
Global Launch Vehicle Selector

A Senior Project

presented to

the Faculty of the Aerospace Engineering

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree of

Bachelor of Science in Aerospace Engineering

by

Keisuke Suzuki

June, 2012

© 2012, Keisuke Suzuki
The author hereby grants to California Polytechnic State University San Luis Obispo

permission to reproduce and distribute publicly
paper and electronic copies of this document

in whole or in part.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19152613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

American Institute of Aeronautics and Astronautics

1

Global Launch Vehicle Selector

Keisuke Suzuki 1
California Polytechnic State University, San Luis Obispo, CA, 93407

Launch vehicle selection is a crucial decision for any mission heading to space. When
several launch vehicles are available as the potential carrier for a mission, this decision is no
longer a simple matter. The Global Launch Vehicle Selector (GLVS) is a program which
aims at supporting the customer with the launch vehicle selection. It allows the user to input
parameters of the spacecraft such as payload mass and insertion orbit, and based on these
values, outputs the most optimal launch vehicle as well as the launch site. GLVS is written in
Javascript and C# within Unity 3 (Unity). Unity was chosen for its user friendly interface,
ability to integrate 3d models, and its scripting environment to create a GUI. GLVS is
published for use on either the PC or Mac.

Nomenclature
GLVS = global launch vehicle selector
GUI = graphical user interface

I. Introduction
pace based missions are still reliant on launch vehicles. However, the launch vehicle itself has advanced
substantially in reliability, performance, and availability. The availability of launch vehicles, especially, has

come a long way. More and more countries are starting to possess their own launch vehicle, while others are steadily
advancing with their development of launch vehicles in the hopes of possessing one in the future and marketing
them as business. Although the United States and Russia are the widely acknowledged leaders in aerospace,
countries such as China are steadily increasing its presence. The diversity seen with the end users of the launch
vehicles are changing as well as we see more international customers and academic institutions provided with the
opportunity to send their payload into space1.
 While a launch vehicle is essential for a space mission, a customer may not be limited to selecting one from a
domestic fleet of launch vehicles. If there is a cheaper option, a customer may purchase an international launch
vehicle provider for launch. The same thing can be said for customers from countries which does not have its own
domestic fleet of launch vehicles. Many satellites used by African or Asian nations are manufactured and launched
abroad since they do not have the infrastructure to launch a spacecraft. One example is Nigeria’s Nigcomsat 1R, a
communication satellite which was manufactured and launched by China2. Pakistan is another country which relied
on China’s launch vehicle to send its satellite into space, while Vietnam is working with Japan to send its satellite
into space3,4. Canada, having no launch vehicles of its own, sends its payload with launch vehicles from Europe or
the United States5. The availability of launch vehicles should only increase for international satellite suppliers as
more private companies make their way into the launch vehicle market demonstrated by companies such as Space X
and Stratolaunch.
 To better understand the fleet of launch vehicles available around the world, the Global Launch Vehicle Selector
(GLVS) was created. The GLVS will serve two purposes for the user: a launch vehicle selection tool, and a database
of the active launch vehicles. To help the process of selecting a launch vehicle, GLVS will provide a tool where
users can input payload specifications such as payload mass, payload volume, insertion orbit etc. Based on the
inputs, the tool will select all appropriate launch vehicles to launch the payload. As for the database, it will serve as
a visual resource which can be used to aid students in learning more about launch vehicles.

1 Undergraduate Student, Aerospace Engineering Department, San Luis Obispo, CA 93407.

S

American Institute of Aeronautics and Astronautics

2

II. Objective
The idea of GLVS was inspired from a presentation compiled by ESA which discussed about creating a Launch

Vehicle Selector Tool6. The original idea looked at utilizing MATLAB to create a GUI where users could input their
payload specifications. GLVS will incorporate the idea of this GUI tool, but would look to add more weight on
accessibility by a wider range of users by having an interface not attached to MATLAB. A general overview of the
user group which the GLVS expects to serve is shown in Fig.1.
GLVS will serve as an open application where it will have enough
functions to be a useful tool to select a launch vehicle, while at the
same time, provide enough reference about launch vehicles for
browsing purposes. The database will be created so that non-
students or non-engineers can browse through it and gain a sense of
what is flying into space.

III. Approach
As stated earlier the GSLV will aim to serve two purposes. One

will be a launch vehicle selection tool where a user can obtain
feedback on which launch
vehicle to use for his/her
payload. Another is the database, or catalog of launch vehicles in which a
user will find information on all active launch vehicles. The goal is to have
an interface where these two functionalities will complement each other
within the software. A simplified block diagram of the overall project can be
seen in Fig. 2. For this project, only the functionality aspects of the GUI were
worked on.

