

1
7

U23

A97593-ND

RF_V_+
1

GND
2

GND1
3

GND2
4

GND3
5

R96
100K

R97

0

VCC_DEMOD

C13
.1uF

C14
2.2uF

U25

A97593-ND

RF_V_+
1

GND
2

GND1
3

GND2
4

GND3
5

C23
4.7pF

C24

5.6pF

C25
100uF

IOUTP

C26
1nF

C27
1nF

IOUTM

QOUTP

QOUTM

Figure B.2. - Demodulator

60

Figure B.3. – CMV DC offset shift circuits

C41

10nF

VCC_DEMOD

IOUTMS
1.5V

U66

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L)

5

R61

10K

R62

10K

VCC_DEMOD

QOUTPS
1.5V

U67

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L)

5

R65

10K

R66

10K

replaced with a 100K

and a 150K

VCC_DEMOD

QOUTMS
1.5V

U68

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L)

5

R69

10K

R70

10K

IOUTM

IOUTP

QOUTM

QOUTP

VCC_DEMOD

IOUTPS
1.5V

U65

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L)

5

R59

10K

R60

10K

R133
10K

1
2

R134
4.2K

1
2

VCC_DEMOD

1.5V

C38

10nF

C39

10nF

C40

10nF

61

Figure B.4. – Instrumentation Amplifier for converting a differential signal to a single ended signal.

U55

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

U56

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

VREF_IA

I_OUT

VCC_DEMOD

IOUTPS
R101

10K

R102

10K

VCC_DEMOD

R103

10K

R104

10K

IOUTMS

VCC_DEMOD

R105
10K

R106
10K

VCC_DEMOD

R98
10K

R99
100K

U53

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

R100
10K

U54

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

62

U
3
5

L
T
6
2
3
0

V
-

4

V
+

3

GND
2

O
U

T
1

VCC
6

EN(AL)
5

R
1

1
2
0
0

R
2

1
2
0
0

C
1 1

n

Q
_
IN

V
_
3

R
3

1
K

R
4

1
K

U
3
6

L
T
6
2
3
0

V
-

4

V
+

3

GND
2

O
U

T
1

VCC
6

EN(AL)
5

V
C

C

V
C

C

U
3
7

L
T
6
2
3
0

V
-

4

V
+

3

GND
2

O
U

T
1

VCC
6

EN(AL)
5

Q
_
IN

V
_
1

2
.5

V

R
5

9
1
0

R
6

8
2
0C

2 1
n

V
C

C

2
.5

V

R
9

9
1
0

C
3

1
n

R
7
9

1
6
0

V
C

C

R
8
1

1
6
0

R
1
0

9
1
0

R
1
3

9
1
0

V
C

C

C
2
8

1
0
u
F

2
.5

V

R
1
6

9
1
0

R
1
7

9
1
0

I_
O

U
T

2
.5

V

B
Y
P
A
S
S

C
A
P

O
P
T
I
O
N
A
L

H
E
R
E

2
.5

V

Q
_
IN

V
_
2

R
7
7

1
6
0

U
3
4

L
T
6
2
3
0

V
-

4

V
+

3

GND
2

O
U

T
1

VCC
6

EN(AL)
5

Figure B.5. – Stage 1 and 2 of the I channel for the complex bandpass filter. Only the inputs of the

Q channel can be seen with regards to cross coupling. Stage 3 is identical to stage 2.

63

Figure B.6. – Stage 2 of the Q channel of the complex bandpass filter. The inverters for cross

coupling the Q output to the I input integrators are shown. The I channel inputs are the sourceless

connections at the top of the schematic.

U42

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

2.5V

U43

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5 U44

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

Q_INV_2

VCC

R63

910

R64

910

Q_INV_3

2.5V

VCC

U49

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

R67

910

R68

910

U50

LT6230

V-
4

V+
3

G
N

D
2

OUT
1

V
C

C
6

E
N

(A
L
)

5

R34

820

C7

1n

VCC

R37

910

C8

1n

VCC

R40

910

R41

910

VCC

R44

910

2.5V

2.5V

2.5V

64

N
E

X
Y

S
_
C

N
E

X
Y

S
_
D

V
C

C
_
P

G
A

V
C

C
_
P

G
A

N
E

X
Y

S
_
A

N
E

X
Y

S
_
B

F
IL

T
E

R
_
O

U
T

U
6
1

A
D

G
7
0
4
B

R
M

S
1

2

S
2

9

S
3

4

S
4

7

A
0

1

A
1

1
0

G
N

D
3

E
N

5

D
8

V
D

D
6

V
C

C
_
P

G
A

R
1
1
8

1
K

U
6
2

L
T
6
2
3
0

V
-

4

V
+

3

GND
2

O
U

T
1

VCC
6

EN(AL)
5

P
G

A
_
O

U
T

R
1
1
9

1
K

R
1
2
0

1
K

R
1
2
1

1
K

R
1
2
2

1
K

R
1
2
3

1
K

R
1
2
4

1
K

R
1
2
5

1
K

U
6
3

A
D

G
7
0
4
B

R
M

S
1

2

S
2

9

S
3

4

S
4

7

A
0

1

A
1

1
0

G
N

D
3

E
N

5

D
8

V
D

D
6

R
1
3
5

D
N

P

1
2

Figure B.7. – PGA schematic.

65

P
G

A
_
O

U
T

C
2

1
C

U
6

4

M
A

X
1

4
2

6

A
G

N
D

1

A
V

D
D

2

R
E

F
P

3

R
E

F
IN

4

R
E

F
N

5

C
M

L
6

A
G

N
D

1
7

A
V

D
D

1
8

IN
P

9

IN
N

1
0

C
M

L
P

1
1

C
M

L
N

1
2

C
L

K
1
3

O
E

/P
D

1
4

D
0

2
8

D
1

2
7

D
2

2
6

D
3

2
5

D
4

2
4

D
G

N
D

1
2
3

D
V

D
D

1
2
2

D
G

N
D

2
1

D
V

D
D

2
0

D
5

1
9

D
6

1
8

D
7

1
7

D
8

1
6

D
9

1
5

N
E

X
Y

S
_
A

D
C

_
1

N
E

X
Y

S
_
A

D
C

_
0

N
E

X
Y

S
_
A

D
C

_
3

N
E

X
Y

S
_
A

D
C

_
2

N
E

X
Y

S
_
A

D
C

_
5

N
E

X
Y

S
_
A

D
C

_
4

N
E

X
Y

S
_
A

D
C

_
7

N
E

X
Y

S
_
A

D
C

_
6

N
E

X
Y

S
_
A

D
C

_
9

N
E

X
Y

S
_
A

D
C

_
8

V
C

C
_

A
D

C

N
E

X
Y

S
_
A

D
C

_
C

L
K

C
2

2

C
C

1
5

C

C
1

6
C

C
1

7
C

C
1

8
C

C
1

9
C

C
2

0
C

V
C

C
_

A
D

C

Figure B.8. – ADC interface schematic.