A. Platform/ Working Environment
 In order to start on the project, a platform to work in was required.

Many platforms provide functions to create a GUI which will be capable of
making the launch vehicle selection tool GUI within GLVS. However, the

final product would ideally support visuals and have rendering capabilities. This prevented MATLAB from being a
possible candidate to work with. Nonetheless, the visual requirement helped in narrowing down the candidates for
the work environment. Other platforms included Microsoft Visual Studio 2010 Express, and Adobe Dreamweaver
CS5.5. These did not work out due to the fact that their applications branched out to so many areas; with the limited
time to work on GLVS, the time needed to learn and locate the correct tools within these softwares made them an
unfavorable choice. Time was another factor that needed to be considered. To overcome this, the working
environment needed to have a predefined set of functions, or building blocks which simply needed to be placed in
the right order rather than having to make everything from scratch. Hence, starting from scratch with a programming
language such as C and C++ were also ruled out.

 Fortunately, a game development tool called Unity 3 (Unity) showed great potential as a platform for
creating GLVS. The strong point in Unity is the user interface. It comes with a layout in which one can work freely
to obtain the desired looks and function. Another unique aspect is that it can import 3D models: this will help in
making the database within GLVS. The deciding factor was that the basic Unity software is free. Although, there is
a professional version which is otherwise, enough functions are available with the free version; therefore, it did not
cause any significant problems.

Figure 1. Target group for GLVS.

Figure 2. A general overview
of GLVS’s final design.

American Institute of Aeronautics and Astronautics

3

B. Programming Languages
Unity supports three programming languages: Javascript, C#, and a dialect of Python named Boo. For this

project, Javascript is used for coding. To be accurate, the Javascript incorporated in Unity is a modified version and
is sometimes referred to as Unityscript; however, in this paper, it will be referred to as Javascript. The scripts are
written in an external editor. There are several script editors that are compatible with Unity, and it is up to the
creator’s preference what to use. Notepad++ was used as the editor for this project.

C. Publishing
Unity is powerful in that it allows the user to publish his/her work on multiple platforms without any additional

changes to the work itself; all it takes is selecting the platform one wishes his/her work to be published in. GLVS
will be published so that it can be run on either a PC or Mac. Although not part of the project, Unity also supports
web publishing which will allow for distribution of the project to a wider audience. Once GSLV has matured
enough, this option can also be considered.

IV. GLVS Architecture
As mentioned earlier, the scope of this project will cover the selector tool only. Information here on will mainly

be concerned with the selector tool. A general architecture of the whole GLVS is shown in Fig.3. Scripts were
created using an external editor named Notepad++. There are multiple editors supported by Unity, and any of them
will work fine for script editing. These scripts will determine how different elements on the screen should behave.
The elements, or components, seen on the screen were all generated using ones provided within Unity: nothing was
imported except for textures which used images downloaded from the web. A scene is basically the screen a user
sees when using the GLVS. GLVS has more than 20 scenes and all of them can be navigated to using the navigation
buttons located on each scene. The destination and the triggering of the navigation buttons are all controlled by the
scripts.

A. Inputs
User inputs should include the following:

1) Payload mass
2) Payload maximum cross-sectional diameter
3) Insertion orbit
4) Inclination

Figure 3. The overview of the GLVS architecture.

American Institute of Aeronautics and Astronautics

4

5) Launch site
6) Reliability

 These inputs will be available for the user to specify, but at the same time, the user will have the option to leave
some inputs blank. In order to obtain an output, however, the user will need to input at least the insertion orbit type.
The GUI will ultimately be made so that it is flexible enough to accommodate any combination of inputs. Two types
of inputting format will be available for user inputs. One will be a simple text area where the user can type any value
or string. The other will be a pop down menu from which a user can pick a predefined parameter. A pop down menu
will be utilized for inputting insertion orbit, launch sites, and use of nuclear powered components. Units for mass
and dimensions are in metric units. English units are not considered for the current design. The list of launch sites is
presented in Appendix A. Reliability number will be the success rate of the overall campaign in percentages. These
reliability numbers are based off of the launch performance up to December 31, 20107.