66

APPENDIX C: LAYOUT ARTWORK

Figure C.1. – Top Silkscreen. The components can easily be seen above.

67

Figure C.2. – Top copper layer.

All subsequent layers are not shown since they consist of mainly ground planes and a small amount of

traces.

68

APPENDIX D: PROGRAM LISTING (VHDL)

-- Engineer: Sanjay Avasarala 1
-- 2
-- Create Date: 18:05:32 04/16/2012 3
-- Design Name: Final Pseudo-DSP Demodulator 4
-- Module Name: Demodulation - Behavioral 5
-- Project Name: Senior Project 802.15.4 Baseband Demodulator 6
-- Target Devices: Nexys 2 Board 7
-- Tool versions: 8
-- Description: 9
-- 10
-- Dependencies: 11
-- 12
-- Revision: 13
-- Revision 0.01 - File Created 14
-- Additional Comments: 15
-- 16
---17
----- 18
library IEEE; 19
use IEEE.STD_LOGIC_1164.ALL; 20
use IEEE.STD_LOGIC_SIGNED.ALL; 21
use IEEE.NUMERIC_STD.ALL; 22
 23
 24
entity Demodulation is 25
 Port (ADC_DATA : in STD_LOGIC_VECTOR (9 downto 0); -- Inputs data 26
from the ADC 27
 ADC_CLK : out STD_LOGIC; -- Outputs a 5 MHz clock signal to the 28
ADC for sampling 29
 SIG_CLK_P : out STD_LOGIC; -- Outputs a 175 KHz data test 30
signalto the board. 31
 SIG_CLK_N : out STD_LOGIC; -- Outputs a 175 KHz data test 32
signalto the board. 33
 CLK : in STD_LOGIC; -- System CLK 34
 SYNC_CLK : out STD_LOGIC; -- External SYNC CLK 35
 TEST : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 36
removal of components 37
 TEST1 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 38
removal of components 39
 TEST2 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 40
removal of components 41
 TEST3 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 42
removal of components 43
 TEST4 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 44
removal of components 45
 TEST6 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 46
removal of components 47
 TEST7 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 48
removal of components 49
 TEST8 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 50
removal of components 51
 TEST9 : out STD_LOGIC_VECTOR (14 downto 0); -- Prevents 52
removal of components 53

69

 TEST5 : out STD_LOGIC; -- Prevents removal of 54
components 55
 TEST0 : out STD_LOGIC; -- Prevents removal of components 56
 DATA : out STD_LOGIC; -- Data output of signal 57
 PGA_CNTRL : out STD_LOGIC_VECTOR (3 downto 0); -- PGA Controller 58
output 59
 PGA_RSSI : out STD_LOGIC_VECTOR (3 downto 0); 60
 LOG_OUT_P : out STD_LOGIC; 61
 LOG_OUT_N : out STD_LOGIC); 62
 -- CLK_OUT : out STD_LOGIC); 63
end Demodulation; 64
 65
architecture Behavioral of Demodulation is 66
 67
------------------SIGNAL DECLARATION--------------------------------------- 68
 signal temp_clk : STD_LOGIC := '0'; -- Used for clock 69
division 70
 signal temp_clk_2 : STD_LOGIC := '0'; 71
 signal temp_clk_3 : STD_LOGIC := '0'; -- used for pga flag 72
 73
 signal sampled_signal0 : STD_LOGIC_VECTOR (9 downto 0); -- These signal 74
lines are the sampled ADC values. 75
 signal sampled_signal1 : STD_LOGIC_VECTOR (9 downto 0); 76
 signal sampled_signal2 : STD_LOGIC_VECTOR (9 downto 0); 77
 signal sampled_signal3 : STD_LOGIC_VECTOR (9 downto 0); 78
 signal sampled_signal4 : STD_LOGIC_VECTOR (9 downto 0); 79
 80
 signal push_signal0 : STD_LOGIC_VECTOR (9 downto 0); -- These signals 81
are the receive the pushed signals 82
 signal push_signal1 : STD_LOGIC_VECTOR (9 downto 0); -- from the 83
sampled values each time the counter trips. 84
 signal push_signal2 : STD_LOGIC_VECTOR (9 downto 0); 85
 signal push_signal3 : STD_LOGIC_VECTOR (9 downto 0); 86
 signal push_signal4 : STD_LOGIC_VECTOR (9 downto 0); 87
 88
 signal add_signal0 : STD_LOGIC_VECTOR (14 downto 0); -- These 89
signals concatenate the pushed signals such 90
 signal add_signal1 : STD_LOGIC_VECTOR (14 downto 0); -- all of them 91
can be added without overflow. 92
 signal add_signal2 : STD_LOGIC_VECTOR (14 downto 0); 93
 signal add_signal3 : STD_LOGIC_VECTOR (14 downto 0); 94
 signal add_signal4 : STD_LOGIC_VECTOR (14 downto 0); 95
 96
 signal int_signal0 : STD_LOGIC_VECTOR (14 downto 0); -- These 97
signals receive the add_signals such that no 98
 signal int_signal1 : STD_LOGIC_VECTOR (14 downto 0); -- driver 99
contention issues arise. These signals are the 100
 signal int_signal2 : STD_LOGIC_VECTOR (14 downto 0); -- the signals 101
that are actually added. 102
 signal int_signal3 : STD_LOGIC_VECTOR (14 downto 0); 103
 signal int_signal4 : STD_LOGIC_VECTOR (14 downto 0); 104
 105
 signal pga_signal0 : STD_LOGIC_VECTOR (9 downto 0); -- These signals 106
are used for peak detection in the 107
 signal pga_signal1 : STD_LOGIC_VECTOR (9 downto 0); -- PGA. 108
 signal pga_signal2 : STD_LOGIC_VECTOR (9 downto 0); 109
 signal pga_signal3 : STD_LOGIC_VECTOR (9 downto 0); 110

70

 signal pga_signal4 : STD_LOGIC_VECTOR (9 downto 0); 111
 112
 signal comp_signal0 : STD_LOGIC_VECTOR (9 downto 0); 113
 signal comp_signal1 : STD_LOGIC_VECTOR (9 downto 0); 114
 signal comp_signal2 : STD_LOGIC_VECTOR (9 downto 0); 115
 signal comp_signal3 : STD_LOGIC_VECTOR (9 downto 0); 116
 signal comp_signal4 : STD_LOGIC_VECTOR (9 downto 0); 117
 118
 signal comp_signal5 : STD_LOGIC_VECTOR (9 downto 0); 119
 signal comp_signal6 : STD_LOGIC_VECTOR (9 downto 0); 120
 signal comp_signal7 : STD_LOGIC_VECTOR (9 downto 0); 121
 signal comp_signal8 : STD_LOGIC_VECTOR (9 downto 0); 122
 signal comp_signal9 : STD_LOGIC_VECTOR (9 downto 0); 123
 124
 signal comp_signal10 : STD_LOGIC_VECTOR (9 downto 0); 125
 signal comp_signal11 : STD_LOGIC_VECTOR (9 downto 0); 126
 signal comp_signal12 : STD_LOGIC_VECTOR (9 downto 0); 127
 signal comp_signal13 : STD_LOGIC_VECTOR (9 downto 0); 128
 signal comp_signal14 : STD_LOGIC_VECTOR (9 downto 0); 129
 130
 signal comp_signal15 : STD_LOGIC_VECTOR (9 downto 0); 131
 signal comp_signal16 : STD_LOGIC_VECTOR (9 downto 0); 132
 signal comp_signal17 : STD_LOGIC_VECTOR (9 downto 0); 133
 signal comp_signal18 : STD_LOGIC_VECTOR (9 downto 0); 134
 signal comp_signal19 : STD_LOGIC_VECTOR (9 downto 0); 135
 136
 signal comp_signal20 : STD_LOGIC_VECTOR (9 downto 0); 137
 signal comp_signal21 : STD_LOGIC_VECTOR (9 downto 0); 138
 signal comp_signal22 : STD_LOGIC_VECTOR (9 downto 0); 139
 signal comp_signal23 : STD_LOGIC_VECTOR (9 downto 0); 140
 signal comp_signal24 : STD_LOGIC_VECTOR (9 downto 0); 141
 142
 signal comp_signal25 : STD_LOGIC_VECTOR (9 downto 0); 143
 signal comp_signal26 : STD_LOGIC_VECTOR (9 downto 0); 144
 signal comp_signal27 : STD_LOGIC_VECTOR (9 downto 0); 145
 signal comp_signal28 : STD_LOGIC_VECTOR (9 downto 0); 146
 signal comp_signal29 : STD_LOGIC_VECTOR (9 downto 0); 147
 148
 signal comp_signal30 : STD_LOGIC_VECTOR (9 downto 0); 149
 signal comp_signal31 : STD_LOGIC_VECTOR (9 downto 0); 150
 signal comp_signal32 : STD_LOGIC_VECTOR (9 downto 0); 151
 signal comp_signal33 : STD_LOGIC_VECTOR (9 downto 0); 152
 signal comp_signal34 : STD_LOGIC_VECTOR (9 downto 0); 153
 154
 signal comp_signal35 : STD_LOGIC_VECTOR (9 downto 0); 155
 signal comp_signal36 : STD_LOGIC_VECTOR (9 downto 0); 156
 signal comp_signal37 : STD_LOGIC_VECTOR (9 downto 0); 157
 signal comp_signal38 : STD_LOGIC_VECTOR (9 downto 0); 158
 signal comp_signal39 : STD_LOGIC_VECTOR (9 downto 0); 159
 160
 signal comp_signal40 : STD_LOGIC_VECTOR (9 downto 0); 161
 signal comp_signal41 : STD_LOGIC_VECTOR (9 downto 0); 162
 signal comp_signal42 : STD_LOGIC_VECTOR (9 downto 0); 163
 signal comp_signal43 : STD_LOGIC_VECTOR (9 downto 0); 164
 signal comp_signal44 : STD_LOGIC_VECTOR (9 downto 0); 165
 166
 167

71

 signal flag : STD_LOGIC := '0'; -- The flag variable 168
changes state per bit period. This state change 169
 -- will trip 170
the process that determines the sign 171
 signal pga_flag : STD_LOGIC := '0'; 172
 173
 174
 -- max_count ---> for generating the 5 MHz clock 175
 -- max_count_s ----> for generating the 150 Khz signal 176
 -- max_count_l ----> used for the sequential process 177
 178
 -- NOTE: 179
 -- To set the bit rate for a square wave, the max_count_s variable has to 180
be changed. 181
 -- The formula is 50M/(2*Bitrate) 182
 -- For 150 Kbaud ----> 165 183
 -- For 250 Kbaud ----> 100 184
 -- 185
 -- To set the bit rate for a signal, the max_count_s variable has to be 186
changed. 187
 -- The formula is 50M/(Bitrate) 188
 -- For 150 Kbaud ----> 330 189
 -- For 250 Kbaud ----> 200 190
 constant max_count : integer := (4); -- sets sampling clk to 5 MHz. 191
Note that the real number 192
 constant max_count_l : integer := (5); -- should be 4 for a 5MHz clock 193
but the value of 5 is 194
 constant max_count_s : integer := (100); -- used for sequential 195
process operation reasons. 196
 constant max_count_pga : integer := (9); --arbitrary wait value for pga 197
update process 198
 constant max_count_pga_process : integer := (5000); -- sets PGA update 199
frequency 200
 constant index_count : integer := (15); -- used for data sequence 201
indexing 202
 type my_arr is array (integer range 0 to 15) of std_logic; -- declaring 203
the data array 204
 signal data_prbs: my_arr := 205
('1','0','1','0','1','0','1','0','1','0','1','0','1','0','1','0'); -- 206
intialize the array 207
 signal PRBS_SEQ : STD_LOGIC_VECTOR(15 downto 0); 208
 209
 210
 signal out_s0 : STD_LOGIC_VECTOR (9 downto 0); 211
 signal out_s1 : STD_LOGIC_VECTOR (9 downto 0); 212
 signal out_s2 : STD_LOGIC_VECTOR (9 downto 0); 213
 signal out_s3 : STD_LOGIC_VECTOR (9 downto 0); 214
 signal out_s4 : STD_LOGIC_VECTOR (9 downto 0); 215
 signal out_s5 : STD_LOGIC_VECTOR (9 downto 0); 216
 signal out_s6 : STD_LOGIC_VECTOR (9 downto 0); 217
 signal out_s7 : STD_LOGIC_VECTOR (9 downto 0); 218
 signal out_s8 : STD_LOGIC_VECTOR (9 downto 0); 219
 signal out_s9 : STD_LOGIC_VECTOR (9 downto 0); 220
 signal out_s10 : STD_LOGIC_VECTOR (9 downto 0); 221
 signal out_s11 : STD_LOGIC_VECTOR (9 downto 0); 222
 signal out_s12 : STD_LOGIC_VECTOR (9 downto 0); 223
 signal out_s13 : STD_LOGIC_VECTOR (9 downto 0); 224