B. Outputs
The outputs include the following list:

1) Launch vehicle
2) Launch site
3) Acceptable payload mass

 The output will include all the launch vehicle that fits the user’s need to carry the payload to space. The list of
launch vehicles that was incorporated is shown under Appendix B (only active launch vehicles). The output will also
consist of the payload mass. If the user has a mass value, the appropriate launch vehicles which can afford such
mass will be outputted. In the case where the user does not have a mass input, the output will consist of the
maximum launch mass for each of the appropriate launch vehicles.
 The selection process will include a comparison chart, or a set of equations depending on the parameters inputted
by the user. Derivation of the payload mass capacity available for different orbits is based off of equations generated
by the curve fits of performance plots obtained from the user’s manual guide7 for each launch vehicle (also listed in
Appendix C). Some errors are associated with the curve fit, and will be discussed later on. Other parameters such as
the reliability and payload dimensions are solved by signs of equality or inequality.

C. Code Relations
All coding will be done within the Unity supported editor (Notepad++) using Javascript. Although Unity

provides building blocks to create a GUI, scripts will be required to control its functions. In Fig.4, the general flow
of the different scripts which orchestrates the launch vehicle selection processes is shown. Table 1 describes each of
the variables shown in the figure.

V. Accuracy of Mass calculation
GLVS has some limitations with its ability to accurately determine the launch vehicle performances in different

orbits. The first obstacle is presented by the curve fitting process. Since the best estimation for launch vehicle
performance is provided as a plot, and not as a equation, curve fits were created to obtain an equation which may be
incorporated within the script. Upon curve fitting, several points on a plot were manually chosen and recorded on
Excel. Reading the values between grid lines on the plot inevitably lead to some inaccuracies. Although curve fits
were created using Excel first, it was soon realized that the generated equations were not accurately representing the
plots. Percent errors above 10% were observed when Excel’s equations were imported into Unity. The reason was
due to the first coefficient of the equation. When a curve fit is represented with a polynomial higher than the 3rd
degree, the very first coefficient is given using one significant number, and thus, is rounded to the nearest unit. To
avoid such occurrences, MATLAB was used utilizing its curve fit tool. Known as cftool, its curve fit equations
allow for coefficients with multiple significant numbers. Since MATLAB excels in numerical operations, curve fits
with a R-squared value of 1 was obtainable by having a polynomial of the 9th degree. However, the second obstacle
showed itself when a high order polynomial was imported into Unity. Unity simply does not have the power to solve
for such polynomials. For overwhelming numerical operations, the answer was simplified to infinity, whereas in
MATLAB, the answers could be shown as numbers. Hence, equations could only be accurate as Unity’s numerical
solver’s capability. This being said, all mass calculations based off of MATLAB’s equations give answers with a
percent error below 2.5% which is significantly below those obtained using Excel.

American Institute of Aeronautics and Astronautics

5

Figure 4. Flow of the static variables.

American Institute of Aeronautics and Astronautics

6

Table 1. The description of the static variables used within the scripts.

Script Name Static Variables What Description Connection

GUIInputArea.js payloadMass int user input for payload mass inputScreen.js; compareLV.js

 payloadM boolean identifies if user has a mass input compareLV.js

 orbitsParameter int identifies user's insertion orbit types Orbits.js; LVCalc1.js; LVCalcEq.js

 payloadXSectDia float user input for payload maximum
cross sectional diameter

inputScreen.js; LVCalcEq.js

 payloadXDia boolean identifies if user has a diameter
input

LVCalcEq.js

 payloadReliability float user input for LV reliability inputScreen.js; LVCalcEq.js

 payloadR boolean identifies if user has a reliability
input

LVCalcEq.js

Orbits.js payloadAlt float user input for payload altitude inputScreen.js; LVCalcEq.js

 payloadA boolean identifies if user has an altitude
input

 payloadIncl float user input for payload inclination inputScreen.js; LVCalcEq.js

 payloadI boolean identifies if user has an inclination
input

 payloadPeriAlt int user input for payload perigee
altitude

inputScreen.js;

 payloadPeriA boolean identifies if user has a perigee input

 payloadApoAlt int user input for payload apogee
altitude

inputScreen.js;LVCalcEq.js

 payloadApoA boolean identifies if user has an apogee input

inputScreen.js showResult boolean if true, starts calculation process LVCalc1.js

LVCalc1.js GOGOGO boolean if true, calculation process proceeds
to step2

compareLV.js

LVCalcEq.js compare boolean If true, starts compiling selected LV compareLV.js; inputScreen.js