72

 signal out_s14 : STD_LOGIC_VECTOR (9 downto 0); 225
 signal out_s15 : STD_LOGIC_VECTOR (9 downto 0); 226
 signal out_s16 : STD_LOGIC_VECTOR (9 downto 0); 227
 signal out_s17 : STD_LOGIC_VECTOR (9 downto 0); 228
 signal out_s18 : STD_LOGIC_VECTOR (9 downto 0); 229
 signal out_s19 : STD_LOGIC_VECTOR (9 downto 0); 230
 signal out_s20 : STD_LOGIC_VECTOR (9 downto 0); 231
 signal out_s21 : STD_LOGIC_VECTOR (9 downto 0); 232
 signal out_s22 : STD_LOGIC_VECTOR (9 downto 0); 233
 signal out_s23 : STD_LOGIC_VECTOR (9 downto 0); 234
 signal out_s24 : STD_LOGIC_VECTOR (9 downto 0); 235
 signal out_s25 : STD_LOGIC_VECTOR (9 downto 0); 236
 signal out_s26 : STD_LOGIC_VECTOR (9 downto 0); 237
 signal out_s27 : STD_LOGIC_VECTOR (9 downto 0); 238
 signal out_s28 : STD_LOGIC_VECTOR (9 downto 0); 239
 signal out_s29 : STD_LOGIC_VECTOR (9 downto 0); 240
 signal out_s30 : STD_LOGIC_VECTOR (9 downto 0); 241
 signal out_s31 : STD_LOGIC_VECTOR (9 downto 0); 242
 signal out_s32 : STD_LOGIC_VECTOR (9 downto 0); 243
 signal out_s33 : STD_LOGIC_VECTOR (9 downto 0); 244
 signal out_s34 : STD_LOGIC_VECTOR (9 downto 0); 245
 signal out_s35 : STD_LOGIC_VECTOR (9 downto 0); 246
 signal out_s36 : STD_LOGIC_VECTOR (9 downto 0); 247
 signal out_s37 : STD_LOGIC_VECTOR (9 downto 0); 248
 signal out_s38 : STD_LOGIC_VECTOR (9 downto 0); 249
 signal out_s39 : STD_LOGIC_VECTOR (9 downto 0); 250
 signal out_s40 : STD_LOGIC_VECTOR (9 downto 0); 251
 signal out_s41 : STD_LOGIC_VECTOR (9 downto 0); 252
 signal out_s42 : STD_LOGIC_VECTOR (9 downto 0); 253
 signal out_s43 : STD_LOGIC_VECTOR (9 downto 0); 254
 255
--------------COMPONENT DECLARATION-------------- 256
 component Full_Adder is -- Full adder declaration 257
 Port (X : in STD_LOGIC; 258
 Y : in STD_LOGIC; 259
 Z : in STD_LOGIC; 260
 SUM : out STD_LOGIC; 261
 CARRY : out STD_LOGIC); 262
 end component; 263
 264
 signal sum_inv : STD_LOGIC_VECTOR (9 downto 0); 265
 signal carry_inv : STD_LOGIC_VECTOR (9 downto 0); 266
 267
----------------- 268
 component Adder_20_Bit is -- 15 Bit adder declaration 269
 Port (INPUT_A : in STD_LOGIC_VECTOR (14 downto 0); 270
 INPUT_B : in STD_LOGIC_VECTOR (14 downto 0); 271
 OUTPUT : out STD_LOGIC_VECTOR (14 downto 0)); 272
 end component; 273
 274
 signal OUT_SIG0 : STD_LOGIC_VECTOR (14 downto 0); -- These signals are 275
involved in the addition process. 276
 signal OUT_SIG1 : STD_LOGIC_VECTOR (14 downto 0); -- OUT_SIG3 is the 277
signal used for sign determining 278
 signal OUT_SIG2 : STD_LOGIC_VECTOR (14 downto 0); 279
 signal OUT_SIG3 : STD_LOGIC_VECTOR (14 downto 0); 280
 281

73

----------------- 282
 283
 component Clock_Division_1 284
 Port(285
 CLKIN_IN : IN std_logic; 286
 CLKDV_OUT : OUT std_logic; 287
 CLK0_OUT : OUT std_logic 288
); 289
 end component; 290
 291
--- 292
 293
begin 294
 295
------------- EXTERNAL SYNC CLOCK -------------- Sets the sync for the LO's 296
 Inst_Clock_Division_1: Clock_Division_1 PORT MAP(297
 CLKIN_IN => CLK, 298
 CLKDV_OUT => SYNC_CLK, 299
 CLK0_OUT => TEST0 300
); 301
-- 302
 303
------------- CLOCK DIVISION ------------------- Sets a 5 MHz clock 304
 division : process(clk,temp_clk) 305
 variable count : integer := (0); 306
 begin 307
 if(falling_edge(clk)) then 308
 if(count = max_count) then 309
 temp_clk <= NOT temp_clk; 310
 count := 0; 311
 else 312
 temp_clk <= temp_clk; 313
 count := count + 1; 314
 end if; 315
 end if; 316
 ADC_CLK <= temp_clk; 317
 end process division; 318
--- 319
 320
 PRBS_SEQ <= "0110110001011100"; 321
------------- SIGNAL GENERATION ------------------- Sets a 250 KHz signal 322
 division2 : process(clk,temp_clk_2) 323
 variable count2 : integer := (0); 324
 variable index : integer range 0 to 31 := (0); 325
 begin 326
 if(falling_edge(clk)) then 327
 if(index = index_count) then 328
 index := 0; 329
 end if; 330
 if(count2 = max_count_s) then 331
 case index is 332
 when 0 => 333
 temp_clk_2 <= PRBS_SEQ(0); 334
 when 1 => 335
 temp_clk_2 <= PRBS_SEQ(1); 336
 when 2 => 337
 temp_clk_2 <= PRBS_SEQ(2); 338

74

 when 3 => 339
 temp_clk_2 <= PRBS_SEQ(3); 340
 when 4 => 341
 temp_clk_2 <= PRBS_SEQ(4); 342
 when 5 => 343
 temp_clk_2 <= PRBS_SEQ(5); 344
 when 6 => 345
 temp_clk_2 <= PRBS_SEQ(6); 346
 when 7 => 347
 temp_clk_2 <= PRBS_SEQ(7); 348
 when 8 => 349
 temp_clk_2 <= PRBS_SEQ(8); 350
 when 9 => 351
 temp_clk_2 <= PRBS_SEQ(9); 352
 when 10 => 353
 temp_clk_2 <= PRBS_SEQ(10); 354
 when 11 => 355
 temp_clk_2 <= PRBS_SEQ(11); 356
 when 12 => 357
 temp_clk_2 <= PRBS_SEQ(12); 358
 when 13 => 359
 temp_clk_2 <= PRBS_SEQ(13); 360
 when 14 => 361
 temp_clk_2 <= PRBS_SEQ(14); 362
 when 15 => 363
 temp_clk_2 <= PRBS_SEQ(15); 364
 when others => 365
 null; 366
 end case; 367
 --temp_clk_2 <= data_prbs(index); 368
 count2 := 0; 369
 index := index+1; 370
 else 371
 temp_clk_2 <= temp_clk_2; 372
 count2 := count2 + 1; 373
 end if; 374
 --index := index+1; 375
 end if; 376
 SIG_CLK_P <= temp_clk_2; 377
 LOG_OUT_P <= temp_clk_2; 378
 SIG_CLK_N <= NOT temp_clk_2; 379
 LOG_OUT_N <= NOT temp_clk_2; 380
 end process division2; 381
--- 382
 383
--------Flag Clock Generation for PGA------------ 384
 division_pga_flag : process(clk,temp_clk_3) 385
 variable count_pga : integer := (0); 386
 begin 387
 if(falling_edge(clk)) then 388
 if(count_pga = max_count_pga) then 389
 temp_clk_3 <= NOT temp_clk_3; 390
 count_pga := 0; 391
 else 392
 temp_clk_3 <= temp_clk_3; 393
 count_pga := count_pga + 1; 394
 end if; 395

75

 end if; 396
 end process division_pga_flag; 397
 398
------------- ADC SAMPLING ---------------------- 399
 sampling :process(temp_clk) 400
 variable adc_count : integer := 0; 401
 begin 402
 if(falling_edge(temp_clk)) then -- check this clock 403
 if(adc_count = max_count_l) then -- this if statement should be 404
carried out first before the case statement trips 405
 adc_count := 0; 406
 flag <= NOT flag; -- flag changes state upon bit sampling 407
completion. this should in theory trip the process sdet 408
 push_signal0 <= sampled_signal0; 409
 push_signal1 <= sampled_signal1; 410
 push_signal2 <= sampled_signal2; 411
 push_signal3 <= sampled_signal3; 412
 push_signal4 <= sampled_signal4; 413
 end if; 414
 case adc_count is 415
 when 0 => 416
 sampled_signal0 <= ADC_DATA; 417
 pga_signal0 <= ADC_DATA; 418
 when 1 => 419
 sampled_signal1 <= ADC_DATA; 420
 sampled_signal1 <= "0000000000"; 421
 pga_signal1 <= ADC_DATA; 422
 when 2 => 423
 sampled_signal2 <= ADC_DATA; 424
 sampled_signal2 <= NOT sampled_signal2; -- Ones 425
compliment. The extra bit is added in the pushed signal. 426
 pga_signal2 <= ADC_DATA; 427
 when 3 => 428
 sampled_signal3 <= ADC_DATA; 429
 sampled_signal3 <= "0000000000"; 430
 pga_signal3 <= ADC_DATA; 431
 when 4 => 432
 sampled_signal4 <= ADC_DATA; 433
 pga_signal4 <= ADC_DATA; 434
 when others => 435
 null; 436
 end case; 437
 adc_count := adc_count + 1; 438
 end if; 439
 end process sampling; 440
--- 441
 442
-------------- ADDING/MULT ---------------------- 443
-- This block adds a single bit the the ones complement to convert the 444
-- original number to its twos complement. This technique is used to invert 445
-- both positive and negative sequences. 446
 447
 U1: Full_Adder 448
 port map (X => push_signal2(0), Y => '1', Z => '0', SUM => 449
sum_inv(0), CARRY => carry_inv(0)); 450
 U2: Full_Adder 451

76

 port map (X => push_signal2(1), Y => '0', Z => carry_inv(0), SUM => 452
sum_inv(1), CARRY => carry_inv(1)); 453
 U3: Full_Adder 454
 port map (X => push_signal2(2), Y => '0', Z => carry_inv(1), SUM => 455
sum_inv(2), CARRY => carry_inv(2)); 456
 U4: Full_Adder 457
 port map (X => push_signal2(3), Y => '0', Z => carry_inv(2), SUM => 458
sum_inv(3), CARRY => carry_inv(3)); 459
 U5: Full_Adder 460
 port map (X => push_signal2(4), Y => '0', Z => carry_inv(3), SUM => 461
sum_inv(4), CARRY => carry_inv(4)); 462
 U6: Full_Adder 463
 port map (X => push_signal2(5), Y => '0', Z => carry_inv(4), SUM => 464
sum_inv(5), CARRY => carry_inv(5)); 465
 U7: Full_Adder 466
 port map (X => push_signal2(6), Y => '0', Z => carry_inv(5), SUM => 467
sum_inv(6), CARRY => carry_inv(6)); 468
 U8: Full_Adder 469
 port map (X => push_signal2(7), Y => '0', Z => carry_inv(6), SUM => 470
sum_inv(7), CARRY => carry_inv(7)); 471
 U9: Full_Adder 472
 port map (X => push_signal2(8), Y => '0', Z => carry_inv(7), SUM => 473
sum_inv(8), CARRY => carry_inv(8)); 474
 U10: Full_Adder 475
 port map (X => push_signal2(9), Y => '0', Z => carry_inv(8), SUM => 476
sum_inv(9), CARRY => carry_inv(9)); 477
--- 478
 479
-- THE SAMPLES SIGNALS ARE NOW 480
-- push_signal0 481
-- push_signal1 482
-- sum_inv 483
-- push_signal3 484
-- push_signal4 485
 486
 487
 TEST <= add_signal0; 488
 TEST1 <= add_signal1; 489
 TEST2 <= add_signal2; 490
 TEST3 <= add_signal3; 491
 TEST4 <= add_signal4; 492
 TEST5 <= carry_inv(9); 493
 494
 495
 496
 -- All the signals are in two's complement now. Therefore, to 497
concactenate the signals, a check 498
 -- must be performed to add '1's instead of '0's for negative signals. 499
 500
 concat_check: 501
process(clk,push_signal0,push_signal1,sum_inv,push_signal3,push_signal4) 502
 begin 503
 if(push_signal0(9) = '1') then 504
 add_signal0 <= "11111" & push_signal0; 505
 else 506
 add_signal0 <= "00000" & push_signal0; 507
 end if; 508