 LVArr array stores list of [LVname,mass, launch
site]

compareLV.js

compareLV.js switchFinish boolean if true, signals comparison has
finished

inputScreen.js, ResultList.js

 LV array stores filtered LV name+mass resultSort.js, ResultList.js

resultSort.js listMass array array with LV ranked based on mass ResultList.js

 sortStart boolean signal start of the sorting process compareLV.js

 sortList int identify the parameter to rank ResultList.js

ResultList.js selGridInt2 int identifies picked LV from grid list inputScreen.js, resultSort.js

 gridVisible boolean start grid creation process inputScreen.js, resultSort.js

American Institute of Aeronautics and Astronautics

7

VI. Current State
The current state of GLSV has the basic layout complete so that the user can switch screens using the buttons

located on each of the screens. The GUI functions are in a mature state where user can input values and obtain an
output. The selector tool is capable of outputting a launch vehicle, launchable mass, and launch site based on the
payload mass, insertion orbit, payload cross sectional diameter, and launch vehicle reliability. The output can also be
sorted by launchable mass in which the launch vehicles with the higher launch capacity will be shown at the top of
the list. Although not as complete, two more approaches to the selection process is included on the GLVS. One is
choosing a launch vehicle beforehand. This will help when a user knows a specific launch vehicle he/she wants to
use. Upon selection, the user will obtain detailed specification of the launch vehicle to further assist the user with the
payload design. The full specifications for each of the launch vehicles are yet to be included. The other approach
narrows down the launch vehicle via a launch site. This will come in useful when launch location is known. This
will also help identify what kind of launch vehicles launches from each site. The launch vehicles available at each
site are referenced in the user’s manual, but it is not available on the current GLVS. This will be one of the future
works.

VII. Future Work
GLVS requires more work to near its ideal design where functionality is supported by visuals. 3D models of

launch vehicles are not created at the time of this writing, and will be necessary as future work to achieve an
intuitive aerospace tool. It should be included once work is started for the database side of the GLVS.

As for the functional aspects of the GLVS, there will always be space for improvements as that is the nature of
computer programs. Specifically, improvements can be made in optimizing the indexing of the launch vehicles
during internal calculations to speed up the program. The program experiences little lag as of now; however, since
scripts were written while simultaneously learning the programming language there will definitely be space for
improvements in terms of overall flow. Also, the performance of the selector tool is influenced by the amount of
data accessible through a user’s manual guide, textbooks, and online resources (keeping in mind that some are
unreliable sources). Any additional information about the launch vehicle performances is always helpful in order to
improve the GLVS.

VIII. Conclusion
 The GLVS has progressed far enough to allow a user interaction between it. A user can input a payload
specification and obtain a launch vehicle successfully. The visual design of the program will be left for future work.
So far, the potential of Unity as an engineering tool platform looks promising. The only huge obstacle stood in
gathering data for launch vehicle performances. Availability of these pieces of information varied widely depending
on the country of origin, and maturity of the launch vehicle.

American Institute of Aeronautics and Astronautics

8

Appendix A: Available launch sites. (SC = Space Center, FF = Flight Facility, AFS = Air Force
Station, AFB = Air Force Base)

Country Launch Sites

French Guiana Guiana Space Center

Kazakhstan Baikonur Cosmodrome, Dombarovsky Cosmodrome

Russia Kapustin Yar, Plesetsk Cosmodrome

China Jiuquan SC, Taiyuan SC, Xichang SC

Japan Tanegashima SC

United States Wallops FF, Cape Canaveral AFS, Vandenberg AFB, Kodiak Launch
Complex

Republic of Marshall Islands Kwajalein Missile Range

Iran Semnan Space and Missile Center

Israel Palmachim AFB

India Satish Dhawan SC

(Pacific Ocean) Odyssey Platform

American Institute of Aeronautics and Astronautics

9

Appendix B: The launch vehicles looked into for use in GLVS.

American Institute of Aeronautics and Astronautics

10

American Institute of Aeronautics and Astronautics

11

APPENDIX C: List of User Manual Availability (alphabetical order). For launch vehicles without a
user’s manual, the International Reference Guide to Space Launch Systems was used 8.