77

 if(push_signal1(9) = '1') then 509
 add_signal1 <= "11111" & push_signal1; 510
 else 511
 add_signal1 <= "00000" & push_signal1; 512
 end if; 513
 if(sum_inv(9) = '1') then 514
 add_signal2 <= "11111" & sum_inv; 515
 else 516
 add_signal2 <= "00000" & sum_inv; 517
 end if; 518
 if(push_signal3(9) = '1') then 519
 add_signal3 <= "11111" & push_signal3; 520
 else 521
 add_signal3 <= "00000" & push_signal3; 522
 end if; 523
 if(push_signal4(9) = '1') then 524
 add_signal4 <= "11111" & push_signal4; 525
 else 526
 add_signal4 <= "00000" & push_signal4; 527
 end if; 528
 end process concat_check; 529
 530
 -- The following signals prevent multiple drivers 531
 int_signal0 <= add_signal0; 532
 int_signal1 <= add_signal1; 533
 int_signal2 <= add_signal2; 534
 int_signal3 <= add_signal3; 535
 int_signal4 <= add_signal4; 536
 537
 538
-------------- ADDER --------------------------------- -- this is essentially 539
the integration step. 540
 K1: Adder_20_Bit 541
 port map (int_signal0, int_signal1, OUT_SIG0); 542
 K2: Adder_20_Bit 543
 port map (OUT_SIG0, int_signal2, OUT_SIG1); 544
 K3: Adder_20_Bit 545
 port map (OUT_SIG1, int_signal3, OUT_SIG2); 546
 K4: Adder_20_Bit 547
 port map (OUT_SIG2, int_signal4, OUT_SIG3); 548
-- 549
 550
-- OUT_SIG3 Is the final output signal into the sign determiner in this case 551
 552
 TEST6 <= OUT_SIG0; 553
 TEST7 <= OUT_SIG1; 554
 TEST8 <= OUT_SIG2; 555
 TEST9 <= OUT_SIG3; 556
 557
 558
-------------- DETERMINE THE SIGN---------------------- 559
 sdet: process(flag, OUT_SIG3) -- trips on any flag event 560
 begin 561
 562
 if(OUT_SIG3(14) = '1') then 563
 DATA <= '0'; 564
 else 565

78

 DATA <= '1'; 566
 end if; 567
 568
 end process sdet; 569
-- 570
 571
 572
------------------- PGA CONTROL-------------------------- 573
 pga_proc: process(flag,pga_signal0,pga_signal1,pga_signal2, 574
 pga_signal3,pga_signal4,comp_signal0,comp_signal1,comp_signal2, 575
 comp_signal3,comp_signal4,comp_signal5,comp_signal6,comp_signal7, 576
 comp_signal8,comp_signal9,comp_signal10,comp_signal11,comp_signal12, 577
 comp_signal13,comp_signal14,comp_signal15,comp_signal16,comp_signal17, 578
 comp_signal18,comp_signal19,comp_signal20,comp_signal21,comp_signal22, 579
 comp_signal23,comp_signal24,comp_signal25,comp_signal26,comp_signal27, 580
 comp_signal28,comp_signal29,comp_signal30,comp_signal31,comp_signal32, 581
 comp_signal33,comp_signal34,out_s33) -- trips on any flag event 582
 583
 variable index_pga : integer := (0); 584
 variable index_pga_process :integer := (0); 585
 variable flag_compare_ready : integer := (0); 586
 variable pga_flag : integer := (0); 587
 588
 begin 589
 590
 591
 592
 if(falling_edge(flag)) then -- every falling edge, the index is 593
incremented and a new set of signals gets the pga_signals generated in 594
 if(index_pga_process = max_count_pga_process) then 595
 PGA_CNTRL <= "0000"; -- RESET to the normal state and 'poll' 596
signal. 597
 PGA_RSSI <= "0000"; 598
 pga_flag := 1; 599
 index_pga_process := 0; 600
 else 601
 index_pga_process := index_pga_process + 1; 602
 end if; 603
 604
 605
 -- this polling is done because if the system is not reset then positive 606
feedback will occur 607
 -- and PGA will begin to oscillate. by reseting, the system will take in 608
the new data and adjust pga to 609
 -- that signal input. the drawback of this method is that there will be 610
periodic instances where 611
 -- the signal will degrade. 612
 613
 614
 -- SOFTWARE FLOW: 615
 -- an event on flag trips this process 616
 -- master if loop on top checks for falling edge 617
 -- if no, then moves on to second if state check 618
 -- since the compare flag is 0, nothing will happen. 619
 620
 -- if falling edge of the flag then the second if loop checks if the 621
index_pga_process counter has reached a max limit (arbitrary) 622

79

 -- if yes then the PGA is reset such that the signal is pass through un 623
altered. this allows the ADC to recal. 624
 -- the pga flag is set to 1 so that a new comparison can happen 625
 -- the index_pga_process is set to 0 again for a new count. so 626
essentially, while the compare process is happening, the aforementioned 627
 -- if loop keeps checking for a reset trip. this overlap is negligible if 628
the max_count_pga_process is sufficiently large 629
 630
 -- the next if loop keeps checking if the pga_flag is raised. once 631
raised, signals are assigned the sampled values. this repeats till the index 632
 -- pga counter has reached the number 7. once that happens, no more 633
signals are assigned, the index_pga is set to 0 and the flag is reset to 0. 634
 -- the comparator sequence is initiated and the max values is assigned to 635
out_s33. 636
 637
 -- the last execution in the aforementioned if statement is the setting 638
of the compare_complete flag to 1. once this is set, the state check 639
 -- if loop can run and the final PGA value is output to the pga. since 640
the compare sequence is now done, the master pga_process counter continues 641
 -- to run until the next trip value where the PGA is reset and the whole 642
compare process is repeated. 643
 644
 645
 if(pga_flag = 1) then -- the ADC sampling 646
process 647
 case index_pga is 648
 when 0 => 649
 comp_signal0 <= pga_signal0; 650
 comp_signal1 <= pga_signal1; 651
 comp_signal2 <= pga_signal2; 652
 comp_signal3 <= pga_signal3; 653
 comp_signal4 <= pga_signal4; 654
 when 1 => 655
 comp_signal5 <= pga_signal0; 656
 comp_signal6 <= pga_signal1; 657
 comp_signal7 <= pga_signal2; 658
 comp_signal8 <= pga_signal3; 659
 comp_signal9 <= pga_signal4; 660
 when 2 => 661
 comp_signal10 <= pga_signal0; 662
 comp_signal11 <= pga_signal1; 663
 comp_signal12 <= pga_signal2; 664
 comp_signal13 <= pga_signal3; 665
 comp_signal14 <= pga_signal4; 666
 when 3 => 667
 comp_signal15 <= pga_signal0; 668
 comp_signal16 <= pga_signal1; 669
 comp_signal17 <= pga_signal2; 670
 comp_signal18 <= pga_signal3; 671
 comp_signal19 <= pga_signal4; 672
 when 4 => 673
 comp_signal20 <= pga_signal0; 674
 comp_signal21 <= pga_signal1; 675
 comp_signal22 <= pga_signal2; 676
 comp_signal23 <= pga_signal3; 677
 comp_signal24 <= pga_signal4; 678
 when 5 => 679

80

 comp_signal25 <= pga_signal0; 680
 comp_signal26 <= pga_signal1; 681
 comp_signal27 <= pga_signal2; 682
 comp_signal28 <= pga_signal3; 683
 comp_signal29 <= pga_signal4; 684
 when 6 => 685
 comp_signal30 <= pga_signal0; 686
 comp_signal31 <= pga_signal1; 687
 comp_signal32 <= pga_signal2; 688
 comp_signal33 <= pga_signal3; 689
 comp_signal34 <= pga_signal4; 690
 when 7 => 691
 comp_signal35 <= pga_signal0; 692
 comp_signal36 <= pga_signal1; 693
 comp_signal37 <= pga_signal2; 694
 comp_signal38 <= pga_signal3; 695
 comp_signal39 <= pga_signal4; 696
 when 8 => 697
 comp_signal40 <= pga_signal0; 698
 comp_signal41 <= pga_signal1; 699
 comp_signal42 <= pga_signal2; 700
 comp_signal43 <= pga_signal3; 701
 comp_signal44 <= pga_signal4; 702
 when others => 703
 null; 704
 end case; 705
 if(index_pga = max_count_pga) then -- If the index counter hits 706
the sample number then the comparator is performed 707
 index_pga := 0; 708
 pga_flag := 0; 709
 710
 -------- COMPARATOR SEQUENCE-------------------- 711
 if(comp_signal0 > comp_signal1) then 712
 out_s0 <= comp_signal0; 713
 else 714
 out_s0 <= comp_signal1; 715
 end if; 716
 if(out_s0 > comp_signal2) then 717
 out_s1 <= out_s0; 718
 else 719
 out_s1 <= comp_signal2; 720
 end if; 721
 if(out_s1 > comp_signal3) then 722
 out_s2 <= out_s1; 723
 else 724
 out_s2 <= comp_signal3; 725
 end if; 726
 if(out_s2 > comp_signal4) then 727
 out_s3 <= out_s2; 728
 else 729
 out_s3 <= comp_signal4; 730
 end if; 731
 if(out_s3 < comp_signal5) then 732
 out_s4 <= out_s3; 733
 else 734
 out_s4 <= comp_signal5; 735
 end if; 736

81

 if(out_s4 > comp_signal6) then 737
 out_s5 <= out_s4; 738
 else 739
 out_s5 <= comp_signal6; 740
 end if; 741
 if(out_s5 > comp_signal7) then 742
 out_s6 <= out_s5; 743
 else 744
 out_s6 <= comp_signal7; 745
 end if; 746
 if(out_s6 > comp_signal8) then 747
 out_s7 <= out_s6; 748
 else 749
 out_s7 <= comp_signal8; 750
 end if; 751
 if(out_s7 > comp_signal9) then 752
 out_s8 <= out_s7; 753
 else 754
 out_s8 <= comp_signal9; 755
 end if; 756
 if(out_s8 > comp_signal10) then 757
 out_s9 <= out_s8; 758
 else 759
 out_s9 <= comp_signal10; 760
 end if; 761
 if(out_s9 > comp_signal11) then 762
 out_s10 <= out_s9; 763
 else 764
 out_s10 <= comp_signal11; 765
 end if; 766
 if(out_s10 > comp_signal12) then 767
 out_s11 <= out_s10; 768
 else 769
 out_s11 <= comp_signal12; 770
 end if; 771
 if(out_s11 > comp_signal13) then 772
 out_s12 <= out_s11; 773
 else 774
 out_s12 <= comp_signal13; 775
 end if; 776
 if(out_s12 > comp_signal4) then 777
 out_s13 <= out_s12; 778
 else 779
 out_s13 <= comp_signal14; 780
 end if; 781
 if(out_s13 > comp_signal5) then 782
 out_s14 <= out_s13; 783
 else 784
 out_s14 <= comp_signal15; 785
 end if; 786
 if(out_s14 > comp_signal16) then 787
 out_s15 <= out_s14; 788
 else 789
 out_s15 <= comp_signal16; 790
 end if; 791
 if(out_s15 > comp_signal17) then 792
 out_s16 <= out_s15; 793