Launch Vehicle User Manual
Ariane 5 User’s Manual Issue 5, Revision 1, July 2011
Atlas V Atlas V Launch Services User’s Guide, Revision 11, March 2010
Delta IV Delta IV Payload Planners Guide, September 2007
Dnepr 1 Dnepr SLS User’s Guide Issue 2, November 2001
Falcon 1 Falcon 1 Launch Vehicle Payload User’s Guide Rev 7
Falcon 9 Falcon 9 Launch Vehicle Payload User’s Guide Rev 1
H-II International Reference Guide to Space Launch Systems
Kosmos International Reference Guide to Space Launch Systems
Long March 2C LM-2C User’s Manual, Issue 1999
Long March 2D None found
Long March 2F None found
Long March 3A LM-3A User’s Manual, Issue 1996
Long March 3B LM-3B User’s Manual, Issue 1999
Long March 3C LM-3C User’s Manual, Issue 1998
Long March 4B None found
Long March 4C None found
Minotaur I Minotaur I User’s Guide, Release 2.1, January 2006
Minotaur IV Minotaur IV User’s Guide, Release 1.1, January 2006
Pegasus Pegasus User’s Guide, Release 7.0, April 2010
Proton Proton Launch System Mission Planner’s Guide, Revision 7, July 2009
PSLV&GSLV International Reference Guide to Space Launch Systems
Rockot Rockot User’s Guide, Issue 5, Revision 0, August 2011
Safir None found
Shavit International Reference Guide to Space Launch Systems
Soyuz (Arianespace) User’s Manual Issue 2, Revision 0, March 2012
Soyuz Soyuz User’s Manual, Issue 3, Revision 0, April 2001
Start I START-1 Users handbook Volume I, Issue 1, May 31 2002
Taurus Taurus Launch System Payload User’s Guide, Release 4.0, March 2006

American Institute of Aeronautics and Astronautics

12

VEGA User’s Manual Issue 3, Revision 0, March 2006
Zenit 3SL User’s Guide, Revision B, July 2000

Acknowledgments
The author would like to thank Mr. Daniel J. Wait for his time and assistance offered throughout the duration of

this project. The author would also like to thank Dr. Kira Abercromby for her advice to help improve this project.

American Institute of Aeronautics and Astronautics

13

References

1Lafleur, Claude. "The Spacecrafts Encyclopedia." Vous êtes Sur: Claudelafleur.qc.ca. Web. 14 Mar. 2012.

<http://claudelafleur.qc.ca/Spacecrafts-index.html>.
2Stephen, Clark. "Spaceflight Now | Breaking News | China, Nigeria Team up for Broadcasting Satellite Launch." Spaceflight

Now. SPACEFLIGHT NOW, 19 Dec. 2011. Web. 14 Mar. 2012. <http://spaceflightnow.com/news/n1112/19longmarch/>.
3Stephen, Clark. "Spaceflight Now | Breaking News | Satellite for Pakistan Launched by Chinese Rocket." Spaceflight Now.

SPACEFLIGHT NOW, 11 Aug. 2011. Web. 14 Mar. 2012. <http://www.spaceflightnow.com/news/n1108/11longmarch/>.
4Umezu, Paul K. "Japan, Vietnam Sign Deal for Two Radar Imaging Satellites." Japan Vietnam Sign Deal for Two Radar

Imaging Satellites. Space News, 4 Nov. 2011. Web. 14 Mar. 2012. <http://www.spacenews.com/contracts/111104-japan-
vietnam-deal-radar-sats.html>.

5"Satellites." CSA. Canadian Space Agency, 8 Dec. 2011. Web. 14 Mar. 2012. <http://www.asc-
csa.gc.ca/eng/satellites/default.asp>.

6Blasco, Ana. "LVST: Launch Vehicle Selector Tool." LVST: Launch Vehicle Selector Tool. ESA. Web. 14 Mar. 2012.
<http://trajectory.estec.esa.int/Astro/3rd-astro-workshop-
presentations/The%20LVST%20launchers%20analysis%20tool%20and%20its%20use%20at%20ESA.pdf>.

7,8 Isakowitz, Steven J., Joseph P. Hopkins, and Joshua B. Hopkins. International Reference Guide to Space Launch Systems.
Reston, VA: American Institute of Aeronautics and Astronautics, 2004. Print.

	Global Launch Vehicle Selector
	Nomenclature
	I. Introduction
	II. Objective
	III. Approach
	A. Platform/ Working Environment
	B. Programming Languages
	C. Publishing

	IV. GLVS Architecture
	A. Inputs
	B. Outputs
	C. Code Relations

	V. Accuracy of Mass calculation
	VI. Current State
	VII. Future Work
	VIII. Conclusion
	Appendix A: Available launch sites. (SC = Space Center, FF = Flight Facility, AFS = Air Force Station, AFB = Air Force Base)
	Appendix B: The launch vehicles looked into for use in GLVS.
	Acknowledgments
	References