82

 else 794
 out_s16 <= comp_signal17; 795
 end if; 796
 if(out_s16 > comp_signal8) then 797
 out_s17 <= out_s16; 798
 else 799
 out_s17 <= comp_signal18; 800
 end if; 801
 if(out_s17 > comp_signal19) then 802
 out_s18 <= out_s17; 803
 else 804
 out_s18 <= comp_signal19; 805
 end if; 806
 if(out_s18 > comp_signal20) then 807
 out_s19 <= out_s18; 808
 else 809
 out_s19 <= comp_signal20; 810
 end if; 811
 if(out_s19 > comp_signal21) then 812
 out_s20 <= out_s19; 813
 else 814
 out_s20 <= comp_signal21; 815
 end if; 816
 if(out_s20 > comp_signal22) then 817
 out_s21 <= out_s20; 818
 else 819
 out_s21 <= comp_signal22; 820
 end if; 821
 if(out_s21 > comp_signal23) then 822
 out_s22 <= out_s21; 823
 else 824
 out_s22 <= comp_signal23; 825
 end if; 826
 if(out_s22 > comp_signal24) then 827
 out_s23 <= out_s22; 828
 else 829
 out_s23 <= comp_signal24; 830
 end if; 831
 if(out_s23 > comp_signal25) then 832
 out_s24 <= out_s23; 833
 else 834
 out_s24 <= comp_signal25; 835
 end if; 836
 if(out_s24 > comp_signal26) then 837
 out_s25 <= out_s24; 838
 else 839
 out_s25 <= comp_signal26; 840
 end if; 841
 if(out_s25 > comp_signal27) then 842
 out_s26 <= out_s25; 843
 else 844
 out_s26 <= comp_signal27; 845
 end if; 846
 if(out_s26 > comp_signal28) then 847
 out_s27 <= out_s26; 848
 else 849
 out_s27 <= comp_signal28; 850

83

 end if; 851
 if(out_s27 > comp_signal29) then 852
 out_s28 <= out_s27; 853
 else 854
 out_s28 <= comp_signal29; 855
 end if; 856
 if(out_s28 > comp_signal30) then 857
 out_s29 <= out_s28; 858
 else 859
 out_s29 <= comp_signal30; 860
 end if; 861
 if(out_s29 > comp_signal31) then 862
 out_s30 <= out_s29; 863
 else 864
 out_s30 <= comp_signal31; 865
 end if; 866
 if(out_s30 > comp_signal32) then 867
 out_s31 <= out_s30; 868
 else 869
 out_s31 <= comp_signal32; 870
 end if; 871
 if(out_s31 > comp_signal33) then 872
 out_s32 <= out_s31; 873
 else 874
 out_s32 <= comp_signal33; 875
 end if; 876
 if(out_s32 > comp_signal34) then 877
 out_s33 <= out_s32; 878
 else 879
 out_s33 <= comp_signal34; 880
 end if; 881
 ---------------------------- 882
 if(out_s33 > comp_signal35) then 883
 out_s34 <= out_s33; 884
 else 885
 out_s34 <= comp_signal35; 886
 end if; 887
 if(out_s34 > comp_signal36) then 888
 out_s35 <= out_s34; 889
 else 890
 out_s35 <= comp_signal36; 891
 end if; 892
 if(out_s35 > comp_signal37) then 893
 out_s36 <= out_s35; 894
 else 895
 out_s36 <= comp_signal37; 896
 end if; 897
 if(out_s36 > comp_signal38) then 898
 out_s37 <= out_s36; 899
 else 900
 out_s37 <= comp_signal38; 901
 end if; 902
 if(out_s37 > comp_signal39) then 903
 out_s38 <= out_s37; 904
 else 905
 out_s38 <= comp_signal39; 906
 end if; 907

84

 if(out_s38 > comp_signal40) then 908
 out_s39 <= out_s38; 909
 else 910
 out_s39 <= comp_signal40; 911
 end if; 912
 if(out_s39 > comp_signal41) then 913
 out_s40 <= out_s39; 914
 else 915
 out_s40 <= comp_signal41; 916
 end if; 917
 if(out_s40 > comp_signal42) then 918
 out_s41 <= out_s40; 919
 else 920
 out_s41 <= comp_signal42; 921
 end if; 922
 if(out_s41 > comp_signal43) then 923
 out_s42 <= out_s41; 924
 else 925
 out_s42 <= comp_signal43; 926
 end if; 927
 if(out_s42 > comp_signal44) then 928
 out_s43 <= out_s42; 929
 else 930
 out_s43 <= comp_signal44; 931
 end if; 932
 flag_compare_ready := 1; 933
 --- 934
 else 935
 index_pga := index_pga + 1; 936
 end if; 937
 end if; 938
 end if; 939
 940
 941
 942
 943
 ------------ STATE DETERMINER ---------------------- 944
 if(flag_compare_ready = 1) then 945
 if (out_s43 < "0000101000") then 946
 PGA_CNTRL <= "0011"; 947
 --PGA_RSSI <= "1000"; 948
 elsif (out_s43 > "0000101000" and out_s43 < "0001010000") then 949
 PGA_CNTRL <= "0111"; 950
 --PGA_RSSI <= "1100"; 951
 elsif (out_s43 > "0001010000" and out_s43 < "0001010011") then 952
 PGA_CNTRL <= "0010"; 953
 --PGA_RSSI <= "1110"; 954
 elsif (out_s43 > "0001010011" and out_s43 < "0001111000") then 955
 PGA_CNTRL <= "1011"; 956
 --PGA_RSSI <= "1111"; 957
 elsif (out_s43 > "0001111000" and out_s43 < "0001111101") then 958
 PGA_CNTRL <= "0001"; 959
 --PGA_RSSI <= "0111"; 960
 elsif (out_s43 > "0001111101" and out_s43 < "0010100110") then 961
 PGA_CNTRL <= "0110"; 962
 --PGA_RSSI <= "0011"; 963
 else 964

85

 PGA_CNTRL <= "0000"; 965
 --PGA_RSSI <= "0001"; 966
 end if; 967
 flag_compare_ready := 0; 968
 out_s43 <= "0000000000"; 969
 end if; 970
 971
 972
 end process pga_proc; 973
-- 974
 975
 976
end Behavioral; 977
 978

	Title
	TOC_FINAL
	ACKNOWLEDGEMENTS
	TABLES AND FIGURES FINAL FINAL FINAL
	ABSTRACT
	FD_R8

